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Abstract: We consider a gradient interface model on the lattice with interaction potential
which is a non-convex perturbation of a convex potential. We show using a one-step mul-
tiple scale analysis the strict convexity of the surface tension at high temperature. This
is an extension of Funaki and Spohn’s result [8], where the strict convexity of potential
was crucial in their proof.

1. Introduction

We consider an effective model with gradient interaction. The model describes a phase
separation in R

d+1, eg. between the liquid and vapor phase. For simplicity we consider
a discrete basis �M ⊂ Z

d , and continuous height variables

x ∈ �M −→ φ(x) ∈ R.

This model ignores overhangs like in Ising models, but gives a good approximation
in the vicinity of the phase separation. The distribution of the interface is given in
terms of its Gibbs distribution with nearest neighbor interactions of gradient type, that
is, the interaction between two neighboring sites x, y depends only on the discrete
gradient,∇φ(x, y) = φ(y)− φ(x). More precisely, the Hamiltonian is of the form

HM (φ) =
∑

x,y∈�M+1,|x−y|=1

V (φ(y)− φ(x)), (1.1)

where V ∈ C2(R) is a function with quadratic growth at infinity:

V (η) ≥ A|η|2 − B, η ∈ R (1.2)

for some A > 0, B ∈ R.

� Supported by the DFG-Forschergruppe 718 ‘Analysis and stochastics in complex physical systems’.
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For a given boundary condition ψ ∈ R
∂�M , where ∂�M = �M+1\�M , the (finite)

Gibbs distribution on R
�M+1 at inverse temperature β > 0 is given by

µ
β
VM ,ψ

(dφ) ≡ 1

ZβM,ψ
exp(−βHM (φ))

∏

x∈�M

dφ(x)
∏

x∈∂�M

δψ(x)(dφ(x)).

Here ZβM,ψ is a normalizing constant given by

ZβM,ψ =
∫

R�M+1

exp(−βHM (φ))
∏

x∈�M

dφ(x)
∏

x∈∂�M

δψ(x)(dφ(x)).

One is particularly interested in tilted boundary conditions

ψu(x) =< x, u >=
d∑

i=1

xi ui

for some given ‘tilt’ u ∈ R
d . This corresponds to an interface in R

d+1 which stays normal
to the vector nu = (u,−1) ∈ R

d+1.
An object of basic relevance in this context is the surface tension or free energy

defined by the limit

σ(u) = lim
M→∞ − 1

β
log ZβM,ψu

. (1.3)

The existence of the above limit follows from a standard sub-additivity argument.
In fact the surface tension can also be defined in terms of the partition function on the
torus, see below and [8]. In case of strictly convex potential V with

c1 ≤ V
′′ ≤ c2, (1.4)

where 0 < c1 ≤ c2 < ∞, Funaki and Spohn showed in [8] that σ is convex.
The simplest strictly convex potential is the quadratic one with V (η) = |η|2, which

corresponds to a Gaussian model, also called the gradient free field or harmonic crystal.
Models with non-quadratic potentials V are sometimes called anharmonic crystals.

The convexity of the surface tension σ plays a crucial role in the derivation of the
hydrodynamical limit of the Landau-Ginsburg model in [8]. Strict convexity of the
surface tension was proved for potentials satisfying (1.4) in [6] and [9].

Under the condition (1.4), a large deviation principle for the rescaled profile with
rate function given in terms of the integrated surface tension has been derived in [6].
Here also the strict convexity of σ is very important. Both papers [8] and [6] use very
explicitly the condition (1.4) in their proof. In particular they rely on the Brascamp
Lieb inequality and on the random walk representation of Helffer and Sjöstrand, which
requires a strictly convex potential V .

The objective of our work is to prove strict convexity of σ also for some non-convex
potential. One cannot expect strict convexity for any non-convex V , see below. Our
result is perturbative at high temperature (small β), and shows strict convexity of σ(u)
at every u ∈ R for potentials V of the form

V (η) = V0(η) + g0(η),
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where V0 satisfies (1.4) and g0 ∈ C2(R) has a negative bounded second derivative such
that

√
β · ‖g′′

0‖L1(R) is small enough.
Our proof is based on the scale decomposition of the free field as the sum of two

independent free fields φ1 and φ2, where we choose the variance of φ1 small enough
to match the non-convexity of g. This particular type of scale decomposition was used
earlier by Haru Pinson in [11], who also suggested to us the use of this approach.

