
Digital Object Identifier (DOI) 10.1007/s00220-009-0956-4
Commun. Math. Phys. 295, 209–242 (2010) Communications in

Mathematical
Physics

Random Dirac Operators with Time
Reversal Symmetry

Christian Sadel, Hermann Schulz-Baldes

Department Mathematik, Universität Erlangen-Nürnberg,
Erlangen, Germany. E-mail: schuba@mi.uni-erlangen.de

Received: 10 February 2009 / Accepted: 2 September 2009
Published online: 27 November 2009 – © The Author(s) 2009. This article is published with open access at
Springerlink.com

Abstract: Quasi-one-dimensional stochastic Dirac operators with an odd number of
channels, time reversal symmetry but otherwise efficiently coupled randomness, are
shown to have one conducting channel and absolutely continuous spectrum of multiplic-
ity two. This follows by adapting the criteria of Guivarch-Raugi and Goldsheid-Margulis
to the analysis of random products of matrices in the group SO∗(2L), and then a version
of Kotani theory for these operators. Absence of singular spectrum can be shown by
adapting an argument of Jaksic-Last if the potential contains random Dirac peaks with
absolutely continuous distribution.

1. Introduction

In this paper we consider a random family of Dirac operators H on the Hilbert space
L2(R,C2L) of square integrable functions with fibers of dimension L ∈ N. It is of the
form

H = J ∂ + W +
∑

j∈Z

V j δx j , J =
(

0 −1
1 0

)
, (1)

where ∂ is the space derivative, the potential W is a locally integrable function with
values in the hermitian matrices Her(2L ,C) of size 2L and V j ∈ Her(2L ,C) are sin-
gular potentials at the points x j ∈ R (defined as usual by boundary conditions at x j , see
Sect. 2). The potential W is a particular space-homogeneous random process described
in detail below, and the V j are independent and identically distributed. Both potentials
are supposed to satisfy time reversal symmetry

J ∗W(x)J = W(x), J ∗V j J = V j . (2)

This means that J W(x) and J V j are elements of the Lie algebra so∗(2L) of the classical
Lie group SO∗(2L) given by those complex 2L ×2L matrices T satisfying T ∗J T = J
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and T tT = 1. Hence the Hamiltonian H is self-dual, namely J ∗HJ = H , and in the
so-called symplectic symmetry class describing time-reversal invariant particles with
odd spin. Apart from this symmetry, we suppose the coupling of the potential to be
efficient. This is guaranteed if the distribution of J V j has an absolutely continuous
component w.r.t. the volume measure on so∗(2L), but can also be satisfied by adequate
choice of W if the V j ’s vanish. A more technical formulation of the (actually much
weaker) coupling hypothesis is given below in Sect. 6. Our main new result is now:

Theorem 1. Consider the random Dirac operator (1) with time reversal invariance (2)
satisfying the Coupling Hypothesis on the randomness stated in Sect. 4.

(i) For even channel number L, the spectrum of H is almost surely singular.
(ii) For odd channel number L, H has almost surely absolutely continuous spectrum

of multiplicity 2 on all of R. If the distribution of the J V j is absolutely continuous
on so∗(2L), the absolutely continuous spectrum of H is almost surely pure.

Theorem 1(ii) does not say anything about the singular spectrum in general (i.e. with-
out the supplementary assumption on the distribution of the V j ’s), but we believe it to be
always empty. It is crucial that L is odd, as discussed by several authors in the physics
literature (please consult [EM] for a long list of relevant references). We believe that for
even L the spectrum is almost surely pure-point, but did not try to prove this in detail
(it should be possible by adapting the techniques of [KLS,Bou]). The main difference
between the odd and even case is that there are two vanishing Lyapunov exponents in
the odd case and no vanishing Lyapunov exponent in the even case. This is related to
Kramers’ degeneracy and symplectic symmetry of the Lyapunov spectrum and is proved
in Sect. 7. Based on this fact, the proof of Theorem 1 goes on by applying Kotani theory
for Dirac operators as developed by Sun [Sun] along the lines of the work by Kotani and
Simon [KS]. Even though most of the main identities in [Sun] are correct, it contains
some errors which we felt necessary to correct here. Sect. 5 also generalizes the works
[KS,Sun] to singular and complex-valued potentials. This extension of Kotani theory is
non-trivial and crucial for two reasons: the Coupling Hypothesis cannot be satisfied for
real potentials (see the arguements below) and the singular potentials are perturbations
of finite rank. The latter leads to similar formulas for the Green functions as in rank one
perturbation theory. Thus the last claim of the theorem can be proved by adapting the
argument of Jaksic and Last [JL] (see Section 8). Sections 2 to 4 contain preparatory
material some of which doesn’t seem to have appeared in the literature and makes this
work essentially self-contained.

Let us put Theorem 1 in some perspective, both from a mathematical point of view and
a physical one. Most quasi-one-dimensional discrete and continuous random Schröding-
er operators exhibit Anderson localization, even though some peculiarities such as in the
random polymer model may lead to non-trivial quantum diffusion [JSS]. The situation
is different for first order differential operators. For example, consider h = 1⊗ ı∂ +v on
L2(R,CL), where v ∈ L∞(R,Her(L ,C)) is an essentially bounded hermitian potential
(which may be thought of as random). Then the initial value problem ∂u = ıvu, u(0) =
1, has a unique solution u = u(x), which lies in the unitary group U(L). Let us use it
to define a unitary U on L2(R,CL) by (Uψ)(x) = u(x)ψ(x). Then U∗h U = 1 ⊗ ı∂
showing that h has absolutely continuous spectrum of multiplicity L for any potential
v. In physical terms, the operator h can be thought of as an effective model for the
chiral edge states of a quantum Hall system with edge conductivity L , and the above
shows that the nature of the spectrum is conserved under perturbation by a potential,
as is the Landauer conductivity which is equal to L (because U commutes with the
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position operator X on L2(R,CL)). Note that the stability of the nature of the spectrum
could also be deduced from Mourre theory because ı[h, X ] = 1. For true edge states
of a disordered magnetic operator on a half-plane, the proof of conservation of abso-
lutely continuous spectrum [BP,FGW] and the edge conductivity [KRS] is much more
involved, but possible.

Next let us explain why we believe that Mourre theory cannot be applied to the
Dirac operator H because there is no natural conjugation operator. In fact, the only
physically reasonable choice would be the spin current given by the time derivative of
the self-adjoint observable A = ıJ X , where is X is the position operator. However,
ı[A,J ∂ + W] = 1 + XJ (W − J ∗WJ ) is positive only if the time-reversal invariant
potential W is real and thus J W is in the Lie algebra so(2L). In this situation the Cou-
pling Hypothesis is not satisfied and all Lyapunov exponents vanish. Theorem 1 is hence
a much more delicate result than the one for h = ı∂ + v just described. We also find it
to be a challenging problem to prove absolute continuity of the spectrum for half-plane
models for which (1) is an effective description of the edge states.

Next let us comment on the physical relevance of the Dirac Hamiltonian (1) with time
reversal invariance (2). It is believed to be an effective model for so-called helical edge
states in graphene sheets with a gap at the Dirac point (opened by spin-orbit coupling
[EM]). In such graphene sheets the number of edge channels with spin up and spin down
is odd and hence these edge states are protected against localization. This is reflected by
Theorem 1.

2. Weyl-Titchmarsh Matrices

This section introduces and analyzes Weyl-Titchmarsh matrices for a fixed non-random
Dirac operator with point interactions. In part this is review (compare e.g. [HS]) and
therefore proofs are kept short, but results need to be written out if only to fix notations.
Let S = (x j ) j∈Z be a discrete subset of R with no accumulation point and associate
to each so-called singular point x j a singular potential V j ∈ Her(2L ,C). Furthermore
let W be in the space L∞(R,Her(2L ,C)) of bounded functions with values in the her-
mitian matrices of size 2L . All this data encoded in ω = (W, (x j ,V j ) j∈Z), but in this
and the next section ω is fixed and hence suppressed in all notations. The time-reversal
symmetry (2) is implemented only in Sect. 6. The first aim is to make mathematical sense
out of H given in (1) as a self-adjoint operator on L2(R,C2L). As usual, the singular
potential is dealt with as a certain self-adjoint extension. Before going on, let us point
out that most results of this paper also hold for the self-adjoint operator R∂ + W , where
x �→ R(x) is bounded, invertible, and satisfies R∗ = −R as well as ∂R = W∗ − W .
In order to focus on the essential difficulties, we stick to the case R = J .

Let W 1,2(R/S,C2L) be the Sobolev space of functions L2(R/S,C2L) with square-
integrable first distributional derivative. Note that these functionsψ are continuous away
from S and have left and right limit values ψ(x±) = limε↓0 ψ(x ± ε) for all x ∈ R.
First we consider the restriction H0 = H |D(H0) to the domain

D(H0) =
{
ψ ∈ W 1,2(R/S,C2L)

∣∣∣ ψ(x+) = ψ(x−) = 0 for x ∈ S

}
.

Then the domain of the adjoint is D(H∗
0 ) = W 1,2(R/S,C2L). The proof of the following

result is adapted from [LM].
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Proposition 1. For ψ, φ ∈ D(H∗
0 ), one has

〈H∗
0ψ |φ〉 − 〈ψ | H∗

0 φ〉 =
∑

x∈S

(
ψ(x+)∗J φ(x+) − ψ(x−)∗J φ(x−) ) , (3)

where the scalar product on the l.h.s. is in L2(R,C2L) and those on the r.h.s. in C
2L .

Proof. Letχn ∈ C∞(R, [0, 1])withχn|[−n,n] = 1,χn|[−2n,2n]c = 0 andχ ′
n = ∂χn ≤ C

n
for some constant C . For any φ ∈ D(H∗

0 ) set φn = χnφ. Then φn → φ and H∗
0 φn →

H∗
0 φ in L2(R,C2L). Therefore one can calculate as follows:

〈H∗
0ψ |φ〉 − 〈ψ | H∗

0 φ〉 = lim
n,m→∞〈H∗

0ψn |φm〉 − 〈ψn | H∗
0 φm〉

= lim
n,m→∞

∑

j∈Z

∫ x j

x j−1

dx ∂
(
χn(x)χm(x) (Jψ(x))∗φ(x)

)
,

where we used the local integrability of W . This directly implies the proposition. �

If S is empty, then the r.h.s. of (3) vanishes and this shows that H0 is self-adjoint

with domain W 1,2(R,C2L). In the terminology of Weyl theory described below, this
means that H is in the limit point case for any bounded potential W . This fact also
follows from Weyl theory (more precisely, the bound (12) below) without reference to
Proposition 1 and under the weaker condition of only local integrability of W . If S is
not empty, then H∗

0 has non-trivial deficiency spaces (which are infinite dimensional if
and only if S is infinite). Beneath all the self-adjoint extensions of H0 we are interested
in those given by local boundary conditions, namely those not mixing the deficiency
spaces corresponding to each of the terms on the r.h.s. of (3). Within the class of local
boundary conditions we will choose the ones obtained by formally approximating the
singular potential V jδx j (this will be explained below), namely we consider the domain

D(H) =
{
ψ ∈ W 1,2(R/S,C2L)

∣∣∣ ψ(x j +) = eJ V jψ(x j−) for j ∈ N

}
. (4)

Then H = H∗
0 |D(H) clearly is an extension of H0 and the identity (eJ V j )∗J eJ V j = J

replaced in (3) shows that it is self-adjoint.
Now that the operator H is well-defined, let us introduce the transfer matrices (or

fundamental solutions) T z(x, y) ∈ Mat(2L × 2L ,C), x ≥ y ∈ R, at a complex energy
z ∈ C as the unique solutions of

(H − z) T z( . , y) = 0 , T z(y, y) = 12L , (5)

which are right-continuous in x and in y (for x ≥ y) and for which x �→ T z(x, y) is in
D(H). (Recall that a function is left-continuous if f (x−) = f (x) for all x and right-
continuous if f (x+) = f (x) for all x .) For x < y, we set T z(x, y) = T z(y, x)−1. At
x j ∈ S the transfer matrices then satisfy T z(x j , x j−) = eJ V j . The general composition
rule reads for x, u, y ∈ R,

T z(x, y) = T z(x, u) T z(u, y). (6)

For later convenience we also set T z(x) = T z(x, 0). Now let us briefly sketch in which
sense the boundary conditions in (4) are natural. Indeed, if χn ∈ C∞

K (R,R) converges
weakly to δx j and T z

n (x, x ′) is the transfer matrix with potential V jχn , then taking the

limit n → ∞ first, one formally verifies T z∞(x j , x j−) = eJ V j which is precisely
the jump condition above. Next comes the basic but crucial Wronskian identity for the
transfer matrices.
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Lemma 1. For a < b and z, ζ ∈ C,

T z(b−)∗J T ζ (b−) − T z(a)∗J T ζ (a) = (ζ − z)
∫ b

a
dx T z(x)∗T ζ (x). (7)

Proof. Denote the points in S∪(a, b) by x1, . . . , xN and set x0 = a and xN+1 = b. Then
x �→ T z(x) is differentiable away from these points. Thus, using the local integrability
of W ,

(ζ − z)
∫ b

a
dx T z(x)∗T ζ (x)=

N∑

j=0

∫ x j+1

x j

dx
[
T z(x)∗

(
(ζ − W)T ζ (x)

)

− ((z − W)T z(x)
)∗ T ζ (x)

]

=
N∑

j=0

[
T z(x j+1−)∗J T ζ (x j+1−)−T z(x j +)

∗J T ζ (x j +)
]
,

where the second equality follows from the differential equation (5) and the fundamental
theorem. Replacing T ζ (x j +) = eJ V j T ζ (x j−) and using (eJ V j )∗J eJ V j = J , one
sees that only the boundary terms remain and thus the lemma follows. �


Next let us consider the restrictions of H to R+ = (0,∞) and R− = (−∞, 0)
given by H± = H |L2(R±,C2L ). These operators are not self-adjoint because the same
calculation as above shows

〈H∗±ψ |φ〉 − 〈ψ | H∗±φ〉 = ±ψ(0±)∗J φ(x±), (8)

for ψ, φ ∈ D(H∗±) = {ψ ∈ W 1,2(R±/S,C2L)
∣∣ ψ(x j +) = eJ V jψ(x j−) for j ∈ N

}
.

This shows that the self-adjoint boundary conditions for H± are precisely given by the set
LL of hermitian Lagrangian planes, namely LL = {	 ∈ Mat(2L × L ,C) | rank(	) =
L ,	∗J	 = 0}/ ∼ where	 ∼ 	′ ⇔ 	 = 	′c for c ∈ GL(L ,C). For one such plane
	 ∈ LL , the associated self-adjoint operator will be denoted by H±,	. It is well-known
(see e.g. [SB1] for a short proof) that LL is diffeomorphic to the unitary group U(L).
Thus the deficiency spaces N z± = ker(H∗± − z) of H± are L-dimensional.

