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Abstract: We prove a priori estimates for the three-dimensional compressible Euler
equations with moving physical vacuum boundary, with an equation of state given by
p(ρ) = Cγ ργ for γ > 1. The vacuum condition necessitates the vanishing of the
pressure, and hence density, on the dynamic boundary, which creates a degenerate and
characteristic hyperbolic free-boundary system to which standard methods of symmetr-
izable hyperbolic equations cannot be applied.
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1. Introduction

1.1. The compressible Euler equations in Eulerian variables. For 0 ≤ t ≤ T , the evo-
lution of a three-dimensional compressible gas moving inside of a dynamic vacuum
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boundary is modeled by the one-phase compressible Euler equations:

ρ[ut + u · Du] + Dp(ρ) = 0 in �(t),

ρt + div(ρu) = 0 in �(t),

p = 0 on �(t),

V(�(t)) = u · n,

(ρ, u) = (ρ0, u0) on �(0),

�(0) = �.

(1.1a)

(1.1b)

(1.1c)

(1.1d)

(1.1e)

(1.1f)

The open, bounded subset �(t) ⊂ R
3 denotes the changing volume occupied by the

gas, �(t) := ∂�(t) denotes the moving vacuum boundary, V(�(t)) denotes the normal
velocity of �(t), and n denotes the exterior unit normal vector to �(t). The vector-field
u = (u1, u2, u3) denotes the Eulerian velocity field, p denotes the pressure function,
and ρ denotes the density of the gas. The equation of state p(ρ) is given by

p(x, t) = Cγ ρ(x, t)γ for γ > 1, (1.2)

where Cγ is the adiabatic constant which we set to unity, and

ρ > 0 in �(t) and ρ = 0 on �(t).

Equation (1.1a) is the conservation of momentum; (1.1b) is the conservation of mass;
the boundary condition (1.1c) states that pressure (and hence density) vanish along the
vacuum boundary; (1.1d) states that the vacuum boundary is moving with the normal
component of the fluid velocity, and (1.1e)–(1.1f) are the initial conditions for the density,
velocity, and domain. Using the equation of state (1.2), (1.1a) is written as

ρ[ut + u · Du] + Dργ = 0 in �(t). (1.1a′)

1.2. Physical vacuum. With the sound speed given by c := √
∂p/∂ρ and N denoting

the outward unit normal to �, satisfaction of the condition

∂c2
0

∂ N
< 0 on � (1.3)

defines a physical vacuum boundary (see [10,12–15,20]), where c0 = c|t=0. The phys-
ical vacuum condition (1.3) is equivalent to the requirement that

∂ρ
γ−1
0

∂ N
< 0 on �. (1.4)

Since ρ0 > 0 in �, (1.4) implies that for some positive constant C and x ∈ � near the
vacuum boundary �,

ρ
γ−1
0 (x) ≥ Cdist(x, �) for x near �. (1.5)

Because of condition (1.5), the compressible Euler system (1.1) is a degenerate and
characteristic hyperbolic system to which standard methods of symmetric hyperbolic
conservation laws cannot be applied.

We note that by choosing a lower-bound with a faster rate of degeneracy such as,
for example, dist(x, �(t))b for b = 2, 3, . . . ., the analysis becomes significantly easier;
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for instance, if b = 2, then
Dρ

γ−1
0 (x,t)√

ρ
γ−1
0 (x,t)

is bounded for all x ∈ �. This bound makes

it possible to easily control error terms in energy estimates, and in effect removes the
singular behavior associated with the physical vacuum condition (1.5).

1.3. Fixing the domain and the Lagrangian variables on �. We transform the system
(1.1) into Lagrangian variables. We let η(x, t) denote the “position” of the gas particle
x at time t . Thus,

∂tη = u ◦ η for t > 0 and η(x, 0) = x,

where ◦ denotes composition so that [u ◦ η](x, t) := u(η(x, t), t). We set

v = u ◦ η (Lagrangian velocity),

f = ρ ◦ η (Lagrangian density),

A = [Dη]−1 (inverse of deformation tensor),

J = det Dη (Jacobian determinant),

a = J A (tranpose of cofactor matrix).

Using Einstein’s summation convention defined in Sect. 2.3 below, and using the nota-
tion F,k to denote ∂ F

∂xk
, the kth-partial derivative of F for k = 1, 2, 3, the Lagrangian

version of Eqs. (1.1a)–(1.1b) can be written on the fixed reference domain � as

f vi
t + Ak

i f γ ,k = 0 in � × (0, T ],
ft + f A j

i vi , j = 0 in � × (0, T ],
f = 0 in � × (0, T ],

( f, v, η) = (ρ0, u0, e) in � × {t = 0},

(1.6a)

(1.6b)

(1.6c)

(1.6d)

where e(x) = x denotes the identity map on �.
Since Jt = J A j

i vi , j , it follows that

f = ρ0 J−1, (1.7)

so that the initial density function ρ0 can be viewed as a parameter in the Euler equations.
Let � := ∂� denote the initial vacuum boundary; using that Ak

i = J−1 ak
i , we write the

compressible Euler equations (1.6) as

ρ0v
i
t + ak

i (ρ
γ
0 J−γ ),k = 0 in � × (0, T ],

(η, v) = (e, u0) in � × {t = 0},
ρ

γ−1
0 = 0 on �,

(1.8a)

(1.8b)

(1.8c)

with ρ
γ−1
0 (x) ≥ C dist(x, �) for x ∈ � near �.
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1.4. Setting γ = 2. We will focus our analysis on the case γ = 2, and in Sect. 7, we will
explain the changes in the higher-order energy function for the general case of γ > 1.

We seek solutions η to the following system:

ρ0v
i
t + ak

i (ρ2
0 J−2),k = 0 in � × (0, T ],

(η, v) = (e, u0) on � × {t = 0},
ρ0 = 0 on �,

(1.9a)

(1.9b)

(1.9c)

with ρ0(x) ≥ C dist(x, �) for x ∈ � near �.
Equation (1.9a) is equivalent to

vi
t + 2Ak

i (ρ0 J−1),k = 0, (1.10)

and (1.10) can be written as

vi
t + ρ0ak

i J−2,k +2ρ0,k ak
i J−2 = 0. (1.11)

Because of the degeneracy caused by ρ0 = 0 on �, all three equivalent forms of the
compressible Euler equations are crucially used in our analysis. Equation (1.9a) is used
for energy estimates, while (1.10) is used for estimates of the vorticity, and (1.11) is used
for additional elliptic-type estimates used to recover the bounds for normal derivatives.

1.5. The reference domain �. To avoid the use of local coordinate charts necessary for
arbitrary geometries, for simplicity, we will assume that the initial domain � ⊂ R

3 at
time t = 0 is given by

� = {(x1, x2, x3) ∈ R
3 | (x1, x2) ∈ T

2, x3 ∈ (0, 1)},
where T

2 denotes the 2-torus, which can be thought of as the unit square with periodic
boundary conditions. This permits the use of one global Cartesian coordinate system.
At t = 0, the reference vacuum boundary is the top boundary

� = {x3 = 1},
while the bottom boundary {x3 = 0} is fixed with boundary condition

u3 = 0 on {x3 = 0} × [0, T ].
The moving vacuum boundary is then given by

�(t) = η(t)(�) = η(x1, x2, 1, t).

1.6. The higher-order energy function. For γ = 2, the physical energy
∫
�
[ 1

2ρ0|v|2 +
ρ2

0 J−1]dx is a conserved quantity, but is far too weak for the purposes of constructing
solutions; instead, we consider the higher-order energy function
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E(t) =
4∑

a=0

‖∂2a
t η(t)‖2

4−a +
4∑

a=0

[
‖ρ0∂̄

4−a∂2a
t Dη(t)‖2

0 + ‖√ρ0∂̄
4−a∂2a

t v(t)‖2
0

]

+
3∑

a=0

‖ρ0∂
2a
t J−2(t)‖2

4−a + ‖ curlη v(t)‖2
3 + ‖ρ0∂̄

4 curlη v(t)‖2
0, (1.12)

where ∂̄ =
(

∂
∂x1

, ∂
∂x2

)
. Section 2 explains the notation.

While this function is not conserved, it is possible to show that supt∈[0,T ] E(t) remains
bounded for sufficiently smooth solutions of (1.9), whenever T > 0 is taken sufficiently
small; the bound depends only on E(0).

1.7. Main Result.

Theorem 1.1 (The case γ = 2). Suppose that η(t) is a smooth solution of (1.9) on a
time interval [0, T̄ ] satisfying the initial bound E(0) < ∞, and that the initial density
function 0 < ρ0 in � and ρ0 ∈ H4(�) satisfies the physical vacuum condition (1.5).
Then for T > 0 taken sufficiently small, the energy function E(t) constructed from the
solution η(t) satisfies the a priori estimate

sup
t∈[0,T ]

E(t) ≤ M0,

where M0 and T is a function of E(0).

Of course, our theorem also covers the case that � ⊂ R
d for d = 1 or 2, and by

using a collection of coordinate charts, we can allow arbitrary initial domains, as long
as the initial boundary is of Sobolev class H3.5. We announced Theorem 1.1 in [4].

1.8. History of prior results for the compressible Euler equations with vacuum boundary.
We are aware of only a handful of previous theorems pertaining to the existence of solu-
tions to the compressible and inviscid Euler equations with moving vacuum boundary.
Makino [16] considered compactly supported initial data, and treated the compressible
Euler equations for a gas as being set on R

3 × (0, T ]. With his methodology, it is not
possible to track the location of the vacuum boundary (nor is it necessary); nevertheless,
an existence theory was developed in this context, by a variable change that permitted
the standard theory of symmetric hyperbolic systems to be employed. Unfortunately, the
constraints on the data are too severe to allow for the evolution of the physical vacuum
boundary.