The partition function ZβN ,ψu
can then be expressed in terms of a double integral, with

respect to both φ1 and φ2. We fix φ2 and perform first the integration with respect to φ1.
This yields a new induced Hamiltonian, which is a function of the remaining variable
φ2. The main point is that our choice of the variance of φ1 and smallness of β allow
us to show convexity in φ2 of the induced Hamiltonian. Of course this Hamiltonian is
no longer of the simple form (1.1), in particular we lose the locality of the interaction.
However an extension of the technique introduced in [6] shows strict convexity of σ.
The idea behind the proof is that one can gain convexity via integration. This procedure
is called “one step decomposition”, since we perform only one integration. Of course
this procedure could be iterated which would allow to lower the temperature. However
for general non convex g we do not expect that this procedure works at low temperature
for every tilt u.

At low temperature an approach in the spirit of [3,4] looks more promising (S. Adams,
R. Kotecky, S. Müller-personal communication).

Finally note that, due to the gradient interaction, the Hamiltonian has a continuous
symmetry. In particular this implies that no infinite Gibbs state exists for the lower lattice
dimensions, d = 1, 2 where the field “delocalizes” as M → ∞, cf. [7]. On the other
hand, it is very natural in this setting to consider the gradient Gibbs distributions, that is
the image of µVM ,ψ under the gradient operation φ ∈ R

Z
d −→ ∇φ. It is easy to verify

that this distribution depends only on ∇ψ , the gradient of the boundary condition, in fact
one can also introduce gradient Gibbs distributions in terms of conditional distributions
satisfying DLR conditions, cf. [8]. Using the quadratic bound (1.2), one can easily see
that the corresponding measures are tight. In particular for each tilt u ∈ R

d one can
construct a translation invariant gradient Gibbs state µ̃u on Z

d with mean u:

Eµ̃u [φ(y)− φ(x)] =< y − x, u > .

Under (1.4), Funaki and Spohn proved the existence and uniqueness of an extremal,
i.e. ergodic, gradient Gibbs state, for each tilt u ∈ R. In the case of non-convex V ,
uniqueness of the ergodic states can be violated, even at u = 0 tilt, c.f. [1]. However in
this situation, the surface tension is not strictly convex at u = 0.

2. Main Result and Outline of the Proof

We study the convexity properties of the free energy (as a function of the tilt u) for
non-convex gradient models on a lattice. Using the results of [8], we work on the torus,
instead of the box�M , see Remark 2.4 below. Thus, let T

d
M = (Z/MZ)d = Z

d mod (M)
be the lattice torus in Z

d , let u ∈ R
d and let β > 0. For a function φ : T

d
M → R, we

consider the discrete derivative

∇iφ(x) = φ(x + ei )− φ(x) (2.1)
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and the Hamiltonian

H(u, φ) =
∑

x∈T
d
M

d∑

i=1

V i (∇iφ(x) + ui )

=
∑

x∈T
d
M

d∑

i=1

[
V i

0 (∇iφ(x) + ui ) + gi
0(∇iφ(x) + ui )

]
, (2.2)

where V i
0 is convex and gi

0 is non-convex (see (2.7) below). We consider the partition
function

ZβM (u) =
∫

X

e−βH(u,φ)m M ( dφ), (2.3)

where

X = {φ : T
d
M → R : φ(0) = 0} (2.4)

and

mM ( dφ) =
∏

x∈T
d
M \{0}

dφ(x)δ0( dφ(0)), (2.5)

and the free energy

f βM (u) = − 1

β
log ZβM (u). (2.6)

We will prove

Theorem 2.1. Suppose that V i
0 and gi

0 are C2 functions on R and that there exist con-
stants C0,C1,C2 and

0 < C1 ≤ (V i
0 )

′′ ≤ C2, −C0 ≤ (gi
0)

′′ ≤ 0. (2.7)

Set

C̄ = max

(
C0

C1
,

C2

C1
− 1, 1

)
. (2.8)

If (gi
0)