For any analytic function g we denote its complex derivative by ∂zg = ġ.

Theorem 2. For �m(z) �= 0 there exist unique so-called Weyl-Titchmarsh matrices
Mz± ∈ Mat(L × L ,C) such that ker(H∗± − z) is spanned by the column vectors of

	z±(x) = T z(x)

(
1

±Mz±

)
. (9)

(Here the column vectors of	z± are considered as elements of L2(R±,C2L), but below
	z±(x) is also used for all x ∈ R.) They are analytic in C/R and satisfy the Herglotz
property

�m(Mz±)
�m(z)

=
∫

R±
dx 	z±(x)∗	z±(x) > 0, (10)

where �m(Z) = ı
2 (Z

∗ − Z) for any operator Z, as well as

(Mz±)∗ = Mz± , Ṁz± =
∫

R±
dx 	z±(x)∗	z±(x).
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Proof. Let us consider the case of the sign + and �m(z) > 0. It was argued above that
the dimension of ker(H∗

+ − z) is L . As every solution of H+ψ = zψ is of the form
ψ(x) = T z(x)v for some vector v ∈ C

2L , it follows that there are L × L matrices α
and β such that the column vectors of

(
α(x)
β(x)

)
= T z(x)

(
α

β

)
,

span ker(H∗
+ − z). As these vectors are, in particular, square integrable, replacing them

twice in the Wronski identity (7) with b = ∞ and a = 0 shows that

ı(β∗α − α∗β) = 2 �m(z)
∫ ∞

0
dx (α(x)∗α(x) + β(x)∗β(x)) > 0.

From this it follows that both α and β are invertible because for a vector v in the kernel
of α or β one would have v∗(β∗α − α∗β)v = 0. Therefore one can set Mz

+ = βα−1

and this also leads to the formula (10). The identity (Mz±)∗ = Mz± follows by replacing
ζ = z and a = 0, b = ∞ in the Wronski identity (7). Finally, let us check the analyticity
of Mz

+ and derive the formula for its derivative. Again the Wronski identity with a = 0
and b = ∞ shows for z �= ζ that

∫ ∞

0
dx 	z

+(x)
∗	ζ+(x) = Mζ

+ − Mz
+

ζ − z
.

Note that the integrand on the l.h.s. is square integrable also in the limit ζ → z (at least
for z ∈ C/R), so that Mz

+ is indeed holomorphic and the formula for the derivative fol-
lows. The proofs for Mz− are similar. Let us point out though that due to our definitions
the jump eJ V0 is relevant for Mz− if x0 = 0 ∈ S. This is of some importance below. �


As a short aside, let us sketch how the modeling of the singular potential in (1) by the
jump conditions in (4) fits with the theory of extensions by von Neumann. For this pur-
pose, let us add the singular potential V = V0 at x0 = 0 to the operator H . Let H̃0 be the
restriction of H to D(H̃0) = {ψ ∈ D(H) |ψ(0+) = ψ(0−) = 0}. Due to Theorem 2 the
deficiency spaces are both 2L-dimensional and given by ker(H̃0−z) = �z

+C
L ⊕�z−C

L ,
where

�z±(x) = χ(±x > 0) T z(x)

(
1

±Mz±

)(
1

z − z
(Mz± − (Mz±)∗)

)− 1
2

,

and χ is the indicator function. These are partial isometries �z± : C
L → N z±, namely

�z±(�z±)∗ is the projection on N z± and (�z±)∗�z± = 1L . Now the unitaries from ker(H̃0−
z) to ker(H̃0 −z) parameterize the self-adjoint extensions of H̃0. Using the partial isome-
tries, these unitaries are precisely given by (�z

+, �
z−)U (�z

+, �
z−)∗, where U runs through

the unitary group U(2L). It is now a matter of calculation to check that

U =
[
(�z

+(0+), 0)− eJ V (0, �z−(0−))
]−1 [

(�z
+(0+), 0)− eJ V (0, �z−(0−))

]
, (11)

is well-defined (i.e. the inverse exists), is unitary and gives exactly the self-adjoint exten-
sion given by the jump condition ψ(0+) = eJ Vψ(0−). Hence every local boundary
condition in (4) is an extension within the local 2L-dimensional deficiency spaces in
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the sense of von Neumann. On the other hand, there are local von Neumann extensions
which are not given by jump conditions (for example, those which do not couple left
and right).

Even though it was already shown above that H is always self-adjoint (so that one
is always in the limit point case), we now describe the Weyl theory because it gives
quantitative estimates for the Weyl-Titchmarsh matrices needed below. We closely stick
to the notations of our prior work [SB2] along the lines of which also the proofs of the
results below can be given (even though there are definitely older references such as
[HS] for some of them). The basic idea is to study the restriction of the operator H+ to
L2((0, x),C2L ) and to analyze which initial conditions at 0 lead to solutions satisfying
any self-adjoint boundary conditions at x (there is an analogous treatment for H−). If an
adequate chart for these initial conditions is used they have the geometric structure of a
matrix circle in the upper half-plane, called the Weyl surface. As x increases, this circle
shrinks in a nested manner. In the so-called limit point case that one always encounters
for the Dirac operators, it shrinks to a single point in the limit x → ∞ identified with the
initial condition of (9) specified by the Weyl-Titchmarsh matrix Mz

+. This fact reflects
that there is no need to fix boundary conditions at infinity in this case (the L2-condition
takes care of it) because H is already self-adjoint.

Now comes the more technical description. Let GL be the Grassmannian of L-dimen-
sional planes in C

2L . The chart on GL used is the stereographic projection π sending
an 2L × L matrix

(
α
β

)
representing the plane to αβ−1 ∈ Mat(L ,C). It is defined on the

full measure subset G
inv
L ⊂ GL on which the inverse of β exists. Then the Weyl surface

at x �= 0 is defined by

∂Wz(x) = −π ({	 ∈ GL
∣∣ T z(x)	 ∈ LL

}) =
{
−M−1

∣∣∣∣ T
z(x)

(
1
M

)
∈ LL

}
,

where the equality follows by showing that every plane	 in the first set is of the form in
the second one [SB2, Prop. 7]. Now it is useful to rewrite the condition T z(x)	 ∈ LL
in terms of the quadratic form

Qz(x) = 1

ı
T z(x)∗J T z(x),

namely ∂Wz(x) = −π ({	 ∈ GL |	 isotropic for Qz(x) }). The definition of Qz(x)
shows that Qz(x+) = Qz(x−) also for x ∈ S so that Qz(x) is continuous and thus
∂Wz(x+) = ∂Wz(x−). Item (i) and (ii) of the following properties of Qz(x) follow
from the definition and the Wronskian identity, while (iii) can be checked as in [SB2]
once one has verified that T z(x)−1 = J ∗T z(x)J .

Proposition 2. The quadratic form Qz(x) satisfies:

(i) Qz(x) = 1
ı J + 2 �m(z) 〈T z( . )|T z( . )〉L2((0,x),C2L ),

(ii) �m(z) ∂Qz(x) ≥ 0,
(iii) Qz(x)−1 = J ∗Qz(x)J .

Now the radial and center operator are defined by

Rz(x) =
[(

1
0

)∗
Qz(x)

(
1
0

)]−1

, Sz(x) = Rz(x)

(
1
0

)∗
Qz(x)

(
0
1

)
.

Both Rz(x) and Sz(x) are continuous in x (apart from the singularity at x = 0). It
follows from item (i) of Proposition 2 that Rz(x) > 0 and −Rz(x) > 0 for �m(z) > 0,
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and item (ii) implies ∂Rz(x) ≤ 0. The terms radial and center operator are justified by
the following result which can be checked by the same calculation as in [SB2]. It is the
basic fact of Weyl theory. Let the matrix upper half-plane UL be defined as the set of
matrices Z ∈ Mat(L ,C) satisfying �m(Z) > 0.

Theorem 3. Let �m(z) > 0. Then

∂Wz(x) =
{

Sz(x) + Rz(x)
1
2 U (−Rz(x))

1
2

∣∣∣ U∗U = 1
}

⊂ UL .

If now the open and closed Weyl disc W
z(x) and Wz(x) are defined by this formula with

U running through the set defined by U∗U < 1 and U∗U ≤ 1 instead of the unitary
group U(L), then the Weyl surfaces are strictly nested in the sense that for x > x ′ > 0
or x < x ′ < 0,

W
z(x) ⊂ W

z(x ′) , ∂Wz(x ′) ∩ Wz(x) = ∅.

This theorem can also be used to prove the uniqueness of Mz
+ instead of the above

argument based on (8), that is, basically the calculation in the proof of Proposition 1.
Indeed, along the lines of Proposition 11 of [SB2] one can prove that there exists a
constant c such that

‖Rz(x)‖ ≤ c

|x | �m(z)2
. (12)

This implies that H± is in the limit point case in the literal sense and that one furthermore
has −(Mz±)−1 = limx→±∞ Sz(x). We need the following consequence for our purposes
below. It replaces perturbative arguments in [KS,Sun] and hence the bounds below hold
under the more natural assumptions that W is locally integrable. For Schrödinger oper-
ators a similar reasoning applies if they are supposed to be in the limit point case.

Corollary 1. There are constants c1, c2 depending only on z and the L1
loc-norm of W

such that

‖Mz±‖ ≤ c1,
1

c2
≤ �m(Mz±)

�m(z)
≤ c2.

Proof. At x = 0 the radial operator is infinite in the sense that Rz(0)−1 = 0. As

∂(Rz(x)−1) = �m(z)

(
1
0

)∗
T z(x)∗T z(x)

(
1
0

)

is equal to �m(z)1 > 0 for x = 0 and is continuous in x (even differentiable), it follows
that Rz(x)−1 > 0 for some x > 0. Hence ‖Rz(x)‖ < ∞ and the Weyl disc Wz(x) is
compact and strictly contained in the upper half-plane UL . Furthermore by Theorem 3
the limit point −(Mz±)−1 is an element of Wz(x). As Z �→ −Z−1 maps compact sets
of UL to compact sets of UL the proof is complete. �
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3. Green’s Function and Spectral Analysis

This section deals with the Green function and spectral theory of the self-adjoint oper-
ator (1) defined by (4). We always assume that x0 = 0 ∈ S, set V = V0 and denote
the operator with singular potential V by HV (hoping that the reader can distinguish H0
with V = 0 from the H0 in the last section).

Proposition 3. Let �m(z) �= 0 and Mz±, T z(x) and 	z± be associated to H0 (this only
leads to changes for x < 0 and the sign −). The resolvent (H0 − z)−1 is an integral
operator with kernel

Gz
0(x, y) = 	z±(x) (−Mz

+ − Mz−)−1	z∓(y)∗, (13)

where the upper and lower signs are taken if x > y and x < y respectively. Furthermore,
for a Lagrangian plane	 = (1 γ )∗, the resolvent (H+,	 − z)−1 is an integral operator
with kernel

Gz
+,	(x, y) =

⎧
⎨

⎩

T z(x)	 (−Mz
+ + γ )−1	z

+(y)
∗, x < y,

	z
+(x) (−Mz

+ + γ )−1	∗ T z(y)∗, x > y.

Proof. Let Gz
0 be defined by the formula in the theorem. Using (Mz∓)∗ = Mz∓ one

readily verifies that for all x ∈ R,

lim
ε↓0

[
Gz

0(x + ε, x)− Gz
0(x − ε, x)

] = − T z(x)J T z(x)∗ = − J , (14)

where the last equality follows by taking the inverse of T z(x)∗J T z(x) = J , which is
the Wronskian identity (7) with ζ = z, a = 0 and b = x . Therefore setting ψ(x) =∫

dy Gz
0(x, y)φ(y) for a smooth function φ ∈ L2(R,C2L), the definition (5) of the

transfer matrices implies that (H0 − z)ψ = φ because ∂ sgn= 2δ0 if sgn is the sign
function and δx is a Dirac peak at x . Hence Gz

0 is indeed the desired integral kernel. The
formula for the half-sided operator is verified in a similar manner. �


From Proposition 3, (11) and the general Krein formula for resolvents of self-adjoint
extensions one could now deduce an explicit formula for the integral kernel GV (x, y)
of HV . Then lengthy algebraic calculations lead to Proposition 4 below, but we can also
deduce it more directly based on the following idea. Both functions x �→ Gz

V (x, y)

and y �→ Gz
V (x, y)∗ = Gz

V (y, x) are in the domain D(HV ) and satisfy respectively
(HV − z)Gz

V (., y) = δy and (HV − z)Gz
V (x, .) = δx . Away from x0 = 0, the domain

of D(H0) and the identities for H0 are the same. Thus a good Ansatz is

Gz
V (x, y) = Gz

0(x, y) + Gz
0(x, 0+)K Gz

0(0−, y),

with a matrix K to be determined. The jump condition Gz
V (0+, y) = eJ V Gz

V (0−, y)
gives for y �= 0,

Gz
0(0, y) + Gz

0(0+, 0)KGz
0(0, y) = eJ V [Gz

0(0, y) + Gz
0(0−, 0)KGz

0(0, y)
]
.

Now let us take the difference of this equation for y = 0+ and y = 0−. Because
Gz

0(0+, 0)− Gz
0(0−, 0) = −J by (14), one obtains

J + Gz
0(0+, 0)KJ = eJ V [J + Gz

0(0−, 0)KJ
]
.