In [11], Lindblad proved existence and uniqueness for the 3D compressible Euler
equations modeling a liquid rather than a gas. For a compressible liquid, the density
ρ > 0 is assumed to be a positive constant on the moving vacuum boundary �(t) and is
thus uniformly bounded below by a positive constant. As such, the compressible liquid
provides a uniformly hyperbolic, but characteristic, system. Lindblad used Lagrangian
variables combined with Nash-Moser iteration to construct solutions. More recently,
Trakhinin [19] provided an alternative proof for the existence of a compressible liquid,
employing a solution strategy based on symmetric hyperbolic systems combined with
Nash-Moser iteration.

The only existence theory for the physical vacuum singularity that we are aware of
can be found in the recent paper by Jang and Masmoudi [6] for the 1D compressible
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gas; we refer the interested reader to the introduction in that paper for a nice history of
the analysis of the 1D compressible Euler equations with damping.

1.9. Generalization of the isentropic gas assumption. The general form of the com-
pressible Euler equations in three space dimensions are the 5×5 system of conservation
laws

ρ[ut + u · Du] + Dp(ρ) = 0, (1.13a)

ρt + div(ρu) = 0, (1.13b)

(ρE)t + div(ρuE + pu) = 0, (1.13c)

where (1.13a), (1.13b) and (1.13c) represent the respective conservation of momen-
tum, mass, and total energy. Here, the quantity E is the sum of contributions from the
kinetic energy 1

2 |u|2, and the internal energy e, i.e.,E = 1
2 |u|2 + e. For a single phase of

compressible liquid or gas, e becomes a well-defined function of ρ and p through the
theory of thermodynamics, e = e(ρ, p). Other interesting and useful physical quanti-
ties, the temperature T (ρ, p) and the entropy S(ρ, p) are defined through the following
consequence of the second law of thermodynamics

T d S = de = − p

ρ2 dρ.

For ideal gases, the quanities e, T, S have the explicit formulae:

e(ρ, p) = p

ρ(γ − 1)
= T

γ − 1
,

T (ρ, p) = p

ρ
,

p = eSργ , γ > 1, constant.

In regions of smoothness, one often uses velocity and a convenient choice of two addi-
tional variables among the five quantities S, T, p, ρ, e as independent variables. For the
Lagrangian formulation, the entropy S plays an important role, as it satisfies the transport
equation

St + (u · D)S = 0,

and as such, S ◦ η = S0, where S0(x) = S(x, 0) is the initial entropy function. Thus, by
replacing f with eS◦ηρ

γ
0 J−γ , our analysis for the isentropic case naturally generalizes

to the 5 × 5 system of conservation laws.

2. Notation and Weighted Spaces

2.1. Differentiation and norms in the open set �. The reference domain � is defined in
Sect. 1.5. Throughout the paper the symbol D will be used to denote the three-dimen-
sional gradient vector

D =
(

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
.
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For integers k ≥ 0 and a smooth, open domain � of R
3, we define the Sobolev space

Hk(�) (Hk(�; R
3)) to be the completion of C∞(�) (C∞(�; R

3)) in the norm

‖u‖k :=
⎛
⎝ ∑

|a|≤k

∫

�

∣∣∣∣
∂ |a|u(x)

∂xa1
1 ∂xa2

2 ∂xa3
3

∣∣∣∣
2

dx1dx2dx3

⎞
⎠

1/2

,

for a multi-index a ∈ Z
3
+, with the standard convention that |a| = a1 + a2 + a3. For

real numbers s ≥ 0, the Sobolev spaces Hs(�) and the norms ‖ · ‖s are defined by
interpolation. We will write Hs(�) instead of Hs(�; R

3) for vector-valued functions.
In the case that s ≥ 3, the above definition also holds for domains � of class Hs . We
will write dx to denote the 3-D Lebesgue measure dx1dx2dx3.

2.2. Tangent and normal vectors to �. The outward-pointing unit normal vector to � is
given by

N = (0, 0, 1).

Similarly, the unit tangent vectors on � are given by

T1 = (1, 0, 0) and T2 = (0, 1, 0).

2.3. Einstein’s summation convention. Repeated Latin indices i, j, k,, etc., are summed
from 1 to 3, and repeated Greek indices α, β, γ , etc., are summed from 1 to 2. For exam-

ple, F,i i := ∑
i=1,3

∂2

∂xi ∂xi
, and Fi ,α I αβGi ,β := ∑3

i=1
∑2

α=1
∑2

β=1
∂ Fi

∂xα
I αβ ∂Gi

∂xβ
.

2.4. Sobolev spaces on �. For functions u ∈ Hk(�), k ≥ 0, we set

|u|k :=
⎛
⎝ ∑

|a|≤k

∫

�

∣∣∣∣
∂ |α|u(x)

∂xα1
1 ∂xα2

2

∣∣∣∣
2

dx1dx2

⎞
⎠

1/2

,

for a multi-index α ∈ Z
2
+. For real s ≥ 0, the Hilbert space Hs(�) and the boundary

norm | · |s is defined by interpolation. The negative-order Sobolev spaces H−s(�) are
defined via duality: for real s ≥ 0,

H−s(�) := [Hs(�)]′.

2.5. Notation for derivatives and norms. Throughout the paper, we will use the follow-
ing notation:

D = three-dimensional gradient vector =
(

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
,

∂̄ = two-dimensional gradient vector or horizontal derivative =
(

∂

∂x1
,

∂

∂x2

)
,

‖ · ‖s = Hs(�) interior norm,

| · |s = Hs(�) boundary norm.

The kth partial derivative of F will be denoted by F,k = ∂ F
∂xk

.
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2.6. The embedding of a weighted Sobolev space. Using d to denote the distance func-
tion to the boundary �, and letting p = 1 or 2, the weighted Sobolev space H1

d p (�),
with norm given by

∫
�

d(x)p(|F(x)|2 + |DF(x)|2) dx for any F ∈ H1
d p (�), satisfies

the following embedding:

H1
d p (�) ↪→ H1− p

2 (�),

so that there is a constant C > 0 depending only on � and p such that

‖F‖2
1−p/2 ≤ C

∫

�

d(x)p
(
|F(x)|2 + |DF(x)|2

)
dx . (2.1)

See, for example, Sect. 8.8 in Kufner [9].

3. The Lagrangian Vorticity

We make use of the permutation symbol

εi jk =
⎧
⎨
⎩

1, even permutation of {1, 2, 3},
−1, odd permutation of {1, 2, 3},

0, otherwise,

and the basic identity regarding the i th component of the curl of a vector field u:

(curl u)i = εi jkuk, j .

The chain rule shows that

(curl u(η))i = (curlη v)i := εi jk As
jv

k,s ,

the right-hand side defining the Lagrangian curl operator curlη. Taking the Lagrangian
curl of (1.10) yields the Lagrangian vorticity equation

εk ji As
jv

i
t ,s = 0, or curlη vt = 0. (3.1)

4. Properties of the Determinant J , Cofactor Matrix a, Unit Normal n,
and a Polynomial-type Inequality

4.1. Differentiating the Jacobian determinant. The following identities will be useful
to us:

∂̄ J = as
r ∂̄

∂ηr

∂xs
(horizontal differentiation ), (4.1)

∂t J = as
r
∂vr

∂xs
(time differentiation using v = ηt ). (4.2)

4.2. Differentiating the cofactor matrix. Using (4.1) and (4.2) and the fact that a = J A,
we find that

∂̄ak
i = ∂̄

∂ηr

∂xs
J−1[as

r ak
i − as

i ak
r ] (horizontal differentiation), (4.3)

∂t a
k
i = ∂vr

∂xs
J−1[as

r ak
i − as

i ak
r ] (time differentiation using v = ηt ). (4.4)
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4.3. The Piola identity. It is a fact that the columns of every cofactor matrix are diver-
gence-free and satisfy

ak
i ,k = 0. (4.5)

The identity (4.5) will play a vital role in our energy estimates. (Note that we use the
notation cofactor for what is commonly termed the adjugate matrix, or the transpose of
the cofactor.)

4.4. Geometric identities. The vectors η,α for α = 1, 2 span the tangent plane to the
surface � in R

3, and

τ1 := η,1

|η,1 | , τ2 := η,2

|η,2 | , and n := η,1 ×η,2

|η,1 ×η,2 |
are the unit tangent and normal vectors, respectively, to η(�).

By definition of the cofactor matrix,

a3
i =

⎡
⎣

η2,1 η3,2 −η3,1 η2,2
η3,1 η1,2 −η1,1 η3,2
η1,1 η2,2 −η1,2 η2,1

⎤
⎦ . (4.6)

4.5. A polynomial-type inequality. For a constant M0 ≥ 0, suppose that f (t) ≥ 0,
t �→ f (t) is continuous, and

f (t) ≤ M0 + C t P( f (t)), (4.7)

where P denotes a polynomial function, and C is a generic constant. Then for t taken
sufficiently small, we have the bound

f (t) ≤ 2M0.

This type of inequality, which we introduced in [2], can be viewed as a generalization
of standard nonlinear Gronwall inequalities.

With E(t) defined by (1.12), we will show that supt∈[0,T ] E(t) satisfies the inequality
(4.7).

5. Trace Estimates and the Hodge Decomposition Elliptic Estimates

The normal trace theorem which states that the existence of the normal trace of a velocity
field w ∈ L2(�) relies on the regularity of divw (see, for example, [18]). If divw ∈
H1(�)′, then w · N , the normal trace, exists in H−0.5(�) so that

‖w · N‖2
H−0.5(�)

≤ C
[
‖w‖2

L2(�)
+ ‖divw‖2

H1(�)′
]

(5.1)

for some constant C independent of w. In addition to the normal trace theorem, we have
the following.