′′ ∈ L1(R) and for i ∈ {1, 2, . . . , d},
4

π
(12dC̄)1/2

√
βC1

1

C1
||(gi

0)
′′||L1(R) ≤ 1

2
, (2.9)

then

(D2 f βM )(u) ≥ C1

2
|Td

M | Id, ∀u ∈ R
d , (2.10)

where |Td
M | = Md denotes the number of points in T

d
M . In other words, the free energy

per particle is uniformly convex, uniformly in M.
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Remark 2.1. The main point is that the convexity estimate (2.10) holds uniformly in the
size M of the torus. Indeed a direct calculation of D2 f 1

M yields at u

D2 f 1
M (u) =

〈
D2

u H(u, ·)
〉

H
− varH Du H(u, ·), (2.11)

where

〈 f 〉H =
∫

X f (φ)e−H(u,φ)m M ( dφ)∫
X e−H(u,φ)m M ( dφ)

(2.12)

and

varH f =
〈(

f − 〈 f 〉H
)2
〉

H
. (2.13)

Now one might expect that a condition like (2.9) implies that
〈
(D2

u H(u, ·)
〉

H
≥ cC1|Td

M | Id

(see Lemma 4.1 below). The problem is that naively the variance term scales like |Td
M |2

since Du H is a sum of d|Td
M | terms. To get a better estimate, one has to show that in a

suitable sense, the terms

cov H
(
Du(V0 + g0)(u + ∇iφ(x)), Du(V0 + g0)(u + ∇ jφ(y))

)
(2.14)

decay if |x − y| is large. If H is not convex such a decay of correlations is, pre-
sently, only proved for the class of potentials studied in [5]. As discussed above, the
Helffer-Sjöstrand estimates do not apply directly. The main idea is to rewrite ZβM (u) as
an iterated integral in such a way that each integration involves a convex hamiltonian to
which the Helffer-Sjöstrand theory can be applied (see (2.40) below).

Remark 2.2. Instead of ||g′′
0 ||L1(R) one can also use bounds on lower order derivatives.

More precisely, condition (2.9) can, for example be replaced by

50√
2π

dC̄(βC1)
3/4 1

C1
||g′

0||L2(R) ≤ 1

2
(2.15)

(see Remark 4.1 below). In view of the estimate
∫

R

(g′
0)

2(s) ds =
∫

R

g0(s)g
′′
0 (s) ds ≤ C0||g0||L1(R), (2.16)

we can see that (2.9) can be replaced by

cd2C̄3(βC1)
3/2 1

C1
||g0||L1(R) ≤ 1

4
(2.17)

with c = 2500
2π .
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Remark 2.3. Note that we can extend the results of Theorem 2.1 to the case where we
have a perturbation with compact support. More precisely, assume that V i = Y i + hi ,
where V i satisfies (1.2), D1 ≤ (

Y i
)′′ ≤ D2 and −D0 ≤ (

hi
)′′ ≤ 0 on [a, b] and

0 <
(
hi
)′′
< D3 on R\[a, b], with a, b ∈ R and

(
hi
)′′
(a) = (

hi
)′′
(b) = 0. Set

gi
0(s) = hi (s)1{s∈[a,b]} +

[
hi (b) +

(
hi
)′
(b)(s − b)

]
1{s>b}

+

[
hi (a) +

(
hi
)′
(a)(s − a)

]
1{s<a} (2.18)

and

V i
0 (s) = Y i (s) + hi (s)1{s /∈[a,b]} −

[
hi (b) +

(
hi
)′
(b)(s − b)

]
1{s>b}

−
[

hi (a) +
(

hi
)′
(a)(s − a)

]
1{s<a}. (2.19)

Thus, we have V i
0 , g

i
0 ∈ C2(R), with −D0 ≤ (

hi
)′′
(s) = (

gi
0

)′′
(s) ≤ 0 for

s ∈ [a, b] and
(
gi

0

)′′
(s) = 0 for s ∈ R\[a, b] and D1 ≤ (

V i
0

)′′
(s) = (

Y i
)′′
(s) +(

hi
)′′
(s)1{s /∈[a,b]} ≤ D2 + D3. Note that this procedure can also be extended to the case

where
(
hi
)′′

changes sign more than once.

Remark 2.4. Note that the surface tensions defined in (1.3) and (2.6) coincide (see, for
example, [8]). Because of this, we will work from now on with the definition of the
surface tension on a torus, as it is easier to use.

Outline of the proof for Theorem 2.1.

