
Digital Object Identifier (DOI) 10.1007/s00220-009-0806-4
Commun. Math. Phys. 289, 45–73 (2009) Communications in

Mathematical
Physics

Existence of Weak Solutions for a Diffuse
Interface Model for Viscous, Incompressible
Fluids with General Densities

Helmut Abels

Max Planck Institute for Mathematics in Science, Inselstr. 22,
04103 Leipzig, Germany. E-mail: abels@mis.mpg.de

Received: 21 January 2008 / Accepted: 23 February 2009
Published online: 21 April 2009 – © The Author(s) 2009. This article is published with open access at
Springerlink.com

Abstract: We study a diffuse interface model for the flow of two viscous incompressible
Newtonian fluids in a bounded domain. The fluids are assumed to be macroscopically
immiscible, but a partial mixing in a small interfacial region is assumed in the model.
Moreover, diffusion of both components is taken into account. In contrast to previous
works, we study the general case that the fluids have different densities. This leads
to an inhomogeneous Navier-Stokes system coupled to a Cahn-Hilliard system, where
the density of the mixture depends on the concentration, the velocity field is no longer
divergence free, and the pressure enters the equation for the chemical potential. We
prove existence of weak solutions for the non-stationary system in two and three space
dimensions.

1. Introduction and Main Result

In this article we consider a so-called diffuse interface model for two viscous, incom-
pressible Newtonian fluids of different density. In the model a partial mixing of the
macroscopically immiscible fluids is considered and diffusion effects are taken into
account. Such models have been successfully used to describe flows of two or more
fluids macroscopically beyond the occurrence of topological singularities of the sep-
arating interface (e.g. coalescence or formation of drops). We refer to Anderson and
McFadden [5] for a review on that topic.

The model which we are considering leads (after a reduction) to the system

ρ∂tv + ρv · ∇v − div S(c, Dv) + ρ∇g0 = ρµ0∇c in Q, (1.1)

∂tρ + div(ρv) = 0 in Q, (1.2)

ρ∂t c + ρv · ∇c = div(m(c)∇µ0) in Q, (1.3)

ρµ0 + ρ2 p̄ = βρ2g0 − a
1
q (c)�q A(c) + φ(c) in Q, (1.4)
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together with
∫
�

µ0(t) dx =
∫
�

g0(t) dx = 0, t ∈ (0,∞), (1.5)

where Q = �× (0,∞) and� ⊂ R
d , d = 2, 3, is a bounded domain with C2-boundary.

Here v and ρ = ρ̂(c) are the (mean) velocity and the density of the mixture of the two
fluids, g0 is a modified pressure, c is the concentration difference of the two fluids, µ is
the chemical potential associated to c, µ0 is the mean-value free part of µ, and p̄ is a
constant (depending on time), which is related to the mean values of the pressure and
the chemical potential. Moreover,

S(c, Dv) = 2ν(c)Dv + η(c) div v I, Λ̂′(s) = a
1
q (s), Λ̂(0) = 0, (1.6)

where S(c, Dv) is the stress tensor, Dv = 1
2 (∇v+∇vT ), ν(c), η(c) > 0 are two viscosity

coefficients,�qu = div(|∇u|q−2∇u) is the q-Laplacian, ∇ A ⊗ ∇ A = (∂ j A∂k A)dj,k=1,

A = Â(c) is an auxiliary function related to a(c) > 0, which arises in the free energy
density of the system, and m(c) > 0 is a mobility coefficient. Furthermore, 
(c) is the
homogeneous free energy density for the mixture and φ(c) = 
′(c). Finally, we assume
that the fluids behave like a simple mixture, cf. Lowengrub and Truskinovski [13], which
means that the excess volume of the mixture is zero. This implies that ρ̂(c) = 1

α+βc for
some α > 0 and |β| < α.

We close the system by adding the boundary and initial conditions

n · v|∂� = n · S(c, Dv)τ + γ vτ |∂� = 0 on S, (1.7)

∂nc|∂� = ∂nµ0|∂� = 0 on S, (1.8)

(v, c)|t=0 = (v0, c0) in �, (1.9)

where S = ∂� × (0,∞), n is the exterior normal on ∂� and 0 < γ < ∞ is a friction
coefficient.

In the case a(c) = ρ̂(c), q = 2 the model was proposed by Lowengrub and Truski-
novski [13] as a generalization of a well-known diffuse interface model in the case of
matched densities which corresponds to the case β = 0, ρ̂(c) ≡ const., respectively,
cf. e.g. Gurtin et al. [10]. The present modification can be derived in the same way, cf.
e.g. [2, Chap. II]. We note that systems (1.1)–(1.5) are obtained from the original system
by a reduction, which is explained in Sect. 3 below and which will be essential for the
following analysis. We will only consider the case ρ(c) �≡ const., i.e., β �= 0. Results
for the case of matched densities (ρ(c) ≡ const.) were obtained by Starovoitov [17],
Boyer [6], Liu and Shen [12], and the author [1]. Moreover, in [7] Boyer considered a
different diffuse interface model for fluids with non-matched densities. He proved exis-
tence of strong solutions, locally in time, and existence of global weak solutions if the
densities of the fluids are sufficiently close. Finally, A. and Feireisl [3] constructed weak
solutions globally in time for a corresponding diffuse interface model for compressible
fluids.

We note that the total energy of the system is E(c, v) = Efree(c) + Ekin(c, v), where

Efree(c) =
∫
�


(c) dx +
∫
�

a(c)
|∇c|q

q
dx, Ekin(c, v) =

∫
�

ρ(c)
|v|2

2
dx, (1.10)
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and that every sufficiently smooth solution of (1.1)–(1.9) satisfies

d

dt
E(c(t), v(t))

= −
∫
�

(
2ν(c)|Dv(t)|2 + η(c)| div v(t)|2

)
dx

−
∫
�

m(c)|∇µ|2 dx − γ

∫
∂�

|vτ |2 dσ,

cf. (3.12) below. Moreover, note that a(c)|∇c|q = |∇ A(c)|q . We will only consider
the case β �= 0 since ρ(c) ≡ const. if β = 0. Furthermore, we can assume w.l.o.g.
that −α < β < 0. Otherwise we replace c with −c. Then ρ̂(s) is a strictly increasing
function.

Let us comment on the new difficulties that arise for the construction of weak solu-
tions (in comparison with the case of matched densities):

1. Since ρ = ρ̂(c) �≡ const. in general, div v �≡ 0 too. Therefore it is not sufficient to
work in function spaces of divergence free vector fields and we cannot simply apply
the Helmholtz projection to (1.1) to get an evolution equation for v independent
of g0.

2. In the case of non-matched densities β �= 0 the (modified) pressure g0 enters the
equation for the chemical potential (1.4). But g0 has low regularity, in particular with
respect to time as will be discussed below. Therefore we will not be able to obtain
an a priori estimate of φ(c)−�c in some Lr (QT ), r ≥ 2, (even not for r > 1). This
would be essential to be able to choose φ = 
′, where 
 is a singular free energy
density as e.g.


(c) = θ

2
((1 + c) ln(1 + c) + (1 − c) ln(1 − c))− θc

2
c2, (1.11)

where θ, θc > 0, a = −1, b = 1. In the case of matched densities β = 0 and with
q = 2, it is possible to show existence of weak solutions such that c(t,x) ∈ (−1, 1)
a.e.[1], see also [4]. Since we cannot use these free energy densities, we need some
other mechanism to keep the concentration c ∈ [−1, 1] or at least in a suitable
neighborhood c ∈ [−1 − ε, 1 + ε], ε > 0. Otherwise, ρ = ρ̂(c) becomes singular
or non-positive.

In order to overcome the last difficulty, it will be essential to choose the exponent of the
gradient term in the free energy as q > d and to choose the free energy density 
(c)
“steep enough” outside the interval [−1, 1], cf. Lemma 2.3 below. The following proofs
will not work for the standard case q = 2.

For the following analysis it is essential to use a suitable decomposition of g0, namely:

g0 = g1 − ∂t G(v), (1.12)

where

�G(v) = div v in �, (1.13)

∂nG(v) = 0 on ∂�, (1.14)

and
∫
�

G(v) dx = 0, which implies that

∇G(v) = (I − Pσ )v. (1.15)
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Hence (1.1) is equivalent to

ρ∂t Pσ v + ρv · ∇v − div S(c, Dv) + ρ∇g1 = ρµ0∇c in Q. (1.16)

Here the part g1 has relatively good regularity, e.g., g1 ∈ L2(0,∞; L p(�)) with
1 < p < d

d−1 , cf. Lemma 6.1 below. It is the part ∂t G(v), which makes the analy-
sis difficult and which does not allow to use a singular free energy as in (1.11). Finally,
let us note that for our estimates of g1 it is important to consider Navier boundary
conditions for v and not no-slip boundary conditions.

The article is organized as follows: In Sect. 2 we define weak solutions of the system
(1.1)–(1.9) and state the main result on existence of weak solutions. In Sect. 3 we state
the original form of the system (1.1)–(1.9) as derived in [13], explain the reduction to
(1.1)–(1.9), and discuss the conserved quantities. Moreover, in Sect. 4, we introduce the
used function spaces and summarize some preliminary results. The existence is proved
with the aid of a two-level approximation. Firstly, we add some extra terms depending
on a parameter δ > 0, which yield an additional a priori bound for g0 ∈ L2(Q). The
corresponding system is presented in Sect. 5 and existence of weak solutions to the latter
system is proved with the aid of an implicit time discretization, which is the second level
of approximation. Then, in Sect. 6, we consider the limit δ → 0 and prove our main
result on existence of weak solutions to (1.1)–(1.9).

Finally, we note the present results are part of the author’s Habilitation thesis [2].

2. Weak Solutions and the Main Result

First of all, let us make some basic assumptions:

Assumption 2.1. We assume that a ∈ C1(R), ν, η,m ∈ C0(R) with a(s), ν(s), m(s) ≥
m0 > 0, η(s) ≥ 0 for all s ∈ R, let ρ̂(s) = (α + βs)−1 for some 0 < −β < α, and
let S(c, Dv), A(c) be defined as in (1.6). Moreover, let 0 < γ < ∞ and let � ⊂ R

d ,
d = 2, 3, be a bounded domain with C2-boundary.

In the following, we frequently use the spaces H1
n (�) = { f ∈ H1(�)d : n · f |∂� = 0}

and H−1
n (�) = (H1

n (�))
′. For more definitions of the used function spaces we refer to

Sect. 4. Moreover, we denote Q(s,t) = � × (s, t), Qt = Q(0,t), S(s,t) = ∂� × (s, t),
St = S(0,t) and A : B = ∑d

j,k=1 a jkb jk for two matrices A = (a jk), B = (b jk) ∈ R
d×d .