Lemma 5.1. Let w ∈ L2(�) so that curlw ∈ H1(�)′, and let T1, T2 denote the unit
tangent vectors on �, so that any vector field u on � can be uniquely written as uαTα .
Then
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‖w · Tα‖2
H−0.5(�)

≤ C
[
‖w‖2

L2(�)
+ ‖curlw‖2

H1(�)′
]
, α = 1, 2 (5.2)

for some constant C independent of w.

See [1] for the proof. Combining (5.1) and (5.2),

‖w‖H−0.5(�) ≤ C
[‖w‖L2(�) + ‖divw‖H1(�)′ + ‖curlw‖H1(�)′

]
(5.3)

for some constant C independent of w.
The construction of our higher-order energy function is based on the following Hodge-

type elliptic estimate:

Proposition 5.2. For an Hr domain �, r ≥ 3, if F ∈ L2(�; R
3) with curl F ∈

Hs−1(�; R
3), divF ∈ Hs−1(�), and F · N |� ∈ Hs− 1

2 (�) for 1 ≤ s ≤ r , then
there exists a constant C̄ > 0 depending only on � such that

‖F‖s ≤ C̄
(
‖F‖0 + ‖ curl F‖s−1 + ‖ div F‖s−1 + |∂̄ F · N |s− 3

2

)
,

‖F‖s ≤ C̄
(
‖F‖0 + ‖ curl F‖s−1 + ‖ div F‖s−1 +

∑2
α=1 |∂̄ F · Tα|s− 3

2

)
,

(5.4)

where N denotes the outward unit-normal to �, and Tα are tangent vectors for α = 1, 2.

These estimates are well-known and follows from the identity −�F = curl curlF −
DdivF ; a convenient reference is Taylor [17].

6. The a priori Estimates

6.1. Curl Estimates. Following Lemma 10.1 in [3], we obtain the following estimates:

Proposition 6.1. For all t ∈ (0, T ),

3∑

a=0

‖curl ∂2a
t η(t)‖2

3−a +
4∑

l=0

‖ρ0 ∂̄4−lcurl ∂2l
t η(t)‖2

0 ≤ M0 + C T P( sup
t∈[0,T ]

E(t)).

(6.1)

Proof. From (3.1), (curlη v)k
t = εk ji At

s
jv

i ,s =: B(A, Dv), where B is quadratic in its
arguments; hence,

curlη v(t) = curl u0 +
∫ t

0
B(A(t ′), Dv(t ′))dt ′, (6.2)

and computing the gradient of this relation yields

D curlη v(t) = curl Du0 − ε· j i D As
jv

i ,s +
∫ t

0
DB(A(t ′), Dv(t ′))dt ′.

Applying the fundamental theorem of calculus once again, shows that

D curlη η(t) = t D curl u0 + ε· j i

∫ t

0
[At

s
j Dηi ,s −D As

jv
i ,s ]dt ′

+
∫ t

0

∫ t ′

0
DB(A(t ′′), Dv(t ′′))dt ′′dt ′,
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and finally that

curl Dη(t) = t curl Du0 − ε· j i

∫ t

0
At

s
j (t

′)dt ′ Dηi ,s

+ε· j i

∫ t

0
[At

s
j Dηi ,s −D As

j v
i ,s ]dt ′ +

∫ t

0

∫ t ′

0
DB(A(t ′′), Dv(t ′′))dt ′′dt ′. (6.3)

To obtain an estimate for ‖ curl η(t)‖2
3, we let D2 act on (6.3). With ∂t As

j =
−As

l v
l ,p Ap

j and D As
j = −As

l Dηl ,p Ap
j , we see that the first three terms on the right-

hand side of (6.3) are bounded by M0 + C T P(supt∈[0,T ] E(t)), where we remind the
reader that M0 = P(E(0)) is a polynomial function of the E at time t = 0. Since

DB(A, Dv) = −εk ji [Dvi ,s As
l v

l ,p Ap
j + vi ,s As

l Dvl ,p Ap
j + vi ,s vl ,p D(As

l Ap
j )],

the highest-order term arising from the action of D2 on DB(A, Dv) is written as

−εk ji

∫ t

0

∫ t ′

0
[D3vi ,s As

l v
l ,p Ap

j + vi ,s As
l D3vl ,p Ap

j ]dt ′′dt ′.

Both summands in the integrand scale like D3v Dv A A. The precise structure of this
summand is not very important; rather, the derivative count is the focus. Integrating by
parts in time,

∫ t

0

∫ t ′

0
D3v Dv A A dt ′′dt ′ = −

∫ t

0

∫ t ′

0
D3η (Dv A A)t dt ′′dt ′ +

∫ t

0
D3η Dv A A dt ′,

from which it follows that
∥∥∥∥∥
∫ t

0

∫ t ′

0
D3 B(A(t ′′), Dv(t ′′))dt ′′dt ′

∥∥∥∥∥
2

0

≤ C T P( sup
t∈[0,T ]

E(t)),

and hence

sup
t∈[0,T ]

‖ curl η(t)‖2
3 ≤ M0 + C T P( sup

t∈[0,T ]
E(t)).

Next, we show that

‖ curl vt (t)‖2
2 ≤ M0 + C T P( sup

t∈[0,T ]
E(t)). (6.4)

From (3.1),

curl vt = ε j ·i
∫ t

0 At
s
j (t

′)dt ′ vi
t ,s .

Since H2(�) is a multiplicative algebra, we can directly estimate the H2(�)-norm of
curl vt to prove that (6.4) holds. The estimates for curl vt t t (t) in H1(�) and curl ∂5

t v(t)
in L2(�) follow the same argument.

The weighted estimates follow from similar reasoning. We first show that

‖ρ0∂̄
4 curl η(t)‖2

0 ≤ M0 + C T P( sup
t∈[0,T ]

E(t)). (6.5)
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To prove this weighted estimate, we write (6.2) as

curl v(t) = ε jkiv
i ,s

∫ t

0
At

s
j (t

′)dt ′ + curl u0 +
∫ t

0
B(A(t ′), Dv(t ′))dt ′,

and integrate in time to find that

curl η(t)= t curl u0 +
∫ t

0
ε jkiv

i ,s

∫ t ′

0
At

s
j (t

′′)dt ′′dt ′ +
∫ t

0

∫ t ′

0
B(A(t ′′), Dv(t ′′))dt ′′dt ′.

It follows that

ρ0∂̄
4 curl η(t) = tρ0∂̄

4 curl u0

+
∫ t

0

∫ t ′

0
εk ji At

s
jρ0∂̄

4vi ,s dt ′′dt ′ +
∫ t

0

∫ t ′

0
εk jiρ0∂̄

4 At
s
jv

i ,s dt ′′dt ′

+
∫ t

0
ε jkiρ0∂̄

4vi ,s

∫ t ′

0
At

s
j (t

′′)dt ′′dt ′ +
∫ t

0
ε jkiv

i ,s

∫ t ′

0
ρ0∂̄

4 At
s
j (t

′′)dt ′′dt ′ + R2,

(6.6)

where R2 denotes terms which are lower-order in the derivative count; in particular the
terms with the highest derivative count in R2 scale like ρ∂̄3 Dv or ρ∂̄4η, and hence
satisfy the inequality ‖R2(t)‖2

0 ≤ M0 + C T P(supt∈[0,T ] E(t)). We focus on the first
integral on the right-hand side of (6.6); integrating by parts in time, we find that

∫ t

0

∫ t ′

0
εk ji At

s
jρ0∂̄

4vi ,s dt ′′dt ′ = −
∫ t

0

∫ t ′

0
εk ji Att

s
jρ0∂̄

4ηi ,s dt ′′dt ′

+
∫ t

0
εk ji At

s
jρ0∂̄

4ηi ,s dt ′,

and hence∥∥∥∥∥
∫ t

0

∫ t ′

0
εk ji At

s
jρ0∂̄

4vi ,s dt ′′dt ′
∥∥∥∥∥

2

0

≤ M0 + C T P( sup
t∈[0,T ]

E(t)).

The other time integrals in (6.6) can be estimated in the same fashion, which proves that
(6.5) holds. The weighted estimates for the curl of vt , vt t t and ∂5

t v are obtained similarly.
�

6.2. Energy estimates. We assume that we have smooth solutions η on a time interval
[0, T ], and that for all such solutions, the time T > 0 is taken sufficiently small so that
for t ∈ [0, T ],

1

2
≤ J (t) ≤ 3

2
,

‖η(t)‖2
3.5 ≤ 2‖e‖2

3.5 + 1, (6.7)

‖∂a
t v(t)‖2

3−a/2 ≤ 2‖∂a
t v(0)‖2

3−a/2 + 1 for a = 0, 1, . . . , 6.

The right-hand sides appearing in these inequalities shall be denoted by a generic con-
stant C in the estimates appearing below. Once we establish our a priori bounds, we can
ensure that our solution verifies to the assumptions (6.7) by means of the fundamental
theorem of calculus.
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6.2.1. The structure of the estimates. Due to the degeneracy of the initial density function
ρ0, one time derivative scales like one-half of a space derivative. The energy estimates
for the time and tangential derivatives are obtained by first studying the ∂̄4-differentiated
Euler equations, then the ∂̄3∂2

t -differentiated Euler equations, and so on, until we reach
the ∂̄0∂8

t -differentiated Euler equations. The estimates for the normal derivatives are
then found using elliptic-type estimates. The Sobolev embedding theorem requires that
we use H4(�) as the minimal regularity of η(t).