Step 1. Scaling argument Scaling argument. A simple scaling argument shows that it
suffices to prove the result for

β = 1,C1 = 1. (2.20)

Indeed, suppose that the result is true for β = 1 and C1 = 1. Given β, V i
0 and gi

0 which
satisfy (2.7) and (2.9), we define

Ṽ i
0 (s) = βV i

0

(
s√
βC1

)
, g̃i

0(s) = βgi
0

(
s√
βC1

)
. (2.21)

Then

1 ≤ (Ṽ i
0 )

′′ ≤ C2

C1
, −C0

C1
≤ (g̃i

0)
′′ ≤ 0,

||(g̃i
0)

′′||L1(R) = √
βC1

1

C1
||(gi

0)
′′||L1(R). (2.22)
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Hence Ṽ i
0 , g̃i

0 satisfy the assumptions of Theorem 2.1 with β = 1 and C1 = 1. Thus

D2 f 1
M (·, Ṽ i

0 , g̃
1
0) ≥ 1

2
|Td

M | Id. (2.23)

On the other hand, the change of variables

φ̃(x) = √
βC1φ(x), ũ = √

βC1u (2.24)

yields

Ṽ i
0

(
ũi + ∇i φ̃(x)

)
= V i

0 (ui + ∇iφ(x)), (2.25)

and thus

ZβM (u, V i
0 , g

i
0) = (βC1)

−(|Td
M |−1)/2 Z1

M (ũ, Ṽ0, g̃0). (2.26)

Hence

f βM (u, V0, g0) = const (β,C1) +
1

β
f 1
M

(√
βC1u, Ṽ0, g̃0

)
. (2.27)

Thus (2.23) implies (2.9), as claimed.

Step 2. Separation of the Gaussian part. Next we separate the Gaussian part in the
Hamiltonian. From now on, we will always assume that β = 1 and C1 = 1. Set

V1(s) = V0(s)− 1

2
s2, g = V1 + g0. (2.28)

Then

0 ≤ V ′′
1 ≤ C2 − 1, −C0 ≤ g′′ ≤ C2 − 1 (2.29)

and the Hamiltonian can be rewritten as

H(u, φ) =
∑

x∈T
d
M

d∑

i=1

1

2
(ui + ∇iφ(x))

2 + G(u, φ), (2.30)

where

G(u, φ) =
∑

x∈T
d
M

d∑

i=1

g(ui + ∇iφ(x)), (2.31)

Since for all functions φ on the torus and for all i ∈ {1, 2, . . . d},
∑

x∈T
d
M

∇iφ(x) = 0, (2.32)

we get

H(u, φ) = 1

2
|Td

M ||u|2 +
1

2
||∇φ||2 + G(u, φ), (2.33)
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where ||∇φ||2 = ∑
x∈TM

∑d
i=1 |∇iφ(x)|2. Let

Z0 =
∫

X

e− 1
2 ||∇φ||2 m M ( dφ). (2.34)

Then the measure

µ = 1

Z0
e− 1

2 ||∇φ||2 m M ( dφ) (2.35)

is a Gaussian measure. Its covariance C is a positive definite symmetric operator on X
(equipped with a standard scalar product (φ,ψ) = ∑

x∈T
d
M
φ(x)ψ(x)) such that

(C−1φ, φ) = ||∇φ||2, ∀φ ∈ X. (2.36)

The partition function thus becomes (recall that we take β = 1)

Z M (u) = Z0e− 1
2 |Td

M ||u|2
∫

X

e−G(u,φ)µ( dφ). (2.37)

Step 3. Decomposition of µ and Helffer-Sjöstrand calculus. By standard Gaussian cal-
culus, µ = µ1 ∗ µ2, where µ1 and µ2 are Gaussian with covariances

C1 = λC, C2 = (1 − λ)C, where λ ∈ (0, 1). (2.38)

More explicitly, for i ∈ {1, 2}.
µi ( dφ) = 1

Zi
e
− 1

2λi
||∇φ||2

m M ( dφ), where λ1 = λ, λ2 = 1 − λ. (2.39)

Thus

Z M (u) = Z0e− 1
2 |Td

M ||u|2
∫

X

∫

X

e−G(u,ψ+θ)µ1( dθ)µ2( dψ). (2.40)

To write the free energy in a more compact form, we introduce the renormalization maps
Ri . For f ∈ C(Rd × X) we define Ri f by

e−Ri f (u,a) :=
∫

X

e− f (u,a+b) dµi (b). (2.41)