Having in mind the decomposition (1.12), we define weak solutions of (1.1)–(1.9) as
follows:

Definition 2.2. Let Assumption 2.1 hold, let v0 ∈ L2(�)d , c0 ∈ W 1
q (�), q > d,

let 
 : R → [0,∞) be twice continuously differentiable and set φ = 
′. Then
(v, g1, c, µ0, p̄) with

v ∈ BCw([0,∞); L2(�)d) ∩ L2(0,∞; H1
n (�)),

g1 ∈ L2(0,∞; L1
(0)(�)), c ∈ BCw([0,∞); W 1

q (�)),

µ0 ∈ L2(0,∞; H1(�)), p̄ ∈ L1
loc(0,∞),

and such that 0 < ρ = ρ̂(c) ∈ L∞(Q) is called a weak solution of (1.1)–(1.9) if the
following conditions are satisfied:
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1. For every ϕ ∈ C∞
0 (0,∞; H1

n (�) ∩ L∞(�)d),

−(Pσ v, ∂tϕ)Q + (v · ∇v, ϕ)Q + (ρ−1S(c, Dv), Dϕ)Q

+ γ (ρ−1vτ , ϕτ )S = (g1, div ϕ)Q + (µ0∇c, ϕ)Q − (∇ρ−1 · S(c, Dv), ϕ)Q .

(2.1)

2. For every ψ ∈ C∞
0 (0,∞; C1(�)),

(ρ, ∂tψ)Q + (ρv,∇ψ)Q = 0, (2.2)

(ρc, ∂tψ)Q + (ρcv,∇ψ)Q = (m(c)∇µ,∇ψ)Q, (2.3)

and
(

a(c)−
1
q (ρµ0 + ρ2 p̄ − φ(c)), ψ

)
Q

= β
(

a(c)−
1
q ρ2g1, ψ

)
Q

−β
(

G(v), ∂t

(
a(c)−

1
q ρ2ψ

))
Q

+
(
|∇ A(c)|q−2∇ A(c),∇ψ

)
Q
. (2.4)

3. (v, c)|t=0 = (v0, c0).
4. (v, c, µ) satisfy the energy inequality

E(c(t), v(t))+ (2.5)∫
Q(s,t)

(
S(c, Dv) : Dv + m(c)|∇µ|2

)
d(x, τ ) + γ ‖vτ‖2

L2(S(s,t))
≤ E(c(s), v(s))

for all t ∈ [s,∞) and almost all 0 ≤ s < ∞ including s = 0.

We note that the boundary conditions (1.8) and the second condition in (1.7) are part of
the weak formulations (2.1)–(2.3) because of

− (div S(c, Dv), ϕ)� = (S(c, Dv),∇ϕ)� − (n · S(c, Dv), ϕ)∂�
= (S(c, Dv),∇ϕ)� + γ (ν(c)v, ϕ)∂�, (2.6)

for all v ∈ H2(�) satisfying (1.7) and all ϕ ∈ H1
n (�).

The following lemma shows that, given 
 ∈ C2([−1, 1]) and R, ε > 0, we can
“trap” all c(x) with Efree(c) ≤ R in an arbitrary small neighborhood (−1 − ε, 1 + ε)
by extending 
 “suitably steep” outside of [−1, 1]. This is essential for everything that
follows.

Lemma 2.3. Let R, ε > 0, q > d, and let
 ∈ C2([−1, 1])with
(c) > 0, c ∈ [−1, 1],
be given. Then there is an extension 
 ∈ C2(R), 
(c) ≥ 0,
′′(c) ≥ −M > −∞ such
that for all c ∈ W 1

q (�),

∫
�

a(c)|∇c|q
q

dx +
∫
�


(c) dx ≤ R ⇒ c(x) ∈ (−1 − ε, 1 + ε). (2.7)

Proof. Since W 1
q (�) ↪→ Cα(�), α = 1 − d

q , there is a constant C1 such that

|c(x)− c(x0)| ≤ C1‖∇c‖Lq (�)|x − x0|α
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for all x,x0 ∈ � and c ∈ W 1
q (�) with

∫
�

c dx = 0. Since we can change c(x) by a
constant in the estimate above, it also holds for all c ∈ W 1

q (�). Moreover, if Efree(c) ≤ R,
then ‖∇c‖Lq ≤ R′ for some R′ > 0. Hence

|c(x)− c(x0)| ≤ C1 R′|x − x0|α ≤ ε

2
for all x ∈ Br (x0) ∩�, r :=

(
ε

2C1 R′

) 1
α

.

Furthermore, let κ = infx0∈� |Br (x0) ∩ �| > 0. Hence for every x0 ∈ � we have
|c(x)| ≥ |c(x0)| − ε

2 on a set of at least measure κ .
Now we choose the extension of 
 ∈ C2([−1, 1]), 
(s) > 0, to 
 : R → [0,∞)

such that
(s) ≥ M := κ−1(R + 1) and
′′(s) ≥ 0 for all |s| ≥ 1 + ε
2 . In order to prove

(2.7), we assume that for c ∈ W 1
q (�) there is some x0 ∈ � such that |c(x0)| ≥ 1 + ε.

By the observations before, we conclude that |c(x)| ≥ |c(x0)| − ε
2 ≥ 1 + ε

2 on a set
S = Br (x0) ∩� of measure at least κ > 0. Hence

Efree(c) ≥
∫

S

(c) dx ≥ κM = R + 1,

which proves the implication (2.7). ��
Now we are able to state our main result on existence of weak solutions.

Theorem 2.4. Let q > d, ε, R > 0. Moreover, let 
 ∈ C2(R), 
(c) ≥ 0,
′′(c) ≥
−M, be given such that (2.7) holds. Then for every v0 ∈ L2(�)d , c0 ∈ W 1

q (�) with
E(c0, v0) ≤ R there exists a weak solution (v, g1, c, µ0, p̄) of (1.1)–(1.9) in the sense
of Definition 2.2 and with the property that

c(t,x) ∈ [−1 − ε, 1 + ε] for all (x, t) ∈ Q,

g1 ∈ L2(0,∞; L p(�)), p̄ ∈ L2
uloc([0,∞))

for every 1 < p < d
d−1 .

3. Reformulation of the System and Conserved Quantities

Our starting point is the system

ρ∂tv + ρv · ∇v − div S(c, Dv) + ∇ p = − div(|∇ A(c)|q−2∇ A(c)⊗ ∇ A(c)), (3.1)

∂tρ + div(ρv) = 0, (3.2)

ρ∂t c + ρv · ∇c = div(m(c)∇µ), (3.3)

ρµ = −ρ−1 ∂ρ

∂c

(
p +
(c) +

|∇ A(c)|q
q

)
+ φ(c)− a(c)

1
q �q A(c), (3.4)

which is a variant of the model proposed in [13] for an interfacial energy of the form

Efree(c) =
∫
�


(c) dx +
∫
�

a(c)
|∇c|q

q
dx,
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where the choice q = 2, a(c) = ρ(c) was proposed in the latter article. A derivation of
the latter system can also be found in [2, Chap. II]. We close the system by adding initial
and boundary conditions (1.7)–(1.9). We note that the term |∇ A(c)|q−2∇ A(c)⊗∇ A(c)
comes from an extra contribution to the stress tensor, which models capillary forces in
an interfacial region.

In order to derive (1.1)–(1.5), we define

g = 
(c)

ρ
+

|∇ A(c)|q
ρq

+
p

ρ
− µ̄c,

where µ = µ0 + µ̄ and µ̄ = 1
|�|

∫
�
µ dx. Then

ρ∇g = φ(c)∇c + ∇ |∇ A(c)|q
q

+ ∇ p − ρ−1 ∂ρ

∂c

(
p +
(c) +

|∇ A(c)|q
q

)
∇c − ρµ̄∇c,

and therefore

ρ∇g − ρµ0∇c = ∇ p + a(c)
1
q �q A(c)∇c + ∇ |∇ A(c)|q

q

= ∇ p + div(|∇ A(c)|q−2∇ A(c)⊗ ∇ A(c)).

Hence we see that (3.1)–(3.4) is equivalent to the system

ρ∂tv + ρv · ∇v − div S(c, Dv) + ρ∇g = ρµ0∇c in Q, (3.5)

∂tρ + div(ρv) = 0 in Q, (3.6)

ρ∂t c + ρv · ∇c = div(m(c)∇µ) in Q, (3.7)

and

ρµ0 +

(
ρ +

∂ρ

∂c
c

)
µ̄ = −∂ρ

∂c
g − a

1
q (c)�q A(c) + φ(c). (3.8)

For the following mathematical analysis it will be essential to consider the case of a
so-called simple mixture. This is expressed in the relation

1

ρ
= c1

ρ̄1
+

c2

ρ̄2
,

which means that the volume of the mixed fluids is the same as the sum of the volume
filled by the separated fluids. Here c j is the concentration and ρ̄ j is the mass density of
the fluid j = 1, 2. Therefore ρ̂ can be written in the form

ρ̂(c) = 1

α + βc
where β = 1

2ρ̄1
− 1

2ρ̄2
, α = 1

2ρ̄2
+

1

2ρ̄1
(3.9)

with α > 0 and |β| < α. One easily calculates that

∂ρ

∂c
= −βρ2, ρ +

∂ρ

∂c
c = αρ2. (3.10)

Therefore (3.8) reduces to

ρµ0 + ρ2(αµ̄ + βḡ) = βρ2g0 − a
1
q (c)�q A(c) + φ(c), (3.11)
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where g = g0 + ḡ and ḡ = 1
|�|

∫
�

g(x) dx. Hence one sees that µ̄, ḡ are not uniquely
determined by the system. But p̄ = αµ̄ + βḡ is determined uniquely by (3.11) if µ0, g0
and c are known. A closely related identity is

∂tρ = −βρ2∂t c = −β
α

(
ρ +

∂ρ

∂c
c

)
∂t c = −β

α
∂t (ρc).

In particular, this implies

d

dt

∫
�

ρc dx = 0 ⇒ d

dt

∫
�

ρ dx = 0.

Summing up, we have derived (1.1)–(1.5) from the original system (3.1)–(3.4) assuming
the case of a simple mixture.

Now we discuss the conserved quantities and the energy estimate for solutions of the
system. Because of (3.2), (3.3) is equivalent to

∂t (ρc) + div(ρcv) = div(m(c)∇µ).

Therefore the total mass difference ρc and the total mass are conserved:

∫
�

ρ(x, t)c(x, t) dx =
∫
�

ρ0(x)c0(x) dx for all t ∈ (0,∞),

∫
�

ρ(x, t) dx =
∫
�

ρ0(x) dx for all t ∈ (0,∞).

Moreover, multiplying (3.5) with v, (3.7) with µ, and (3.8) with ∂t c, integrating with
respect to�, and using the boundary conditions and (3.6), one sees that every sufficiently
smooth solution of (1.1)–(1.9) satisfies

d

dt
E(c(t), v(t)) = −

∫
�

(
2ν(c(t))|Dv(t)|2 + η(c(t))| div v(t)|2

)
dx

−
∫
�

m(c)|∇µ|2 dx −
∫
∂�

γ |v|2 dσ, (3.12)

where E(c, v) = Efree(c) + Ekin(c, v) and Efree(c), Ekin(c, v) are defined as in (1.10).
Integrating (3.12) yields (2.5).

