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Abstract: A Lie 2-algebra is a ‘categorified’ version of a Lie algebra: that is, a category
equipped with structures analogous to those of a Lie algebra, for which the usual laws
hold up to isomorphism. In the classical mechanics of point particles, the phase space is
often a symplectic manifold, and the Poisson bracket of functions on this space gives a
Lie algebra of observables. Multisymplectic geometry describes an n-dimensional field
theory using a phase space that is an ‘n-plectic manifold’: a finite-dimensional manifold
equipped with a closed nondegenerate (n+1)-form. Here we consider the case n = 2. For
any 2-plectic manifold, we construct a Lie 2-algebra of observables. We then explain
how this Lie 2-algebra can be used to describe the dynamics of a classical bosonic
string. Just as the presence of an electromagnetic field affects the symplectic structure
for a charged point particle, the presence of a B field affects the 2-plectic structure for
the string.

1. Introduction

It is becoming clear that string theory can be viewed as a ‘categorification’ of particle
physics, in which familiar algebraic and geometrical structures based in set theory are
replaced by their category-theoretic analogues. The basic idea is simple. While a clas-
sical particle has a position nicely modelled by an element of a set, namely a point in
space:

•
the position of a classical string is better modelled by a morphism in a category, namely
an unparametrized path in space:

• �� •
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Similarly, while particles have worldlines in spacetime, which can be thought of as
morphisms, strings have worldsheets, which can be thought of as 2-morphisms.

So far this viewpoint has been most fruitful in studying the string-theoretic gen-
eralizations of gauge theory [8]. The first clue was the B field in string theory. The
electromagnetic field contributes to the change in phase of a charged particle as it moves
through spacetime. This field is locally described by a 1-form A, which we integrate
along the particle’s worldline to compute a phase change. The B field contributes to the
phase change of a charged string in a similar way: it is locally described by a 2-form,
which we integrate over a string’s worldsheet. When we seek a global description suitable
for nontrivial spacetime topologies, the electromagnetic field is better thought of as a
connection on a U(1) bundle. Similarly, the B-field is globally described by a connection
on the categorified version of a U(1) bundle, namely a U(1) gerbe [11,18,19,37].

Later it was found that connections on nonabelian gerbes also play a role in string
theory [1,2,10]. Nonabelian gerbes are a special case of 2-bundles: roughly speaking,
bundles with smooth categories rather than smooth manifolds as fibers [9]. To under-
stand connections on general 2-bundles, it was necessary to categorify the concepts of
Lie group and Lie algebra, obtaining the notions of Lie 2-group [6,7] and Lie 2-algebra
[5,30].

Still more recently, iterated categorification has become important in the generaliza-
tions of gauge theory suited to higher-dimensional membranes [16,32,33]. It is clear by
now that to understand the behavior of such membranes, we need to study n-connections
on n-bundles: that is, structures analogous to connections that live on things like bundles
with smooth (n − 1)-categories as fibers. In the very simplest case — a topologically
trivial n-bundle with the simplest nontrivial abelian ‘n-group’ playing the role of gauge
group — an n-connection is just an n-form on the base space. In a straightforward
generalization of electromagnetism, the integral of this n-form over the membrane’s
‘worldvolume’ contributes to its change in phase.

Given all this, we should expect that as we look deeper into the analogy between point
particles, strings, and higher-dimensional membranes, we should find more examples
of categorification. Perhaps the most obvious place to look is symplectic geometry. The
reason is that symplectic geometry also uses a connection on a U(1) bundle to describe
the change of phase of a point particle.

The simplest example is a free particle moving in some Lorentzian manifold M rep-
resenting spacetime. If we keep track of the particle’s momentum as well as its position,
it traces out a path in the cotangent bundle X = T ∗M . The cotangent bundle is equipped
with a canonical 1-form α, and we can integrate α over this path to determine the parti-
cle’s change of phase. This is not the historical reason why X is called a ‘phase space’,
but the coincidence is a happy one.

The exterior derivative ω = dα plays an important role in this story. First, by Stokes’
theorem, the integral of this 2-form over any disc in X measures the change of phase
of a particle as it moves around the boundary of the disc. A deeper fact is that ω is a
symplectic structure: that is, not only closed but nondegenerate. This lets us take any
smooth function F : X → R and find a unique vector field vF such that

ιvF ω = −d F,

where ι stands for interior product, and the minus sign is just a historically popular
convention. We should think of F as an ‘observable’ assigning a number to any state of
the particle. In good situations, the vector field vF will generate a one-parameter group
of symmetries of X : that is, a flow preserving ω. So, the symplectic nature of ω guaran-
tees that observables give rise to symmetries. Moreover, by measuring how rapidly one
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observable changes under the one-parameter group of symmetries generated by another,
we obtain a binary operation on observables, the Poisson bracket:

{F, G} = LvF G,

where L stands for Lie derivative. This makes the vector space of observables into a Lie
algebra.

Symplectic geometry generalizes this idea by replacing T ∗M with a more general
phase space X . We could simply let X be any manifold equipped with a 1-form α such
that ω = dα is symplectic. However, a 1-form is the same as a connection on a trivial
U(1) bundle, and ω is then the curvature of this connection. Since physics is local, it
makes more sense to equip X with a locally trivial U(1) bundle P → X , together with
a connection on P whose curvature 2-form ω is symplectic. This is the basic context for
geometric quantization.

We can study symplectic geometry without assuming that the symplectic 2-form ω

is the curvature of a connection on some U(1) bundle. In particular, we still obtain a
Lie algebra of observables using the formulas above. But some of the physical meaning
of the symplectic structure only reveals itself in the presence of a U(1) bundle: namely,
that the integral of ω over any disc in X measures the change of phase of a particle as it
moves around the boundary of this disc. So, in geometric quantization the U(1) bundle
is crucial. We can build such a bundle whenever we can lift the de Rham cohomology
class [ω] ∈ H2(X, R) to an element of the integral cohomology H2(X, Z).

Now let us consider how all this generalizes when we move from point particles
to strings. As a first step towards understanding this, let us return to the point particle
moving in a spacetime manifold M . We have said that the particle’s phase changes in a
way described by integrating the canonical 1-form α along its path in T ∗M . However,
in the presence of the electromagnetic field there is an additional phase change due to
electromagnetism, at least when the particle is charged. To take this into account, we add
to α the 1-form A describing the electromagnetic field, pulled back from M to T ∗M .
We then redefine the symplectic structure to be ω̃ = d(α + A). So, electromagnetism
affects the symplectic structure on the cotangent bundle of spacetime. A more detailed
account of this can be found in the book by Guillemin and Sternberg [21].

This suggests that when we pass from point particles to strings, and the electromag-
netic field is replaced by the B field, we should correspondingly adjust our concept
of ‘symplectic structure’. Instead of a canonical 1-form, we should have some sort of
canonical 2-form on phase space, so we can add the B field to this 2-form. But this in
turn suggests that the analogue of the symplectic structure will be a 3-form!