This equation can formally be solved for K, leading to the following formula.
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Proposition 4. Let �m(z) �= 0. The resolvent (HV − z)−1 is an integral operator with
kernel

Gz
V (x, y) = Gz

0(x, y) + Gz
0(x, 0)

[
eJ V Gz

0(0−, 0) − Gz
0(0+, 0)

]−1

×(1 − eJ V )Gz
0(0, y). (15)

Proof. It remains to check that the appearing inverse is indeed well-defined. Due to (13),
there exist two L-dimensional planes 	± with ±π(	±) ∈ UL such that Gz

0(0−, 0) =
	+	

∗− and Gz
0(0+, 0) = 	−	∗

+. Now we claim that for any hermitian symplectic T
(satisfying by definition T ∗J T = J ), thus in particular T = eJ V , one has T 	+C

L ∩
	−C

L = {0}. This implies as desired that T 	+	
∗− −	−	∗

+ is invertible. To prove the
claim we first note that π(T 	+) ∈ UL (as the Möbius transformation with a hermitian
symplectic matrix sends UL to UL ) so that it is sufficient to consider the case T = 1. Now
let 	+v = 	−w for some v,w ∈ C

L . Set α± = (1 0)	± and β± = (0 1)	±, both of
which are known to be invertible. Thenα+v = α−w andβ+v = β−w. Thusv = β−1

+ β−w
so that αβ−1

+ β−w = α−w. Therefore u = β−w satisfies α+β
−1
+ u = α−β−1− u and

thus u∗π(	+)u = u∗π(	−)u. By hypothesis this implies u = 0 and consequently
w = v = 0. �


Before going on let us discuss the discontinuities of Gz
V (x, y) in the vicinity of

the point (x, y) = (0, 0) (any other singular point can be analyzed similarly). Because
x �→ Gz

V (x, y) and y �→ Gz
V (x, y)∗ = Gz

V (y, x) are in the domain D(HV ), the singular
potential leads to jumps on the lines x = 0 and y = 0. According to (14) there is further-
more a jump by J on the diagonal x = y. Away from these 3 lines crossing at the origin,
Gz

V (x, y) is continuous. Hence there are 6 directional limits as (x, y) → (0, 0). Enumer-
ate them by G1, . . . ,G6 in a clockwise direction starting with G1 = limε↓0 Gz

V (ε, 2ε).
Setting T = eJ V one then has

G2 = G1 − J , G3 = G2(T −1)∗ , G4 = T −1G3 , G5 = G4 + J ,

G6 = G5T ∗ , G1 = T G6.

Note that these relations are indeed cyclic because T ∗J T = J . By (13) each of the G j
has rank L . The following proposition shows that, however, an adequate linear combi-
nation is a Herglotz function and, in particular, of full rank 2L .

Proposition 5. Let us define the averaged Green matrix

Ĝz
V (x) = lim

ε↓0

[
1

4
Gz

V (x + ε, x − ε) +
1

4
Gz

V (x − ε, x + ε) +
1

8
Gz

V (x + ε, x + 2ε)

+
1

8
Gz

V (x + 2ε, x + ε) +
1

8
Gz

V (x − ε, x − 2ε) +
1

8
Gz

V (x − 2ε, x − ε)

]
.

Then z ∈ U1 �→ Ĝz
V (x) = (Ĝz

V (x))
∗ ∈ Mat(2L ,C) is a Herglotz function for any

x ∈ R/S and has non-negative imaginary part for x ∈ S. It satisfies

�m(Ĝz
V (0)) = 1

4
(1 + eJ V )�m(Ĝz

V (0−)) (1 + eJ V )∗. (16)
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Proof. Let us note that for x /∈ S the definition of the averaged Green matrix reduces to
Ĝz

V (x) = 1
2 (G

z
V (x+, x)+ Gz

V (x−, x)). For sake of notational simplicity, let us focus on
the case x = 0 with V �= 0 modeling x ∈ S. With the above notations, then by definition
Ĝz

V (0) = 1
8 (G1 + G2 + 2G3 + G4 + G5 + 2G6) which is a weighing of the G j according

to the area of the corresponding octant or quadrant. Now let z = E + ıε with ε > 0
and consider the positive operator �m

(
(HV − z)−1

) = ε((HV − E)2 + ε2)−1. For any
ϕ ∈ L2(R,C2L), one thus has

0 < 〈ϕ|�m
(
(HV − z)−1

)
|ϕ〉= 1

2ı

∫
dx
∫

dy ϕ(x)∗
(
Gz

V (x, y)− Gz
V (y, x)∗

)
ϕ(y).

Now let χk ∈ C∞
K (R) be a positive approximate unit, that is w-limk→∞ χk = δ0. For

any function f : R
2 ∼= C → C having the directional limits f (θ) = limr↓0 f (reıθ ), it

follows that
∫

dx
∫

dy χk(x)χk(y) f (x, y) converges to f̂ = ∫ 2π
0

dθ
2π f (θ). Hence, for

ϕk = χkv with v ∈ C
2L ,

0 ≤ lim
k→∞ 〈ϕk |�m

(
(HV − z)−1

)
|ϕk〉 = 1

2ı
v∗ (Ĝz

V (0)− Ĝz
V (0)

∗) v.

This proves that the imaginary part is non-negative. The Herglotz property for 0 /∈ S,
namely that the imaginary part is positive, follows from the concrete formula

Ĝz
0(0) =

(
(−Mz

+ − Mz−)−1 1
2 (−Mz

+ − Mz−)−1(Mz
+ − Mz−)

1
2 (M

z
+ − Mz−)(−Mz

+ − Mz−)−1 ((Mz
+)

−1 + (Mz−)−1)−1

)
(17)

following from Proposition 3, and the Herglotz property of Mz± by the Liouville theo-
rem. As the singular points are discrete, there is an interval (0, ε) not containing any.
Hence Ĝz

V (0−) = 1
2 (G4 + G5). It is now a matter of an algebraic calculation to verify

the second formula. �

As for any Herglotz function with sufficient decay properties such as Ĝz

V (x), there
is associated a matrix valued measure µx on R and a self-adjoint matrix Ax = A∗

x
independent of z (see [GT] for a review and properties) such that

Ĝz
V (x) = Ax +

∫
µx (d E)

(
1

E − z
− 1

1 + E2

)
.

Because

Ĝz
V (x) = T z(x, y) Ĝz

V (y) T
z̄(x, y)∗

for x, y /∈ S and T z(x, y) is analytic and invertible, the measures µx , x /∈ S, all define
the same measure class. According to (16), the measure µ0 associated to Ĝz

V (0) is also
in the same measure class as long as −1 is not in the spectrum of eJ V . We skip the proof
of the following result, showing in which sense µx can rightfully be called a spectral
measure of HV (see [KS]).

Proposition 6. Let ψ, φ ∈ L2(R,C2L) and f ∈ C0(R). Then, whenever µx is in the
almost sure measure class,

〈ψ|f (HV )|φ〉=
∫

R

f (E)

(∫
dy T E (y, x)∗ψ(y)

)∗
µx (d E)

(∫
dy T E (y, x)∗φ(y)

)
,

and the functions of E in the parenthesis are in L2(R, µx ).
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The arguments in Sect. 8 will be based on the following perturbative formula for the
averaged Green matrix w.r.t. the finite rank perturbation given by the singular potential
Vδ0. For notational convenience let us set Ĝz

V = Ĝz
V (0). Furthermore let us introduce

the Cayley transform of V by

V̂ = 2 J (eJ V + 1)−1(1 − eJ V ), (18)

whenever the inverse is well-defined. One readily checks that V̂∗ = V̂ and that J ∗V̂ tJ =
V̂ if J ∗V tJ = V .

Proposition 7. The averaged Green matrix satisfies (even if V̂ is not well-defined)

Ĝz
V =

[
(Ĝz

0)
−1 + V̂

]−1
, (19)

and

�m(Ĝz
V ) =

([
1 + V̂ Ĝz

0

]−1
)∗ �m(Ĝz

0)
[

1 + V̂ Ĝz
0

]−1
. (20)

Proof. Let us apply the averaging procedure of Proposition 5 to (15). This gives

Ĝz
V = Ĝz

0 + Ĝz
0 K Ĝz

0 = Ĝz
0

(
1 + K Ĝz

0

)
,

where K = [eJ V Gz
0(0−, 0)− Gz

0(0+, 0)
]−1

(1 − eJ V ) as before. Because both Ĝz
V

and Ĝz
0 are invertible, it follows that also

(
1 + K Ĝz

0

)
is invertible. Hence

Ĝz
V = Ĝz

0 + Ĝz
V
(
1 + K Ĝz

0

)−1 K Ĝz
0 =
[
(Ĝz

0)
−1 − (1 + K Ĝz

0

)−1 K
]−1

. (21)

Using Gz
0(0±, 0) = Ĝz

0 ∓ 1
2 J , one readily checks

(
1 + K Ĝz

0

)−1 K = −V̂ completing
the proof of (19). That of (20) is straightforward. �


4. Stochastic Dirac Operators

In this section we introduce stochastic Dirac operators and state a few of their elementary
properties, then introduce the random Dirac operators and give a precise statement of
the main coupling hypothesis needed in Theorem 1. Let a compact dynamical system
(�,P, T ) be given where T is a continuous R-action on the compact space�w.r.t. which
the probability measure P is supposed to be ergodic. Then (H(ω))ω∈� is called a family
of stochastic Dirac operators if each H(ω) is of the form (1) and the mapω ∈ � �→ H(ω)
is strongly continuous in the resolvent sense and covariant, that is, if Ux denotes the right
shift by x on L2(R,C2L), then Ux (H(ω) − z)−1U∗

x = (H(Txω) − z)−1. Each point
ω ∈ � is thought of as a configuration, incorporating the positions S and values (Vx )x∈S

of the singular potential as well as the potential W . Thus S is an R-ergodic point pro-
cess. Its density is denoted by ρS. The locally integrable potential associated to a given
configuration ω is then Wω(x) = W(T−xω), x ∈ R, where the W is a matrix-valued
function on �. Hence we suppose this function W to be locally integrable along orbits
with a uniform bound on the L1-norm over unit intervals.

Now all objects such as transfer matrices, Weyl-Titchmarsh matrices and Green matri-
ces analyzed in the sections above depend on ω; however, in the notations this will be
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made explicit by a supplementary argument only if necessary. Let us introduce some
notations for the L × L matrix entries of the potential:

W =
(

P R
R∗ Q

)
, eJ V =

(
A B
C D

)
.

All these objects are random and for V = Vx , x ∈ S, the entries are also denoted
Ax , Bx ,Cx , Dx . As the matrix eJ V is in the hermitian symplectic group, it is well-
known that the inverse in the definition of the Möbius transformation

(
A B
C D

)
· Z = (AZ + B)(C Z + D)−1,

exists whenever Z is in the upper or lower half-plane, i.e. ±�m(Z) > 0. If then W =
eJ V · Z = (AZ + B)(C Z + D)−1, also W is in the upper or lower half-plane respectively
and one has Z = (eJ V )−1 · W = (D∗ − B∗W )(−C∗ + A∗Z)−1. Now we can collect a
few first properties of the transfer matrices and the Weyl-Titchmarsh matrices.

Lemma 2. Let �m(z) �= 0, set
(
αz±(x, ω)
βz±(x, ω)

)
= T z(x, ω)

(
1

±Mz±(ω)

)
= 	z±(x, ω). (22)

(i) The transfer matrices satisfy the cocycle equation

T z(x + y, ω) = T z(x, T−yω) T z(y, ω) , T z(0, ω) = 1.

(ii) One has
(
αz±(x + y, ω)
βz±(x + y, ω)

)
=
(
αz±(x, T−yω)

βz±(x, T−yω)

)
αz±(y, ω).

In particular, αz±(x, ω) is a cocycle:

αz±(x + y, ω) = αz±(x, T−yω) α
z±(y, ω) , αz±(0, ω) = 1.

(iii) Mz±(T−xω) = ±βz±(x, ω) αz±(x, ω)−1 .

(iv) The map x �→ Mz±(Txω) is differentiable away from S. It is left-continuous and for
−x ∈ S,

±Mz±(Tx+ω)
−1 = (eJ V−x )−1 · (±Mz±(Txω)

−1).

(iv) The maps y �→ αz±(x, Tyω) and y �→ βz±(x, Tyω) are left-continuous. For −y ∈
S,
(
αz±(x, Ty+ω)

βz±(x, Ty+ω)

)
= (eJ Vx )−1

(
αz±(x, Tyω)

βz±(x, Tyω)

)
(D∗−y − B∗−y(±Mz±(Tyω)))

−1.

(v) The map x ∈ R+ �→ αz±(x, ω) is right-continuous. If x ∈ S,

αz±(x, ω) = (Ax ± Bx Mz±(T−x+ω)) α
z±(x−, ω)

= (D∗
x ∓ B∗

x Mz±(T−xω)
)−1

αz±(x−, ω).
(vi) ∂xα

z±(x, ω) = [−R(T−xω)
∗ ∓ (Q(T−xω)− z)Mz±(T−xω)

]
αz±(x, ω) for x /∈ S.
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(vii) The following Ricatti equation holds for x /∈ S:

± ∂x Mz±(T−xω) =
(

1
±Mz±(T−xω)

)∗
(W(T−xω)− z)

(
1

±Mz±(T−xω)

)
.

Proof. (i), (ii) and (iii) follow immediately from (6) and (22). It is clearly sufficient to
analyze the directional continuity in (iv) and (v) for the case x = 0 ∈ S. Let ε > 0.
Using the composition rule for transfer matrices and their translation property

T z(x + ε, y + ε, Tεω) = T z(x, y, ω),

one deduces

T z(x, ω) = T z(x + ε, x, ω)−1 T z(x, T−εω) T z(ε, 0, ω).

Taking the limit ε ↓ 0 gives T z(x, ω) = T z(x, T0−ω) which implies Mz±(T0−ω) =
Mz±(ω). Similarly, the limit ε ↓ 0 of

T z(x, ω) = T z(x, x − ε, ω) T z(x, Tεω) T z(0,−ε, ω)−1,

leads to

T z(x, ω) = eJ Vx T z(x, T0+ω) (e
J V0)−1.

As the jump at x does not effect the square-integrability in (9), this implies that

(eJ V0)−1
(

1
±Mz±(ω)

)
N =

(
1

±Mz±(T0+ω)

)
,

for some invertible L × L matrix N . The upper entry implies that N = (D∗
0 − B∗

0 (±Mz±
(ω)))−1, the lower one

± Mz±(T0+ω) = (−C∗
0 ± A∗

0 Mz±(ω)) (D∗
0 ∓ B∗

0 Mz±(ω))−1. (23)

This is precisely the equation claimed in (iv) in the case x = 0. (v) follows from (22)
and the last 4 identities. For (vi) we use T z(x, ω) = eJ Vx T z(x−, ω) for x > 0, giving

	z±(x, ω) = eJ Vx 	z±(x−, ω) = eJ Vx

(
1

±Mz±(T−(x−)ω)

)
αz±(x−, ω),

where (iii) was used in the second equality. The upper entry of this identity gives the first
equality of (vi). The second one follows by replacing (23) and using Ax D∗

x − Bx C∗
x = 1

and Ax B∗
x = Bx A∗

x . The following calculation gives (vii):

∂xα
z±(x, ω) = (1 0) ∂xT z(x, ω)

(
1

±Mz±(ω)

)

= (0 1) (z − W(T−xω))

(
1

±Mz±(T−xω)

)
αz±(x, ω).

Finally,

∂x Mz±(T−xω)= (0 1) ∂x

[
T z(x, ω)

(
1

±Mz±(ω)

)
αz±(x, ω)−1

]
=(1 0) (W(T−xω)− z)

(
1

±Mz±(T−xω)

)
∓ Mz±(T−xω)∂xα

z±(x, ω)αz±(x, ω)−1,

so taking (vii) into account gives (viii). �
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The fact that (23) is a Möbius transformation with a hermitian symplectic matrix has
a number of consequences which we regroup for later use.