Finally, we note that (3.6) and (3.10) imply

− βρ2(∂t c + v · ∇c) = −ρ div v. (3.13)

Combining this with (3.7), we obtain the simple identity

div v = β div(m(c)∇µ0). (3.14)
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4. Preliminaries

Notation. Let us fix some notation. If X is a Banach space and X ′ is its dual, then

〈 f, g〉 ≡ 〈 f, g〉X ′,X = f (g), f ∈ X ′, g ∈ X,

denotes the duality product. The inner product on a Hilbert space H is denoted by (., .)H .
Moreover, we use the abbreviation (., .)M = (., .)L2(M).
Function spaces. If M ⊆ R

d is measurable, Lq(M), 1 ≤ q ≤ ∞ denotes the usual
Lebesgue-space and ‖.‖q its norm. Moreover, Lq(M; X) denotes its vector-valued vari-
ant of strongly measurable q-integrable functions/essentially bounded functions, where
X is a Banach space. If M = (a, b), we write for simplicity Lq(a, b; X) and Lq(a, b).
Furthermore, f ∈ Lq

loc([0,∞); X) if and only if f ∈ Lq(0, T ; X) for every T > 0.
Moreover, Lq

uloc([0,∞); X) denotes the uniformly local variant of Lq(0,∞; X) con-
sisting of all measurable f : [0,∞) → X such that

‖ f ‖Lq
uloc([0,∞);X) = sup

t≥0
‖ f ‖Lq (t,t+1;X) < ∞.

Recall that, if X is a Banach space with the Radon-Nikodym property, then

Lq(M; X)′ = Lq ′
(M; X ′) for every 1 ≤ q < ∞

by means of the duality product 〈 f, g〉 = ∫
M 〈 f (x), g(x)〉X ′,X dx for f ∈ Lq ′

(M; X ′),
g ∈ Lq(M; X). If X is reflexive or X ′ is separable, then X has the Radon-Nikodym
property, cf. Diestel and Uhl [9].

Moreover, recall the lemma of Aubin-Lions: If X0 ↪→↪→ X1 ↪→ X2 are Banach
spaces, 1 < p < ∞, 1 ≤ q < ∞, and I ⊂ R is a bounded interval, then

{
v ∈ L p(I ; X0) : dv

dt
∈ Lq(I ; X2)

}
↪→↪→ L p(I ; X1). (4.1)

See J.-L. Lions [11] for the case q > 1 and Simon [16] or Roubíček [14] for q = 1.
Let � ⊂ R

d be a domain. Then W m
q (�), m ∈ N0, 1 ≤ q ≤ ∞, denotes the usual

Lq -Sobolev space, W m
q,0(�) the closure of C∞

0 (�) in W m
q (�), W −m

q (�) = (W m
q ′,0(�))

′,
and W −m

q,0 (�) = (W m
q ′ (�))′. The L2-Bessel potential spaces are denoted by Hs(�),

s ∈ R, which are defined by restriction of distributions in Hs(Rd) to �, cf. Triebel [19,
Sect. 4.2.1]. We note that, if � ⊂ R

d is a bounded domain with C0,1-boundary, then
there is an extension operator E� which is a bounded linear operator E� : W m

p (�) →
W m

p (R
d), 1 ≤ p ≤ ∞ for all m ∈ N and E� f |� = f for all f ∈ W m

p (�), cf. Stein [18,
Chap. VI, Sect. 3.2]. This extension operator extends to E� : Hs(�) → Hs(Rn), which
shows that Hs(�) is a retract of Hs(�). Therefore all results on interpolation spaces of
Hs(Rn) carry over to Hs(�).

Furthermore, we note that

‖ f g‖W 1
p

≤ C p,q‖ f ‖W 1
q
‖g‖W 1

p
for all 1 < p ≤ q ≤ ∞, q > d, (4.2)

which is easily proved using well-known Sobolev embeddings.
Let I = [0, T ] with 0 < T < ∞ or let I = [0,∞) and let X be a Banach space.

Then BC(I ; X) is the Banach space of all bounded and continuous f : I → X equipped
with the supremum norm and BUC(I ; X) is the subspace of all bounded and uniformly
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continuous functions. Moreover, we define BCw(I ; X) as the topological vector space
of all bounded and weakly continuous functions f : I → X . By C∞

0 (0, T ; X)we denote
the vector space of all smooth functions f : (0, T ) → X with supp f ⊂⊂ (0, T ). Finally,
f ∈ W 1

p(0, T ; X), 1 ≤ p < ∞ if and only if f, d f
dt ∈ L p(0, T ; X), where d f

dt denotes the
vector-valued distributional derivative of f . Furthermore, W 1

p,uloc([0,∞); X) is defined

by replacing L p(0, T ; X) by L p
uloc([0,∞); X) and we set H1(0, T ; X) = W 1

2 (0, T ; X).
Finally, we note:

Lemma 4.1. Let X,Y be two Banach spaces such that Y ↪→ X and X ′ ↪→ Y ′ densely
and let 0 < T < ∞. Then L∞(0, T ; Y ) ∩ BUC([0, T ]; X) ↪→ BCw([0, T ]; Y ).

Proof. If f ∈ L∞(0, T ; Y ) ∩ BUC([0, T ]; X), then 〈 f (t), ϕ〉X,X ′ ∈ BUC([0, T ]) for
allϕ ∈ X ′. Now letϕ ∈ Y ′. Since X ′ ↪→ Y ′ densely, we can find a sequenceϕk ∈ X ′ such
thatϕk →k→∞ ϕ in Y ′. Because of f ∈ L∞(0, T ; Y ), this implies that 〈 f (t), ϕk〉Y,Y ′ →
〈 f (t), ϕ〉Y,Y ′ uniformly in [0, T ]. Hence 〈 f (t), ϕ〉Y,Y ′ ∈ BUC([0, T ]). ��
Neumann-Laplace equation. Given f ∈ L1(�), we denote by m( f ) = 1

|�|
∫
�

f (x) dx

its mean value. Moreover, for m ∈ R we set

Lq
(m)(�) := { f ∈ Lq(�) : m( f ) = m}, 1 ≤ q ≤ ∞.

Then

P0 f := f − m( f ) = f − 1

|�|
∫
�

f (x) dx

is the orthogonal projection onto L2
(0)(�). Furthermore, we define

H1
(0) ≡ H1

(0)(�) = H1(�) ∩ L2
(0)(�), (c, d)H1

(0)(�)
:= (∇c,∇d)L2(�).

Then H1
(0)(�) is a Hilbert space due to Poincaré’s inequality. Moreover, let

H−1
(0) ≡ H−1

(0) (�) = H1
(0)(�)

′. Furthermore, we define divn : L2(�)d → H−1
(0) (�) by

〈divn u, ϕ〉H−1
(0) ,H

1
(0)

= −(u,∇ϕ)L2(�) for all ϕ ∈ H1
(0)(�). (4.3)

Note that this operator should not be confused with the distributional divergence extended
to an operator div : L2(�)d → H−1(�) = (H1

0 (�))
′, since the latter is defined only

for C∞
0 (�)- resp. H1

0 (�)-vector fields. The operator divn acts on vector fields, which
do not vanish on the boundary necessarily, and involves boundary conditions in a weak
sense.

Let m ∈ L∞(�) such that, m(x) ≥ m0 > 0 a.e. Then divn(m(x)∇·) : H1
(0)(�) →

H−1
(0) (�), defined by

−〈divn(m(x)∇u), ϕ〉H1
(0),H

−1
(0)

= (m(x)∇u,∇ϕ) for all ϕ ∈ H1
(0)(�)

is an isomorphism because of the lemma of Lax-Milgram. In particular, this is true for
the weak Neumann-Laplace operator �N := divn ∇ and �N u = f for u ∈ H1

(0)(�),

f ∈ H−1
(0) (�) implies

‖u‖H1
(0)(�)

≤ ‖ f ‖H−1
(0) (�)

. (4.4)
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Finally, we note that, if u ∈ H1
(0)(�) solves �N u = f for some f ∈ Lq

(0)(�), 1 < q <

∞, and� is a bounded domain with C2-boundary, then it follows from standard elliptic
theory that u ∈ W 2

q (�) and �u = f a.e. in � and ∂nu|∂� = 0 in the sense of traces.
Moreover,

‖u‖W 2
q (�)

≤ Cq‖ f ‖Lq (�) for all f ∈ Lq
(0)(�) (4.5)

with a constant Cq depending only on 1 < q < ∞, d, and �.
For the following we denote

W 2
p,N (�) =

{
u ∈ W 2

p(�) : ∂nu|∂� = 0
}
,

where 1 < p < ∞.
By a simple duality argument one can define so-called very weak solutions of the

Neumann-Laplace operator, which is the content of the next lemma.

Lemma 4.2. Let 1 < p < ∞. Then for every f ∈ (W 2
p′,N (�))

′ there is a unique
u ∈ L p(�) such that

(u,�ϕ)� = 〈 f, ϕ〉(W 2
p′,N )

′,W 2
p′,N

(4.6)

for all ϕ ∈ W 2
p′,N (�). Moreover, there is some C p such that

‖u‖L p(�) ≤ C p‖ f ‖(W 2
p′,N (�))

′ (4.7)

for all u ∈ L p(�) and f ∈ (W 2
p′,N (�))

′, solving (4.6).

Proof. Since �N : W 2
p′,N (�) → L p′

(�) is a bijection, the adjoint �′
N : L p(�) →

(W 2
p′,N (�))

′ is a bijection too. Hence for every f ∈ (W 2
p′,N (�))

′ there is a unique

u ∈ L p(�) such that �′
N u = f . Moreover, (4.7) holds since (�′

N )
−1 is continuous.

Then

(u,�ϕ)� = (u,�Nϕ)� = 〈�N u, ϕ〉(W 2
p′,N (�))

′,W 2
p′,N (�)

= 〈 f, ϕ〉(W 2
p′,N (�))

′,W 2
p′,N (�)

for all ϕ ∈ W 2
p′,N (�) by the definition of the adjoint. ��

A result related to energy inequalities. The following lemma will be useful for passing
to the limit in energy inequalities.

Lemma 4.3. Let E : [0, T ) → [0,∞), 0 < T ≤ ∞, be a lower semi-continuous func-
tion and let D : (0, T ) → [0,∞) be an integrable function. Then

E(0)ϕ(0) +
∫ T

0
E(t)ϕ′(t) dt ≥

∫ T

0
D(t)ϕ(t) dt (4.8)

holds for all ϕ ∈ W 1
1 (0, T ) with ϕ(T ) = 0 if and only if

E(t) +
∫ t

s
D(τ ) dτ ≤ E(s) (4.9)

holds for all s ≤ t < T and almost all 0 ≤ s < T including s = 0.