This raises the puzzle: how can we generalize symplectic geometry with a 3-form
replacing the usual 2-form?

Amusingly, the answer is very old: it goes back to the work of DeDonder [15] and
Weyl [35] in the 1930s. Their ideas have been more fully developed in the subject called
‘multisymplectic geometry’. For an introduction, try for example the papers by Gotay,
Isenberg, Marsden and Montgomery [20], Hélein and Kouneiher [22,23], Kijowski [27],
and Rovelli [29]. In particular, Gotay et al have already applied multisymplectic geom-
etry to classical string theory. There are various ways to do this. In this Introduction we
take a very naive approach, which will be corrected in Sect. 2.

To begin with, note that just as the position and velocity of a point particle in the
spacetime M are given by a point in the tangent bundle T M , we could try to describe
the position and velocity of a string by a point in �2T M — that is, a point in M together
with a tangent bivector. Similarly, just as the position and momentum of a particle are
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given by a point in T ∗M , we could try to describe the position and momentum of a string
by a point in �2T ∗M .

Just as T ∗M is equipped with a canonical 1-form, the generalized phase space X =
�2T ∗M is equipped with a canonical 2-form α, as described in Example 2 below. The
corresponding 3-form ω = dα is ‘multisymplectic’, meaning that it is closed and also
nondegenerate in the following sense:

ιvω = 0⇒ v = 0

for all vector fields v. This means that for any 1-form F , there is at most one vector field
vF such that

ιvF ω = −d F.

This resembles the equation we have already seen in symplectic geometry, which asso-
ciates symmetries to observables. But there is a difference: now vF may not exist. So,
we should consider a 1-form F on X to be an observable only when there exists a vector
field vF satisfying the above equation.

We can then define a Poisson bracket of observables by the usual formula:

{F, G} = LvF G

The result is always another observable. But, we do not obtain a Lie algebra of observ-
ables, because this Poisson bracket is only antisymmetric up to an exact 1-form. Exact
1-forms are always observables, but they play a special role, since they give rise to trivial
symmetries: if F is exact, vF = 0.

This suggests that in the stringy analogue of symplectic geometry we should seek,
not a Lie algebra of observables, but a Lie 2-algebra of observables — that is, a category
resembling a Lie algebra, with observables as objects. In this category two observables
F and G will be deemed ‘isomorphic’ if they differ by an exact 1-form. This guarantees
that they generate the same symmetries: vF = vG .

Indeed, such a Lie 2-algebra exists. After reviewing multisymplectic geometry in
Sect. 2, we prove in Thm. 5 that for any manifold X equipped with a closed nondegen-
erate 3-form ω, there is a Lie 2-algebra for which:

– An object is a 1-form F on X for which there exists a vector field vF with ιvF ω =
−d F .

– A morphism f : F → F ′ is a function f such that F + d f = F ′.
– The bracket of objects F, G is LvF G.

On a more technical note, this Lie 2-algebra is ‘hemistrict’ in the sense of Roytenberg
[30]. This means that the Jacobi identity holds on the nose, but the skew-symmetry of
the bracket holds only up to isomorphism.

In Thm. 6 we construct another Lie 2-algebra with the same objects and morphisms,
where the Lie bracket of objects is given instead by ιvG ιvF ω. This Lie 2-algebra is ‘semi-
strict’, meaning that the bracket is skew-symmetric, but the Jacobi identity holds only
up to isomorphism (as suspected by Kanatchikov [25]). In Thm. 7 we show that these
two Lie 2-algebras are isomorphic. This may seem surprising at first, but the notion of
‘isomorphism’ for Lie 2-algebra is sufficiently supple that superficially different Lie
2-algebras — one hemistrict, one semistrict — can be isomorphic.

In Sect. 5, we apply these ideas to the classical bosonic string propagating in Min-
kowski spacetime. Following standard ideas in multisymplectic geometry, we replace
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�2T ∗M with a more sophisticated 2-plectic manifold: the first cojet bundle of the bundle
�×M → �, where � is a surface parametrizing the string worldsheet. We explain how
to derive the equations of motion for the string from a 2-plectic formulation involving
this phase space. We describe an observable 1-form H on this phase space whose corre-
sponding vector field vH generates time evolution. We also describe how the presence of
a B field modifies the 2-plectic structure. Finally, we list some open questions in Sect. 6.

2. Multisymplectic Geometry

The idea of multisymplectic geometry is simple and beautiful: associated to any n-
dimensional classical field theory there is a finite-dimensional ‘extended phase space’ X
equipped with a nondegenerate closed (n + 1)-form ω. When n = 1, we are back to the
classical mechanics of point particles and ordinary symplectic geometry. When n = 2,
the examples include classical bosonic string theory, as explained in Sect. 5.

However, at this point an annoying terminological question intrudes: what do we call
multisymplectic geometry for a fixed value of n? The obvious choice is ‘n-symplectic
geometry’, but unfortunately, this term already means something else [13]. So, until a
better choice comes along, we will use the term ‘n-plectic geometry’:

Definition 1. An (n + 1)-form ω on a C∞ manifold X is multisymplectic, or more
specifically an n-plectic structure, if it is both closed:

dω = 0,

and nondegenerate:

∀v ∈ Tx X, ιvω = 0⇒ v = 0,

where we use ιvω to stand for the interior product ω(v, ·, . . . , ·). If ω is an n-plectic
form on X we call the pair (X, ω) a multisymplectic manifold, or n-plectic manifold.

The references already provided contain many examples of multisymplectic mani-
folds. More examples, together with constraints on which manifolds can admit n-plectic
structures, have been discussed by Cantrijn et al [12] and Ibort [24]. Here we give four
well-known examples.

The first example arises in work related to the Wess–Zumino–Witten model and loop
groups:

Example 1. If G is a compact simple Lie group, there is a 3-form ω on G that is invariant
under both left and right translations, which is unique up to rescaling. It is given by

ω(v1, v2, v3) = 〈v1, [v2, v3]〉

when vi are tangent vectors at the identity of G (that is, elements of the Lie algebra),
and 〈·, ·〉 is the Killing form. This makes (G, ω) into a 2-plectic manifold.
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The second was already mentioned in the Introduction:

Example 2. Suppose M is a smooth manifold, and let X = �nT ∗M be the nth exterior
power of the cotangent bundle of M . Then there is a canonical n-form α on X given as
follows:

α(v1, . . . , vn) = x(dπ(v1), . . . , dπ(vn)),

where v1, . . . vn are tangent vectors at the point x ∈ X , and π : X → M is the projection
from the bundle X to the base space M . Note that in this formula we are applying the
n-form x ∈ �nT ∗M to the n-tuple of tangent vectors dπ(vi ) at the point π(x). The
(n + 1)-form

ω = dα

is n-plectic.
Indeed, this can be seen by explicit computation. Let q1, . . . , qd be coordinates on an

open set U ⊆ M . Then there is a basis of n-forms on U given by dq I = dqi1∧· · ·∧dqin

where I = (i1, . . . , in) ranges over multi-indices of length n. Corresponding to these
n-forms there are fiber coordinates pI which combined with the coordinates qi pulled
back from the base give a coordinate system on �nT ∗U . In these coordinates we have

α = pI dq I ,

where we follow the Einstein summation convention to sum over repeated multi-indices
of length n. It follows that

ω = dpI ∧ dq I .