Corollary 2. Let x ∈ S and set Mz± = Mz±(T−xω), Mz±(+) = Mz±(T−x+ω) and V = Vx .
Then

(i) ± Mz±(+) = (−C∗ ± A∗Mz±) (D∗ ∓ B∗Mz±)−1,
(ii) ± Mz±(+) = (±Mz±B − D)−1 (C ∓ Mz± A),

(iii) Mz
+(+)+Mz−(+) = (D−Mz

+ B)−1 (Mz
++Mz−) (D∗+B∗Mz−)−1

= (D + Mz−B)−1 (Mz
+ + Mz−) (D∗ − B∗Mz

+)
−1,

(iv) ±Mz± = (A ± B Mz±(+)) (C ± DMz±(+))−1,
(v) A ± B Mz±(+) = (D∗ ∓ B∗Mz±)−1,

(vi) �m(Mz±(+)) = (D ∓ Mz± B)−1 �m(Mz±)
(
(D ∓ Mz± B)−1

)∗
,

(vii) �m(Mz±(+)) = ((D∗ ∓ B∗Mz±)−1
)∗ �m(Mz±) (D∗ ∓ B∗Mz±)−1,

(viii) Ṁz
+(+)−Ṁz−(+) = (Mz

+ B−D)−1 Ṁz
+(B

∗Mz
+−D∗)−1−(Mz− B+D)−1 Ṁz−(D∗+

B∗Mz−)−1.

Proof. All this follows by short calculations using e.g. the Appendix of [SB2] and the
identities AB∗ = B A∗, C D∗ = DC∗ and AD∗ − BC∗ = 1. �


Now let us recall the definition of the Lyapunov exponents and state some of their
properties. Because T z(x, ω) is a cocycle by Lemma 2, Osceledec’s theorem (see [KS]
for a concise statement) associates 2L Lyapunov exponents at +∞ and −∞ which will
respectively be denoted by γ z

1 ≥ . . . ≥ γ z
2L and γ̂ z

1 ≥ . . . ≥ γ̂ z
2L . Similarly, αz±(x, ω)

are other cocycles of L × L matrices, so again each has L Lyapunov exponents at +∞
and −∞ denoted by γ z,±

1 ≥ . . . ≥ γ
z,±
L and γ̂ z,±

1 ≥ . . . ≥ γ̂
z,±
L . Part of the following

proposition is copied from [KS] (even though the definition of γ z,+
l differs by a sign).

Proposition 8. The various Lyapunov exponents satisfy:

(i) γ z
l = −γ̂ z

2L−l+1 for l = 1, . . . , 2L,

(ii) γ z,±
l = −γ̂ z,±

L−l+1 for l = 1, . . . , L,

(iii) γ z
l = γ

z,−
l for l = 1, . . . , L and z ∈ C/R,

(iv) γ z
l = γ

z,+
l−L for l = L + 1, . . . , 2L and z ∈ C/R,

(v) γ z
l = −γ z

2L−l+1 for l = 1, . . . , 2L,

(vi) γ z,+
l = −γ z,−

L−l+1 for l = 1, . . . , L and z ∈ C/R.

Proof. Items (i) and (ii) follow immediately from Lemma 5.2 of [KS]. The other items
can be proved as in Lemma 5.3 of [KS] if one, moreover, uses the identity T z(x, ω)−1 =
J ∗T z(x, ω)J following from Wronskian identity (7) and invokes Corollary 1 to show
that Mz±(ω) is uniformly bounded in ω for every fixed z. �


5. Kotani Theory

Kotani theory links the absolutely continuous spectrum of stochastic quasi-one-
dimensional operators to the set of energies with vanishing Lyapunov exponents, by
using analyticity arguments based on a few crucial identities. In all this section it is
not needed that the stochastic Dirac operator has time-reversal symmetry or is of the
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particular random form given in (30). Kotani theory for stochastic Dirac operators with
bounded potentials was developed in [Sun] by providing the relevant identities and then
following closely the arguments of [KS]. As already mentioned, the paper by Sun has
some obvious errors which are corrected below. Moreover, we extend the theory in order
to include singular potentials and potentials which may be complex-valued matrices. The
singular potentials model a discrete version of Dirac operators (a satisfactory discrete
analog acting on �2(Z,C2L) does not exist).

Theorem 4. Let a stochastic family of Dirac operators with integrable and singular
potentials be given. Then, for k = 1, . . . , L, the disjoint sets

Sk = {E ∈ R | exactly 2k Lyapunov exponents vanish at E}
are an essential support of the absolutely continuous spectrum of multiplicity 2k.

Just as the crucial identities are different for discrete and continuous Schrödinger
operators (compare [KS]), there are some variations in the formulas in [Sun] for sto-
chastic Dirac operators with singular potentials as well. We need to introduce further
notations in order to state them. Averaging over ω w.r.t. P is denoted by E. Another
average along the orbit of singular points is

ES( f ) = E

⎛

⎝ lim
x→∞

1

x

∑

y∈S∩[0,x]
f (T−yω)

⎞

⎠ = ρS E

⎛

⎝ lim
J→∞

1

J

J∑

j=1

f (T−x jω)

⎞

⎠ ,

namely one first averages over the random sites of the singular potential. Note that
ES(1) = ρS and that the average E can be dropped P-almost surely. Furthermore, if
xS ∈ S is the point closest to the origin, then T−xS

ω has a singular point at the origin and
ES( f ) = ∫ P(dω) f (T−xS

ω). Hence ES is closely linked to the Palm measure. Further
the sum of the Lyapunov exponents is denoted by γ z =∑L

l=1 γ
z
l and we introduce two

functions on C/R by

wz
+ = − ES ln

(
det(D − Mz

+ B)
) − E Tr

(
R + Mz

+(Q − z)
)
,

and

wz− = ES ln
(
det(D∗ + B∗Mz−)

) − E Tr
(−R∗ + Mz−(Q − z)

)
.

By Corollary 1 the imaginary part of Mz± is uniformly bounded away from 0 so that wz±
are well-defined. The branch of the logarithm is chosen in a continuous way in z (for
each ω separately) so that Theorem 2 then shows that wz± is analytic. The choice of the
branch is of no importance below. Finally for any smooth function f on � we define
∂ f (ω) = ∂x f (T−xω)|x=0 if 0 /∈ S.

Theorem 5. Let �m(z) �= 0.

(i) There is a constant c ∈ R such that wz
+ = wz− + ı c.

(ii) γ z = −�e(wz±).
(iii) ∂zw

z = E Tr(Ĝz).
(iv) 2 γ z = �m(z)E Tr

(
(1 + |Mz±|2) (�m(Mz±))−1

)
.

Items (ii) and (iii) combined provide a Thouless formula for stochastic Dirac opera-
tors. The proof is based on a series of algebraic identities which we check first.
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Lemma 3. Let �m(z) �= 0. Away from singular points, the following identities hold:

(i) ∂ Tr
(
ln(Mz

+ + Mz−)
) = Tr

(
R∗ + R + (Q − z)(Mz

+ − Mz−)
)
.

(ii) ∂ Tr
(
(Mz

+ + Mz−)−1(∂z Mz
+ − ∂z Mz−)

) = 2 Tr
(
Ĝz

0

)
+ ∂zTr

(
(Q − z)(Mz

+ + Mz−)
)
.

(iii) ± ∂ Tr
(
ln(�m(Mz±))

) = 2 �e
(
Tr(W z±)

)−�m(z)Tr
(
(1 + |Mz±|2) (�m(Mz±))−1

)
,

where W z
+ = R + (Q − z)Mz

+ and W z− = −R∗ + (Q − z)Mz−.
(iv) ∂x

[
αz±(x, ω)∗�m(Mz±(T−xω))α

z±(x, ω)
]=∓�m(z) αz±(x, ω)∗

(
1+|Mz±(T−xω)|2

)

αz±(x, ω).

Proof. In the formulas below all functions have the argument T−xω, and one may then
set x = 0. Using Lemma 2(viii), a short calculation shows

∂
(
Mz

+ + Mz−
)=(Mz

+ + Mz−
) (

R∗ − (Q − z)Mz−
)

+
(
R + Mz

+(Q − z)
) (

Mz
+ + Mz−

)
.

(24)

Multiplying this by (Mz
+ + Mz−)−1 and then using the cyclicity of the trace shows the for-

mula of (i). For (ii), let us take the derivative ∂z of the Ricatti equation of Lemma 2(viii):

∂
(
Ṁz

+ − Ṁz−
) = − (2 + (Mz

+)
2 + (Mz−)2) +

(
Ṁz

+ − Ṁz−
)

R∗ + R
(
Ṁz

+ − Ṁz−
)

+ Ṁz
+(Q − z)Mz

+ + Mz
+(Q − z)Ṁz

+ + Ṁz−(Q − z)Mz− + Mz−(Q − z)Ṁz−.

Using this and (24), some algebra directly leads to (ii) if one also uses the identity

Tr
(
Ĝz

0

) = Tr([(Mz
+)

−1 + (Mz−)−1]−1 − (Mz
+ + Mz−)−1),

following from Propositions 3 and 5.
Next we turn to the proof of (iii). Let us set Mz± = X z± + ı Y z± with Y z± = �m(Mz±).

From Mz± = (Mz±)∗ follows X z± = X z± = (X z±)∗ and Y z± = −Y z± = (Y z±)∗. Straight-
forward calculation then shows

∂ Y z± = RY z± + Y z± R∗ ± X z±(Q − �e(z))Y z± ± Y z±(Q − �e(z))X z±
∓�m(z)(1 + (X z±)2 − (Y z±)2).

Thus

∂ Tr(ln(Y z±)) = Tr
(
R + R∗ ± 2 X z±(Q − �e(z))

) ∓ �m(z)

×Tr
(
(Y z±)−1(1 + (X z±)2 − (Y z±)2)

)

= ± 2 �e
(
Tr(W z±)

) ∓ �m(z)Tr
(
(Y z±)−1(1 + (X z±)2 − (Y z±)2) + 2 Y z±

)

= ± 2 �e
(
Tr(W z±)

) ∓ �m(z)Tr
(
(Y z±)−1(1 + |X z± + ıY z±|2)

)
,

where in the last step we used Tr(Y −1[X,Y ]) = 0. Finally let us consider (iv). When
calculating the derivative on the l.h.s. the product rule leads to three terms. The term
containing ∂ Y z± is given by the above formula, those involving derivatives of αz±(x, ω)
by Lemma 2(vii). Hence it is sufficient to check

(−R∗∓(Q−z)Mz±
)∗

Y z±+∂ Y z±+Y z±
(−R∗ ∓ (Q − z)Mz±

)=∓�m(z)
(

1 + |Mz±|2
)
.

Again this follows from some algebra. �
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Proof of Theorem 5. (i) Set I z = E Tr
(
R∗ + R + (Q − z)(Mz

+ − Mz−)
)
. By the ergodic

theorem and Lemma 3(i), P-almost surely

I z = lim
y→∞

1

y

∫ y

0
dx Tr

(
R∗(Txω) + R(Txω) + (Q(Txω)− z)(Mz

+(Txω)− Mz−(Txω))
)

= lim
y→∞

1

y

∫ 0

−y
dx ∂x Tr

(
ln(Mz

+(T−xω) + Mz−(T−xω))
)

= lim
y→∞

1

y

∑

−y≤x j ≤0

[
ln
(
det(Mz

+(T−xω) + Mz−(T−xω))
)∣∣x j −

x j−1+ + 2π ı n j

]
,

where S = (x j ) j∈Z with x j−1 ≤ x j and n j ∈ Z denotes the number of branches of
the logarithm needed in the integral from x j−1 to x j minus 1. Now by Lemma 2(iv),
Mz±(T−(x j−1+)ω) = Mz±(T−x j−1ω). On the other hand, we calculate Mz

+(T−x j +ω) +
Mz−(T−x j +ω) by Corollary 2(iii). Thus regrouping the terms shows that

I z = lim
y→∞

1

y

∑

−y≤x j ≤0

[
− ln
(
det(D j − Mz

+(T−x jω)B j
)

− ln
(

det(D∗
j + B∗

j Mz−(T−x jω))
)

+ 2π ı n j

]
.

Hence if c is the average of 2πn j over S, we have shown

I z = − ES ln
(
det(D − Mz

+ B)
) − ES ln

(
det(D∗ + B∗Mz−)

)
+ ı c,

and thus (i). For (ii) let us start from a formula for γ z which follows from the identities
stated in Proposition 8:

γ z = lim
y→∞

1

y
ln
(| det(αz−(y, ω))|

)
,

where the convergence holds P-almost surely. Telescoping and regrouping gives

γ z = lim
y→∞

1

y

∑

0<x j<y

[
ln
(| det(αz−(x j +, ω))|

)− ln
(| det(αz−(x j−1+, ω))|) ]

= lim
y→∞

1

y

∑

0<x j<y

[
ln
(
| det(αz−(x j +, ω)α

z−(x j−, ω)−1)|
)

+
∫ x j

x j−1

dx ∂x ln
(| det(αz−(x, ω))|

)
]
.

The first contribution can be evaluated with Lemma 2(vi) and the definition of ES, the
second contribution be summed up and the integrand evaluated:

γ z =− ES ln
(| det(D∗ + B∗Mz−)|

)
+ �e lim

y→∞
1

y

∫ y

0
dx Tr

(
αz−(x, ω)−1∂xα

z−(x, ω)
)
.

Finally the last expression can be calculated using Lemma 2(vii) and then the ergodic
theorem completes the proof of (ii). Let us point out that one could have started from

γ z = − lim
y→∞

1

y
ln
(
| det(αz

+(y, ω))|
)
.
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Then a similar calculation leads to γ z = −�e(wz
+). Because wz± are analytic, this also

provides an alternative proof of (i).
(iii) Let us set J z = 2 E Tr

(
Ĝz
)

+ ∂zE Tr
(
R − R∗ + (Q − z)(Mz

+ + Mz−)
)
. Because

the probability of having a singular potential at 0 vanishes, E Tr
(
Ĝz
)

can be replaced
by E Tr

(
Ĝz

0

)
. Furthermore the term R − R∗ drops out due to the derivative ∂z . Hence

Lemma 3(ii), the ergodic theorem and reordering of the terms imply as above that
P-almost surely

J z = lim
y→∞

1

y

∑

−y≤x j ≤0

Tr
(
(Mz

+(T−xω) + Mz−(T−xω))
−1

× (Ṁz
+(T−xω)− Ṁz−(T−xω))

)∣∣x j −
x j
,

where we also used the left-continuity of x ∈ R �→ Mz±(Txω). The terms with
x j− now have to be evaluated using Lemma 2(iv) or its equivalent formulations. The
factor (Mz

+(T−x j +ω) + Mz−(T−x j +ω))
−1 is given by the inverse of Corollary 2(iii).