56 H. Abels

Proof. First assume that (4.8) holds. If s = 0 and 0 ≤ t < T , then we choose

ϕε,t (τ ) =

⎧⎪⎨
⎪⎩

1 if 0 ≤ τ < t
1 − 1

ε
(τ − t) if t ≤ τ ≤ t + ε

0 otherwise

in (4.8). Then
∫ T

0
E(τ )ϕ′

ε(τ ) dτ = 1

ε

∫ t+ε

t
E(τ ) dτ →ε→0 E(t)

for every Lebesgue point t of E (hence almost everywhere). This implies that (4.9) holds
for s = 0 and all Lebesgue points 0 ≤ t < ∞. Since E is lower semi-continuous, we
have

E(t) ≤ lim inf
t ′→t

E(t ′).

Therefore, choosing a sequence of Lebesgue points t ′j → t , we conclude that (4.9) holds
for all 0 ≤ t < ∞. In order to prove (4.9) one chooses ϕ = ϕε,t − ϕε,s in (4.8) and
proceeds as before.

Conversely, assume that (4.9) holds for all s ∈ M with |[0, T ] \ M | = 0. Then (4.8)
holds for every ϕ ∈ W 1

1 (0, T ) such that ϕ(T ) = 0 and ϕ′(τ ) is piecewise constant on
some intervals [tk, tk+1], k = 0, . . . , N , 0 = t0 < t1 < · · · < tN+1 = T , where tk ∈ M ,
k = 0, . . . , N +1. Since every ϕ′ ∈ L1(0, T ) can be approximated by piecewise constant
functions of the latter form, we conclude that (4.8) holds. ��
Monotone Operators. Let X be a real-valued Banach space. Recall that A : X → X ′ is
a monotone operator if and only if

〈A(x)− A(y),x − y〉X ′,X ≥ 0 for all x, y ∈ X.

Moreover, a monotone operator A is maximal monotone if for everyw,x ∈ X such that

〈w − A(y),x − y〉X ′,X ≥ 0 for all y ∈ X (4.10)

w = A(x) holds.
An important consequence of (4.10) is the following lemma.

Lemma 4.4. Let A : X → X ′ be a maximal monotone operator. Assume that xn,x ∈ X,
y ∈ X ′, n ∈ N, satisfy xn ⇀n→∞ x, A(xn) ⇀n→∞ y, and lim supn→∞〈A(xn),xn〉 ≤
〈y,x〉. Then y = A(x).

The result follows from the fact that a maximal monotone operator is of “type M”, cf.
[15, Sect. II.2].

We define the q-Laplacian �q : W 1
q (�) → W −1

q,0(�) = (W 1
q ′(�))′, 1 < q < ∞, by

− 〈�qu, ϕ〉W−1
q′,0,W

1
q

=
∫
�

|∇u|q−2∇u · ∇ϕ dx for all ϕ ∈ W 1
q (�). (4.11)

It is easy to check that −�qu ∈ ∂ϕ(u), where ϕ : W 1
q,0(�) → R is defined by

ϕ(u) = 1

q
‖∇u‖q

Lq (�)
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and w ∈ ∂ϕ(u) ⊆ W −1
q,0(�) if and only if

〈w, v − u〉W−1
q,0,W

1
q

≤ ϕ(v)− ϕ(u) for all v ∈ W 1
q (�).

(Consider e.g. the function f (t) = ϕ((1 − t)u + tv), t ∈ R, and use that f ′(t) is
non-decreasing since f (t) is convex.) In particular, this implies that −�q : W 1

q (�) →
W −1

q,0(�) is a monotone operator. Moreover, −�q is even strictly monotone, i.e.,

〈�qu −�qv, u − v〉W−1
q′,0,W

1
q

= 0 if and only if u = v,

which follows from the fact that x �→ 1
q |x|q is strictly convex. Furthermore, we note

that

λ(u, u)L2 + 〈−�qu, u〉W−1
q′,0,W

1
q

= |λ|‖u‖2
L2(�)

+ ‖∇u‖q
Lq (�).

Hence λ−�q is coercive on W 1
q (�) for every λ > 0 if q ≥ 2, i.e.,

λ(u, u)L2 + 〈−�qu, u〉W−1
q′,0,W

1
q

‖u‖W 1
q (�)

→ ∞ as ‖u‖W 1
q (�)

→ ∞. (4.12)

Therefore we obtain from [15, Cor. 2.2, Chap. II] the following lemma.

Lemma 4.5. Let 2 ≤ q < ∞. Then −�q : W 1
q (�) → W −1

q ′,0(�) is maximal monotone

and λ−�q : W 1
q (�) → W −1

q ′,0(�) is bijective with strongly continuous inverse for every
λ > 0.

Proof. The fact that −�q is maximal monotone follows from [15, Prop. 2.2, Chap. II].
Moreover, λ−�q is coercive as seen above. Hence [15, Cor. 2.2 and Lemma 2.1] yield
that λ−�q is onto. Since λ−�q is strictly monotone, λ−�q is a bijection.

Finally, if fn →n→∞ f in W −1
q ′,0(�) and (λ−�q)un = fn, (λ−�q)u = f , then

λ‖un − u‖2
L2 − 〈�qun −�qu, un − u〉 = 〈 fn − f, un − u〉 →n→∞ 0 (4.13)

since fn →n→∞ f strongly and ‖un‖L2 + ‖∇un‖Lq ≤ C because of (4.12) and the
boundedness of ‖ fn‖W−1

q′,0
. Hence un →n→∞ u in L2(�). Since un , n ∈ N, is bounded

in W 1
q (�), un ⇀n→∞ u in W 1

q (�). Finally, since

lim
n→∞ ‖∇un‖q

Lq = lim
n→∞ −〈�qun, un〉 = −〈�qu, u〉 = ‖∇u‖q

Lq ,

un →n→∞ u strongly in W 1
q (�). ��

Remark 4.6. If we consider−�q : Lq(0, T ; W 1
q (�)) → Lq ′

(0, T ; W 1
q ′,0(�)), then−�q

is still maximal monotone since
∫ T

0
〈−�qu − f, u − v〉W−1

q′,0,W
1
q

dt ≥ 0
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for all u ∈ Lq(0, T ; W 1
q (�)) and some f ∈ Lq ′

(0, T ; W 1
q ′,0(�)), v ∈ Lq(0, T ; W 1

q (�))

implies −�qv(t) = f (t) for almost all t ∈ (0, T ), which can be seen as follows: Choos-
ing u = v + tw above with w ∈ Lq(0, T ; W 1

q (�)), t ∈ R, arbitrary, we obtain

t
∫ T

0
〈−�q(v + tw)− f, w〉W−1

q′,0,W
1
q

dt ≥ 0.

Dividing by t and passing t → 0, we obtain
∫ T

0
〈−�qv − f, w〉W−1

q′,0,W
1
q

dt ≥ 0

for all w ∈ Lq(0, T ; W 1
q (�)), which implies −�qv = f almost everywhere.

5. Approximate System and Implicit Time Discretization

In this section we construct weak solutions of the approximate system

ρ∂tv + ρv · ∇v − div S(c, Dv) + ρ∇g0 − δg0
v

2
= ρµ0∇c in Q, (5.1)

ρt + div(ρv) + δg0 = 0 in Q, (5.2)

P0 (ρct + ρv · ∇c) = div(m(c)∇µ0) in Q, (5.3)

and

ρµ0 + ρ2 p̄(t) = βρ2g0 + φ(c)− ∂A

∂c
�q A(c), (5.4)

together with (1.5)–(1.9). Here as before P0 f = f − f , where f denotes the mean
value of f on �. Because of the damping term δg0 in (5.2), every sufficiently smooth
solution of the latter system satisfies

d

dt
E(c(t), v(t)) = −

∫
�

S(c(t), Dv(t)) : Dv(t) dx

−
∫
�

m(c)|∇µ|2 dx − γ

∫
∂�

|v|2 dσ − δ

∫
�

|g0|2 dx,

which implies an additional L2(Q)-bound of g0. The latter energy identity can be
obtained by multiplying (5.1) by v, (5.3) by µ, (5.4) by ∂t c and using (5.2) together
with −βρ2∂t c = ∂tρ. Similar calculations are contained in the following proofs.

The main result of this section is:

Theorem 5.1. Let q > d, d = 2, 3, δ > 0, let Assumption 2.1 be satisfied and let
R, ε > 0 and 
 ∈ C2(R),
(s) ≥ 0,
′′(s) ≥ −M be such that (2.7) holds. Then for
every v0 ∈ L2(�)d , c0 ∈ W 1

q (�) with E(v0, c0) < R, there are some

v ∈ BCw([0,∞); L2(�)d) ∩ L2(0,∞; H1
n (�)),

c ∈ BCw([0,∞); W 1
q (�)), µ0 ∈ L2(0,∞; H1

(0)(�)),

g0 ∈ L2(0,∞; L2
(0)(�)), p̄ ∈ L2

uloc([0,∞))

with (v, c)|t=0 = (v0, c0) solving (5.1)–(5.4) together with (1.6)–(1.8) in the following
weak sense:
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1. For every ψ ∈ C∞
0 (0,∞; H1

n (�) ∩ L∞(�)d),

−(v, ∂tψ)Q + (v · ∇v,ψ)Q + (ρ−1S(c, Dv),∇ψ)Q + (S(c, Dv),∇ρ−1 ⊗ ψ)Q

+γ (ρ−1v,ψ)S − (g0, divψ)Q − δ

2
(ρ−1g0v,ψ)Q = (µ0∇c, ψ)Q . (5.5)

2. For every ϕ ∈ C∞
0 (0,∞; C1(�)),

−(ρ, ∂tϕ)Q − (ρv,∇ϕ)Q + δ(g0, ϕ)Q = 0, (5.6)

(ρc, P0∂tϕ)Q + (ρcv,∇ϕ)Q − δ(g0c, P0ϕ)Q = (m(c)∇µ0,∇ϕ)Q, (5.7)(
a− 1

q (c)
(
ρµ0 + ρ2( p̄ − βg0)− φ(c)

)
, ϕ

)
Q

=
(
|∇Λ|q−2∇Λ,∇ϕ

)
Q
, (5.8)

where A = A(c).

Moreover,

E(c(t), v(t)) + γ ‖v‖2
L2(S(s,t))

+ δ‖g0‖2
L2(Q(s,t))

+
∫

Q(s,t)

(
S(c(t), Dv(t)) : Dv(t) + m(c)|∇µ0|2

)
d(x, τ ) ≤ E(c(s), v(s)) (5.9)

for all t ∈ [s,∞) and almost all s ∈ [0,∞) including s = 0.

We note that for the weak formulation (5.7) one uses that (5.2) implies

ρ∂t c + ρv · ∇c = ∂t (ρc) + div(ρcv) + δg0c.