6.2.2. The ∂̄4-problem.

Proposition 6.2. For δ > 0 and letting the constant M0 depend on 1/δ,

sup
t∈[0,T ]

(∫

�

ρ0(x)|∂̄4v(x, t)|2dx +
∫

�

ρ2
0 (x)|∂̄4 Dη(x, t)|2dx

)

≤ M0 + δ sup
t∈[0,T ]

E(t) + C T P( sup
t∈[0,T ]

E(t)). (6.8)

Proof. Letting ∂̄4 act on ρ0v
i
t + ak

i (ρ2
0 J−2),k = 0, and taking the L2(�)-inner product

with ∂̄4vi , we obtain

1

2

d

dt

∫

�

ρ0|∂̄4v|2dx +
∫

�

∂̄4ak
i (ρ2

0 J−2),k ∂̄4vi dx +
∫

�

ak
i (ρ2

0 ∂̄4 J−2),k ∂̄4vi dx

+
∫

�

ak
i (∂̄4ρ2

0 J−2),k ∂̄4vi dx =
3∑

l=1

cl

∫

�

∂̄4−lak
i (ρ2

0 ∂̄ l J−2),k ∂̄4vi dx . (6.9)

Integrating the first term from 0 to t ∈ (0, T ] produces the first term on the left-hand
side of (6.8).

We define the following integrals:

I1 =
∫

�

∂̄4ak
i (ρ2

0 J−2),k ∂̄4vi dx,

I2 =
∫

�

ak
i (ρ2

0 ∂̄4 J−2),k ∂̄4vi dx,

I3 =
∫

�

ak
i (∂̄4ρ2

0 J−2),k ∂̄4vi dx,

R =
3∑

l=1

cl

∫

�

∂̄4−lak
i ∂̄ l(ρ2

0 J−2),k ∂̄4vi dx .

The last integral introduces our notation R for the remainder, which throughout the paper
will consist of integrals of lower-order terms which can, via elementary inequalities
together with our assumptions (6.7), easily be shown to satisfy the following estimate:

∫ T

0
R(t)dt ≤ M0 + δ sup

t∈[0,T ]
E(t) + C T P( sup

t∈[0,T ]
E(t)). (6.10)

The sum of
∫ T

0 [I1(t)+I2(t)+I3(t)]dt together with the estimates for curl η given by
Proposition 6.1 will provide the remaining energy contribution

∫
�

ρ2
0 (x, t)|∂̄4 Dη|2dx

plus error terms which have the same bound as R.



572 D. Coutand, H. Lindblad, S. Shkoller

Analysis of
∫ T

0 Rdt. Using the identity (4.5), we integrate by parts with respect to xk
and then with respect to the time derivative ∂t , and use (4.5) to obtain that

R = −
3∑

l=1

cl

∫ T

0

∫

�

∂̄4−lak
i ∂̄ l(ρ2

0 J−2) ∂̄4vi ,k dxdt

=
3∑

l=1

cl

∫ T

0

∫

�

(
∂̄4−lak

i ∂̄ l(ρ2
0 J−2)

)
t

∂̄4ηi ,k dxdt

−
3∑

l=1

cl

∫

�

∂̄4−lak
i ∂̄ l(ρ2

0 J−2) ∂̄4ηi ,k dx
∣∣T
0 .

Notice that when l = 3, the highest-order integrand in the spacetime integral on
the right-hand side scales like � [∂̄ Dη ρ0∂̄

3∂t J−2 + ∂̄ Dv ρ0∂̄
3 J−2] ρ0∂̄

4 Dη, where �

denotes an L∞((0, T ) × �) function. Since ‖ρ0∂
2
t J−2(t)‖2

3 is contained in the energy
function E(t) and since ∂̄ Dη(t) ∈ L∞(�), the first summand is estimated using an L∞-
L2-L2 Hölder’s inequality, while for the second summand, we use that ‖ρ0 J−2(t)‖2

4 is
contained in E(t) together with an L4-L4-L2 Hölder’s inequality.

When l = 1, the integrand in the spacetime integral on the right-hand side scales
like � [∂̄ Dη ρ0∂̄

3at
k
i + ∂̄ Dv ρ0∂̄

3ak
i ] ρ0∂̄

4ηi ,k . Since ‖ρ0∂̄
3 Dvt (t)‖2

0 is contained in the
energy function E(t) and since ∂̄ Dη ∈ L∞(�), the first summand is estimated using an
L∞-L2-L2 Hölder’s inequality. We write the second summand as

∂̄ Dv ρ0∂̄
3aβ

i ρ0∂̄
4ηi ,β +∂̄ Dv ρ0∂̄

3a3
i ρ0∂̄

4ηi ,3 .

We estimate
∫ T

0

∫

�

∂̄ Dv ρ0∂̄
3aβ

i ρ0∂̄
4ηi ,β dxdt

= −
∫ T

0

∫

�

[∂̄ Dv ρ0∂̄
3aβ

i ,β ρ0∂̄
4ηi + ∂̄ Dv,β ρ0∂̄

3aβ
i ρ0∂̄

4ηi ]dxdt

≤ C
∫ T

0

(
‖∂̄ Dv(t)‖L3(�)‖ρ0∂̄

4a(t)‖0 ‖ρ0∂̄
4η(t)‖L6(�)

+‖∂̄2 Dv(t)‖L3(�)‖ρ0∂̄
4η(t)‖L6(�)‖∂̄3a‖0

)
dt

≤ C
∫ T

0

(
‖∂̄ Dv(t)‖H0.5(�)‖ρ0∂̄

4a(t)‖0 ‖ρ0∂̄
4η(t)‖1

+‖∂̄2 Dv(t)‖H0.5(�)‖ρ0∂̄
4η(t)‖1 ‖∂̄3a‖0

)
dt

≤ C
∫ T

0

(
‖v(t)‖H3.5(�)‖ρ0∂̄

4 Dη(t)‖2
0 + ‖v(t)‖H2.5(�)‖ρ0∂̄

4 Dη(t)‖0‖η(t)‖4

+‖v(t)‖H3.5(�)‖η(t)‖2
4

)
dt, (6.11)

where we have used Hölder’s inequality, followed by the Sobolev embeddings

H0.5(�) ↪→ L3(�) and H1(�) ↪→ L6(�).
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We also rely on the interpolation estimate

‖v‖2
L2(0,T ;H3.5(�))

≤ C (‖v(t)‖3‖η‖4)

∣∣∣
0

T
+ C‖vt‖L2(0,T ;H3(�))‖η‖L2(0,T ;H4(�))

≤ M0 + δ sup
t∈[0,T ]

‖η(t)‖2
4 + C T sup

t∈[0,T ]

(
‖η(t)‖2

4 + ‖vt (t)‖2
3

)
,

(6.12)

where the last inequality follows from Young’s and Jensen’s inequalities. Using this
together with the Cauchy-Schwarz inequality, (6.11) is bounded by C T P(supt∈[0,T ]
E(t)). Next, since (4.6) shows that each component of a3

i is quadratic in ∂̄η, we see that
the same analysis shows the spacetime integral of ∂̄ Dv ρ0∂̄

3a3
i ρ0∂̄

4ηi ,3 has the same
bound, and so we have estimated the case l = 1.

For the case that l = 2, the integrand in the spacetime integral on the right-hand side
of the expression for R scales like � ∂̄2 Dη ∂̄2 Dv ρ0∂̄

4 Dη, so that an L6 − L3 − L2

Hölder’s inequality, followed by the same analysis as for the case l = 1 provides the
same bound as for the case l = 1.

To deal with the space integral on the right-hand side of the expression for R, the
integral at time t = 0 is equal to zero since η(x, 0) = x , whereas the integral evaluated
at t = T is written, using the fundamental theorem of calculus, as

−
3∑

l=1

cl

∫

�

ρ0∂̄
4−lak

i ∂̄ l J−2ρ0∂̄
4ηi ,k dx

∣∣∣
t=T

= −
3∑

l=1

cl

∫

�

ρ0

∫ T

0
(∂̄4−lak

i ∂̄ l J−2)tρ0∂̄
4ηi ,k (T )dx,

which can be estimated in the identical fashion as the corresponding spacetime integral.
As such, we have shown that R has the claimed bound (6.10).

Analysis of the integral I1. Because ρ0 = 0 on � = {x3 = 1}, we use the identity (4.5)
to integrate by parts with respect to xk to find that

I1 = −
∫

�

ρ2
0 J−2 ∂̄4ak

i ∂̄4vi ,k dx +
∫

{x3=0}
ρ2

0 J−2 ∂̄4a3
i ∂̄4vi dx1dx2

= −
∫

�

ρ2
0 J−2 ∂̄4ak

i ∂̄4vi ,k dx,

since on the fixed boundary {x3 = 0}, η3 = x3 so that according to (4.6), the compo-
nents a3

1 = 0 and a3
2 = 0 on {x3 = 0}, and v3 = 0 on {x3 = 0}, so that ∂̄4a3

i ∂̄4vi = 0
on{x3 = 0}.

To estimate I1, we use the formula (4.3) for horizontally differentiating the cofactor
matrix:

I1 =
∫

�

ρ0
2 J−3 ∂̄4ηr ,s [as

i ak
r − as

r ak
i ] ∂̄4vi ,k dx + R,

where the remainder R satisfies (6.10). We decompose the highest-order term in I1 as
the sum of the following two integrals:
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I1a =
∫

�

ρ0
2 J−3 (∂̄4ηr ,s as

i )(∂̄
4vi ,k ak

r )dx,

I1b = −
∫

�

ρ0
2 J−3 (∂̄4ηr ,s as

r )(∂̄
4vi ,k ak

i )dx .