Using this formula one can check that ω is indeed n-plectic.

The next example, involving an n-plectic manifold called �n
1T ∗E , may seem like

a technical variation on the theme of the previous one. However, it is actually quite
significant, since n-plectic manifolds of this sort serve as the extended phase spaces for
many classical field theories [14,20,29]. In Sect. 5, we use a 2-plectic manifold of this
sort as the extended phase space for the classical bosonic string.

Example 3. Let π : E → � be a fiber bundle over an n-dimensional manifold �. Given
a point y ∈ E , a tangent vector v ∈ Ty E is said to be vertical if dπ(v) = 0. There is a
vector sub-bundle �n

1T ∗E of the n-form bundle �nT ∗E whose fiber at y ∈ E consists
of all β ∈ �nT ∗y E such that

ιv1 ιv2β = 0

for all vertical vectors v1, v2 ∈ Ty E . Let i : �n
1T ∗E ↪→ �nT ∗E denote the inclusion.

Let ω = dα be the n-plectic form defined in Example 2. Then the pullback i∗ω is an
n-plectic form on �n

1T ∗E .
Again, this can be seen by explicit calculation. In our application to strings, E will

be a trivial bundle E = �×M over �, and � will be equipped with a volume form. It is
enough to consider this case, because proving that i∗ω is n-plectic is a local calculation,
and we can always trivialize E and equip � with a volume form locally.
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Let q1, . . . , qn be local coordinates on � and let u1, . . . , ud be local coordinates on
M . Then �n

1T ∗E has a local basis of sections given by n-forms of two types: first, the
wedge product of all n cotangent vectors of type dqi :

dq1 ∧ · · · ∧ dqn

and second, wedge products of n − 1 cotangent vectors of type dqi and a single one of
type dua :

dq1 ∧ · · · ∧̂dqi ∧ · · · ∧ dqn ∧ dua .

Here the hat means that we omit the factor of dqi . If y = (x, u) ∈ � × M , this basis
gives an isomorphism

�n
1T ∗y E ∼= �nT ∗x � ⊕ �n−1T ∗x � ⊗ T ∗u M.

In calculations to come, it will be better to use the pulled back volume form π∗vol
as a substitute for the coordinate-dependent n-form dq1 ∧ · · · ∧ dqn on E . This gives
another basis of sections of �n

1T ∗E , which by abuse of notation we call

d Q = π∗vol

and

d Qa
i =

(

π∗ι∂/∂qi vol
) ∧ dua .

Corresponding to this basis there are local coordinates P and Pi
a on �n

1T ∗E , which
combined with the coordinates qi and ua pulled back from E give a local coordinate
system on �n

1T ∗E . In these coordinates we have:

i∗α = Pd Q + Pi
ad Qa

i , (1)

where again we use the Einstein summation convention. It follows that

i∗ω = d P ∧ d Q + d Pi
a ∧ d Qa

i . (2)

Using this formula one can check that i∗ω is indeed n-plectic.

The manifold �n
1T ∗E may seem rather mysterious, but the next example shows that

under good conditions it is isomorphic to the ‘first cojet bundle’ J 1 E
. A point in the
first jet bundle J 1 E records the value and first derivative of a section of E at some point
of the base space �. So, a first-order Lagrangian � for a field theory where fields are
sections of E is a function � : J 1 E → R. J 1 E is thus the natural home for the Lagrang-
ian approach to such field theories. Similarly, the first cojet bundle J 1 E
 is the natural
home for the DeDonder–Weyl Hamiltonian approach to field theory. In particular, the
isomorphism

J 1 E
 ∼= �n
1T ∗E

makes the first cojet bundle into an n-plectic manifold.
In the classical mechanics of a point particle, we can take � = R to represent time

and take M to be some manifold representing space. Then E = � × M is the total
space of a trivial bundle E → �, and a section of this bundle describes the path of a
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particle in space. The first jet bundle J 1 E is the bundle R × T M over the ‘extended
configuration space’ R×M . On the other hand, the first cojet bundle J 1 E
 is isomorphic
as a symplectic manifold to T ∗(R×M). This is the familiar ‘extended phase space’ for
a particle in the space M .

For a more relativistic picture, we may instead take � = R to be the parameter space
for the path of a particle moving in a manifold M representing spacetime. As before,
E = � × M is the total space of a trivial bundle E → �, but now a section of this
bundle describes the worldline of a particle in spacetime.

In Sect. 5 we modify this picture a bit further by letting � be 2-dimensional, so it
represents the parameter space for a string moving in M . We again let E = �×M be the
total space of a trivial bundle E → �. Now a section of E describes the worldsheet of a
string — and as we shall see, the 2-plectic manifold J 1 E
 serves as a kind of ‘extended
phase space’ for the string.

Example 4. As in the previous example, let π : E → � be a fiber bundle with dim � =
n. Let �x (E) be the set of smooth sections of E defined in some neighborhood of the
point x ∈ �. Given φ ∈ �x (E), let j1

x φ be the equivalence class of sections whose first-
order Taylor expansion agrees with the first-order Taylor expansion of φ at the point x .
The set

J 1 E =
{

j1
x φ | x ∈ �,φ ∈ �x (E)

}

is a manifold. Moreover, J 1 E is the total space of a fiber bundle πJ : J 1 E → E , the
first jet bundle of E , where

πJ

(

j1
x φ

)

= φ(x).

To see these facts it suffices to work locally, so suppose E = � × M . Let qi be
local coordinates on � and let ua be local coordinates on M . These give rise to local
coordinates on J 1 E such that the coordinates for a point j1

x φ ∈ J 1 E are (qi , ua, ua
i ),

where:

qi = qi (x), ua = (ua ◦ φ)(x), ua
i =

∂ua ◦ φ

∂qi
(x).

The projection πJ sends the point with coordinates (qi , ua, ua
i ) to the point with coor-

dinates (qi , ua), so πJ : J 1 E → E is indeed a fiber bundle.
Let y = (x, u) ∈ E . The fiber of J 1 E over y is

J 1
y E ∼= {A : Tx�→ Ty E | dπ ◦ A = 1},

where 1 is the identity map on Tx�. This is not naturally a vector space, but it is an affine
space. To see this, note that a difference of two maps A, A′ : Tx�→ Ty E lying in J 1

y E
is the same as a linear map from Tx� to the space Vy E consisting of vertical vectors at
the point y ∈ E . Thus J 1

y E is an affine space modeled on the vector space T ∗x �⊗ Vy E ,
and J 1 E is a bundle of affine spaces. (For details, see Saunders [31].)