In order to prove the latter theorem, we use an implicit time discretization. To this
end, let h = 1

N , N ∈ N. Then for given vk, ck and ρk = ρ̂(ck), k ∈ N0, we determine
(vk+1, g0,k+1, ck+1, µ0,k+1, p̄k+1) as a solution of the non-linear elliptic system

(
ρk
v − vk

h
+ ρkv · ∇v,ψ

)
�

+ (S(ck, Dv),∇ψ)�

+γ (v, ψ)∂� + (g0, div(ρkψ))� = (ρkµ0∇c, ψ)� +
δ

2
(g0v,ψ)� (5.10)

for all ψ ∈ H1
n (�),

ρ − ρk

h
+ div(ρkv) + δg0 = 0 in �, (5.11)

(
ρk

c − ck

h
+ ρkv · ∇c, ϕ

)
�

= − (m(ck)∇µ0,∇ϕ)� (5.12)

for all ϕ ∈ H1
(0)(�), and

(
|∇ A(c)|q−2∇ A(c),∇ϕ

)
�

=
(

c − ck

A(c)− A(ck)

(
ρkµ0 + ρρk p̄ − βρρkg0 − φ0(c) + κ

c + ck

2

)
, ϕ

)
�

(5.13)
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for all ϕ ∈ W 1
q (�). Here ρ = ρ̂(c), ρk = ρ̂(ck), and κ ∈ R is chosen such that


(c) = 
0(c) − κ
2 c2 with 
0(c) convex, which is possible since 
′′(c) ≥ −M >

−∞. Moreover, we note that, if c = ck , then c−ck
A(c)−A(ck)

above has to be replaced by

A′(c)−1 = a− 1
q (c). For simplicity, we will write c−ck

A(c)−A(ck)
even in the case c = ck ,

having the latter replacement in mind.
Finally, we note that (5.11) implies

∫
�

ρ dx =
∫
�

ρk dx. (5.14)

Lemma 5.2. Let q > d = 2, 3, let R, h, δ > 0, 0 < ε <
|α|
|β| − 1, and let


 ∈ C2(R),
(c) ≥ 0,
′′(c) ≥ −M be chosen such that (2.7) holds. Then for every
(vk, ck) ∈ L2(�)d × W 1

q (�) with E(vk, ck) < R there are some

(v, g0, c, µ0, p̄) ∈ H1
n (�)× L2

(0)(�)× W 1
q (�)× H2(�) ∩ L2

(0)(�)× R

solving (5.10)–(5.13) and which satisfy the discrete energy estimate

E(c, v) +
∫
�

ρk
|v − vk |2

2
dx + δh‖g0‖2

L2(�)
+ γ h‖v‖2

L2(∂�)

+ h
∫
�

S(ck, Dv) : Dv dx + h
∫
�

m(ck)|∇µ0|2 dx ≤ E(ck, vk). (5.15)

Moreover, there is a constant C(R) independent of (vk, ck) such that | p̄| ≤ c.

Proof. We first show the a priori estimate (5.15) for any (v, g0, c, µ, p̄) ∈ H1(�)d ×
L2(�)× W 1

q (�)× H2(�)× R solving (5.10)–(5.13) and satisfying Efree(c) ≤ R. First

of all, because of (5.11) multiplied with 1
2 |v|2 we obtain

∫
�

ρk(v · ∇v) · v dx =
∫
�

ρkv · ∇ |v|2
2

dx = −
∫
�

div(ρkv)
|v|2

2

=
∫
�

ρ − ρk

h

|v|2
2

+ δ
∫
�

g0
|v|2

2
.

Thus
∫
�

(
ρk |v|2 − ρkvk · v)

h
dx +

∫
�

ρk(v · ∇v) · v dx − δ

∫
�

g0
|v|2

2
dx

=
∫
�

ρk
|v|2
2h

dx −
∫
�

ρk
|vk |2
2h

dx +
∫
�

ρk
|v − vk |2

2h
dx +

∫
�

ρ − ρk

h

|v|2
2

dx

=
∫
�

ρ
|v|2
2h

dx −
∫
�

ρk
|vk |2
2h

dx +
∫
�

ρk
|v − vk |2

2h
dx,

where we have used the simple algebraic relation

a · (a − b) = |a|2
2

− |b|2
2

+
|a − b|2

2
, a, b ∈ R

d . (5.16)
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Hence, choosing ψ = v ∈ H1
n (�) in (5.10), we derive

∫
�

ρ
|v|2
2h

dx +
∫
�

ρk
|v − vk |2

2h
dx +

∫
�

S(ck, Dv) : Dv dx + γ
∫
∂�

|v|2 dσ

=
∫
�

ρk
|vk |2
2h

dx +
∫
�

ρkµ0∇c · v dx +
∫
�

g0 div(ρkv) dx. (5.17)

Moreover, choosing ϕ = µ0 in (5.12), we conclude∫
�

ρk
c − ck

h
µ0 dx +

∫
�

ρkµ0∇c · v dx = −
∫
�

m(ck)|∇µ0|2 dx, (5.18)

where∫
�

ρk
c − ck

h
µ0 dx +

∫
�

ρρk
c − ck

h
dx p̄ =

∫
�

φ0(c)
c − ck

h
dx − κ

∫
�

c2 − c2
k

h
dx

+
1

h

∫
�

|∇ A(c)|q−2∇ A(c) · ∇(A(c)− A(ck)) dx −
∫
�

ρ − ρk

h
g0 dx

≥ 1

h
(Efree(c)− Efree(ck)) +

∫
�

g0 div(ρkv) dx (5.19)

because of (5.13) with ϕ = 1
h (A(c) − A(ck)). Here we have used (5.11), (5.16), the

simple relation

ρ − ρk = βρρk (ck − c) , (5.20)

and that

φ0(c)(c − ck) ≥ 
0(c)−
0(ck),
(
|∇u|q−2∇u,∇(u − uk)

)
�

≥ 1

q

(‖∇u‖q
Lq − ‖∇uk‖q

Lq

)
,

since
0 is convex, −�qu is the subgradient of u �→ 1
q ‖∇u‖q

Lq (�), cf. Sect. 4. Moreover,
because of (5.20) and (5.14),

−β
∫
�

ρρk
c − ck

h
dx p̄ =

∫
�

(ρ − ρk) dx p̄ = 0.

Combining (5.17)–(5.19), we conclude (5.15).
Furthermore, we note that, since c(x) ∈ [−1 − ε, 1 + ε] due to Efree(c) ≤ R by

assumption and (2.7), we conclude

‖c‖W 1
q (�)

≤ C(ε, R).

Finally, the estimate | p̄| ≤ C follows from (5.13) with ϕ = A(c)−A(ck)
c−ck

ρ−1ρ−1
k .

In order to show existence of weak solutions, we use a homotopy argument based
on the Leray-Schauder degree, cf. e.g. [8]. To this end we introduce the operators
Lk,Fk : X → Y where

X = H1
n (�)× L2

(0)(�)× W 1
q (�)× H1

(0)(�)× R,

Y = H−1
n (�)× L2

(0)(�)× H−1
(0) (�)× W −1

q ′,0(�),
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and for w = (v, g0, c, µ0, p̄) ∈ X ,

Lkw =
⎛
⎜⎝

Lk(v, g0)

div(ρkv) + δg0 + p̄
divn(m(ck)∇µ0)

A(c)−�q A(c)

⎞
⎟⎠ ,

〈Lk(v, g0), ϕ〉H−1
n ,H1

n
= (S(ck, Dv),∇ϕ)� + γ (v, ϕ)∂� − (g0, div(ρkϕ))�

for all ϕ ∈ H1
n (�) and

Fkw =

⎛
⎜⎜⎜⎝
ρkµ0∇c + δ

2g0v − ρk
v−vk

h − ρkv · ∇v
−P0(

ρ̂(c)−ρk
h )− ∫

�
ρ̂(c)ρk

c−ck
h dx + p̄

P0
(
ρk

c−ck
h + ρkv · ∇c

)
c−ck

A(c)−A(ck)
Fk(g0, c, µ0, p̄) + A(c)

⎞
⎟⎟⎟⎠ , where

Fk(c, g0, µ) = ρkµ0 + ρkρ p̄ − βρρkg0 − φ0(c) + κ
c + ck

2
.

Note that divn : L2(�)d → H−1
(0) (�) is defined as in (4.3). Here we have to modify

ρ̂(c) = 1
α+βc outside of [−1 − ε, 1 + ε] to some ρ̂ ∈ C1(R) in order to have Fk(w) well

defined for all c ∈ W 1
q (�).

Using the lemma of Lax-Milgram,

(
Lk(v, g0)

div(ρkv) + δg0

)
=

(
f1
f2

)
∈

H−1
n (�)

×
L2
(0)(�)

has a unique solution v ∈ H1
n (�), g0 ∈ L2

(0)(�) since

〈Lk(v, g0), v〉H1
n ,H

−1
n

+ (div(ρkv), g0)� + δ(g0, g0)� ≥ c0‖v‖2
H1(�)

+ δ‖g0‖2
L2(�)

.

Moreover, we note that div(ρkv) + p̄ = f ∈ L2(�) is equivalent to div(ρkv) = P0 f
and p̄ = m( f ), since

∫
�

div(ρkv) dx = 0 due to n · v|∂� = 0. The invertibili-
ty of divn(m(ck)∇·) : H1

(0)(�) → H−1
(0) (�) is a simple consequence of the lemma

of Lax-Milgram too, the invertibility of I − �q : W 1
q (�) → W −1

q ′,0(�) follows from

Lemma 4.5, and c �→ A(c) is an invertible mapping on W 1
q (�), since A′(c) = a

1
q (c) ≥

m
1
q
0 > 0. Altogether it follows that Lk : X → Y is invertible and L−1

k : Y → X is
continuous.