Since v = ηt , I1a is an exact derivative modulo an antisymmetric commutation with
respect to the free indices i and r ; namely,

∂̄4ηr ,s as
i ∂̄

4vi ,k ak
r = ∂̄4ηi ,s as

r ∂̄
4vi ,k ak

r + (∂̄4ηr ,s as
i − ∂̄4ηi ,s as

r )∂̄
4vi ,k ak

r . (6.13)

Using the notation

[Dη F]i
r = as

r Fi ,s for any vector field F,

∂̄4ηi ,s as
r ∂̄

4vi ,k ak
r = 1

2

d

dt
|Dη∂̄

4η|2 − 1

2
∂̄4ηr ,s ∂̄4ηi ,k (as

r ak
i )t , (6.14)

so the first term on the right-hand side of (6.13) produces an exact derivative in time.
For the second term on the right-hand side of (6.13), note the identity

(∂̄4ηr ,s as
i − ∂̄4ηi ,s as

r )∂̄
4vi ,k ak

r = −J 2εi jk ∂̄
4ηk,r Ar

j εimn ∂̄4vn,s As
m . (6.15)

We have used the permutation symbol ε to encode the anti-symmetry in this relation,
and the basic fact that the trace of the product of symmetric and antisymmetric matrices
is equal to zero.

Recalling our notation [curlη F]i = εi jk Fk,r Ar
j , (6.15) can be written as

(∂̄4ηr ,s as
i − ∂̄4ηi ,s as

r )∂̄
4vi ,k ak

r = −J 2 curlη ∂̄4η · curlη ∂̄4v, (6.16)

which can also be written as an exact derivative in time:

curlη ∂̄4η · curlη ∂̄4v = 1

2

d

dt
| curlη ∂̄4η|2 − ∂̄4ηk,r ∂̄4ηk,s (Ar

j As
j )t

+ ∂̄4ηk,r ∂̄4η j ,s (Ar
j As

k)t . (6.17)

The terms in (6.14) and (6.17) which are not the exact time derivatives are quadratic
in ρ0∂̄

4 Dη with coefficients in L∞([0, T ] × �); denoting the integral over � of such
terms by Qρ0 ∂̄4 Dη ,

I1a = 1

2

d

dt

∫

�

ρ0
2 J−3|Dη∂̄

4η|2dx − 1

2

d

dt

∫

�

ρ0
2 J−1| curlη ∂̄4η|2dx + Qρ0 ∂̄4 Dη + R,

where
∫ T

0 |Qρ0 ∂̄4 Dη| dt ≤ C T P(supt∈[0,T ] E(t)), and R satisfies (6.10).

With the notation divη F = A j
i Fi , j , the differentiation formula (4.1) shows that I1b

can be written as

I1b = −1

2

d

dt

∫

�

ρ0
2 J−1| divη ∂̄4η|2dx + Qρ0 ∂̄4 Dη + R.

It follows that

I1 = 1

2

d

dt

∫

�

ρ0
2
(

J−3|Dη∂̄
4η|2 − J−1| curlη ∂̄4η|2 − J−1| divη ∂̄4η|2

)
dx + R

= 1

2

d

dt

∫

�

ρ0
2
(
|D∂̄4η|2 − J−1| curlη ∂̄4η|2 − J−1| divη ∂̄4η|2

)
dx + R,
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where we have used the fundamental theorem of calculus for the second equality on the
term J−3 Dη∂̄

4η. Since 1
2 < J (t) < 3

2 , we see that

∫ T

0
I1(t)dt = 1

2

∫

�

ρ0
2
(
|D∂̄4η(T )|2− J−1| curlη ∂̄4η(T )|2− J−1| divη ∂̄4η|2(T )

)
dx

−M0 +
∫ T

0
R(t)dt. (6.18)

Analysis of the integral I2. Integration by parts once again, using (4.5), yields

I2 = −
∫

�

ρ2
0 ∂̄4 J−2 ak

i ∂̄4vi ,k dx .

Since ∂̄4 J−2 = −2J−3∂̄4 J plus lower-order terms, which have at most three horizontal
derivatives acting on J . For such lower-order terms, we integrate by parts with respect to
∂t , and estimate the resulting integrals in the same manner as we estimated the remainder
term R, and obtain the same bound.

Thus,

I2 = 2
∫

�

ρ2
0 J−3ar

s ∂̄
4ηs,r ak

i ∂̄4vi ,k dx + R

= d

dt

∫

�

ρ2
0 J−3ar

s ∂̄
4ηs,r ak

i ∂̄4ηi ,k dx −
∫

�

ρ2
0 (J−3ar

s ak
i )t ∂̄4ηs,r ∂̄4ηi ,k dx + R.

Given our identities for differentiating a and J , the Sobolev embedding theorem together
with our assumptions (6.7) and the Cauchy-Schwarz inequality show that

∫ T

0

∫

�

ρ2
0 (J−3ar

s ak
i )t ∂̄4ηs,r ∂̄4ηi ,k dxdt ≤ C T sup

t∈[0,T ]
E(t);

consequently, we can write

∫

�

ρ2
0 J−3ar

s ∂̄
4ηs,r ak

i ∂̄4ηi ,k dx − M0 =
∫ t

0
[I2(t

′) + R(t ′)]dt ′. (6.19)

On the other hand,
∫

�

ρ2
0 J−3ar

s ∂̄
4ηs,r ak

i ∂̄4ηi ,k dx

=
∫

�

ρ2
0 J−3

(
∂̄4 div η + ∂̄4ηs,r

∫ t

0
at

r
s dt ′

) (
∂̄4 div η + ∂̄4ηi ,k

∫ t

0
at

k
i dt ′

)
dx

=
∫

�

ρ2
0 J−3|∂̄4 div η|2dx + 2

∫

�

ρ2
0 J−2∂̄4 div η∂̄4ηs,r

∫ t

0
at

r
s dt ′ dx

+
∫

�

ρ2
0 J−3 ∂̄4ηs,r

∫ t

0
at

r
s dt ′ ∂̄4ηi ,k

∫ t

0
at

k
i dt ′ dx . (6.20)

Yet another application of the Sobolev embedding theorem together with our assump-
tions (6.7) and the Cauchy-Schwarz inequality shows that the second and third integrals
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on the right-hand side are bounded by M0 + C T supt∈[0,T ] E(t), so that combining
(6.19) and (6.20), we find that

∫ T

0
I2(t)dt =

∫

�

ρ2
0 J−1|∂̄4 div η|2dx − M0 +

∫ T

0
R(t)dt. (6.21)

Analysis of the integral I3. Integration by parts using (4.5) shows that
∫ T

0
I3(t)dt = −

∫ T

0

∫

�

∂̄4ρ2
0 J−2ak

i ∂̄4vi ,k dxdt

=
∫ T

0

∫

�

∂̄4ρ2
0 (J−2ak

i )t ∂̄
4ηi ,k dxdt −

∫

�

∂̄4ρ2
0 J−2ak

i ∂̄4ηi ,k dx

∣∣∣∣
t=T

=
∫ T

0

∫

�

∂̄4ρ2
0 (J−2ak

i )t ∂̄
4ηi ,k dxdt −

∫

�

∂̄4ρ2
0 ∂̄4 div η(T )dx

−
∫

�

∂̄4ρ2
0

∫ T

0
J−2ak

i dt ∂̄4ηi ,k (T )dx,

so that by the Cauchy-Schwarz inequality and Young’s inequality,
∫ T

0
I3(t)dt ≤ M0 + δ sup

t∈[0,T ]
E(t) + C T P( sup

t∈[0,T ]
E(t)). (6.22)

Summing inequalities. We integrate (6.9) from 0 to T , and sum (6.10), (6.18), (6.21),
and (6.22) to find that

sup
t∈[0,T ]

1

2

[∫

�

ρ2
0 |∂̄4 Dη|2dx +

∫

�

ρ2
0 J−1|∂̄4 div η|2dx −

∫

�

ρ2
0 J−1|∂̄4 curl η|2dx

]

≤ M0 + δ sup
t∈[0,T ]

E(t) + C T P( sup
t∈[0,T ]

E(t)).

Note the factor of 1
2 in (6.18) which, in conjunction with (6.21), gives the positivity of

the divergence term.
Adding to this the inequality (6.1), and possibly readjusting our constants, we obtain

the desired result, and complete the proof of the proposition. �
With the unit tangent vectors T1 = (1, 0, 0) and T2 = (0, 1, 0), η · Tα = ηα for

α = 1, 2, and we have the following

Corollary 6.3. For α = 1, 2,

sup
t∈[0,T ]

|ηα|23.5 ≤ M0 + C T P( sup
t∈[0,T ]

E(t)).

Proof. The weighted embedding estimate (2.1) shows that

‖∂̄4η‖2
0 ≤ C

∫

�

ρ2
0

(
|∂̄4η|2 + |∂̄4 Dη|2

)
dx .

Now

sup
t∈[0,T ]

∫

�

ρ2
0 |∂̄4η|2dx = sup

t∈[0,T ]

∫

�

ρ2
0

∣∣∣∣
∫ t

0
∂̄4vdt ′

∣∣∣∣
2

dx ≤ T 2 sup
t∈[0,T ]

‖√ρ0∂̄
4v‖2

0.
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It follows from Proposition 6.2 that

sup
t∈[0,T ]

‖∂̄4η‖2
0 ≤ M0 + C T P( sup

t∈[0,T ]
E(t)).