Corollary 2(viii) moreover allows to calculate Ṁz
+(T−x j +ω)− Ṁz−(T−x j +ω). Replacing

both identities then shows

J z = ES Tr
(
(Mz

+ + Mz−)−1
[
(D + Mz− B)(D − Mz

+ B)−1 Ṁz
+

+ Ṁz− (D∗ + B∗Mz−)−1(B∗Mz
+ − D∗) − Ṁz

+ + Ṁz−
])

= ∂z ES

[
Tr
(
ln(D∗ + B∗Mz−)

) − Tr
(
ln(D − Mz

+ B)
)]
.

Due to the definitions of J z and wz± this concludes the proof of (iii).
(iv) We set K z± = E

(
2 �e
(
Tr(W z±)

)− �m(z)Tr((1 + |Mz±|2)�m(Mz±)−1)
)
. By

Lemma 3(iii) and the ergodic theorem one has P-almost surely

± K z± = lim
y→∞

1

y

∑

−y≤x j ≤0

ln
(
det(�m(Mz±(T−xω)))

)∣∣x j −
x j
.

Now evaluate �m(Mz±(T−x j +ω)) by Corollary 2(vi). This implies

K z± = ∓ ES ln
(

det(|D ∓ Mz±B|2)
)

= ∓ 2 �e ES ln
(
det(D ∓ Mz±B)

)
.

Similarly, using Corollary 2(vii), K z± = ∓ 2 �e ES ln
(
det(D∗ ∓ B∗Mz±)

)
. From these

identities one readily completes the proof. �

The second part of the following theorem establishes Theorem 6.6 of [KS] also for

complex valued potentials.

Theorem 6. Consider the positive operator U z± = (�m(Mz±))
1
2 (1 + |Mz±|2)−1(�m

(Mz±))
1
2 and denote its eigenvalues by uz

1,± ≥ . . . ≥ uz
L ,± ≥ 0. Further let E ∈ R,

ε > 0 and k = 1, . . . , L. Then

E
k∑

l=1

1

uE+ıε
l,±

≤ 2

ε

k∑

l=1

γ E∓ıε
L+1−l . (25)
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If furthermore E is such that γ E
l = limε→0 γ

E+ıε
l exists for l = 1, . . . , L, then

E
k∑

l=1

1

uE+ıε
l,±

≤ 2

ε

[
k∑

l=1

γ E+ıε
L+1−l +

L∑

l=k+1

(γ E+ıε
L+1−l − γ E

L+1−l)

]
. (26)

Proof. This is an adaptation and slight generalization of the proof of Theorems 6.5
and 6.6 of [KS] (the reasoning in [Sun] is erroneous at several points). For any L × L
matrix F , let�k F and d�k F be the second quantizations on the fermionic tensor prod-
uct �k

C
L , such that ed�k F = �keF . Let z = E + ıε and Y z± = �m(Mz±). Define

Fz±(x, ω) = Y z±(T−xω)
1
2 αz±(x, ω). Then

∂x �
k |Fz±(x)|2 = �k Fz±(x)∗

(
d�k(Fz±(x)−1)∗ ∂x |Fz±(x)|2 Fz±(x)−1

)
�k Fz±(x).

Thus by Lemma 3(iv),

∂x �
k |Fz±(x, ω)|2 = ∓ �m(z) �k Fz±(x, ω)∗

(
d�kU z±(T−xω)

−1
)
�k Fz±(x, ω),

so that for �m(z) > 0,

∂x �
k |Fz

+(x, ω)|2 ≥ − �m(z) ‖d�kU z
+(T−xω)

−1‖ �k |Fz
+(x, ω)|2 ,

∂x �
k |Fz−(x, ω)|2 ≤ �m(z) ‖d�kU z−(T−xω)

−1‖ �k |Fz−(x, ω)|2.
Integrating hence gives

�k |Fz
+(x, ω)|2 ≥ exp

(
− �m(z)

∫ x

0
dy ‖d�kU z

+(T−yω)
−1‖
)
�k |Fz

+(0, ω)|2 ,

�k |Fz−(x, ω)|2 ≤ exp

(
�m(z)

∫ x

0
dy ‖d�kU z−(T−yω)

−1‖
)
�k |Fz−(0, ω)|2.

Note that by Lemma 2(vi) and Corollary 2(vii) the functions |Fz±(x, ω)| are actually
smooth also for x ∈ S. We combine this with the inequalities

‖�kαz±(x, ω)‖2 ‖�kY z±(T−xω)
−1‖−1 ≤ ‖�k |Fz±(x, ω)|2‖

≤ ‖�kαz±(x, ω)‖2 ‖�kY z±(T−xω)‖.
Taking logarithms thus shows

ln

(
‖�kαz−(x, ω)‖2

‖�kY z−(T−xω)−1‖

)
≤ �m(z)

∫ x

0
dy ‖d�kU z

+(T−yω)
−1‖

+ ln
(
‖�k |Fz

+(0, ω)|2‖
)
.

Now by Corollary 1, Y z−(ω)−1 is uniformly bounded in ω. Thus dividing by x and then
taking the limit x → ∞ shows by Proposition 8(iii) and the ergodic theorem

2
k∑

l=1

γ z
l ≤ �m(z) E ‖d�k(U z−)−1‖ = �m(z) E

L∑

l=L−k+1

1

uz
−,l
. (27)
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Combining this with k replaced by L − k together with Theorem 5(iv) stating

2
L∑

l=1

γ z
l = �m(z) E

L∑

l=1

1

uz
±,l
,

proves inequality (25) for the sign −. Similarly one has

ln
(
‖�kαz

+(x, ω)‖2
)

≥ −�m(z)
∫ x

0
dy ‖d�kU z

+(T−yω)
−1‖

+ ln

(‖�k |Fz
+(0, ω)|2‖

‖�kY z
+(T−xω)‖

)
.

As the last term is bounded along the orbit, Proposition 8(iii) now implies

2
k∑

l=1

γ z
l ≤ �m(z) E

L∑

l=L−k+1

1

uz
+,l
, (28)

which again combined with Theorem 5(iv) proves (25) for the sign +.
For the proof of (26) we need the following general fact. If T, S > 0 are two positive

matrices, then the positive operators T
1
2 ST

1
2 and S

1
2 T S

1
2 have the same spectrum (this

follows from Tr
(
(T

1
2 ST

1
2 )n
)

= Tr
(
(S

1
2 T S

1
2 )n
)

for all n ∈ N). Hence uz
±,k are also

the eigenvalues of the imaginary part of the Herglotz function (1 + |Mz±|2)− 1
2 Mz±(1 +

|Mz±|2)− 1
2 and by the Herglotz representation theorem it follows as in [KS] that

ε

uE+ıε
±,k

≥ δ

uE+ıδ
±,k

for ε ≥ δ > 0.

Combining this fact with Theorem 5(iv) and the bounds (27) and (28) gives

E
k∑

l=1

ε

uE+ıε
±,l

≤ E
L∑

l=1

ε

uE+ıε
±,l

− E
L∑

l=k+1

δ

uE+ıδ
±,l

≤ 2
L∑

l=1

γ E+ıε
l − 2

L−k∑

l=1

γ E∓ıδ
l .

Now taking the limit δ → 0 leads to (26). �

From this point on the proof of Theorem 4 is line by line the same as in [KS].

6. Time Reversal Symmetry and Coupling Hypothesis

None of the results of Sects. 2 to 5 used the time reversal invariance (2). In this section,
we first implement this symmetry and then describe the model of Theorem 1 in more
detail and state the Coupling Hypothesis. The proof of the following result is immediate.

Proposition 9. Suppose that H is time-reversal invariant, namely satisfies (2). Then

J ∗T z(x)J = T z(x), Mz± = −(Mz±)−1.
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Proposition 10. If HV has time-reversal symmetry, the averaged Green matrix satisfies

J ∗Ĝz
VJ = (Ĝz

V )
t , J ∗�m(Ĝz

V )J = �m(Ĝz
V ). (29)

If furthermore φ = (v,J v) for some v ∈ C
2L satisfying v∗J v = 0, then the 2 × 2

matrix φ∗Ĝz
Vφ is a constant multiple of the identity.

Proof. The Hamiltonian satisfies J ∗ HVJ=HV so thatJ ∗(HV−z)−1J = (HV − z)−1.
This implies that for any vectors v,w ∈ C

2L , v∗J ∗Ĝz
VJw = w∗Ĝz

Vv = v∗(Ĝz
V )

tw

which implies the first identity in (29), from which the second one can be directly
deduced. As to the last point, for any vector w one has w∗Ĝz

Vw = wt (Ĝz
V )

tw =
wtJ ∗Ĝz

VJw = (Jw)∗Ĝz
VJw. Moreover, for any w = λv + λ′J v ∈ Ran(φ), one

checks the orthogonalityw∗Jw = 0. These facts implyw∗Ĝz
Vw = 1

2 Tr(φ∗Ĝz
Vφ) ‖w‖2.

�

The last statement of Proposition 10 reflects Kramers’ degeneracy stating that the

spectrum of a time reversal invariant Hamiltonian with odd spin has even multiplicity.
In particular, for eigenstates Hψ = Eψ gives HJψ = EJψ . For the same reason, the
singular values of the transfer matrices are degenerate (see Lemma 4(ii)) which implies
the degeneracy of the Lyapunov spectrum.

Next let us come to the construction of the stochastic Dirac operators of Theorem 1
and of the associated dynamical system. Let s ∈ [0, 1) = R/Z. Each operator H(ω)
is of the form (1) with singular potentials at S = Z + s, hence x j = j + s. The V j are
drawn independently and identically out of J so∗(2L) with some probability law pV
with compact support. Furthermore the potential W ∈ L1

loc(R,J so∗(2L)) is of the form

W(x) =
∑

j∈Z

K∑

k=1

λ j,k Wk(x + s − j + 1), (30)

where K ∈ N, each Wk ∈ L1
loc(R,J so∗(2L)) has support [0, 1] and the vectors

(λ j,k)k=1,...,K ∈ R
K are also drawn independently and identically according to a

probability distribution pW with compact support. Then � is a compact subset of
(J so∗(2L) × R

K )×Z × R/Z and P = (pW × pV )×Z × ds. The R-action T is the
natural right shift on � and P is indeed ergodic and even mixing w.r.t. T . In order to
state the main hypothesis on the randomness, it is convenient to introduce the transfer
matrix T z(W,V) as the solution T z(1, 0) of (5) with potential W and jump eJ V at 1.
Setting λ j = (λ j,k)k=1,...,K (which determines the potential bump W j =∑K

k=1 λ j,k Wk
between j −1 and j), this notation implies T z(λ j ,V j ) = T z( j + s, j + s −1, ω), where
the transfer matrix on the r.h.s. is defined by (5) with the Hamiltonian H(ω).
Coupling Hypothesis. The semi-group generated by {T E (λ,V) | (λ,J V) ∈ supp(pW×
pV ) } is Zariski dense in SO∗(2L) for all E ∈ R.

Let us stress that this hypothesis can be verified if pW × pV is supported on a finite
set of points, and also if either pW or pV is concentrated on a single point, notably the
disorder is given only by a random potential W or the random Dirac peaks V jδ j . Fur-
thermore this hypothesis is satisfied whenever the set of T E (λ,V) contains an open set
(this property does not depend on E). This is e.g. the case if pV contains an absolutely
continuous part w.r.t. to the Haar measure.
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7. The Lyapunov Spectrum

This section proves a criterion for the distinctness (apart from Kramers’ degeneracy) of
the Lyapunov exponents for random products of matrices in SO∗(2L). It can be imme-
diately applied to the transfer matrices if the Coupling Hypothesis holds. On the other
hand, we believe it to be of somewhat independent interest and thus took care to make
it readable without reference to the rest of the paper. Instead of the group SO∗(2L) as
defined in the Introduction it will be more convenient to work with an isomorphic group
G for which the polar decomposition takes a more simple form. Thus we define in case
of even L = 2d and odd L = 2d + 1 respectively

A = 1√
2

(
1d 1d
ı1d −ı1d

)
, A = 1√

2

⎛

⎝
1d 0 1d

0
√

2 0
ı1d 0 −ı1d

⎞

⎠ ,

where d × d square matrices carry the index d. Then introduce A = diag(A, A) which
satisfies A∗ = A−1 and set G = A∗SO∗(2L)A. This group consists of all 2L × 2L
matrices M satisfying

M∗J M = J , MtSM = S, (31)

where S = diag(At A, At A). Note that the matrices J and S commute, J ∗ = −J =
J −1 and S∗ = S = S−1.

Lemma 4. Let M ∈ G and v ∈ C
2L .

(i) M∗ ∈ G.

(ii) If Mv = λv, then M∗J v = λ−1J v, MJ Sv = λJ Sv and M∗Sv = λ
−1Sv.

(iii) The vectors v and J Sv are linearly independent for v �= 0.
(iv) For M > 0,M ∈ G, there exists U ∈ G ∩ SU(2L) such that UMU∗ = D, where

D = diag(a1, . . . , ad , 1, a−1
1 , . . . , a−1

d , a−1
1 , . . . , a−1

d , 1, a1, . . . , ad) if L = 2d +1
and D = diag(a1, . . . , ad , a−1

1 , . . . , a−1
d , a−1

1 , . . . , a−1
d , a1, . . . , ad) in case L =

2d, with real constants a1 ≥ a2 ≥ . . . ad ≥ 1. Note that D ∈ G.
(v) There are unitary matrices K,U ∈ G∩ SU(2L) and a diagonal matrix D as in (iv)

such that M = KDU .
(vi) One has det(M) = 1 and the group G is connected.

Proof. (i) follows by inverting the relations in (31). For (ii) note that M∗J M = J
implies J ∗M∗J = M−1. Hence J ∗M∗J v = λ−1v implies M∗J v = λ−1v.
From MtSM = S it follows that SMtS = M−1 = J ∗M∗J . Taking the trans-
pose one obtains SMS = J ∗MJ and hence SMSJ v = −λJ ∗v and therefore
MSJ v = λSJ v. Now using the same calculation as above yields the last equation.

(iii) Writingv = (ab
)

andJ Sv = λv givesλa = At Ab andλb = −At Aa. As At A is real
and (At A)2 = 1, this implies |λ|2a = At Aλb = −a and therefore (1 + |λ|2)a = 0
implying a = 0 and b = 0 and hence v = 0. Therefore these vectors are linearly
dependent if and only if v = 0.