Therefore w = (v, g0, c, µ0, p̄) is a solution of (5.10)–(5.13) if and only if Lk(w)−
Fk(w) = 0, where we note that Lk(w) = Fk(w) implies

0 =
∫
�

ρ̂(c)ρk(c − ck) dx = −β−1
∫
�

(ρ̂(c)− ρk) dx

due to (5.20). Moreover, Lk(w)− Fk(w) = 0 is equivalent to

w − L−1
k (Fk(w)) = 0,
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since L−1
k (0) = 0 due to A(0) = 0. Moreover, it is easy to observe that Fk : X → Y is

a continuous and bounded mapping, where we note that

W 1
q (�) � c �→ c − ck

A(c)− A(ck)
∈ W 1

q (�)

is continuous since

A(c)− A(ck)

c − ck
=

∫ 1

0
A′(τc + (1 − τ)ck) dτ =

∫ 1

0
a

1
q (τc + (1 − τ)ck) dτ (5.21)

and a(s) ≥ m0 > 0. Moreover, Kk(w) := L−1
k (Fk(w)) defines a compact operator on

X since

Fk(w) ∈ L
3
2 (�)d × W 1

q (�)× L2
(0)(�)× L2(�) ↪→↪→ Y

for all w ∈ X .
Now we are able to apply a homotopy argument in order to show that the Leray-

Schauder degree of I − Kk at 0 is 1 in some suitable open set U . To this end, let
ρ̂τ (c) = (α + (1 − τ)βc)−1, τ ∈ [0, 1]. Replacing vk, ck, ρ, ρk, β, κ , and φ0 in (5.10)–
(5.13) by

vτk = (1 − τ)vk, cτk = (1 − τ)ck, ρτ = ρ̂τ (c), ρτk = ρ̂τ (c
τ
k ),

βτ = (1 − τ)β, κτ = (1 − τ)κ, φτ0 (s) = (1 − τ)φ0(s)

for every τ ∈ [0, 1], and denoting by Lτk ,F τ
k ,Kτ

k the corresponding operators, we get a
family of compact operator Kτ

k , depending continuously on τ ∈ [0, 1] such that K0
k = Kk

and

deg(I + K0
k , 0,U ) = deg(I + K1

k , 0,U ),

provided that

(I + Kτ
k )(w) �= 0 for all w ∈ ∂U, τ ∈ [0, 1].

Because of the energy estimate (5.15) and the estimate of p̄, we have ‖w‖X < C(R, δ)
for any solution of (5.10)–(5.13) such that Efree(c) ≤ R, which implies the latter condi-
tion for U = {w ∈ X : ‖w‖X < C(R, δ), Efree(c) < R}.

In order to show that deg(I + K1
k , 0,U ) = 1, we define a second homotopy by

Kτ
k (w) = (L1

k)
−1(2 − τ)F1

k (w), τ ∈ [1, 2].
Then w − Kτ

k (w) = 0 if and only if w = (v, g0, c, µ0, p̄) is a solution of

λ

(
ρ0
v

h
+ ρ0v · ∇v − δ

2
g0v, ϕ

)
�

+ (ν(0)Dv, Dϕ)� + γ (v, ϕ)∂�,

= (ρ0g0, div ϕ)� + λ(ρ0µ0∇c, ϕ)�, (5.22)

ρ0 div v + δg0 = 0, (5.23)

λρ0
c

h
+ λρ0v · ∇c = div(m(0)∇µ0), (5.24)

(1 − λ)A(c)−�q A(c) = λ
c

A(c)
(ρ0µ0 + ρ2

0 p̄), (5.25)

(1 − λ) p̄ = −ρ2
0

∫
�

c

h
dx (5.26)
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for all ϕ ∈ H1
n (�) together with n ·v|∂� = ∂nc|∂� = ∂nµ0|∂� = 0, where ρ0 = ρ̂(0) =

α−1 and λ = (2 − τ). Choosing ϕ = v in (5.22), multiplying (5.24) by µ0 and (5.25)
by A(c)

h , we obtain by similar calculations as before

λρ0
‖v‖2

2

2h
+ (1 − λ)

‖A(c)‖2
2

2h
+ λ

‖∇ A(c)‖q
q

qh
+ (1 − λ)λ p̄2

+ ν(0)‖Dv‖2
2 + γ ‖v‖2

L2(∂�)
+ δ‖g0‖2

2 + m(0)‖∇µ0‖2
2 = 0, (5.27)

where one uses that
∫
�

(ρ0v · ∇v · v − δ

2
g0|v|2) dx = −

∫
�

(ρ0 div v + δg0)
|v|2

2
dx = 0,

‖∇ A(c)‖q
q

q
= ‖∇ A(c)‖q

q

q
− ‖∇ A(0)‖q

q

q
≤ −〈�q A(c), A(c)− A(0)〉 = −〈�q A(c), A(c)〉,

λρ2
0

∫
�

c

h
dx p̄ = −λ(1 − λ) p̄2

because of (5.23), and since −�q is the subgradient of u �→ ‖∇u‖q
q

q . Hence (5.27) implies
thatw = Kτ

k (w), τ ∈ [1, 2], if and only ifw = 0. Therefore any solution ofw−Kτ
k (w)

remains in U and

deg(I + Kk, 0,U ) = deg(I + K2
k , 0,U ) = deg(I, 0,U ) = 1

since K2
k = 0. Therefore (5.10)–(5.13) has a solution in U . ��

Now let N ∈ N be given and let (vk+1, g0,k+1, ck+1, µ0,k+1, p̄k+1), k ∈ N0 := N∪{0},
be chosen successively as a solution of (5.10)–(5.13) with h = 1

N and (vk, ck) as initial
value. Moreover, define f N (t) : [−h,∞) by f N (t) = fk for t ∈ [(k − 1)h, kh) and
f ∈ {v, g0, c, µ0} (setting g0,0 = µ0,0 = 0). For the following we denote

(
�+

h f
)
(t) = f (t + h)− f (t), (�−

h f )(t) = f (t)− f (t − h), (5.28)

gh ≡ (τ ∗
h g)(t) = g(t − h), ∂±

t,h f = 1

h
�±

h f. (5.29)

Then, choosing ψ = ρ−1
k

∫ k(h+1)
kh ϕ(x, t) dt in (5.10), where ϕ ∈ C∞

0 ((0,∞); H1
n (�)),

and summing over all k ∈ N0, gives

(∂−
t,hv

N + vN · ∇vN , ϕ)Q + (S̃(cN
h , DvN )− gN

0 I, Dϕ)Q + γ ((ρN
h )

−1vN , ϕ)S

− δ
2
((ρN

h )
−1gN

0 v
N , ϕ)Q = (µN

0 ∇cN , ϕ)Q − (∇(ρN
h )

−1 · S(cN
h , DvN ), ϕ)Q,

(5.30)

where ϕ ∈ C∞
0 ((0,∞); H1

n (�)) is arbitrary and S̃(c, Dv) = ρ̂−1(c)S(c, Dv). More-
over, since

(∂−
t,hvN , ϕ)Q = −(vN , ∂

+
t,hϕ)Q + (v0, ϕ|t=0)�,
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we conclude

−(vN , ∂+
t,hϕ)Q + (vN · ∇vN , ϕ)Q + ((S̃(cN

h , DvN )− gN I, Dϕ)Q + γ ((ρN
h )

−1vN , ϕ)S

− δ
2
((ρN

h )
−1gN

0 v
N , ϕ)Q = (µN

0 ∇cN , ϕ)Q − (∇(ρN
h )

−1 · S(cN
h , DvN ), ϕ)Q, (5.31)

for all ϕ ∈ C∞
0 (0,∞; H1

n (�)). In the same way, one obtains that

− (ρN , ∂+
t,hψ)Q − (ρN

h v
N ,∇ψ)Q + δ(g0, ψ) = 0, (5.32)

(ρN cN , ∂+
t,hψ)Q + (ρN

h cNvN − m N ∇µN ,∇ψ)Q = δ(gN
0 cN , ψ)Q (5.33)

for all ψ ∈ C∞
0 (0,∞; H1

(0)(�)), where m N = m(τ ∗
h cN ) and

(
|∇ A(cN )|q−2∇ A(cN ),∇ψ

)
Q

=
(

�−
h cN

�−
h A(cN )

(
ρN

h µ
N
0 + ρNρN

h ( p̄
N − βgN

0 )− φ0(c
N ) +

κ

2
(cN + cN

h )
)
, ψ

)

Q

(5.34)

for all ψ ∈ C∞
0 (0,∞; W 1

q (�)). Here we have used that (5.11) implies

ρk
c − ck

h
+ ρkv · ∇c = ρc − ρkck

h
+ div(ρkvc) + δg0c.

Finally, let EN (t) be the piecewise linear interpolation of E(ck, vk) at tk = kh, k ∈ N0,
and let

DN (t) = γ ‖vk+1‖2
L2(∂�)

+ δ‖g0,k+1‖2
L2(�)

+
∫
�

(
S(ck, Dvk+1) : Dvk+1 + m(ck)|∇µ0,k+1|2

)
dx

for all t ∈ (tk, tk+1), k ∈ N0.

Then (5.15) implies

− d

dt
EN (t) = E(ck, vk)− E(ck+1, vk+1)

h
≥ DN (t) for all t ∈ (tk, tk+1), k ∈ N0,

and therefore

E(c0, v0)ϕ(0) +
∫ ∞

0
EN (t)ϕ

′(t) dt ≥
∫ ∞

0
DN (t)ϕ(t) dt (5.35)

for all ϕ ∈ W 1(0,∞) with ϕ ≥ 0. In particular, we have

E(cN (t), vN (t)) +
∫

Q(s,t)

(
2ν(cN

h )|DvN |2 + η(cN
h )| div vN |2

)
d(x, τ ) + δ‖gN

0 ‖2
L2(S(s,t))

+ γ ‖vN ‖2
L2(S(s,t))

+
∫

Q(s,t)

m(cN
h )|∇µN

0 |2 d(x, τ ) ≤ E(cN (s), vN (s)) (5.36)

for all 0 ≤ s ≤ t < ∞ with s, t ∈ hN0.
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Using the bounds given by the energy estimate above, we can pass to a subsequence,
again denoted by (vN , gN

0 , cN , µN
0 , p̄N ), such that

(vN , µN
0 , g

N
0 , p̄N ) ⇀N→∞ (v, µ0, g0, p̄) in L2(0,∞; H1(�)d+1 × L2(�)× R),

(vN , cN ) ⇀∗
N→∞ (v, c) in L∞(0,∞; L2(�)d × W 1

q (�)).

In order to pass to the limit in all non-linearities, we show strong convergence of
vN , cN ,∇ A(cN ).

To this end, we define ρ̃N and ṽN as piecewise linear interpolation of ρN (tk), vN (tk),
resp., where tk = kh, k ∈ N0. More precisely, ρ̃N = 1

hχ[0,h] ∗t ρ
N and ṽN = 1

hχ[0,h] ∗t

vN , where the convolution is only taken with respect to the time variable t .
Then ∂t ṽ

N = ∂−
t,hv

N and

‖ṽN − vN ‖H−s (�) ≤ h‖∂t ṽ
N ‖H−s (�), ‖ρ̃N − ρN ‖H−s (�) ≤ h‖∂t ρ̃

N ‖H−s (�)

(5.37)

for all s ≥ 0. Because of (5.30), ∂t ṽ
N is bounded in L2(0,∞; H−s(�)) for any s > d

2 ,
where one uses that vN · ∇vN ∈ L2(0,∞; L1(�)), µN

0 ∇cN ∈ L2(Q) and ∇(ρN
h )

−1 ·
S(cN

h , DvN ) ∈ L2(0,∞; L1(�)) are bounded due to (5.36). Hence, applying the lemma
of Aubin-Lions, we conclude that

ṽN →N→∞ v in L2(0, T ; Hs(�)),

for all 0 ≤ s < 1, 0 < T < ∞, and for a suitable subsequence. On the other hand,
(5.37) implies

ṽN − vN →N→0 0 in L2(0,∞; H−s(�)) if s >
d

2
.