Let J 1
y E
 be the affine dual of J 1

y E , that is, the vector space of affine functions from
this affine space to R. There is a vector bundle J 1 E
 over E , the first cojet bundle of
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E , whose fiber over y ∈ E is J 1
y E
. In fact, a volume form on � determines a vector

bundle isomorphism

J 1 E
 ∼= �n
1T ∗E .

With the help of the n-plectic structure on �n
1T ∗E described in the previous example,

this gives an n-plectic structure on J 1 E
.
The above isomorphism has been explained by Cariñena, Crampin, Ibort [14] and

Gotay et al [20]. For us it will be enough to describe it when E is a trivial bundle over �,
say E = �×M , and � is equipped with a volume form, vol. Using this extra structure,
in Example 3 we constructed a specific isomorphism

�n
1T ∗y E ∼= �nT ∗x � ⊕ �n−1T ∗x � ⊗ T ∗u M,

where y = (x, u) ∈ � × M . The volume form on � also determines isomorphisms

R
∼→ �nT ∗x �

c �→ c volx

and

Tx�
∼→ �n−1T ∗x �

v �→ ιvvolx .
.

We thus obtain an isomorphism

�n
1T ∗y E ∼= R ⊕ Tx� ⊗ T ∗u M.

On the other hand, the trivialization E = �×M gives an isomorphism of affine spaces

J 1
y E ∼= T ∗x � ⊗ Tu M

which has the side-effect of making J 1
y E into a vector space. When an affine space V

happens to be a vector space, we have an isomorphism V 
 ∼= R ⊕ V ∗, since an affine
map to R is a linear map plus a constant. So, we obtain

J 1
y E
 ∼= R ⊕ Tx� ⊗ T ∗u M.

This gives a specific vector bundle isomorphism J 1 E
 ∼= �n
1T ∗E , as desired.

It will be useful to see this isomorphism in terms of local coordinates. We have
already described local coordinates (qi , ua, ua

i ) on J 1 E . Taking the affine dual of each
fiber, we obtain local coordinates (qi , ua, Pi

a , P) on J 1 E
. We described local coordi-
nates with the same names on �n

1T ∗E in Example 3. In terms of these coordinates, the
isomorphism is given simply by

J 1 E
 ∼→ �n
1T ∗E,

(qi , ua, Pi
a , P) �→ (qi , ua, Pi

a , P).

Using this isomorphism to transport the (n−1)-form i∗α given by Eq. (1) from �n
1T ∗E

to J1 E
, we obtain this differential form:

θ = Pd Q + Pi
ad Qa

i (3)

on J1 E
. Differentiating, it follows that

dθ = d P ∧ d Q + d Pi
a ∧ d Qa

i (4)

is an n-plectic structure on J 1 E
.
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3. Poisson Brackets

Next we describe how to generalize Poisson brackets of observables from symplectic
geometry to multisymplectic geometry. Ordinary Hamiltonian mechanics corresponds
to 1-plectic geometry, and in this case, observables are smooth functions on phase space.
In n-plectic geometry, observables will be smooth (n− 1)-forms — but not all of them,
only certain ‘Hamiltonian’ ones:

Definition 2. Let (X, ω) be an n-plectic manifold. An (n − 1)-form F on X is Hamil-
tonian if there exists a vector field vF on X such that

d F = −ιvF ω. (5)

We say vF is the Hamiltonian vector field corresponding to F. The set of Hamiltonian
(n−1) forms on a multisymplectic manifold is a vector space and is denoted as Ham (X).

The Hamiltonian vector field vF is unique if it exists. However, except for the famil-
iar case n = 1, there may be (n − 1)-forms F having no Hamiltonian vector field. The
reason is that given an n-plectic form ω on X , this map:

Tx X → �nT ∗x X,

v �→ ivω

is one-to-one, but not necessarily onto unless n = 1.
The following proposition generalizes Liouville’s Theorem:

Proposition 1. If F ∈ Ham (X), then the Lie derivative LvF ω is zero.

Proof. Since ω is closed, LvF ω = dιvF ω = −dd F = 0. ��
We can define a Poisson bracket of Hamiltonian (n − 1)-forms in two ways:

Definition 3. Given F, G ∈ Ham (X), the hemi-bracket {F, G}h is the (n − 1)-form
given by

{F, G}h = LvF G.

Definition 4. Given F, G ∈ Ham (X), the semi-bracket {F, G}s is the (n − 1)-form
given by

{F, G}s = ιvG ιvF ω.

The two brackets agree in the familiar case n = 1, but in general they differ by an
exact form:

Proposition 2. Given F, G ∈ Ham (X),

{F, G}h = {F, G}s + dιvF G.

Proof. Since Lv = ιvd + dιv ,

{F, G}h = LvF G = ιvF dG + dιvF G = −ιvF ιvG ω + dιvF G = {F, G}s + dιvF G.

��
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Both brackets have nice properties:

Proposition 3. Let F, G, H ∈ Ham (X) and let vF , vG , vH be the respective Hamilto-
nian vector fields. The hemi-bracket {·, ·}h has the following properties:

1. The bracket of Hamiltonian forms is Hamiltonian:

d {F, G}h = −ι[vF ,vG ]ω, (6)

so in particular we have

v{F,G}h = [vF , vG ].
2. The bracket is antisymmetric up to an exact form:

{F, G}h + d SF,G = −{G, F}h (7)

with SF,G = −(ιvF G + ιvG F).
3. The bracket satisfies the Jacobi identity:

{F, {G, H}h}h = {{F, G}h , H}h + {G, {F, H}h}h . (8)

Proof. 1. If F, G ∈ Ham (X), then d {F, G}h = −ι[vF ,vG ]ω− ιvG LvF ω, by the identi-
ties relating the Lie derivative, exterior derivative, and interior product. Proposition 1
then implies the desired result.

2. Rewriting the Lie derivative in terms of d and ι gives

{F, G}h + {G, F}h = ιvG ιvF ω + ιvF ιvG ω + d(ιvF G + ιvG F)

= −d SF,G .

3. The definition of the bracket and Property 1 give

{{F, G}h , H}h + {G, {F, H}h}h = L [vF ,vG ]H + LvG LvF H
= LvF LvG H
= {F, {G, H}h}h .