(iv) First we need some basic facts. We say that a subspace V of C
2L is G-like if for any

vector v ∈ V one has J v,S v,J S v ∈ V. The space spanned by v,J v,S v and
J S v is G-like. The intersection of two G-like subspaces is G-like. Furthermore,
if V is G-like, then also the orthogonal complement V

⊥ is G-like. To see this,
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take v ∈ V, w ∈ V
⊥ then 〈S w, v〉 = 〈w,Sv〉 = 〈w,Sv〉 = 0, and 〈Jw, v〉 =

−〈w,J v〉 = 0. Therefore S w,Jw ∈ V
⊥ and hence also J S w ∈ V

⊥.

For M > 0 the eigenspaces are orthogonal. Let V1 be the eigenspace for the value
1 (possibly only the zero vector) and V0 be the orthogonal complement. By (ii) and the
consideration above, these spaces are G-like and they are invariant under M∗M. By
(ii) and (iii) the dimension of V0 is divisible by 4, say dimV0 = 4r .

First claim. V0 has an orthonormal basis of eigenvectors of M∗M of the form

v1, v2, . . . , vr ,S v1, . . . ,S vr ,J v1, . . . ,J vr ,J S v1, . . . ,J S vr .

Indeed, if dim(V0) = 0, there is nothing to prove. Otherwise let a2
1 > 1 be the biggest

eigenvalue of M∗M which is also the biggest eigenvalue of M∗M restricted to V0
and let v ∈ V0 be some corresponding eigenvector. Then J S v is another eigenvector
for the same eigenvalue. Take w = v + µJ S v, where µ ∈ C can be chosen in such
a way that w and J S w are orthogonal. Then also Jw and S w which are eigenvec-
tors to the eigenvalue a−1

1 are orthogonal. As a1 > a−1
1 , the space spanned by w and

J S w is orthogonal to the space spanned by J W and S w. Therefore normalizing w
to v1 = w/‖w‖ the vectors v1,S v1,J v1,J S v1 are orthonormal. Denote the space
spanned by these vectors by V0,1 ⊂ V0 and its orthogonal complement in V0 by V0,2
which is again a G-like, M-invariant subspace. One proceeds by induction to complete
the proof of the claim.

Second claim. If L = 2d, then dim(V1) is divisible by 4 and there is an orthonormal basis
of the form vr+1, . . . , vd ,S vr+1, . . . ,Svd ,J vr+1, . . . ,J vd ,J S vr+1, . . . ,J S vd . If
L = 2d + 1, then dim(V1) is congruent to 2 mod 4 and one has an orthonormal basis
which is of the form

vr+1, . . . , vd , vd+1,S vr+1, . . . ,Svd ,J vr+1, . . . ,J vd ,J vd+1,J S vr+1, . . . ,J S vd with
Svd+1 = vd+1.

Indeed, as J is unitary and operates on V1, there is an orthonormal basis of V1 of
eigenvectors of J . The eigenvalues of J are ±ı . If J v = ±ıv, then J S v = SJ v =
∓ıS v. Hence the dimensions of the eigenspaces of J in V1 are equal. If dim(V1) ≥ 4,
there are two orthonormal vectorsw1, w2 satisfying Jw j = ıw j . As J S w j = −ıS w j

the vectors w1, w2,S w1,S w2 are orthonormal. Set vr+1 = 1√
2
(w1 + Sw2). Then the

vectors vr+1, J vr+1 = ı√
2
(w1 − Sw2), S vr+1 = 1√

2
(w2 + S w1) and J S vr+1 =

1√
2
(w2 − S w1) are orthonormal. They span a 4-dimensional G-like subspace of V1.

Denote its orthonormal complement in V1 by V2 and proceed by induction to obtain the
vectors vr+2, . . . , vd . In case L = 2d this shows the above claim; if L = 2d + 1, one
is left with some 2-dimensional, G-like subspace Vd−r+1. This space is spanned by the
orthonormal vectors w and S w, where Jw = ıw. Set vd+1 = 1√

2
(w + S w), then vd+1

and J vd+1 form an orthonormal basis of Vd−r+1 and Svd+1 = vd+1.

Construction of U . From the first two steps we obtain an orthonormal basis of eigenvec-
tors of M∗M of the form (v1, . . . , vd , vd+1,S v1, . . . ,S vd ,J v1, . . . ,

J vd+1,J S v1, . . . ,J S vd) in case L = 2d + 1, and the same without the entries con-
taining vd+1 if L = 2d. The corresponding eigenvalues of v1, . . . , vd shall be denoted
by a2

1 ≥ a2
2 ≥ . . . a2

d ≥ 1. The eigenvalue corresponding to vd+1 if L = 2d + 1 is 1.
Denote the canonical basis of C

2L by ei , i = 1, . . . , 2L . Let us define the unitary matrix
U by
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L = 2d, L = 2d + 1,
Uvi = ei i = 1, . . . , d, Uvi = ei i = 1, . . . , d + 1,
US vi = ei+d i = 1, . . . , d, US vi = ei+d+1 i = 1, . . . , d,
UJ vi = −ei+2d i = 1, . . . , d, UJ vi = −ei+2d+1 i = 1, . . . , d + 1,
UJ S vi = −ei+3d i = 1, . . . , d, UJ S vi = −ei+3d+2 i = 1, . . . , d.

Then defining the diagonal matrix D as in the statement of the proposition, one has
UMU∗ = D. For i = 1, . . . , d, one has

(U∗J U)vi = U∗J ei = −U∗ei+L = J vi ,

(U∗J U)J vi = −U∗J ei+L = −U∗ei = −vi = J (J vi );
similar calculations hold for S vi , J S vi and also vd+1,J vd+1 in the case L = 2d + 1.
Thus one obtains U∗J U = J . It is a matter of calculation to verify that U tSU = S
and hence U ∈ G ∩ U(2L). Finally, as U ∈ G we have AUA∗ ∈ SO∗(2L) ∩ U(2L) =
SP(2L ,R) ∩ O(2L) and hence det(U) = det(AUA∗) = 1 and therefore U ∈ SU(2L).
(v) As M∗M ∈ G and M∗M > 0, by (iv) we find U ∈ G ∩ SU(2L) and a diagonal
matrix D as above, such that UM∗MU∗ = D2. Set K = MU∗D−1 ∈ G, then M =
KDU and K∗K = D−1UM∗MU∗D−1 = 1. Hence K ∈ G ∩ U(2L) = G ∩ SU(2L).

(vi) By (v), det(M) = det(K) det(D) det(U) = 1. Furthermore as the group SP(2L ,R)∩
O(2L) is connected, also SO∗(2L)∩U(2L) is. Using the decomposition in (iv) one easily
obtains that G is connected. �


Now let (Yn)n≥1 be an i.i.d. sequence in G. Then by Lemma 4 the whole associated
Lyapunov spectrum has at least multiplicity two. So let γ1, γ1, γ2, γ2, . . . , γL , γL be the
2L Lyapunov exponents with γ1 ≥ γ2 ≥ . . . γL . Lemma 4 also shows γp = −γL+1−p
and in the case L = 2d + 1, one has γd+1 = 0. Therefore it is always enough to
consider γ1, . . . , γd . Set v(p) = e1 ∧ . . . ∧ ep ∧ e2L−d+1 ∧ . . . e2L−d+p and define
Lp = spanR({�2pMv(p) | M ∈ G}) which is a real linear subspace of �2p

C
2L . Note

that Lp does not have to be a complex vector space. Taking the real part of the scalar
product on �2p

C
2L induces a scalar product on Lp but actually one does not need to

take the real part as the following lemma shows.

Lemma 5. The scalar product in�2p
C

2L of two vectors in Lp is real. Let f1, f2, f3, f4 ∈
Lp and consider f1 ∧ f2, f3 ∧ f4 on one hand as elements in �2(�2p

C
2L) and on the

other hand as elements in �2
R

Lp considered as a tensor product over the field R. Then
the scalar products coincide, i.e. 〈 f1∧ f2, f3∧ f4〉�2(�2pC2L ) = 〈 f1∧ f2, f3∧ f4〉�2

R
Lp

.

Proof. One finds J Sei = −e2L−d+i and J Se2L−d+i = ei for i = 1, . . . , d which
implies �2p(J S)v(p) = (−1)2pv(p) = v(p). For M ∈ G one has SMS = J ∗ MJ
and hence

〈v(p), �2pMv(p)〉 = 〈�2pSv(p), �2p(SMS2)v(p)〉
= 〈�2p(J S)v(p), �2p(MJ S)v(p)〉 = 〈v(p), �2pMv(p)〉.

Therefore 〈�2pMv(p), �2pN v(p)〉 = 〈v(p), �2p(M∗N )v(p)〉 is real for all M,N ∈
G and by linearity the �2p

C
2L scalar product for two vectors in Lp is real. The sec-

ond statement follows from the first one using 〈 f1 ∧ f2, f3 ∧ f4〉 = 〈 f1, f3〉〈 f2, f4〉 −
〈 f1, f4〉〈 f2, f3〉. �
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Considering f1 ∧ f2 as an element in �2
R

Lp on one hand and as an element of
�2(�2p

C
2L) on the other hand induces an R-linear map �2

R
Lp → �2(�2p

C
2L). By

Lemma 5 this map preserves the inner product and is hence injective. Therefore �2
R

Lp

can be viewed as a real subspace of�2(�2p
C

2L). The following criterion for distinctness
of the Lyapunov exponents is adapted from [GR,BL].

Definition 1. A subset T of G is Lp-strongly irreducible if there does not exist a finite
union W of proper linear subspaces of Lp such that (�2pM)(W) = W for any M in
T.

Proposition 11. Let (Yn)n≥1 be a sequence of i.i.d. random matrices in G for L = 2d
or L = 2d + 1 and let p be an integer 1 ≤ p ≤ d. Let T be the semi-group generated
by the support of Yn. Suppose that T is 2p-contracting and Lp-strongly irreducible and
that E(log+ ‖Y1‖) < ∞. Then γp > γp+1.

Proof. Let k be the dimension of Lp and ( f1, . . . , fk) an orthonormal basis to be chosen
later on. For any M ∈ G, let M̂ denote the matrix in Gl(k,R) with the entries

M̂i, j = 〈 fi ,�
2pM f j 〉 , 1 ≤ i, j ≤ k.

If U ∈ G ∩ U(2L), then �2pU ∈ �2p
G ∩ U(�2p

C
2L) and hence the restriction of

�2pU to Lp is orthogonal, i.e. Û ∈ O(Lp). Let us use the notation �2pM = 	(M).
One has ‖M̂‖ ≤ ‖	(M)‖ as Lp is a subspace of �2p

C
2L and by Lemma 5 one also

obtains ‖�2M̂‖ ≤ ‖�2	(M)‖.
Claim: Let a1 ≥ a2 ≥ . . . ≥ ad ≥ 1 be the singular values of M as occur in the
decomposition in Lemma 4(v), then ‖	(M)‖ = a2

1 · · · a2
p = ‖M̂‖ and ‖�2	(M)‖ ≥

‖�2
R
M̂‖ ≥ ‖M̂‖ · a2

1 · · · a2
p−1a2

p+1. In the case p = d, we define ad+1 = a−1
d .

Indeed, set f1 = v(p) = e1 ∧ . . . ∧ ep ∧ e2L−d+1 ∧ . . . ∧ e2L−d+p, and if p < d,
set f2 = e1 ∧ . . .∧ ep−1 ∧ ep+1 ∧ e2L−d+1 ∧ . . .∧ e2L−d+p−1 ∧ e2L−d+p+1. In the case
p = d, set f2 = e1 ∧ . . .∧ ed−1 ∧ eL+d ∧ e2L−d+1 ∧ . . .∧ e2L−1 ∧ eL . Further, for any
d × d invertible matrix B and any matrix C with B∗C = C∗ B, one can construct the
following element of G:

N =

⎛

⎜⎜⎜⎜⎜⎜⎝

B 0 0 0 0 0
0 cos(ϕ) 0 0 sin(ϕ) 0
0 0 (Bt )−1 0 0 −C
C 0 0 (B∗)−1 0 0
0 − sin(ϕ) 0 0 cos(ϕ) 0
0 0 0 0 0 B

⎞

⎟⎟⎟⎟⎟⎟⎠
,

if L = 2d pencil out
the rows and columns
containing ϕ.

(32)

Thus for p < d, one readily finds N ∈ G with f2 = �2pN f1 ∈ Lp. In the case
p = d, define N1 by setting B = 1 and Ci, j = 0 except Cd,d = 1, and define N2

by setting B = 2 · 1, C = 0. Then one obtains (22(d−1) − 22(d−2)) f2 = (22(d−1) −
�2pN2)(�

2pN1 f1 − f1) ∈ Ld . In conclusion, f1, f2 ∈ Lp can be completed to an
orthonormal basis of Lp. Now let us write M = KDU as in Lemma 4(v), then

‖	(M)‖ = a2
1 · · · a2

p = ‖�2pD f1‖ = ‖D̂ f1‖ ≤ ‖D̂‖ ≤ ‖�2pD‖ = ‖	(M)‖,
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where the last inequality holds as Lp is a subspace of�2p
C

2L . Hence ‖	(M)‖ = ‖D̂‖,
but ‖D̂‖ = ‖K̂D̂Û‖ = ‖M̂‖. As mentioned above, ‖�2	(M)‖ ≥ ‖�2M̂‖. Further-
more one has

‖�2M̂‖ = ‖�2D̂‖ ≥ ‖�2D̂( f1 ∧ f2)‖ = ‖M̂‖ · a2
1 · · · a2

p−1a2
p+1.

Hence the claim is proved.
Let T̂ be the semi group induced by the distribution of Ŷ1. As T is Lp-strongly irre-

ducible, clearly T̂ is a strongly irreducible subset of Gl(k,R). As T is also 2p contracting,
there exists a sequence (Mn)n≥1 in T such that limn→∞ ‖	(Mn)‖2‖�2	(Mn)‖−1 =
∞. As ‖M̂n‖ = ‖	(Mn)‖ and ‖�2	(Mn)‖ ≥ ‖�2M̂n‖ by the above claim, one
obtains

lim
n→∞ ‖M̂n‖2‖�2M̂n‖−1 ≥ lim

n→∞ ‖	(Mn)‖2‖�2	(Mn)‖−1 = ∞.

Hence T̂ is contracting. The two biggest Lyapunov exponents associated to the sequence
(Ŷn)n≥1 shall be denoted by γ̂1 and γ̂2. Then by the claim, the definition of Lyapunov
exponents and [BL, A.III.6.1] one has

2
p∑

i=1

γi = γ̂1 > γ̂2 ≥ 2
p−1∑

i=1

γi + 2γp+1,

implying γp > γp+1. By definition of ap+1 one actually would have to replace γp+1 by
γp+2 = γd+2 in the case L = 2d + 1, p = d. Then one gets γd > γd+2 = −γd and
therefore γd > 0 = γd+1. �

Theorem 7. Let (Yn)n≥1 be a sequence of i.i.d. random matrices in G for L = 2d or
L = 2d+1. Let T be the semi-group induced by the support of Y1 and let E(log+ ‖Y1‖) <
∞. Suppose that T is Zariski dense in G, then all Lyapunov exponents are distinct.