According to our curl estimates (6.1), supt∈[0,T ] ‖ curl η‖2
3 ≤ M0+C T P(supt∈[0,T ]E(t)),

from which it follows that

sup
t∈[0,T ]

‖∂̄4 curl η‖2
H1(�)′ ≤ M0 + C T P( sup

t∈[0,T ]
E(t)),

since ∂̄ is a horizontal derivative, and integration by parts with respect to ∂̄ does not pro-
duce any boundary contributions. From the tangential trace inequality (5.2), we find that

sup
t∈[0,T ]

|∂̄4ηα|2−1/2 ≤ M0 + C T P( sup
t∈[0,T ]

E(t)),

from which the assertion of the corollary follows. �

6.3. The ∂8
t -problem.

Proposition 6.4. For δ > 0 and letting the constant M0 depend on 1/δ,

sup
t∈[0,T ]

(∫

�

ρ0|∂8
t v(x, t)|2dx +

∫

�

ρ2
0 (x, t)|∂7

t Dv(x, t)|2dx

)

≤ M0 + δ sup
t∈[0,T ]

E(t) + C T P( sup
t∈[0,T ]

E(t)). (6.23)

Proof. Letting ∂8
t act on ρ0v

i
t + ak

i (ρ2
0 J−2),k = 0, and taking the L2(�)-inner product

with ∂8
t vi , we obtain

1

2

d

dt

∫

�

ρ0|∂8
t v|2dx +

∫

�

∂8
t ak

i (ρ2
0 J−2),k ∂8

t vi dx +
∫

�

ak
i (ρ2

0∂8
t J−2),k ∂8

t vi dx

=
7∑

l=1

cl

∫

�

∂8−l
t ak

i (ρ2
0∂ l

t J−2),k dx . (6.24)

Integrating the first term from 0 to t ∈ (0, T ] produces the first term on the left-hand
side of (6.23).

We define the following three integrals:

I1 =
∫

�

∂8
t ak

i (ρ2
0 J−2),k ∂8

t vi dx,

I2 =
∫

�

ak
i (ρ2

0∂8
t J−2),k ∂8

t vi dx,

R =
7∑

l=1

cl

∫

�

∂8−l
t ak

i (ρ2
0∂ l

t J−2),k ∂8
t vi dx .

The sum of
∫ T

0 [I1(t)+I2(t)]dt together with the curl estimates given by Proposition 6.1
will provide the remaining energy contribution

∫
�

ρ2
0 (x, t)|∂7

t Dv|2dx plus error terms
which have the same bound as R, namely (6.10).
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Analysis of
∫ T

0 Rdt. We use the identity (4.5) to integrate by parts with respect to xk
and then with respect to the time derivative ∂t to obtain that

R = −
7∑

l=1

cl

∫ T

0

∫

�

∂8−l
t ak

i ρ2
0∂ l

t J−2 ∂8
t vi ,k dxdt

=
7∑

l=1

cl

∫ T

0

∫

�

ρ0

(
∂8−l

t ak
i ∂ l

t J−2
)

t
ρ0∂

7
t vi ,k dxdt

−
7∑

l=1

cl

∫

�

ρ0∂
8−l
t ak

i ∂̄ l J−2ρ0∂
7
t vi ,k dx

∣∣∣
T

0
.

Notice that when l = 7, the integrand in the spacetime integral on the right-hand side
scales like � [Dvt ρ0∂

6
t Dv + Dv ρ0∂

7
t Dv] ρ0∂

7
t Dv, where � denotes an L∞(�) func-

tion. Since ‖ρ0∂
7
t Dv(t)‖2

0 is contained in the energy function E(t), Dvt (t) is bounded
in L∞(�), and since we can write ρ0∂

6
t Dv(t) = ρ0∂

6
t Dv(0) +

∫ t
0 ρ0∂

7
t Dv(t ′)dt ′, the

first and second summands are both estimated using an L∞-L2-L2 Hölder’s inequality.
The case l = 6 is estimated exactly the same way as the case l = 3 in the proof of

Proposition 6.2. For the case l = 5, the integrand in the spacetime integral scales like
�[Dvt tρ0∂

6
t J−2 + Dvt t tρ0 Dvt t t t ]ρ0∂

7
t Dv. Both summands can be estimated using an

L3-L6-L2 Hölder’s inequality. The case l = 4 is treated as the case l = 5. The case
l = 3 is also treated in the same way as l = 5. The case l = 2 is estimated exactly the
same way as the case l = 1 in the proof of Proposition 6.2. The case l = 1 is treated in
the same way as the case l = 7.

To deal with the space integral on the right-hand side of the expression for R, the
integral at time t = 0 is bounded by M0, whereas the integral evaluated at t = T is
written, using the fundamental theorem of calculus, as

7∑

l=1

cl

∫

�

ρ0∂
8−l
t ak

i ∂ l
t J−2ρ0∂

7
t vi ,k dx

∣∣∣
t=T

=
7∑

l=1

cl

∫

�

ρ0∂
8−l
t ak

i (0)∂ l
t J−2(0)ρ0∂

7
t vi ,k (T )dx

+
7∑

l=1

cl

∫

�

ρ0

∫ T

0
(∂8−l

t ak
i ∂ l

t J−2)t dt ′ ρ0∂
7
t vi ,k (T )dx .

The first integral on the right-hand side is estimated using Young’s inequality, and is
bounded by M0 + δ supt∈[0,T ] E(t), while the second integral can be estimated in the
identical fashion as the corresponding spacetime integral. As such, we have shown that
R has the claimed bound (6.10).

Analysis of the integral I1. As to the term I1, using the identity (4.4), the same compu-
tation as for the ∂̄4-differentiated problem shows that

ρ2
0 (∂7

t vr ,s As
i ) (∂8

t vi ,k Ak
r ) = 1

2

d

dt
|ρ0 Dη∂

7
t v(t)|2 − 1

2

d

dt
|ρ0curlη∂

7
t v(t)|2

+
1

2
ρ0

2∂7
t vk,r ∂7

t vb,s (Ar
j As

m)t [δ j
mδk

b − δ
j
bδk

m],
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and

−ρ2
0 (∂7

t vr ,s As
r ) (∂8

t vi ,k Ak
i ) = −1

2

d

dt
|ρ0divη∂

7
t v|2 +

1

2
ρ2

0∂7
t vr ,s ∂7

t vi ,k (As
r Ak

i )t ,

and hence

I1 = 1

2

d

dt

∫

�

ρ0
2
(

J−3|Dη∂
7
t v|2 − J−1| curlη ∂7

t v|2 − J−1| divη ∂7
t v|2

)
dx + R.

It follows that
∫ T

0
I1(t)dt = 1

2

∫

�

ρ0
2
(
|D∂7

t v(T )|2− J−1| curlη ∂7
t v(T )|2− J−1| divη ∂7

t v(T )|2
)

dx

−M0 +
∫ T

0
R(t)dt. (6.25)

Analysis of the integral I2. Integration by parts, using (4.5), once again yields

I2 = −
∫

�

ρ2
0∂8

t J−2 ak
i ∂8

t vi ,k dx .

Since ∂8
t J−2 = −2J−3∂8

t J plus lower-order terms, which have at most seven time
derivatives on J , and can be estimated in the same fashion as the remainder term R
above.

We see that

I2 = 2
∫

�

ρ2
0 J−3ar

s ∂
7
t vs,r ak

i ∂8
t vi ,k dx + R

= d

dt

∫

�

ρ2
0 J−3ar

s ∂
7
t vs,r ak

i ∂7
t vi ,k dx −

∫

�

ρ2
0 (J−3ar

s ak
i )t ∂7

t vs,r ∂7
t vi ,k dx + R.

Following our analysis of the term I2 in the ∂̄4-problem, we see that

∫

�

ρ2
0 J−3ar

s ∂
7
t vs,r ak

i ∂7
t vi ,k dx = M0 +

∫ T

0
[I2(t) + R(t)]dt. (6.26)

On the other hand,
∫

�

ρ2
0 J−3ar

s ∂
7
t vs,r ak

i ∂7
t vi ,k dx

=
∫

�

ρ2
0 J−2

(
∂7

t div v + ∂7
t vs,r

∫ t

0
at

r
sdt ′

) (
∂7

t div v + ∂7
t vi ,k

∫ t

0
at

k
i dt ′

)
dx

=
∫

�

ρ2
0 J−2|∂7

t div v|2dx + 2
∫

�

ρ2
0 J−2∂7

t div v ∂7
t vs,r

∫ t

0
at

r
s dt ′ dx

+
∫

�

ρ2
0 J−2 ∂7

t vs,r

∫ t

0
at

r
s dt ′ ∂7

t vi ,k

∫ t

0
at

k
i dt ′ dx . (6.27)

Yet another application of the Sobolev embedding theorem together with our assump-
tions (6.7) and the Cauchy-Schwarz inequality shows that the second and third integrals
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on the right-hand side are bounded by M0 + C supt∈[0,T ] E(t), so that summing (6.26)
and (6.27) shows that

∫ T

0
I2(t)dt =

∫

�

ρ2
0 J−2|∂7

t div v(T )|2dx − M0 +
∫ T

0
R(t)dt. (6.28)

Summing inequalities. We integrate (6.24) from 0 to T , and sum (6.10), (6.25), and
(6.28) to find that

sup
t∈[0,T ]

1

2

[∫

�

ρ2
0 J−2|∂7

t Dv|2dx + ρ2
0 J−2|∂7

t div v|2dx −
∫

�

ρ2
0 J−2|∂7

t curl v|2dx

]

≤ M0 + δ sup
t∈[0,T ]

E(t) + C T P( sup
t∈[0,T ]

E(t)).