��
Proposition 4. Let F, G, H ∈ Ham (X) and let vF , vG , vH be the respective Hamilto-
nian vector fields. The semi-bracket {·, ·}s has the following properties:

1. The bracket of Hamiltonian forms is Hamiltonian:

d {F, G}s = −ι[vF ,vG ]ω, (9)

so in particular we have

v{F,G}s = [vF , vG ].
2. The bracket is antisymmetric:

{F, G}s = −{G, F}s . (10)

3. The bracket satisfies the Jacobi identity up to an exact form:

{F, {G, H}s}s + d JF,G,H = {{F, G}s , H}s + {G, {F, H}s}s (11)

with JF,G,H = −ιvF ιvG ιvH ω.
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Proof. 1. Proposition 2 and Prop. 3 imply d {F, G}s = −ι[vF ,vG ]ω.
2. The conclusion follows from the antisymmetry of ω.
3. First, note that antisymmetry implies {F, G}s = −ιvF ιvG ω = ιvF dG. Hence

{F, {G, H}s}s = ιvF d {G, H}s = ιvF dιvG d H,

{{F, G}s , H}s = ιv{F,G}s d H = ι[vF ,vG ]d H,

{G, {F, H}s}s =
{

G, ιvF d H
}

s = ιvG dιvF d H.

The commutator of the Lie derivative and interior product:

ι[vF ,vG ] = LvF ιvG − ιvG LvF ,

and Weil’s identity:

LvF = dιvF + ιvF d, LvG = dιvG + ιvG d,

imply

{F, {G, H}s}s − {{F, G}s , H}s − {G, {F, H}s}s
= (−ι[vF ,vG ] + ιvF dιvG − ιvG dιvF

)

d H

= (

ιvG LvF − LvF ιvG + ιvF dιvG − ιvG dιvF

)

d H

= (

ιvG ιvF d − dιvF ιvG

)

d H

= −dιvF ιvG d H = dιvF ιvG ιvH ω = −d JF,G,H .

��
In general, neither the hemi-bracket nor the semi-bracket makes Ham (X) into a Lie

algebra, since each satisfies one of the Lie algebra laws only up to an exact (n−1)-form.
The exception is n = 1, the case of ordinary Hamiltonian mechanics. In this case both
brackets equal the usual Poisson bracket. In what follows we consider the case n = 2.

4. Lie 2-Algebras

Next we review the fully general Lie 2-algebras defined by Roytenberg [30], and intro-
duce the Lie 2-algebras of observables in 2-plectic geometry. It will be efficient to work
with these using the language of chain complexes. A Lie 2-algebra is a category equipped
with structures analogous to those of a Lie algebra. So, to begin with, it is a ‘2-vector
space’: a category where the set of objects and the set of morphisms are vector spaces,
and all the category operations are linear. However, one can show [5] that a 2-vector
space is the same as a 2-term complex: that is, a chain complex of vector spaces that
vanishes except in degrees 0 and 1:

L0
d← L1

0← 0
0← 0

0← · · · .
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This lets us define a Lie 2-algebra as a 2-term complex equipped with a bracket operation
satisfying the usual Lie algebra laws ‘up to coherent chain homotopy’.

In particular, the bracket of 0-chains will be skew-symmetric up to a chain homotopy
called the ‘alternator’:

[x, y] + d Sx,y = −[y, x],
while the Jacobi identity will hold up to a chain homotopy called the ‘Jacobiator’:

[x, [y, z]] + d Jx,y,z = [[x, y], z] + [y, [x, z]].
Furthermore, these chain homotopies need to satisfy some laws of their own. If the
alternator vanishes, a Lie 2-algebra is the same as a 2-term complex made into an ‘L∞-
algebra’ or ‘sh Lie algebra’ in the sense of Stasheff [28]. Roytenberg introduced more
general Lie 2-algebras where the alternator does not vanish.

The definitions to come require a few preliminary explanations. First, we use the
familiar tensor product of chain complexes:

(L ⊗ M)i =
⊕

j+k=i

L j ⊗ Mk .

With this, the tensor product of 2-term complexes is a 3-term complex. Previous work
on Lie 2-algebras used a ‘truncated’ tensor product of 2-term complexes, which gives
another 2-term complex [5,30]. But since this makes no difference to anything we do
here, we shall use the familiar tensor product.

Second, given chain complexes L and M , we use

σ : L ⊗ M → M ⊗ L

to denote the usual ‘switch’ map with signs included:

σ(x ⊗ y) = (−1)deg x deg y y ⊗ x .

Third, given 0-chains x, y and a 1-chain T with y = x + dT , we write

T : x → y.

We also write 1 : x → x in the case where the 1-chain T vanishes, and write ST : x → z
for the 1-chain S + T , where T : x → y and S : y → z. This notation alludes to how a
2-term chain complex can be thought of as a category.

In this notation, the alternator in a Lie 2-algebra L gives a 1-chain

Sx,y : [x, y] → −[y, x]
for every pair of 0-chains x, y, and the Jacobiator gives a 1-chain

Jx,y,z : [x, [y, z]] → [[x, y], z] + [y, [x, z]]
for every triple of 0-chains x, y, z.
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Definition 5. A Lie 2-algebra is a 2-term chain complex of vector spaces L = (L0
d←

L1) equipped with the following structure:

– a chain map [·, ·] : L ⊗ L → L called the bracket;
– a chain homotopy

S : [·, ·] ⇒ −[·, ·] ◦ σ

called the alternator;
– a chain homotopy

J : [·, [·, ·]] ⇒ [[·, ·], ·] + [·, [·, ·]] ◦ (σ ⊗ 1)

called the Jacobiator.

In addition, the following diagrams are required to commute:

[[[w,x],y],z]

[[[w,y],x],z]+[[w,[x,y]],z] [[[w,x],y],z]

[[[w,y],z],x]+[[w,y],[x,z]]
+[w,[[x,y],z]]+[[w,z],[x,y]]

[[[w,x],z],y]+[[w,x],[y,z]]

[[[w,z],y],x]+[[w,[y,z]],x]
+[[w,y],[x,z]]+[w,[[x,y],z]]+[[w,z],[x,y]]

[[w,[x,z]],y]
+[[w,x],[y,z]]+[[[w,z],x],y]

[[[w,z],y],x]+[[w,z],[x,y]]+[[w,y],[x,z]]
+[w,[[x,z],y]]+[[w,[y,z]],x]+[w,[x,[y,z]]]

Jw,[x,z],y

+J[w,z],x,y+Jw,x,[y,z]

[Jw,x,y ,z]

�������������������
1

�������������������

J[w,y],x,z+Jw,[x,y],z

��

[Jw,y,z ,x]+1

��

J[w,x],y,z

��

[Jw,x,z ,y]+1

��

[w,Jx,y,z ]+1
��������������������

��������������������

[[x,y],z] −[[y,x],z]

[x,[y,z]]−[y,[x,z]]

[Sx,y ,z] ��

−Jx,y,z

���
��

��
��

��
��

��

−Jy,x,z

����
��

��
��

��
��

�
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[x,[y,z]] −[x,[z,y]]

[[x,y],z]+[y,[x,z]] −[[x,z],y]−[z,[x,y]]

[x,Sy,z ] ��

S[x,y],z+Sy,[x,z]
��

Jx,y,z

��

−Jx,z,y

��

[x,[y,z]] [x,[y,z]]

−[[y,z],x]

1[x,[y,z]] ��

Sx,[y,z]
���

��
��

��
��

��
��

−S[y,z],x

���������������

Definition 6. A Lie 2-algebra for which the Jacobiator is the identity chain homotopy is
called hemistrict. One for which the alternator is the identity chain homotopy is called
semistrict.