Since ṽN , vN are bounded in L∞(0,∞; L2(�)), we also obtain

ṽN − vN →N→0 0 in L p(0, T ; H−s(�))

for any 1 < p < ∞ and s, T > 0 by interpolation. Moreover, since ṽN , vN are bounded
in L2(0,∞; H1(�)), we conclude

vN →N→∞ v in L2(0, T ; Hs(�)) for all T > 0, 0 ≤ s < 1.

Finally, since ṽN ∈ L∞(0,∞; L2(�)) is bounded and ṽN converges weakly in

H1(0,∞; H−s(�)) ↪→ BUC([0,∞); H−s(�))

for s > d
2 , and ṽN |t=0 = v0, we conclude v ∈ BCw([0,∞); L2(�)) and v|t=0 = v0,

cf. Lemma 4.1.
Similarly, because of (5.32), ∂t ρ̃

N is bounded in L2
uloc([0,∞); H−1(�)). On the

other hand, ρ̃N ∈ L∞(0,∞; W 1
q (�)) because of c ∈ L∞(0,∞; W 1

q (�)) and c(t,x) ∈
[−1 − ε, 1 + ε]. Therefore the lemma of Aubin-Lions yields that for a suitable subse-
quence,

ρ̃N →N→∞ ρ̃ in L2(QT ) for all T > 0,



Diffuse Interface Model for Viscous Incompressible Newtonian Fluids 67

and almost everywhere for some ρ̃ ∈ L∞(Q). Furthermore, by (5.37)

ρ̃N − ρN →N→∞ 0 in L2
uloc([0,∞); H−1(�)).

As before we conclude that also ρN = ρ̂(cN ) converges strongly in L2(QT ) for every
T > 0 and almost everywhere. Furthermore, sinceα+βcN = (ρN )−1, also cN converges
strongly in L2(QT ), T > 0, and almost everywhere and we conclude ρ̃= ρ̂(c). Since
ρ̃N ∈ H1

uloc([0,∞); H−1(�)) ↪→ BUC([0,∞); H−1(�)) and ρ̃N ∈ L∞(0,∞; W 1
q (�))

are bounded, ρ ∈ BCw([0,∞); W 1
q (�)) due to Lemma 4.1. Moreover, since ρN ∈

H1(0, T ; H−1(�)), 0 < T < ∞, converges weakly, ρ|t=0 = ρ0 = limN→∞ ρN |t=0
weakly in H−1(�). Therefore also c ∈ BCw([0,∞); W 1

q (�)) and c|t=0 = c0.
Using these convergence results, it is easy to pass to the limit in Eqs. (5.32), (5.33)

to obtain (5.6), (5.7).
Moreover, the right-hand side of (5.34) converges to

f = a(c)−
1
q

(
ρµ0 + ρ2( p̄(t)− βg0)− φ(c)

)

weakly in L2(QT ) for every T < ∞, where one can use (5.21) in order to pass to the
limit in c−ck

A(c)−A(ck)
.

Hence �q A(cN ) converges weakly in L2(QT ) to f for every T < ∞ and therefore

−〈�q A(cN ), A(cN )〉XT ,X ′
T

= ( f N , A(cN ))QT →N→∞ ( f, A(c))QT

with XT = Lq(0, T ; W 1
q (�)), where we note that −�q is a maximal monotone operator

on XT due to Remark 4.6. Hence Lemma 4.4 implies f = −�q A(c) and A(cN ) → A(c)
strongly in Lq(0, T ; W 1

q (�)) for every 0 < T < ∞ because of

∫ T

0
‖∇ A(cN )‖q

Lq (�) dt →N→∞
∫ T

0
‖∇ A(c)‖q

Lq (�) dt.

Since A−1 ∈ C1(R), cN converges strongly in Lq(0, T ; W 1
q (�)) too. Hence (5.8) holds

and

∇(τ ∗
h ρ

N )−1 · S(cN , DvN ) ⇀N→∞ ∇ρ−1 · S(c, Dv) in L1(QT ), T < ∞.

Using the convergence results above, it is easy to show that (5.31) converges to (5.5).
Finally, since vN (t) →N→∞ v(t) in L2(�) and cN (t) →N→∞ c in W 1

q (�) for
almost every t ∈ (0,∞) (for a suitable subsequence),

EN (t) →N→∞ E(c(t), v(t)) for almost all t ∈ (0,∞).

Moreover, by lower semi-continuity of norms and almost everywhere convergence of
cN to c,

lim inf
N→∞

∫ ∞

0
DN (t)ϕ(t) dt ≥

∫ ∞

0
D(t)ϕ(t) dt

for all ϕ ∈ W 1
1 (0,∞) with ϕ ≥ 0, where

D(t) = γ ‖v(t)‖2
L2(∂�)

+ δ‖g0(t)‖2
L2(�)

+
∫
�

(
2ν(c(t))|Dv(t))| + η(c(t))| div v(t)|2 + m(c(t))|∇µ0(t)|2

)
dx.
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Hence, passing to the limit in (5.35), we obtain

E(c0, v0)ϕ(0) +
∫ ∞

0
E(c(t), v(t))ϕ′(t) dt ≥

∫ ∞

0
D(t)ϕ(t) dt (5.38)

for all ϕ ∈ W 1
1 (0,∞) with ϕ ≥ 0. Because of Lemma 4.3, this implies (5.9).

6. Existence of Weak Solutions for the General System

Let R, ε, c0, v0, and
 be as in the assumptions of Theorem 2.4. Moreover, for 0 < δ ≤ 1
let (v, g0, c, µ0, p̄) ≡ (vδ, g0,δ, cδ, µ0,δ, p̄δ) be a solution of (5.1)–(5.4) together with
(1.5)–(1.9) due to Theorem 5.1.

In order to pass to the limit δ → 0, we need a good representation of g0,δ and a
suitable estimate of p̄(t). As in (1.12), we use the decomposition

g0,δ = g1,δ − ∂t G(vδ),

where G(v) = �−1
N div v due to (1.13)–(1.14). Then (5.1) is equivalent to

∂t Pσ vδ + vδ · ∇vδ − ρ−1
δ div S(cδ, Dvδ) + ∇g1,δ − δρ−1g0,δ

vδ

2
= µ0,δ∇cδ (6.1)

and its weak formulation (5.5) is equivalent to

−(Pσ vδ, ∂tψ)Q +(vδ · ∇vδ, ψ)Q +(ρ−1
δ S(cδ, Dvδ),∇ψ)Q +(S(cδ, Dvδ),∇ρ−1

δ ⊗ψ)Q

+ γ (ρ−1
δ vδ, ψ)S − (g1,δ, divψ)Q − δ

2
(ρ−1
δ g0,δvδ, ψ)Q = (µ0,δ∇cδ, ψ)Q (6.2)

for all ψ ∈ C∞
0 (0,∞; H1

n (�) ∩ L∞(�)d).
Moreover, we have the following estimates uniformly in 0 < δ ≤ 1.

Lemma 6.1. Let 1 < p < d
d−1 and let g1,δ,G(vδ) be as above. Then there is a constant

C = C (R, ε, q) independent of 0 < δ ≤ 1 such that

‖G(vδ)‖L∞(0,∞;H1(�)) + ‖G(vδ)‖L2(0,∞;H2(�)) + ‖g1,δ‖L2(0,∞;L p(�)) ≤ C.

Proof. The estimate of the first two terms simply follows from

‖G(vδ(t))‖H1(�) ≤ C‖v(t)‖L2(�), ‖G(vδ(t))‖H2(�) ≤ C‖v(t)‖H1(�),

cf. (4.4) and (4.5). In order to estimate g1,δ , we choose ϕ = η(t)∇ψ , ψ ∈ W 2
p′,N (�) =

{u ∈ W 2
p′(�) : ∂nu|∂� = 0}, η ∈ C∞

0 (0,∞) in (6.2) and obtain

∫ ∞

0

∫
�

g1,δ�ψ dx η(t) dt

=
∫ ∞

0

∫
�

(
ρ−1
δ S(cδ, Dvδ)− v ⊗ v +

|v|2
2

I

)
: ∇2ψ dx η dt

+
∫ ∞

0

∫
�

(
S(cδ, Dvδ) · ∇ρ−1

δ − µ0,δ∇cδ − δρ−1g0,δ
vδ

2

)
· ∇ψ dx η dt
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for all ψ ∈ W 2
p′,N (�), η ∈ C∞

0 (0,∞). Here we have used the identity v ·
∇v = div(v ⊗ v) − ∇ |v|2

2 . Hence g1,δ(t) is a very weak solution of the Neumann-
Laplace equation, cf. Sect. 4, for almost every 0 < t < ∞ with right-hand side Fδ(t)
satisfying

‖Fδ(t)‖(W 2
p′,N (�))

′

≤ C
(
‖S(cδ(t), Dvδ(t))‖L2 + ‖v(t)‖2

Ls

+
∥∥∥S(cδ, Dvδ) · ∇ρ−1

δ (t)− µ0,δ∇cδ(t)− δρ−1g0,δ
vδ

2

∥∥∥
L1

)

≤ C(R, q)
(‖vδ(t)‖H1(�) + ‖∇µ0,δ(t)‖L2(�)

) ∈ L2(0,∞),

where we have used that to W 1
p′(�) ↪→ L∞(�) as well as ‖v‖2

Ls ≤ ‖v‖2

H
1
2

≤
C‖v‖H1‖v‖L2 with s = 3 if d = 3 and s = 4 if d = 2. Therefore

‖g1,δ‖L2(0,∞;L p(�)) ≤ C(R, ε, q)‖Fδ(t)‖L2(0,∞;(W 2
p′,N (�))

′) ≤ C ′(R, ε, q)

uniformly in 0 < δ ≤ 1. ��
Next we estimate p̄δ(t).

Lemma 6.2. There is a constant C = C(R, ε, q) such that

‖ p̄δ‖L2
uloc([0,∞)) ≤ C uniformly in δ > 0.