Proof. According to the proof of Proposition 11 the inequality γp > γp+1 follows from
the fact that the semi-group T̂ = {M̂ | M ∈ T} is strongly irreducible and contracting
in GL(k,R) as defined above. Now T̂ is Zariski dense in Ĝ = {M̂ | M ∈ G}. Otherwise
there would be a polynomial P̂ on GL(k,R) such that P̂(T̂) = 0 and P̂(M̂) �= 0 for
some M ∈ G. As the entries in M̂ are polynomials of the entries in M, this leads to a
polynomial P on GL(2L ,C) such that P(T) = 0 and P(M) �= 0 for some M ∈ G,
contradicting the fact that T is Zariski dense in G.

Now suppose T̂ is not strongly irreducible. Then there would be a finite union of
proper subspaces W = V1 ∪ . . . ∪ Vn such that M(W) ⊂ W for all M ∈ T̂. The
property M(Vi ) ⊂ Vk can be written as 〈w,Mv〉 = 0 for all w ∈ V

⊥
k , v ∈ Vi . Hence

the set of all such matrices M is Zariski closed. The property M(W) ⊂ W is therefore a
finite intersection of finite unions of Zariski closed sets and hence Zariski closed. As T̂ is
Zariski dense in Ĝ, this then implies Ĝ(W) ⊂ W. Therefore, if Ĝ is strongly irreducible,
then also T̂ is.

To show that T̂ is contracting we want to use Theorem 6.3 of [GM] which states
that if the algebraic closure of T̂ is strongly irreducible and contracting, then also T̂ is
contracting. Hence it is only left to show that Ĝ is strongly irreducible and contracting.

The property of Ĝ to be strongly irreducible is equivalent to G being Lp-strongly irre-
ducible. As G is connected we have to show that there is no proper subspace V ⊂ Lp such
that (�2pM)(V) ⊂ V for all M ∈ G. Suppose such a V exists. For a1 > a2 > . . . >
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ad > 1 take D = diag(a1, . . . , ad , 1, a−1
1 , . . . , a−1

d , a−1
1 , . . . , a−1

d , 1, a1, . . . , ad). The
relation (�2pDn)(V) ⊂ V implies that either v(p) ∈ V, but then Lp = V or that v(p)

is in the orthogonal complement V
⊥. But then by Lemma 4(i) one has, for v ∈ V and

any M ∈ G, 〈�2pMv(p), v〉 = 〈v(p), �2pM∗v〉 = 0. Hence Lp = V
⊥. Therefore V

is not proper.
Now it is only left to show that Ĝ is contracting. By the proof of Proposition 11 this

follows if G is 2p-contracting. Therefore take a matrix M of the form (32) with C = 0
and B = diag(λ1, . . . , λd). such that all moduli of the eigenvalues are distinct except
for the fact that always two eigenvalues have the same modulus. The sequence Mn then
shows that G is 2p-contracting. �

Proof of Theorem 1(i) and first claim of (ii). The Coupling Hypothesis implies by The-
orem 7 that the Lyapunov exponents as defined in Sect. 6 are distinct apart from Kra-
mers’ degeneracy. The symplectic symmetry of the Lyapunov spectrum implies that no
Lyapunov exponent vanishes for even L , while for odd L there are exactly two vanishing
Lyapunov exponents. By Theorem 5 the absolutely continuous spectrum is absent for
even L and has multiplicity 2 for odd L . �


8. Absence of Singular Spectrum

In this section we only consider the random model described at the end of Sect. 4. For
any configuration ω = ((λ j,k)k=1,...,K ; j∈Z, (V j ) j∈Z, s

) ∈ �, let ω̃ denote ω exclud-
ing the singular potential V = V0 at s, i.e. ω̃ = ((λ j,k)k=1,...,K , j∈Z , (V j ) j∈Z, j �=0, s

)
.

The distribution of ω̃ shall be denoted by P̃ and that of V by pV . With these notations
P = P̃ × pV . We only consider the case where L is odd and pV is absolutely continuous
w.r.t. to the Lebesgue measure. Next recall the definition (18) of V̂ ∈ J so∗(2L). Note
that V̂ is only defined for almost every V and for almost every V̂ there is a pre-image
V , which is not necessarily unique. Furthermore the pre-images of zero sets are zero
sets and hence the distribution pV̂ of V̂ , i.e. the image measure of pV , is absolutely
continuous w.r.t. the Lebesgue measure on the vector space J so∗(2L).

As V denotes the singular potential at x0 = s, let Ĝz
V denote the averaged Green

matrix at the point x0 = s, that is, Ĝz
V = Ĝz

V (s) with the notations of Proposition 5.
Note that this matrix actually depends on ω = (ω̃,V), but in most of the arguments
below ω̃ will be fixed. Furthermore, Proposition 7 shows that Ĝz

V actually only depends
on V̂ (which is a real statement since the map V �→ V̂ is not injective). Hence it is
sufficient to prove almost sure statements w.r.t. the distribution pV̂ of V̂ instead of w.r.t.
the distribution pV of V .

Let µω = µω̃,V denote the associated positive matrix valued measure. The function
E �→ 1

1+E2 is in L1(µω) for all ω. On the set of such measures one may introduce the

weak-∗ topology induced by the functions E �→ �m((E − z)−1) for z in the upper
half plane. As the pairing of this function with the measure µω is just �m(Gz), it fol-
lows that the map ω �→ µω is Borelian. Finally let µω,k = µω̃,V,k denote the measure
corresponding to e∗

k Ĝz
Vek , where ek is the kth canonical basis vector of C

2L .
The aim of this section is to prove that almost surely in ω the measure µω is abso-

lutely continuous or equivalently, that its singular part vanishes, i.e. µω,sing(R) = 0.
Therefore we will first show that almost surely one only needs to consider µω,1 and
then we show that µω,1,sing(R) = 0 almost surely. To obtain the first part we compare
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the measures µω̃,V,1 and µω̃,V,k for fixed ω̃ and show that they are almost surely equiv-
alent. Once cyclicity issues are settled (Proposition 12) and matrix analogues of rank
one perturbation results are proved (Proposition 13), the proofs are basically modifica-
tions of the arguments of [JL]. Our starting point is the following observations linked to
Kramers’ degeneracy.

Lemma 6. For 1 ≤ k, l ≤ L let us introduce the 2L × 2 matrix �k = (ek, ek+L).

(i) Let j denote the 2 × 2 symplectic form, then J�k = �k j .
Furthermore one has �k�

∗
k ∈ J so∗(2L) and �k j�∗

l +�l j∗�k ∈ J so∗(2L).
(ii) For Y1,Y2 ∈ J so∗(2L) one has Y1Y2Y1 ∈ J so∗(2L).

(iii) �∗
k Ĝz

V�k is a multiple of the unity matrix, which means �∗
k Ĝz

V�k = e∗
k Ĝz

Vek 1.

Proof. The identity J�k = �k j is readily verified. Furthermore (�k�
∗
k )

∗ = �k�
∗
k and

one has J ∗�k�
∗
k J = �k j∗ j�∗

k = �k�
∗
k = (�k�

∗
k )

t showing �k�
∗
k ∈ J so∗(2L).

Similar calculations show�k j�∗
l +�l j∗�k ∈ J so∗(2L) ∈ J so∗(2L) and (i) is proved.

To obtain (ii), first note that Y1,Y2 are self-adjoint and hence Y1Y2Y1 is self-adjoint. Fur-
thermore one has J ∗Y1Y2Y1J = J ∗Y1J J ∗Y2J J ∗Y1J = Y t

1Y t
2Y t

1 = (Y1Y2Y1)
t

and also (ii) is proved. (iii) is just a special case of Proposition 10. �

The measure class of µω is given by the trace, i.e. by the sum

∑2L
k=1 µω,k =

2
∑L

k=1 µω,k , where the last identity follows from Lemma 6(iii).

Proposition 12. For fixed ω̃, one has that for Lebesgue almost all V̂ ∈ J so∗(2L) the
set of energies {E ∈ R | Ĝ E+ı0

V exists and �∗
l Ĝ E

V�k is invertible } has full Lebesgue
measure.

Proof. We first claim that for fixed z in the upper half plane U1, there is a V̂ ∈ J so∗(2L)
such that �∗

l Ĝz
V�k is invertible. Recall that Ĝz

V = ((Ĝz
0)

−1 + V̂)−1. Set (Ĝz
0)

−1 =
X −ı Y−1 with Y−1 = −�m((Ĝz

0)
−1) > 0. As J ∗Ĝz

0J = (Ĝz
0)

t , one has X ,Y−1,Y ∈
J so∗(2L). Then consider V̂ = −�e((Ĝz

0)
−1)+λP with a perturbation P ∈ J so∗(2L).

Then

Ĝz
V = (−ıY−1 + λP)−1 = ı Y + λYPY − ı λ2YPYPY + O(λ3).

Note that V now depends on λ and P , furthermore YPY ∈ J so∗(2L) as well as
YPYPY ∈ J so∗(2L) by Lemma 6. For any 2 × 2 matrices A, B,C one has det(A +
λB +λ2C) = det(A)+λTr(A( j∗ B j)t )+λ2

(
det(B) + Tr(A( j∗C j)t )

)
+O(λ3). Further-

more for W ∈ J so∗(2L), one has ( j∗�∗
l W�k j)t = j∗�∗

k W t�l j = �∗
k J ∗W tJ�l =

�∗
k W�l . Thus from the above

det(�∗
l Ĝz

V�k) = ı det(�∗
l Y�k) + ı λ Tr(�∗

l Y�k�
∗
k YPY�l)

+ λ2 (det(�∗
l YPY�k) − ı Tr(�∗

l Y�k�
∗
k YPYPY�l)

)
+ O(λ3). (33)

If det(�∗
l Y�k) �= 0, then the claim is true (just take λ = 0). If det(�∗

l Y�k) = 0, but
�∗

l Y�k �= 0, then set P = Y−1 ∈ J so∗(2L) and (33) reduces to

det(�∗
l Ĝz

V�k) = ı λ Tr((�∗
l Y�k)

∗(�lY�k)) + O(λ2).

Since the coefficient before λ only vanishes if �∗
l Y�k = 0, this is not equal to zero for

small λ and the claim holds again. Finally, if �∗
l Y�k = 0, then set P = Y−1(�l j�∗

k +
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�k j∗�∗
l +�l�

∗
l )Y−1 which lies in J so∗(2L) by Lemma 6 part (i) and (ii). Then (33)

reduces to

det(�∗
l Y�k) = λ2 det(�∗

l �l j�∗
k�k +�∗

l (�k j∗ +�l)�
∗
l �k) + O(λ3) = λ2 + O(λ3),

where we used�∗
l �k = δl,k . Hence this determinant is again not zero for small λ. Thus

for all cases we find some V̂ such that �∗
l Ĝz

V�k is invertible and the claim is proved.
Now by definition of the determinant and Cramer’s rule the function V̂ �→ det(�∗

l Ĝz
V

�k) = det(�∗
l ((Ĝ

z
0)

−1 + V̂)−1�k) is a rational function on the vector space J so∗(2L)
which does not vanish completely by the claim above, therefore it does not vanish for
Lebesgue almost every V̂ ∈ J so∗(2L) w.r.t. the Lebesgue measure on J so∗(2L).

Next recall that the boundary values Ĝ E+ı0
V exist almost surely in E by analyticity.

For V̂ as described above, the map z �→ det(�∗
l Ĝz

V�k) is analytic in the upper half
plane and does not vanish identically. Therefore for Lebesgue almost every E , Ĝ E+ı0

V
exists and one has det(�∗

l Ĝ E+ı0
V �k) �= 0. �


Proposition 13. Let ω̃ and V̂ ∈ J so∗(2L) be fixed and define V̂λ = V̂ + λ�k�
∗
k .

(i) The set AVλ,k = {E ∈ R |�∗
k Ĝ E+ı0

Vλ �k exists and �m(�∗
k Ĝ E+ı0

V �k) > 0} is inde-
pendent of λ and it is an essential support of the absolutely continuous part of
µω̃,Vλ,k .

(ii) The singular part of µω̃,Vλ,k is supported on the set {E ∈ R |�∗
k Ĝ E+ı0

V0
�k =

−λ−1 1}.
(iii) For any B ⊂ R of zero Lebesgue measure, we have µω̃Vλ,k(B) = 0 for Lebesgue

a.e. λ ∈ R.

Proof. (i) We prove that AV,k = AV0,k ⊂ AVλ,k for all λ; the other inclusion can be
obtained analogously. Hence let E ∈ AV,k . We first claim that 1 + λ�k�

∗
k Ĝ E+ı0

V
is invertible. Suppose (1 + λ�k�

∗
k Ĝ E+ı0

V )v = 0. Then v is in the range of �k

and there are α, η ∈ C such that v = αek + βek+L . We use e∗
k Ĝ E+ı0

V eL+k = 0 =
e∗

L+k Ĝ E+ı0
V ek following from J ∗Ĝz

VJ = (Ĝz
V )

t . Thus α = −λαe∗
k Ĝ E+ı0

V ek and
β = −λβe∗

k+L Ĝ E+ı0
V ek+L . But as �m(e∗

k Ĝ E+ı0
V ek) = �m(e∗

k+L Ĝ E+ı0
V ek+L) > 0

for E ∈ AV,k , this implies α = 0 = β and hence v = 0. Therefore the kernel of
1 + λ�k�

∗
k Ĝ E+ı0

V is indeed trivial. Hence by Proposition 7, Ĝ E+ı0
Vλ = Ĝ E+ı0

V (1 +

λ�k�
∗
k Ĝ E+ı0

V )−1 exists. Furthermore, also by Proposition 7,

�m(Ĝ E+ı0
Vλ ) =

[
(1 + λ�k�

∗
k Ĝ E+ı0

V0
)−1
]∗ �m(Ĝ E+ı0

V0
)(1 + λ�k�

∗
k Ĝ E+ı0

V0
)−1,

and (1 + λ�k�
∗
k Ĝ E+ı0

V0
)−1 leaves the space spanned by ek and ek+L invariant.