When the alternator is the identity, the Jacobiator Jx,y,z is antisymmetric as a function of
x, y and z, so the semistrict Lie 2-algebras defined here match those of Baez and Crans
[5].

Now suppose that (X, ω) is a 2-plectic manifold. We shall construct two Lie 2-alge-
bras associated to (X, ω): one hemistrict and one semistrict. Then we shall prove these
are isomorphic. Both these Lie 2-algebras have the same underlying 2-term complex,
namely:

L = Ham (X)
d← C∞(X)

0← 0
0← 0

0← · · · ,
where d is the usual exterior derivative of functions. To see that this chain complex is
well-defined, note that any exact form is Hamiltonian, with 0 as its Hamiltonian vector
field.

The hemistrict Lie 2-algebra comes with a bracket called the hemi-bracket:

{·, ·}h : L ⊗ L → L .

In degree 0, the hemi-bracket is given as in Def. 3:

{F, G}h = LvF G.

In degree 1, it is given by:

{F, f }h = LvF f, { f, F}h = 0.
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In degree 2, we necessarily have

{ f, g}h = 0.

Here F, G ∈ Ham (X), while f, g ∈ C∞(X).
To see that the hemi-bracket is in fact a chain map, it suffices to check it on hemi-

brackets of degree 1:

d {F, f }h = d(LvF f ) = LvF d f = {F, d f }h
and

d { f, F}h = 0 = Lvd f F = {d f, F}h ,

since the Hamiltonian vector field corresponding to an exact 1-form is zero.

Theorem 5. If (X, ω) is a 2-plectic manifold, there is a hemistrict Lie 2-algebra L(X, ω)h
where:

– the space of 0-chains is Ham (X),
– the space of 1-chains is C∞(X),
– the differential is the exterior derivative d : C∞(X)→ Ham (X),
– the bracket is {·, ·}h,
– the alternator is the bilinear map S : Ham (X) × Ham (X) → C∞(X) defined by

SF,G = −(ιvF G + ιvG F), and
– the Jacobiator is the identity, hence given by the trilinear map J : Ham (X) ×

Ham (X)× Ham (X)→ C∞(X) with JF,G,H = 0.

Proof. That S is a chain homotopy with the right source and target follows from Prop. 3
and the fact that:

{F, f }h + {g, G}h + SF,d f + Sdg,G = LvF f − ιvF d f − ιvG dg = −{ f, F}h − {G, g}h .

Proposition 3 also says that the Jacobi identity holds. The following equations then
imply that J is also a chain homotopy with the right source and target:

{

F, {G, f }h
}

h = {{F, G}h , f }h +
{

G, {F, f }h
}

h ,
{

F, { f, G}h
}

h =
{{F, f }h , G

}

h = { f, {F, G}h}h = 0,

{ f, {F, G}h}h =
{{ f, F}h , G

}

h =
{

F, { f, G}h
}

h = 0.

So, we just need to check that the Lie 2-algebra axioms hold. The first two diagrams
commute since each edge is the identity. The commutativity of the third diagram is
shown as follows:

S{F,G}h,H + SG,{F,H}h = −ι[vF ,vG ]H − ιvH {F, G}h − ιvG {F, H}h − ι[vF ,vH ]G= LvF (−ιvG H − ιvH G)

= {

F, SG,H
}

h .

The last diagram says that

SF,{G,H}h − S{G,H}h,F = 0,

and this follows from the fact that the alternator is symmetric: SF,G = SG,F . ��
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Next we make L into a semistrict Lie 2-algebra. For this, we use a chain map called
the semi-bracket:

{·, ·}s : L ⊗ L → L .

In degree 0, the semi-bracket is given as in Def. 4:

{F, G}s = ιvG ιvF ω.

In degrees 1 and 2, we set it equal to zero:

{F, f }s = 0, { f, F}s = 0, { f, g}s = 0.

Theorem 6. If (X, ω) is a 2-plectic manifold, there is a semistrict Lie 2-algebra L(X, ω)s
where:

– the space of 0-chains is Ham (X),
– the space of 1-chains is C∞(X),
– the differential is the exterior derivative d : C∞(X)→ Ham (X),
– the bracket is {·, ·}s,
– the alternator is the identity, hence given by the bilinear map S : Ham (X) ×

Ham (X)→ C∞(X) with SF,G = 0, and
– the Jacobiator is the trilinear map J : Ham (X)×Ham (X)×Ham (X)→ C∞(X)

defined by JF,G,H = −ιvF ιvG ιvH ω.

Proof. We note from Prop. 4 that the semi-bracket is antisymmetric. Since both S and
the bracket in degree 1 are zero, the alternator defined above is a chain homotopy with
the right source and target. It follows from Prop. 4 and that the Hamiltonian vector field
of an exact 1-form is zero that the Jacobiator is also a chain homotopy with the desired
source and target. So again, we just need to check that the Lie 2-algebra axioms hold.
The following identities can be checked by simple calculation, and the commutativity
of the first diagram follows:

J{K ,F}s,G,H = J{H,K }s,F,G − J{F,H}s,G,K − LvG JK ,F,H ,

LvG JK ,F,H = J{G,K }s,F,H + JK ,{G,F}s,H + JK ,F,{G,H}s .

Since the Jacobiator is antisymmetric and the alternator is the identity, the second and
third diagrams commute as well. The fourth diagram commutes because all the edges
are identity morphisms. ��

Definition 7. Given Lie 2-algebras L and L ′ with bracket, alternator and Jacobiator
[·, ·], S, J and [·, ·]′, S′, J ′ respectively, a homomorphism from L to L ′ consists of:

– a chain map φ : L → L ′, and
– a chain homotopy � : [·, ·]′ ◦ (φ ⊗ φ)⇒ φ ◦ [·, ·],
such that the following diagrams commute:
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[φ(x),φ(y)]′ φ([x,y])

−[φ(y),φ(x)]′ −φ([y,x])

�x,y ��

−�y,x

��

S′
φ(x),φ(y)

��

φ(Sx,y)

��

[φ(x),[φ(y),φ(z)]′]′ [[φ(x),φ(y)]′,φ(z)]′+[φ(y),[φ(x),φ(z)]′]′

[φ(x),φ([y,z])]′ [φ([y,x]),φ(z)]′+[φ(y),φ([x,z])]′

φ([x,[y,z]]) φ([[x,y],z]+[y,[x,z]])

J ′
φ(x),φ(y),φ(z) ��

[φ(x),�y,z ]′

��

[�x,y ,φ(z)]′+[φ(y),�x,z ]′

��

�x,[y,z]

��

�[x,y],z+�y,[x,z]

��

φ(Jx,y,z)
��

Roytenberg explains how to compose Lie 2-algebra homomorphisms [30], and we
say a Lie 2-algebra homomorphism with an inverse is an isomorphism.