Taking the logarithm of (2.40), we get

fM (u) = const (M) +
1

2
|Td

M ||u|2 + (R2 R1G)(0, u). (2.42)

The main point now is that the map

H1(θ) = G(u, ψ + θ) +
1

2λ
||∇θ ||2 (2.43)

becomes uniformly convex for sufficiently small λ. This will allow us to use the
Helffer-Sjöstrand representation to get a good lower bound for D2(R1G), which invol-
ves, roughly speaking, the expectation of Gi,x (θ) = g′′

0 (ui + ∇iψ(x) + ∇iθ(x)) with
respect to e−H1 (see (4.9)). This expectation can be controlled in terms of ||g′′

0 ||L1(R)

(see Lemma 4.1). Under the smallness condition (2.9) one then easily obtains the lower
bound for D2(R2 R1G) (see (4.12) and (4.14)).



Strict Convexity of the Free Energy for a Class of Non-Convex Gradient Models 367

3. Consequence of the Helffer-Sjöstrand Representation

Let U and X be finite-dimensional inner product spaces, let C be a positive definite
symmetric operator on X and let µC be the Gaussian measure with covariance C on X ,
i.e

µC (db) = 1

ZC
e− 1

2 (C
−1b,b) db, (3.1)

where db is the dim X dimensional Hausdorff measure on X (i.e db = ∏
dbi if the

bi are the coordinates with respect to an orthonormal basis). For a continuous function
f ∈ C(U × X) we define RC f by

e−RC f (u,a) =
∫

X

e− f (u,a+b) dµC ( db). (3.2)

In the situation we will consider, b → f (u, a + b) + 1
2 (C

−1b, b) will be convex and
hence bounded from below so that the right hand side of the above identity is strictly
positive.

For f ∈ C2(U × X) we write D2 f (u, a) for the Hessian at (u, a), viewed as an
operator from U× X to itself. The restriction of the Hessian to X is denoted by D2

X f :=
PX D2 f PX , where PX is the orthogonal projection U×X → X . On the level of quadratic
forms we thus have

(
D2

X f (u, a)(u̇, ȧ), (u̇, ȧ)
)

=
(

D2 f (u, a)(0, ȧ), (0, ȧ)
)
. (3.3)

From the Helffer-Sjöstrand representation of the variance (see, e.g., [10] (2.6.15)) and
the duality relation

1

2

(
A−1a, a

)
= sup

b∈D(A
1
2 )

(
(a, b)− 1

2
(Ab, b)

)
, (3.4)

which holds for any positive definite self-adjoint operator A on a Hilbert space Y0, one
immediately obtains the following estimate:

Lemma 3.1. Suppose that H ∈ C2(X), supX |D2 H | < ∞ and there exists a δ > 0 such
that

D2 H(a) ≥ δ Id, ∀a ∈ X. (3.5)

Set

Y0 = {K ∈ L2
loc(X) :

〈
|DK |2

〉

H
< ∞}, (3.6)

Y = {K ∈ Y0 :
〈
||D2 K ||2H S

〉

H
< ∞}, (3.7)

where the derivatives are understood in the weak sense and

‖D2 K‖2
H S :=

∑

x,y∈T
d
M \{0}

(
∂2

∂φ(x)∂φ(y)
K

)2

(3.8)
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denotes the Hilbert-Schmidt norm. Then for all G ∈ Y we have

varH G = sup
K∈Y

〈
2(DG, DK )− (DK , D2 H DK )− ‖D2 K‖2

H S

〉

H
. (3.9)

Therefore

varH G ≤ sup
K∈Y

〈
2(DG, DK )− (DK , D2 H DK )

〉

H
. (3.10)

We will use (3.10) from Lemma 3.1 in the proof of the lemma below.