Therefore one also obtains �m(�∗
k Ĝ E+ı0

Vλ �k) > 0 showing E ∈ AVλ,k .
(ii) From (19),

Ĝz
Vλ = Ĝz

V + Ĝz
V [(Ĝz

V )
−1 − (Ĝz

Vλ)
−1]Ĝz

Vλ = Ĝz
V − λ Ĝz

V�k�
∗
k Ĝz

Vλ , (34)

and hence�∗
k Ĝz

Vλ�k = (1 +λ�∗
k Ĝz

V�k)
−1�∗

k Ĝz
V�k . Thus Lemma 6(iii) implies

e∗
k Ĝz

Vλek = (1 + λ e∗
k Ĝz

Vek)
−1 e∗

k Ĝz
Vek . (35)

Thus in the limit ε ↓ 0, e∗
k Ĝ E+ıε

Vλ ek → ∞ if and only if �∗
k Ĝ E+ıε

V �k → −λ−1.
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(iii) From (35) one deduces that the map λ �→ µω̃,Vλ,k is integrable in the *-weak
topology over intervals [a, b]. Taking imaginary parts of (35), one obtains

�m(e∗
k Ĝz

Vλek) = �m(e∗
k Ĝz

Vek)

(1 + λ�e(e∗
k Ĝz

Vek))2 + (λ�m(e∗
k Ĝz

Vek))2
.

Let x = �e(e∗
k Ĝz

Vek) and y = �m(e∗
k Ĝz

Vek). Then arctan( x2+y2

y λ + x
y ) is an anti-

derivative of the function λ �→ �m(e∗
k Ĝz

Vλek). Therefore
∫ b
−a dλ�m(e∗

k Ĝz
Vλek) is

bounded by π and the integral over the whole real line exists and is equal to π .
This means that the integral

∫∞
−∞ dλµω̃,Vλ,k actually converges to the Lebesgue

measure which has no singular part.
Now let B be a set of Lebesgue measure zero. Then

∫∞
−∞ dλµω̃,Vλ,k(B) = 0. As the

measures are positive this means that for Lebesgue a.e. λ ∈ R one has µω̃,Vλ,k(B) = 0.
�


Note that the equation proved in part (iii) above, d E = ∫
R

dλµω̃,Vλ,k(d E), is well-
known from the theory of rank one perturbations.

Theorem 8. Let ω = (ω̃,V) be fixed such that the matrices �∗
1 Ĝ E+ı0

V �k , �∗
1 Ĝ E+ı0

V �1

as well as �∗
k Ĝ E+ı0

V �k exist and are invertible for Lebesgue almost all E. Set V̂λ =
V̂ + λ�k�

∗
k . Then for Lebesgue almost all λ ∈ R, the measure µω̃,Vλ,k is absolutely

continuous w.r.t. µω̃,Vλ,1.

Proof. By the Radon-Nikodym theorem we can decompose the measure µω̃,Vλ,k =
fλ µω̃,Vλ,1 + µ̃λ, where fλ is a function and µ̃λ is the part of µω̃,Vλ,k which is singular
to µω̃,Vλ,1. The statement of the theorem is that µ̃λ = 0 for Lebesgue almost all λ.

In order to show this, we first need to verify a few identities. By multiplying (34)
with �∗

k from the left and �1 from the right, one obtains

�∗
k Ĝz

Vλ�1 = (1 + λ�∗
k Ĝz

V�k)
−1�∗

k Ĝz
V�1 = �∗

k Ĝz
V�1

1 + λ e∗
k Ĝz

Vek
, (36)

where the last identity follows from Lemma 6(iii). From (34), one also obtains

�∗
1 Ĝz

Vλ�1 = �∗
1 Ĝz

V�1 − λ�∗
1 Ĝz

V�k�
∗
k Ĝz

Vλ�1. (37)

Inserting (36) in (37) gives

�∗
1 Ĝz

Vλ�1 = �∗
1 Ĝz

V�1 − λ
�∗

1 Ĝz
V�k�

∗
k Ĝz

V�1

1 + λ e∗
k Ĝz

Vek
. (38)

Furthermore, it follows from (35) that

1 + λ e∗
k Ĝz

Vek = e∗
k Ĝz

Vek

e∗
k Ĝz

Vλek
. (39)

Now let A ⊂ R be the set of all E where the limit Ĝ E+ı0
V exists and all four matrices

�∗
k Ĝ E+ı0

V �k , �∗
1 Ĝ E+ı0

V �1, �
∗
1 Ĝ E+ı0

V �k and �∗
k Ĝ E+ı0

V �1 are invertible. By assump-
tion, the set A has full Lebesgue measure and thus by Proposition 13(iii) we have
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µω̃,Vλ,k = µω̃,Vλ,k |A for Lebesgue a.e. λ ∈ R. Thus we can restrict the measures to
the set A. We consider the absolutely continuous and singular part of µω̃,Vλ,k (w.r.t. the
Lebesgue measure) separately and begin with the singular part. Inserting (39) into (38)
and dividing by e∗

k Ĝz
Vek gives

�∗
1 Ĝz

Vλ�1

e∗
k Ĝz

Vλek
= �∗

1 Ĝz
V�1

e∗
k Ĝz

Vλek
− λ

�∗
1 Ĝz

V�k�
∗
k Ĝz

V�1

e∗
k Ĝz

Vek
.

Let E ∈ A. Then taking z = E + ıε and the limit ε ↓ 0, it follows that

lim
ε↓0

�∗
1 Ĝ E+ıε

Vλ �1

e∗
k Ĝ E+ıε

Vλ ek
= lim

ε↓0

�∗
1 Ĝ E+ıε

V �1

e∗
k Ĝ E+ıε

Vλ ek
− λ

�∗
1 Ĝ E+ı0

V �k�
∗
k Ĝ E+ı0

V �1

e∗
k Ĝ E+ı0

V ek
,

where the last term exists and is not zero (except for λ = 0) by the invertibility assump-
tions for E ∈ A. Since |e∗

k Ĝ E+ıε
Vλ ek | → ∞ as ε ↓ 0 for a.e. E w.r.t. the singular part

of µω̃,Vλ,k and since, by Lemma 6(iii), the matrix on the l.h.s. is a multiple of 1, one
obtains

lim
ε↓0

e∗
1Ĝ E+ıε

Vλ e1

e∗
k Ĝ E+ıε

Vλ ek
�= 0

for every λ �= 0 and a.e. E ∈ A w.r.t. the singular part ofµω̃,Vλ,k |A. This implies that the
singular part of µ̃λ|A vanishes for every λ �= 0 and thus the singular part of µ̃λ vanishes
also for Lebesgue a.e. λ ∈ R.

It remains to consider the absolutely continuous part of µ̃λ. Multiplying both sides
of (38) with |1 + λe∗

k Ĝz
Vek |2 and taking imaginary parts gives

|1 + λ e∗
k Ĝz

Vek |2�m(�∗
1 Ĝz

Vλ�1) = |1 + λ e∗
k Ĝz

Vek |2�m
(
�∗

1 Ĝz
V�1
)

− λ�m
(
�∗

1 Ĝz
V�k�

∗
k Ĝz

V�1
)

+ λ2 [�m(e∗
k Ĝz

Vek)�e(�∗
1 Ĝz

V�k�
∗
k Ĝz

V�1)

−�e(e∗
k Ĝz

Vek)�m(�∗
1 Ĝz

V�k�
∗
k Ĝz

V�1)
]
. (40)

For z ∈ U1, the r.h.s. of (40) is a second order polynomial in λ which we denote by
P(z, λ). For z = E + ıε and E ∈ A, it converges as ε ↓ 0 to a limiting polynomial
P(E + ı0, λ). As above consider

AV,k =
{

E ∈ R

∣∣∣ Ĝ E+ı0
V exists and �m(e∗

k Ĝ E+ı0
V ek) > 0

}
.

Claim. For E ∈ A ∩ AV,k , P(E + ı0, λ) cannot vanish identically as polynomial in λ.
Suppose the contrary. Then by considering the constant and the linear term one

deduces �m(�∗
1 Ĝ E+ı0

Vλ �1) = 0 and �m
(
�∗

1 Ĝ E+ı0
V �k�

∗
k Ĝ E+ı0

V �1
) = 0. Finally the

quadratic term then gives �m(e∗
k Ĝ E+ı0

V ek)�e
(
�∗

1 Ĝ E+ı0
V �k�

∗
k Ĝ E+ı0

V �1
) = 0. As

E ∈ AV,k , this now implies that one also has �e
(
�∗

1 Ĝ E+ı0
V �k�

∗
k Ĝ E+ı0

V �1
) = 0 so that

�∗
1 Ĝ E+ı0

V �k�
∗
k Ĝ E+ı0

V �1 = 0. This is not the case for E ∈ A and hence the claim holds.
Hence for E ∈ A ∩ AV,k , P(E + ı0, λ) �= 0 for Lebesgue a.e. λ ∈ R. As the set

of (E, λ) where this happens is clearly measurable, Fubini’s theorem implies that for
Lebesgue a.e. λ one has P(E + ı0, λ) �= 0 for Lebesgue a.e. E ∈ A ∩ AV,k . Since
|1 + λe∗

k Ĝ E+ı0
V ek |2 exists and is strictly positive for any λ ∈ R and E ∈ A ∩ AV,k , it

follows from (40) that for a.e. λ ∈ R, Lebesgue a.e. E ∈ A ∩ AV,k , �m(e∗
1Ĝ E+ı0

Vλ e1)
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exists, is finite and strictly positive. Therefore for a.e. λ ∈ R, the absolutely continuous
part of µω̃,Vλ,1 has almost surely a positive density on A ∩ AV,k . By Proposition 13(i)
the set AVλ,k coincides with AV,k and, as A has full Lebesgue measure, one obtains that
A ∩ AV,k is an essential support of µω̃,Vλ,k,ac. Therefore for a.e. λ ∈ R, µω̃,Vλ,k,ac is
absolutely continuous w.r.t. µω̃,Vλ,1,ac. This means that also the absolutely continuous
part of µ̃λ must vanish for a.e. λ ∈ R. �

Corollary 3. For fixed ω̃ and Lebesgue a.e. V̂ ∈ J so∗(2L), the matrix valued measure
µω is absolutely continuous w.r.t. µω,1. Hence for P almost all ω = (ω̃,V) the measure
µω is absolutely continuous w.r.t. µω,1.

Proof. Let ω be fixed. By Proposition 12, the assumptions of Theorem 8 are fulfilled for
a.e. V̂ ∈ J so∗(2L). Therefore for a.e. Ṽ ∈ (R�k�

∗
k )

⊥, the orthogonal complement of
R�k�

∗
k in J so∗(2L), there is some λ such that V̂λ = Ṽ +λ�k�

∗
k fulfills the assumptions

of Theorem 8. Theorem 8 now states that for a.e. λ ∈ R, the measure µω̃,Vλ,k is abso-
lutely continuous w.r.t. µω̃,Vλ,1. For fixed ω̃, the map V̂ �→ (µω̃,V,k, µω̃,V,1) is Borelian
as is the Lebesgue decomposition for finite measures which maps (µ, ν) to the singular
part of µw.r.t. ν. Hence the set of V̂ where µω̃,V,k is absolutely continuous w.r.t. µω̃,V,1
is measurable. Therefore Fubini’s theorem now implies that this set has full Lebesgue
measure on J so∗(2L). This holds for any k = 2, . . . , L . As a finite intersection of sets
of full measure is still a set of full measure we obtain that for a.e. V̂ ∈ J so∗(2L) the
measure

∑L
k=1 µω̃,V,k is a.c. w.r.t. µω̃,V,1, namely µω̃,V is a.c. w.r.t. µω̃,V,1.

The maps ω �→ µω and ω �→ µω,1 are Borelian. By the same arguments as above
the set of ω = (ω̃,V), where µω is absolutely continuous w.r.t. µω,1 is measurable. As
the distribution pV̂ of V̂ is absolutely continuous, we obtain that for any fixed ω̃, for pV
almost every V , µω̃,V is a.c. w.r.t. µω̃,V,1. By Fubini’s theorem, we obtain that this is
true for P almost all ω. �

Theorem 9. For P almost every ω one has µω,1,sing(R) = 0. Together with Corollary 3
this implies that for P almost all ω, one has µω,sing(R) = 0.

Proof. Let us define Aω = {E | Ĝ E+ı0
V exists and Tr(�m(Ĝ E+ı0

V )) > 0} as well as
Aω,k = {E | Ĝ E+ı0

V exists and �m(e∗
k Ĝ E+ı0

V ek) > 0}. By Lemma 6(iii), one has Aω =⋃L
k=1 Aω,k . Clearly Aω is an essential support of the a.c. part of µω and Aω,k is an

essential support of the a.c. part of µω,k .
By Kotani theory and Corollary 3 for P almost all ω the set Aω,k has full Lebesgue

measure and µω is a.c. w.r.t. µω,1. Take such an ω = (ω̃,V). Then as µω is a.c. w.r.t.
µω,1 the sets Aω and Aω,1 differ only by a set of measure zero and hence R \ Aω,1 is
a set of zero Lebesgue measure. Let Ṽ be the projection of V̂ orthogonal to �1�

∗
1 and

pṼ be the distribution of Ṽ , namely the push forward of pV̂ . Now set V̂λ = Ṽ + λ�1�
∗
1

and let Vλ be a pre-image of V̂λ under the Cayley transformation. Then by Proposi-
tion 13 one has for Lebesgue a.e. λ ∈ R, µωλ,1(R \ Aωλ,1) = µωλ,1(R \ Aω,1) = 0,
where ωλ = (ω̃,Vλ). As µωλ,1,sing(Aωλ,1) = 0 by the definition of Aωλ,1, this implies
µωλ,1,sing(R) = 0. Now by Fubini’s theorem for P̃ a.e. ω̃ the situation described above
happens for pV a.e. V . Then for pṼ a.e. Ṽ we have µω̃,Vλ,1,sing(R) = 0 for Lebes-
gue a.e. λ. Note that pṼ is absolutely continuous and for fixed ω̃ the set of V , where
µω̃,V,1,sing(R) = 0 is measurable, because the map V �→ µω̃,V,1 is Borelian as well as
the Lebesgue decomposition. Fubini’s theorem thus implies that for Lebesgue almost
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every V̂ in the strip supp(pṼ ) + R�1�
∗
1 one has µω̃,V,1,sing(R) = 0. As the distribution

of V̂ is supported in this strip, this also holds for pV a.e. V .
As mentioned, this situation happens to be true for P̃ a.e. ω̃. By the same arguments

as above the set of ω, where µω,1,sing(R) = 0 is measurable. Fubini’s theorem now
implies that µω,1,sing(R) = 0 for P a.e. ω. Since for P a.e. ω one also has that µω is a.c.
w.r.t. µω,1, we finally obtain that µω,sing(R) = 0 for P a.e. ω. �

Proof of second claim of Theorem 1(ii). This is Theorem 9. �
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