Theorem 7. L(X, ω)h and L(X, ω)s are isomorphic as Lie 2-algebras.

Proof. We show that the identity chain maps with appropriate chain homotopies define
Lie 2-algebra homomorphisms and that their composites are the respective identity
homomorphisms. There is a homomorphism φ : L(X, ω)h → L(X, ω)s with the iden-
tity chain map and the chain homotopy given by �F,G = ιvF G. That this is a chain
homotopy follows from the bracket relation {F, G}s + d

(

ιvF G
) = {F, G}h noted in

Prop. 2 together with the equations

{F, f }s + ιvF d f = {F, f }h , { f, F}s = { f, F}h = ιvd f F = 0.

We check that the two diagrams in the definition of a Lie 2-algebra homomorphism com-
mute. Noting that the chain map is the identity, the commutativity of the first diagram is
easily checked by recalling that SF,G = −(ιvG F + ιvF G) and that S′F,G is the identity.
Noting that any edge given by the bracket for L(X, ω)s in degree 1 is the identity and
that JF,G,H is the identity, to check the commutativity of the second diagram we only
need to perform the following calculation:
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J ′F,G,H + �{F,G}h,H + �G,{F,H}h −�F,{G,H}h
= −ιvF ιvG ιvH ω + ι[vF ,vG ]H + ιvG LvF H − ιvF LvG H

= ιvF LvG H − ιvF dιvG H + ι[vF ,vG ]H + ιvG LvF H − ιvF LvG H

= −ιvF dιvG H + ι[vF ,vG ]H + ιvG LvF H

= −ιvF dιvG H + LvF ιvG H − ιvG LvF H + ιvG LvF H

= −ιvF dιvG H + LvF ιvG H

= dιvF ιvG H − LvF ιvG H + LvF ιvG H

= dιvF ιvG H

= 0.

��

5. The Classical Bosonic String

The bosonic string is a theory of maps φ : �→ M where � is a surface and M is some
manifold representing spacetime. For simplicity we will only consider the case where �

is the cylinder R×S1 and M is d-dimensional Minkowski spacetime, R1,d−1. A solution
of the classical bosonic string is then a map φ : � → M which is a critical point of the
area subject to certain boundary conditions.

Equivalently, by exploiting symmetries in the variational problem, one can describe
solutions φ by equipping R× S1 with its standard Minkowski metric and then solving
the 1 + 1 dimensional field theory specified by the Lagrangian density

� = 1

2
gi jηab

∂φa

∂qi

∂φb

∂q j
.

Here qi (i = 0, 1) are standard coordinates on R × S1 and g = diag(1,−1) is the
Minkowski metric on R× S1, while φa are the coordinates of the map φ in R

1,d−1 and
η = diag(1,−1, . . . ,−1) is the Minkowski metric on R

1,d−1. We use the Einstein sum-
mation convention to sum over repeated indices. The corresponding Euler–Lagrange
equation is just a version of the wave equation:

gi j∂i∂ jφ
a = 0.

We next describe this theory using multisymplectic geometry following the approach of
Hélein [22]. (The work of Gotay et al [20] focuses instead on the Polyakov approach,
where the metric on � is taken as an independent variable.)

The space E = � × M can be thought of as a trivial bundle over �, and the graph
of a function φ : � → M is a smooth section of E . We write the coordinates of a point
(x, u) ∈ E as

(

qi , ua
)

. Let J 1 E → E be the first jet bundle of E . As explained in
Example 4, since E is trivial we may regard J 1 E as a vector bundle whose fiber over
(x, u) ∈ E is T ∗x � ⊗ Tu M . The Lagrangian density for the string can be defined as a
smooth function on J 1 E :

� = 1

2
gi jηabua

i ub
j ,

which depends in this example only on the fiber coordinates ua
i .



720 J. C. Baez, A. E. Hoffnung, C. L. Rogers

Let J 1 E∗ → E be the vector bundle dual to J 1 E . The fiber of J 1 E∗ over (x, u) ∈ E
is Tx�⊗T ∗u M . From the Lagrangian � : J 1 E → R, the ‘de Donder–Weyl Hamiltonian’
h : J 1 E∗ → R can be constructed via a Legendre transform. It is given as follows:

h = pi
aua

i − �

= 1

2
ηabgi j pi

a p j
b ,

where ua
i are defined implicitly by pi

a = ∂�/∂ua
i , and pi

a are coordinates on the fiber
Tx�⊗ T ∗u M . Note that h differs from the standard (non-covariant) Hamiltonian density
ε for a field theory:

ε = p0
aua

0 − �

= 1

2
ηab

(

p0
a p0

b + p1
a p1

b

)

.

Let φ be a section of E and let π be a smooth section of J 1 E∗ restricted to φ(�)

with fiber coordinates π i
a . It is then straightforward to show that φ is a solution of

the Euler–Lagrange equations if and only if φ and π satisfy the following system of
equations:

∂π i
a

∂qi
= − ∂h

∂ua

∣

∣

∣

∣

u=φ,p=π

, (12)

∂φa

∂qi
= ∂h

∂pi
a

∣

∣

∣

∣

u=φ,p=π

. (13)

This system of equations is a generalization of Hamilton’s equations for a classical point
particle.

As explained in Example 4 and the preceding discussion, the extended phase space
for the string is the first cojet bundle J 1 E
, and this space is equipped with a canonical
2-form θ whose exterior derivative ω = dθ is a 2-plectic structure. Using the isomor-
phism

J 1 E
 ∼= J 1 E∗ × R,

a point in J 1 E
 gets coordinates (qi , ua, pi
a, e). In terms of these coordinates,

θ = e dq0 ∧ dq1 +
(

p0
adua ∧ dq1 − p1

adua ∧ dq0
)

.

The 2-plectic structure on J 1 E
 is thus

ω = de ∧ dq0 ∧ dq1 +
(

dp0
a ∧ dua ∧ dq1 − dp1

a ∧ dua ∧ dq0
)

.

So, the variable e may be considered as ‘canonically conjugate’ to the area form dq0 ∧
dq1.

As before, let φ be a section of E and let π be a smooth section of J 1 E∗ restricted
to φ(�). Consider the submanifold S ⊂ J 1 E
 with coordinates:

(qi , φa(q j ), π i
a(q j ),−h).
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Note that S is constructed from φ, π and from the constraint e + h = 0. This constraint
is analogous to the one that is used in finding constant energy solutions in the extended
phase space approach to classical mechanics. At each point in S, a tangent bivector
v = v0 ∧ v1 can be defined as

v0 = ∂

∂q0 +
∂φa

∂q0

∂

∂ua
+

∂π i
a

∂q0

∂

∂pi
a
,

v1 = ∂

∂q1 +
∂φa

∂q1

∂

∂ua
+

∂π i
a

∂q1

∂

∂pi
a
.