Adding the curl estimate (6.1), readjusting our constants, we obtain the desired result,
and complete the proof of the proposition. �

6.4. The ∂2
t ∂̄3, ∂4

t ∂̄2, and ∂6
t ∂̄ problems. Since we have provided detailed proofs of the

energy estimates for the two end-point cases of all space derivatives, the ∂̄4 problem,
and all time derivatives, the ∂8

t problem, we have covered all of the estimation strategies
for all possible error terms in the three remaining intermediated problems; meanwhile,
the energy contributions for the three intermediate are found in the identical fashion as
for the ∂̄4 and ∂8

t problems. As such we have the additional estimate

Proposition 6.5. For δ > 0 and letting the constant M0 depend on 1/δ, for α = 1, 2,

sup
t∈[0,T ]

3∑

a=1

[
|∂2a

t ηα(t)|23.5−a + ‖√ρ0∂̄
4−a ∂2a

t v(t)‖2
0 + ‖ρ0∂̄

4−a ∂2a
t Dη(t)‖2

0

]

≤ M0 + δ sup
t∈[0,T ]

E(t) + C T P( sup
t∈[0,T ]

E(t)).

6.5. Additional elliptic-type estimates for normal derivatives. Our energy estimates pro-
vide a priori control of horizontal and time derivatives of η; it remains to gain a priori
control of the normal (or vertical) derivatives of η. This is accomplished via a bootstrap-
ping procedure relying on having ∂7

t v(t) bounded in L2(�).

Proposition 6.6. For t ∈ [0, T ], ∂5
t v(t) ∈ H1(�), ρ0∂

6
t J−2(t) ∈ H1(�) and

sup
t∈[0,T ]

(
‖∂5

t v(t)‖2
1 + ‖ρ0∂

6
t J−2(t)‖2

1

)
≤ M0 + δ sup

t∈[0,T ]
E(t) + C T P( sup

t∈[0,T ]
E(t)).

Proof. We will first assume that

ρ0(x3) = 1 − x3,

and after establishing our estimates for this particular choice of ρ0, we will explain the
minor modifications required for the general case of 0 < ρ0 ∈ H4(�) satisfying (1.5).

We write (1.9a) as vi
t + 2Ak

i (ρ0 J−1),k = 0, which we rewrite as

vi
t + ρ0ak

i J−2,k −2a3
i J−2 = 0. (6.29)

We have used the fact that ρ0,β = 0 for β = 1, 2, and ρ0,3 = −1.
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Letting ∂6
t act on Eq. (6.29), we have that

ρ0a3
i ∂6

t J−2,3 −2a3
i ∂6

t J−2 = −∂7
t vi − ρ0∂

6
t (aβ

i J−2,β ) − (∂6
t a3

i )[−2J−2 + ρ0 J−2,3 ]

+
5∑

a=1

ca∂a
t a3

i ∂6−a
t [−2J−2 + ρ0 J−2,3 ].

According to Propositions 6.4 and 6.5,

sup
t∈[0,T ]

(
‖∂7

t v(t)‖2
0 + ‖ρ0∂̄ D∂5

t v(t)‖2
0

)
≤ M0 + δ sup

t∈[0,T ]
E(t) + C T P( sup

t∈[0,T ]
E(t)),

and since (4.6) shows that a3
i is quadratic in ∂̄η, we see that for all t ∈ [0, T ],

∥∥∥[ρ0a3
i ∂6

t J−2,3 −2a3
i ∂6

t J−2](t)
∥∥∥

2

0
≤ M0 + δ sup

t∈[0,T ]
E(t) + C T P( sup

t∈[0,T ]
E(t)).

It follows that

‖ρ0|a3· |∂6
t J−2,3 (t)‖2

0 + 4‖|a3· | ∂6
t J−2(t)‖2

0 − 4
∫

�

ρ0|a3· |2∂6
t J−2∂6

t J−2,3 dx

≤ M0 + δ sup
t∈[0,T ]

E(t) + C T P( sup
t∈[0,T ]

E(t)).

We assume that our solution is sufficiently smooth so that ρ0[(∂6
t J−2)2],3 is well-defined

and integrable. As such, we write1

−4
∫

�

ρ0|a3· |2∂6
t J−2∂6

t J−2,3 dx =−2
∥∥∥|a3· | ∂6

t J−2(t)
∥∥∥

2

0
+ 2

∫

�

ρ0(|a3· |2),3 (∂6
t J−2)2 dx

+ 4
∫

{x3=0}
|∂6

t J−2|2dx1dx2,

so that together with our previous inequality,

‖ρ0∂
6
t J−2,3 (t)‖2

0 + ‖∂6
t J−2(t)‖2

0

≤ M0 + δ sup
t∈[0,T ]

E(t) + C T P( sup
t∈[0,T ]

E(t)) + C
∫

�

ρ0|∂6
t J−2|2 dx .

Since ρ0∂̄∂6
t J−2(t) is already estimated by Proposition 6.5, then

‖ρ0∂
6
t J−2(t)‖2

1 + ‖∂6
t J−2(t)‖2

0

≤ M0 + δ sup
t∈[0,T ]

E(t) + C T P( sup
t∈[0,T ]

E(t)) + C
∫

�

ρ0|∂6
t J−2|2 dx .

1 Jang & Masmoudi [7] have counterexamples to the obtained inequality when J−2 is not sufficiently
smooth. It is important that the function J−2 has greater regularity than the desired a priori estimate indicates,
and in particular, as we noted, ρ0[(∂6

t J−2)2],3 must be well-defined and integrable.
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We use Young’s inequality and the fundamental theorem of calculus (with respect to
t) for the last integral to find that for δ > 0,

C
∫

�+
ρ0∂

6
t J−2 ∂6

t J−2 dx ≤ δ

∥∥∥∂6
t J−2(t)

∥∥∥
2

0
+ Cδ

∥∥∥ρ0∂
5
t Dv(t)

∥∥∥
2

0

+ M0 + C T P( sup
t∈[0,T ]

E(t))

≤ δ

∥∥∥∂6
t J−2(t)

∥∥∥
2

0
+ M0 + C T P( sup

t∈[0,T ]
E(t)),

where we have used the fact that ‖ρ0∂
7
t Dv(t)‖2

0 is contained in the energy function E(t).
By once again readjusting the constants, we see that on [0, T ],

‖ρ0∂
6
t J−2(t)‖2

1 +
∥∥∥∂6

t J−2(t)
∥∥∥

2

0
≤ M0 + δ sup

t∈[0,T ]
E(t) + C T P( sup

t∈[0,T ]
E(t)). (6.30)

With Jt = a j
i vi , j , we see that

a j
i ∂5

t vi
j = ∂6

t J − vi , j ∂5
t a j

i −
4∑

a=1

ca∂a
t a j

i ∂5−a
t vi , j ,

so that using (6.30) together with the fundamental theorem of calculus the estimate for
the last two terms on the right-hand side, we see that

∥∥∥a j
i ∂5

t vi , j (t)
∥∥∥

2

0
≤ M0 + δ sup

t∈[0,T ]
E(t) + C T P( sup

t∈[0,T ]
E(t)),

from which it follows that
∥∥∥div ∂5

t v(t)
∥∥∥

2

0
≤ M0 + δ sup

t∈[0,T ]
E(t) + C T P( sup

t∈[0,T ]
E(t)).

According to Proposition 6.1, ‖ curl ∂5
t v(t)‖2

0 ≤ M0 + C T P(supt∈[0,T ]E(t)) and with
the bound on ∂5

t vα given by Proposition 6.5, Proposition 5.2 provides the estimate

∥∥∥∂5
t v(t)

∥∥∥
2

1
≤ M0 + δ sup

t∈[0,T ]
E(t) + C T P( sup

t∈[0,T ]
E(t)).

More generally, for any 0 < ρ0 ∈ H4(�) satisfying (1.5), Eq. (6.29) takes the form,
for β = 1, 2,

vi
t + ρ0ak

i J−2,k +2ρ0,3 a3
i J−2 + 2ρ0,β aβ

i J−2 = 0.

Letting ∂6
t act on this equation yields

ρ0a3
i ∂6

t J−2,3 +2ρ0,3 a3
i ∂6

t J−2 = −∂7
t vi − ρ0∂

6
t (aβ

i J−2,β ) − 2ρ0,β ∂6
t (aβ

i J−2)

− (∂6
t a3

i )[ρ0 J−2,3 +2ρ0,3 J−2] +
5∑

a=1

ca∂a
t a3

i ∂6−a
t [ρ0 J−2,3 +2ρ0,3 J−2]. (6.31)
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As such, if the L2(�)-norm of the right-hand side of (6.31) is bounded by M0 +
δsupt∈[0,T ]E(t) + C T P(supt∈[0,T ]E(t)), then the identical argument detailed above
would lead to the inequality

‖ρ0∂
6
t J−2(t)‖2

1 +
∥∥∥|ρ0,3 |∂6

t J−2(t)
∥∥∥

2

0
≤ M0 + δ sup

t∈[0,T ]
E(t) + C T P( sup

t∈[0,T ]
E(t)).

(6.32)

By the physical vacuum condition (1.5), for ε > 0 taken sufficiently small, there are
constants θ1, θ2 > 0 such that |ρ0,3 (x)| ≥ θ1 whenever 1−ε ≤ x3 ≤ 1, and ρ0(x) > θ2
whenever 0 ≤ x ≤ 1 − ε; hence, by readjusting the constants, we obtain the inequality
(6.30).