Proof. Choosingϕ = η(t)a
1
q (cδ)ρ

−2
δ ,η ∈ C∞

0 (0,∞) in (5.8) and using
∫
�

g0,δ dx = 0,
we obtain

p̄δ(t) = 1

|�|
∫
�

(
ρ−2
δ φ(cδ)− ρ−1µ0,δ

)
dx +

1

|�|
∫
�

f (cδ)|∇ A(cδ)|q dx

for almost all t ∈ (0,∞), where f (s) = a− 1
q (s) d

ds

(
a

1
q (s)ρ−2(s)

)
. Hence

‖ p̄δ‖L2
uloc([0,∞)) ≤ C

uniformly in 0 < δ ≤ 1 since cδ ∈ L∞(0,∞; W 1
q (�)) and µ0,δ ∈ L2(Q) are uniformly

bounded and W 1
q (�) ↪→ L∞(�). ��

Using these bounds, we obtain the following essential compactness result:

Lemma 6.3. There is a subsequence, again denoted by (vδ, g0,δ, cδ, µ0,δ, p̄δ)δ>0, such
that

(vδ,G(vδ)) →δ→0 (v,G(v)) in L2(0, T ; L2(�)× H1(�))

for all 0 < T < ∞.
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Proof. Choosing ϕ = a
1
q (cδ)ρ

−2
δ ψ , ψ ∈ C∞

0 (Q), in (5.8), we obtain

− β∂t G(vδ) = ρ−1
δ µ0,δ + p̄δ(t)− φ(cδ)− g1,δ + ρ−2

δ a
1
q (cδ)�q A(cδ) in D′(Q),

(6.3)

where〈
ρ−2
δ a

1
q (cδ)�q A(cδ), ϕ

〉
D′(Q),D(Q)

= −
∫
�

ρ−2
δ

∂A

∂c
(cδ)|∇ A(cδ)|q−2∇ A(cδ) · ∇ϕ dx +

∫
�

f (cδ)|∇ A(cδ)|qϕ dx

for all ϕ ∈ C∞
0 (Q) and f (s) = a− 1

q (s) d
ds

(
a

1
q (s)ρ−2(s)

)
as before. Hence the last

term in (6.3) is uniformly bounded in L∞(0,∞; H−s(�)) if s > d
2 + 1, and therefore

β∂t G(vδ) ∈ L2
uloc([0,∞); H−s(�))

is uniformly bounded due to Lemma 6.1, Lemma 6.2 and since µ0,δ ∈ L2(Q) and
φ(cδ) ∈ L∞(Q) are bounded. On the other hand by (6.2) and Lemma 6.1,

∂t Pσ vδ ∈ L2
uloc([0,∞); H−s(�)) for s >

d

2
,

see also proof of Lemma 6.1. Therefore

∂tvδ = ∂t Pσ vδ + ∂t∇G(vδ) ∈ L2
uloc([0,∞); H−s−1(�)) for s >

d

2
+ 1

is uniformly bounded. Hence vδ →δ→0 v in L2(QT ) for every T < ∞ by the Aubin-
Lions lemma. Since G(vδ(t)) ∈ H1(�) depends continuously on vδ(t) ∈ L2(�), we
obtain the second part. ��

As an important convergence result we also need:

Lemma 6.4. Let F ∈ C1(R). Then

(G(vδ), ∂t (F(cδ)ϕ))Q →δ→0 (G(v), ∂t (F(c)ϕ))Q

for all ϕ ∈ C1(Q) and a suitable subsequence.

Proof. First of all

∂t (F(cδ)ϕ) = F ′(cδ)∂t cδϕ + F(cδ)∂tϕ.

Since cδ →δ c almost everywhere, cδ ∈ L∞(Q), and ∂t cδ = −β−1ρ−2 div(ρδvδ) ∈
L2(Q) is uniformly bounded, cf. (4.2), we obtain

F ′(cδ)∂t cδ ϕ + F(cδ)∂tϕ ⇀δ→0 F ′(c)∂t c ϕ + F(c)∂tϕ = ∂t (F(c)ϕ) in L2(Q)

for all C1(Q). Moreover, due to Lemma 6.3, G(vδ) →δ→0 G(v) strongly in L2(QT )

for every T < ∞. Thus the statement of the lemma follows. ��
As a corollary we obtain strong convergence of ∇cδ in Lq(QT ):
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Corollary 6.5. There is a subsequence, again denoted by (cδ)0<δ≤1, such that∇cδ →δ→0
∇c in Lq(QT ) for every T < ∞.

Proof. By (5.8) we have
∫ ∞

0
〈−�q A(cδ(t)), ϕ〉W−1

q′,0,W
1
q
η(t) dt = −(G(vδ), ∂t (F(cδ)ϕη))Q + ( fδ, ϕη)Q (6.4)

for all ϕ ∈ C∞
(0)(�), η ∈ C∞

0 (0,∞), where F(cδ) = βρ̂2(cδ)a
− 1

q (cδ) and

fδ = a− 1
q (cδ)

(
ρδµ0,δ + ρ2

δ p̄δ(t)− βρ2
δ g1,δ − φ(cδ)

)
.

By the convergence of cδ almost everywhere and the weak convergence of µ0,δ, p̄δ , and
g1,δ , we obtain

fδ ⇀δ→0 f in L2(0, T ; L p(�)) for all 1 < p <
d

d − 1
,

for all T < ∞, where

f = a− 1
q (c)

(
ρµ0 + ρ2 p̄(t)− βρ2g1 − φ(c)

)
.

Hence

lim
δ→0

( fδ, A(cδ)η)Q = ( f, A(c)η)Q

for all η ∈ C∞
0 (0,∞). On the other hand, by Lemma 6.4,

lim
δ→0

(G(vδ), ∂t (F(cδ)ϕη))Q = (G(v), ∂t (F(c)ϕη))Q,

lim
δ→0

(G(vδ), ∂t (F(cδ)A(cδ)η))Q = (G(v), ∂t (F(c)A(c)η))Q (6.5)

for all η ∈ C∞
0 (0,∞) and ϕ ∈ C∞

(0)(�). Moreover, because of (6.4), F(cδ)∂t G(cδ) is

uniformly bounded in Lq ′
(0, T ; W −1

q ′,0(�)) for every 0 < T < ∞, which implies

F(cδ)∂t G(cδ) ⇀δ→0 F(c)∂t G(c) in Lq ′
(0, T ; W −1

q ′,0(�))

for all 0 < T < ∞. Hence

−�q A(cδ) ⇀δ→0 F(c)∂t G(c) + f in Lq ′
(0, T ; W −1

q ′,0(�)) =: X ′
T .

Similarly, because of (6.4), (F(cδ)∂t G(cδ), A(cδ))� is uniformly bounded in L2(0, T )
for every 0 < T < ∞. Therefore we obtain from (6.5)

lim
δ→0

〈F(cδ)∂t G(cδ), A(cδ)〉X ′
T ,XT

= 〈F(c)∂t G(c), A(c)〉X ′
T ,XT

for all 0 < T < ∞ by passing η → 1. Thus

− lim
δ→0

〈�q A(cδ), A(cδ)〉X ′
T ,XT

= 〈F(c)∂t G(c) + f, A(c)〉X ′
T ,XT
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for all 0 < T < ∞. Since −�q : Lq(0, T ; W 1
q,0(�)) → Lq ′

(0, T ; W −1
q ′,0(�)) is maxi-

mal monotone, cf. Remark 4.6, and because of Lemma 4.4, we conclude −�q A(c) =
F(c)∂t G(c) + f , and therefore

lim
δ→0

‖∇ A(cδ)‖q
Lq (QT )

= − lim
δ→0

〈�q A(cδ), A(cδ)〉X ′
T ,XT

= −〈�q A(c), A(c)〉X ′
T ,XT

= ‖∇ A(c)‖q
Lq (QT )

for all T < ∞, which proves strong convergence of ∇ A(cδ) in Lq(QT ). Since

∇cδ = a− 1
q (cδ)∇ A(cδ) and cδ ∈ L∞(Q) converges almost everywhere, this implies

the strong convergence of ∇cδ in Lq(QT ). ��
Proof of Theorem 2.4. Using the convergence results above, one can easily show that
(6.2) converges to (2.1) and that (5.6)–(5.8) converge to (2.2)–(2.4) for a suitable sub-
sequence δ j → j→∞ 0. Let us only mention the following points: Note that

δg0 = δ
1
2 δ

1
2 g0 →δ→0 0 in L2(Q)

since δ
1
2 g0 ∈ L2(Q) is uniformly bounded according to (5.9). Moreover, passing to the

limit δ → 0 in (5.7), one first only obtains

(P0ρc, ∂tψ)Q + (ρcv,∇ψ)Q = (m(c)∇µ,∇ψ)Q

for all ψ ∈ C∞
0 (0,∞; C1(�)). But, because of (2.2), we have

0 =
∫
�

∂tρ dx = −
∫
�

βρ2∂t c dx = −β
α

∫
�

∂t (ρc) dx,

since ∂ρ
∂c = −βρ2 and ∂(ρc)

∂c = ρ + ∂ρ
∂c c = αρ2, cf. (3.10). Hence (2.3) follows.

By the same arguments as in the proof of Theorem 5.1 one shows that
v ∈ BCw([0,∞); L2(�)), c ∈ BCw([0,∞); W 1

q (�)) and (v, c)|t=0 = (v0, c0).
Finally, the energy inequality (2.5) follows from passing to the limit (5.38) using the

strong convergence of vδ(t) ∈ L2(�), cδ(t) ∈ W 1
q (�) for almost all t ∈ (0,∞) and

Lemma 4.3 as in the proof of Theorem 5.1. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial
License which permits any noncommercial use, distribution, and reproduction in any medium, provided the
original author(s) and source are credited.

References

1. Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched
densities. Arch. Rat. Mech. Anal. doi:10.1007/s00205-008-0160-2, 2008

2. Abels, H.: Diffuse interface models for two-phase flows of viscous incompressible fluids. Lecture Notes,
Max Planck Institute for Mathematics in the Sciences, No. 36/2007, 2007, available at http://www.mis.
mpg.de/publications/other-series/In/lecturenote-3607.html, 2008

3. Abels, H., Feireisl, E.: On a diffuse interface model for a two-phase flow of compressible viscous flu-
ids. Indiana Univ. Math. J. 57(2), 659–698 (2008)

4. Abels, H., Wilke, M.: Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free
energy. Nonlinear Anal. 67(11), 3176–3193 (2007)

http://dx.doi.org/10.1007/s00205-008-0160-2
http://www.mis.mpg.de/publications/other-series/In/lecturenote-3607.html
http://www.mis.mpg.de/publications/other-series/In/lecturenote-3607.html


Diffuse Interface Model for Viscous Incompressible Newtonian Fluids 73

5. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. In:
Annual review of fluid mechanics, Vol. 30, Palo Alto, CA: Annual Reviews, 1998, pp. 139–165

6. Boyer, F.: Mathematical study of multi-phase flow under shear through order parameter formulation.
Asymptot. Anal. 20(2), 175–212 (1999)

7. Boyer, F.: Nonhomogeneous Cahn-Hilliard fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(2),
225–259 (2001)

8. Deimling, K.: Nonlinear Functional Analysis. Berlin: Springer-Verlag, 1985
9. Diestel, J., Uhl, Jr., J.J.: Vector Measures. Providence, RI: Amer. Math. Soc., 1977

10. Gurtin, M.E., Polignone, D., Viñals, J.: Two-phase binary fluids and immiscible fluids described by an
order parameter. Math. Models Methods Appl. Sci. 6(6), 815–831 (1996)

11. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris: Dunod,
1969

12. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation
by a Fourier-spectral method. Phys. D 179(3–4), 211–228 (2003)

13. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transi-
tions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998)
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