Explicit computation reveals that the submanifold S is generated by solutions to
Hamilton’s equations if and only if

ω(v0, v1, ·) = 0.

Quite generally, infinitesimal symmetries of the 2-form θ give rise to Hamiltonian
1-forms that generate these symmetries. For example, symmetry under time evolution
lets us define a Hamiltonian. Consider the Lie derivative of θ along the coordinate vector
field ∂/∂q0:

L∂/∂q0θ = dι∂/∂q0θ + ι∂/∂q0ω

= d
(

e dq1 + p1
adua

)− (

de ∧ dq1 + dp1
a ∧ dua

)

= 0.

Hence θ is invariant with respect to infinitesimal displacements along the q0 coordinate.
If we define a 1-form H by

H = −ι∂/∂q0θ

= −e dq1 − p1
adua,

then d H = ι∂/∂q0ω. Hence H is a Hamiltonian 1-form, and the Hamiltonian vector field
vH describes time evolution.

One may wonder how this Hamiltonian 1-form H is related to the usual concept of
energy. To understand this, consider the solution submanifold S as defined above. Let
Sτ ⊂ S be a 1-dimensional curve on S at constant ‘time’ q0 = τ . Denote the restriction
of H to Sτ as Hτ . A computation yields

Hτ = h dq1 − π1
a dφa

= 1

2
ηabgi jπ

i
aπ

j
b dq1 − π1

a dφa .

On Sτ , dq0 = 0. Hence dφa = ∂φa

∂q1 dq1. Since φ satisfies Eq. (13), we also have:

π0
a = ηab

∂φb

∂q0 ,

π1
a = −ηab

∂φb

∂q1 .
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The expression for Hτ thus becomes:

Hτ = 1

2
ηab

(

π0
a π0

b + π1
a π1

b

)

dq1

= 1

2
ηab

(

∂φa

∂q0

∂φb

∂q0 +
∂φa

∂q1

∂φb

∂q1

)

dq1

= ε dq1.

Hence Hτ is the Hamiltonian 1-form that corresponds to the energy density of the string
at τ , and the total energy of the string at q0 = τ is simply:

∫

Sτ

Hτ .

So, the usual concept of energy is compatible with the concept of energy as a Hamiltonian
1-form in the Lie 2-algebra of observables for the string.

We next consider a scenario in which the string is coupled to a B field. We fix a
2-form B on M . By pulling back d B along the projection p : J 1 E
→ M and adding it
to the 2-plectic form ω, we obtain a modified 2-plectic form ω̃ on J 1 E
:

ω̃ = ω + p∗d B.

In coordinates:

p∗d B = d
(

Bbc dub ∧ duc
)

= ∂ Bbc

∂ua
dua ∧ dub ∧ duc.

It is straightforward to show that ω̃ is indeed 2-plectic.
We now determine the equations of motion for the string coming from the modi-

fied 2-plectic structure ω̃. As before, we consider the submanifold S defined above. We
emphasize that we have not changed h: it is still the de Donder–Weyl Hamiltonian for
the free string. Requiring ω̃(v0, v1, ·) = 0 implies

ω(v0, v1, ·) + p∗d B(v0, v1, ·) = 0.

Let

J bc = ∂φb

∂q0

∂φc

∂q1 −
∂φb

∂q1

∂φc

∂q0

and

Fbcd = ∂ Bcd

∂ub
+

∂ Bdb

∂uc
+

∂ Bbc

∂ud
.

It follows that

(p∗d B)(v0, v1, ·) = J bc Fbcddud ,

which implies that φ obeys the following equations:

gi j∂i∂ jφ
a = ηad J bc Fbcd .
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These equations, familiar from the work of Kalb and Ramond [26], are precisely the
Euler–Lagrange equations derived from a Lagrangian density �̃ that includes a B field
term:

�̃ = � + J ab Bab.

So, adding the pullback of d B to ω modifies the 2-plectic structure in precisely the
right way to give the correct equations of motion for a string coupled to a B field. This
generalizes the usual story for point particles coupled to electromagnetism [21].

6. Conclusions

The work presented here raises many questions. Here are four obvious ones:

– Does an n-plectic manifold give rise to a Lie n-algebra when n > 2? There is not
yet a definition of weak or hemistrict Lie n-algebras for n > 2, but a semistrict
Lie n-algebra is just an n-term chain complex equipped with the structure of an
L∞-algebra. So, it would be easiest to start by considering a generalization of the
semi-bracket, and see if this can be used to construct a semistrict Lie n-algebra.

– Does the Lie 2-algebra of observables in 2-plectic geometry extend to something
like a Poisson algebra? It is far from clear how to define a product for Hamiltonian
1-forms, and the usual product of a Hamiltonian 1-form and a smooth function is not
Hamiltonian.

– The based loop space �X of a manifold X equipped with a closed (n + 1)-form
ω is an infinite-dimensional manifold equipped with a closed n-form η defined ‘by
transgression’ as follows:

η(v1, . . . , vn) =
∫ 2π

0
ω(γ ′(σ ), v1(γ (σ )), . . . , vn(γ (σ )) dσ,

where vi are tangent vectors at the loop γ ∈ �X and vi (γ (σ )) are the correspond-
ing tangent vectors at the point γ (σ ) ∈ X . Even when ω is n-plectic, η is rarely
(n − 1)-plectic. However when X = G is a compact simple Lie group equipped
with the 2-plectic structure of Example 1, η becomes symplectic after adding an
exact form. The interplay between the 2-plectic structure on G and the symplectic
structure on �G plays an important role in the theory relating the Wess–Zumino–
Witten model, central extensions of the loop group �G, gerbes on G and the string
2-groups Stringk(G) [6]. It would be nice to have a more general theory whereby the
loop space of an n-plectic manifold became an (n − 1)-plectic manifold.

– When a symplectic structure ω on a manifold X defines an integral class in H2(X, R),
there is a U(1) bundle over X equipped with a connection whose curvature is ω. As
mentioned in the Introduction, this plays a fundamental role in the geometric quan-
tization of X . Similarly, when a 2-plectic structure ω on a manifold X defines an
integral class in H3(X, R), there is a U(1) gerbe over X equipped with a connection
whose curvature is ω [11]. Is there an analogue of geometric quantization that applies
in this case?

Following the ideas of Freed [17], we might hope that geometrically quantiz-
ing this gerbe will give a ‘2-Hilbert space’ of states. However, Freed’s work only
treats Schrödinger quantization, and that only in the special case where the resulting
2-Hilbert space is finite-dimensional. Finite-dimensional 2-Hilbert spaces are by
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now well-understood [3], but the infinite-dimensional ones are still being developed
[4,36]. Geometric quantization for gerbes is an even greater challenge. However,
we expect the problem of geometrically quantizing a U(1) gerbe on X to be closely
related to the better-understood problem of geometrically quantizing the correspond-
ing U(1) bundle on the loop space of X .
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