As the L2(�)-bound for the right-hand side of (6.31), the only new type of term that
the general function ρ0 produces is −2ρ0,β ∂6

t (aβ
i J−2). On the other hand, given that

ρ0 ∈ H4(�) and that ρ0 = 0 on �, the Sobolev embedding theorem shows that for β =
1, 2, ‖ρ0,β /ρ0‖L∞(�) ≤ C‖ρ0,β /ρ0‖2 ≤ ‖ρ0‖4 < C , so that |ρ0,β (x)| ≤ Cρ0(x).
This shows that

‖2ρ0,β ∂6
t (aβ

i J−2)‖2
0 ≤ C‖2ρ0∂

6
t ([a1

i + a2
i ]J−2)‖2

0

≤ M0 + δ sup
t∈[0,T ]

E(t) + C T P( sup
t∈[0,T ]

E(t)).

�
Having a good bound for ∂5

t v(t) in H1(�) we proceed with our bootstrapping.

Proposition 6.7. For t ∈ [0, T ], vt t t (t) ∈ H2(�), ρ0∂
4
t J−2(t) ∈ H2(�) and

sup
t∈[0,T ]

(
‖vt t t (t)‖2

2 + ‖ρ0∂
4
t J−2(t)‖2

2

)
≤ M0 + δ sup

t∈[0,T ]
E(t) + C T P( sup

t∈[0,T ]
E(t)).

Proof. We let ∂4
t act on Eq. (6.29), and using the argument just given above, it suffices

to consider the case that ρ0 = 1 − x3. It follows that

ρ0a3
i ∂4

t J−2,3 −2a3
i ∂4

t J−2 = −∂5
t vi − ρ0∂

4
t (aβ

i J−2,β ) − (∂4
t a3

i )[−2J−2 + ρ0 J−2,3 ]

+
3∑

a=1

ca∂a
t a3

i ∂4−a
t [−2J−2 + ρ0 J−2,3 ]. (6.33)

In order to estimate ∂4
t J−2(t) in H1(�), we first estimate horizontal derivatives of

∂4
t J−2(t) in L2(�). As such, we consider for α = 1, 2,

ρ0a3
i ∂4

t J−2,3α −2a3
i ∂4

t J−2,α =
[

− ∂5
t vi − ρ0∂

4
t (aβ

i J−2,β ) − (∂4
t a3

i )(−2J−2

+ ρ0 J−2,3 ) +
3∑

a=1

ca∂a
t a3

i ∂4−a
t (−2J−2 + ρ0 J−2,3 )

]
,α

− ρ0a3
i ,α ∂4

t J−2,3 +2a3
i ,α ∂4

t J−2. (6.34)
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According to Proposition 6.5, the right-hand side of (6.34) is bounded in L2(�) by
M0 + δsupt∈[0,T ]E(t) + C T P(supt∈[0,T ]E(t)). Using the argument just given above in
the proof of Proposition 6.6, we conclude that for α = 1, 2,

sup
t∈[0,T ]

(
‖vt t t ,α (t)‖2

1 + ‖ρ0∂
4
t J−2,α (t)‖2

1

)
≤ M0 + δ sup

t∈[0,T ]
E(t) + C T P( sup

t∈[0,T ]
E(t)).

(6.35)

We next differentiate (6.33) in the vertical direction x3 to obtain

ρ0a3
i ∂4

t J−2,33 −3a3
i ∂4

t J−2,3 =
[
− ∂5

t vi −ρ0∂
4
t (aβ

i J−2,β )−(∂4
t a3

i )(−2J−2 +ρ0 J−2,3)

+
3∑

a=1

ca∂a
t a3

i ∂4−a
t (−2J−2 + ρ0 J−2,3 )

]
,3

−ρ0a3
i ,3 ∂4

t J−2,3 +2a3
i ,3 ∂4

t J−2. (6.36)

Now the inequality (6.35) together with Propositions 6.5 and 6.6 show that the right-hand
side of (6.36) is bounded in L2(�) by M0 + δsupt∈[0,T ]E(t) + C T P(supt∈[0,T ]E(t)).

It follows that for k = 1, 2, 3,

‖ρ0a3
i ∂4

t J−2,k3 −3a3
i ∂4

t J−2,k ‖2
0 ≤ M0 + δ sup

t∈[0,T ]
E(t) + C T P( sup

t∈[0,T ]
E(t)).

Note that the coefficient in front of a3
i ∂4

t J−2 has changed from −2 to −3, but the iden-
tical integration-by-parts argument that we used in the proof of Proposition 6.6 is once
again employed and shows that

‖ρ0∂
4
t J−2(t)‖2

2 + ‖∂4
t J−2(t)‖2

1 ≤ M0 + δ sup
t∈[0,T ]

E(t) + C T P( sup
t∈[0,T ]

E(t)).

We can thus infer that

‖ div vt t t (t)‖2
1 ≤ M0 + δ sup

t∈[0,T ]
E(t) + C T P( sup

t∈[0,T ]
E(t)).

According to Proposition 6.1, ‖ curl vt t t (t)‖2
1 ≤ M0 + C T P(supt∈[0,T ]E(t)) and with

the bound on vα
t t t given by Proposition 6.5, Proposition 5.2 provides the estimate

‖vt t t (t)‖2
2 ≤ M0 + δ sup

t∈[0,T ]
E(t) + C T P( sup

t∈[0,T ]
E(t)).

�
Proposition 6.8. For t ∈ [0, T ], vt (t) ∈ H3(�), ρ0∂

2
t J−2(t) ∈ H3(�) and

sup
t∈[0,T ]

(
‖vt (t)‖2

3 + ‖ρ0∂
2
t J−2(t)‖2

3

)
≤ M0 + δ sup

t∈[0,T ]
E(t) + C T P( sup

t∈[0,T ]
E(t)).
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Proof. Next, we let ∂2
t act on Eq. (6.29), so that

ρ0a3
i ∂2

t J−2,3 −2a3
i ∂2

t J−2 = −∂3
t vi − ρ0∂

2
t (aβ

i J−2,β ) − (∂2
t a3

i )[−2J−2 + ρ0 J−2,3 ]
+ 2(∂t a

3
i )∂t [−2J−2 + ρ0 J−2,3 ].

The same argument used in the proof of Proposition 6.7 provides the desired inequality.
�

Proposition 6.9. For t ∈ [0, T ], η(t) ∈ H4(�), ρ0 J−2(t) ∈ H4(�) and

sup
t∈[0,T ]

(
‖η(t)‖2

4 + ‖ρ0 J−2(t)‖2
4

)
≤ M0 + δ sup

t∈[0,T ]
E(t) + C T P( sup

t∈[0,T ]
E(t)).

Proof. We use the identity

ρ0a3
i J−2,3 −2a3

i J−2 = −vi
t − ρ0aβ

i J−2,β .

The same argument used in the proof of Proposition 6.7 provides the desired inequality.
�

6.6. Estimates for curlηv. The regularity for the Lagrangian curl of v gains regularity.

Corollary 6.10.

sup
t∈[0,T ]

(
‖ curlη v(t)‖2

3 + ‖ρ0∂̄
4 curlη v(t)‖2

0

)
≤ M0 + δ sup

t∈[0,T ]
E(t) + C T P( sup

t∈[0,T ]
E(t)).

Proof. Letting D3 act on the identity (6.2) for curlη v, we see that the highest-order term
scales like

D3 curl u0 +
∫ t

0
D4v Dv A Adt ′.

We integrate by parts to see that the highest-order contribution to D3 curlη v(t) can be
written as

D3 curl u0 −
∫ t

0
D4η [Dv A A]t dt ′ + D4η(t) Dv(t) A(t) A(t),

which, according to Proposition 6.9, has L2(�)-norm bounded by

M0(δ) + δ sup
t∈[0,T ]

E(t) + C T P( sup
t∈[0,T ]

E(t)),

after readjusting the constants; thus, the inequality for the H3(�)-norm of curlη v(t) is
proved.

The same type of analysis works for the weighted estimate. After integration by parts
in time, the highest-order term in the expression for ρ0∂̄

4 curlη v(t) scales like

ρ0∂̄
4 curl u0 −

∫ t

0
ρ0∂̄

4 Dη [Dv A A]t dt ′ + ρ0∂̄
4 Dη(t) Dv(t) A(t) A(t).

Hence, the inequality (6.8) shows that the weighted estimate holds as well. �
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6.7. The a priori bound. Summing the inequalities provided by our energy estimates,
the additional elliptic estimates, and the estimates for curlη v shows that

sup
t∈[0,T ]

E(t) ≤ M0 + C T P( sup
t∈[0,T ]

E(t)).

According to our polynomial-type inequality given in Sect. 4.5, by taking T > 0 suffi-
ciently small, we have the a priori bound

sup
t∈[0,T ]

E(t) ≤ 2M0.

7. The Case of General γ > 1

We denote by a0 the integer satisfying the inequality

1 < 1 +
1

γ − 1
− a0 ≤ 2.

The general higher-order energy function is given by

Eγ (t) =
4∑

a=0

‖∂2a
t η(t)‖2

4−a +
4∑

a=0

[
‖ρ0∂̄

4−a∂2a
t Dη(t)‖2

0 + ‖√ρ0∂̄
4−a∂2a

t v(t)‖2
0

]

+
3∑

a=0

‖ρ0∂
2a
t J−2(t)‖2

4−a + ‖ curlη v(t)‖2
3 + ‖ρ0∂̄

4 curlη v(t)‖2
0

+
a0∑

a=0

‖√ρ0
1+ 1

γ−1 −a
∂

7+a0−a
t Dv(t)‖2

0.

Notice the last sum in Eγ appears whenever γ < 2, and the number of time-differentiated
problems increases as γ approaches 1. Using this energy function, the same methodol-
ogy as we used for the case γ = 2, shows that supt∈[0,T ] Eγ (t) remains bounded for
T > 0 taken sufficiently small.
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