Lemma 3.2. Suppose that f ∈ C2(U× X) and supU×X |D2 f | < ∞. Suppose moreover
that there exists a δ > 0 such that

D2 f (u, a) + C−1 ≥ δ Id, ∀(u, a) ∈ U × X. (3.11)

Then R f ∈ C2(U × X) and for all u, u̇ ∈ U, a, ȧ ∈ X,
(
(D2 R f )(u, a)(u̇, ȧ), (u̇, ȧ)

)

≥ inf
K∈Y

〈(
D2 f (u, a + ·)(u̇, ȧ − DK (·), (u̇, ȧ − DK (·))

)〉

H,a

+
〈
(C−1 DK (·), DK (·))

〉

Hu,a
, (3.12)

where

Hu,a(b) = f (u, a + b) +
1

2
(C−1b, b), (3.13)

〈g〉Hu,a
=
∫

g(b)e−Hu,a (b) db∫
e−Hu,a(b) db

. (3.14)

Proof. We have

e−R f (u,a) =
∫

X

e
−
[

f (u,a+b)+ 1
2 (C

−1b,b)
]

db. (3.15)

It follows from (3.11) that

f (u, a + b) +
(

C−1(a + b), (a + b)
)

≥ 1

2
δ|a + b|2 − c, (3.16)

and standard estimates yield

f (u, a + b) + (C−1b, b) ≥ 1

4
δ|b|2 − c

(
1 + |a|2

)
. (3.17)

Hence, by the dominated convergence theorem, the right-hand side of (3.15) is a C2

function in (u, a) and the same applies to R f since the right-hand side of (3.15) does
not vanish.
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To prove the estimate (3.12) for D2 R f , we may assume without loss of generality
that a = 0, u = 0 (otherwise we can consider the shifted function f (· − u, · − a)). Set

h(t) := R f (t u̇, t ȧ). (3.18)

Then

h′′(0) =
(

D2(R f )(0, 0)(u̇, ȧ), (u̇, ȧ)
)
. (3.19)

Now

h(t) = − log
∫

X

e− f (t u̇,t ȧ+b)µC ( db), (3.20)

h′(t) =
∫

X e− f (t u̇,t ȧ+b)D f (t u̇, t ȧ + b)(u̇, ȧ)µC ( db)∫
X e− f (t u̇,t ȧ+b)µC ( db)

(3.21)

and

h′′(0) =
〈(

D2 f (0, ·)(u̇, ȧ), (u̇, ȧ)
)〉

H
− varH D f (0, ·)(u̇, ȧ), (3.22)

where

H(b) = f (0, b) +
1

2
(C−1b, b). (3.23)

By assumption,

D2 H(b) ≥ δ Id, (3.24)

i.e. H is uniformly convex. Hence by (3.10) from Lemma 3.1,

− varH g ≥ inf
K∈Y

〈
−2(Dg, DK ) + (DK , D2 H DK )

〉

H
. (3.25)

Apply this with

g(b) = D f (0, b)(u̇, ȧ) (3.26)

and write

D2 H = D2
X f + C−1. (3.27)

Then

−2(Dg, DK ) + (DK , D2 H DK )

= −2D2 f (0, ·) ((u̇, ȧ), (0, DK )) + D2 f (0, ·) ((0, DK ), (0, DK ))

+(C−1 DK , DK ). (3.28)

Together with (3.25) and (3.22) this yields (3.12). ��
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4. Proof of Theorem 2.1

By (2.42)

fM (u) = const (M) +
1

2
|Td

M ||u|2 + (R2 R1G)(0, u), (4.1)

where

G(u, φ) =
∑

x∈T
d
M

d∑

i=1

gi (ui + ∇iφ). (4.2)

We first estimate D2 R1G from below. By (2.29)

(gi )′′ ≥ −C0 ≥ −C̄ (4.3)

(recall that we always assume C1 = 1). By (2.8), we have C̄ ≥ 1. If we take

λ = 1

2C̄
(4.4)

then

Hu,ψ (θ) := G(u, ψ + θ) +
1

λ
||∇θ ||2 (4.5)

is uniformly convex, i.e.

D2 Hu,ψ (θ)(θ̇ , θ̇ ) ≥ C̄ ||∇ θ̇ ||2 ≥ δM C̄ ||θ̇ ||2, (4.6)

with δM > 0. Here we used the discrete Poincaré inequality

||∇η||2 ≥ δM ||η||2 for η ∈ X, (4.7)

which follows from a simple compactness argument since T
d
M is a finite set. Hence, by

Lemma 3.2, we have

(
D2 R1(G)(u, ψ)(ū, ψ̄), (ū, ψ̄)

)

≥ inf
K∈Y

⎧
⎪⎨

⎪⎩

〈
∑

x∈T
d
M

d∑

i=1

(gi )′′ (ui +∇iψ(x)+∇i · (x))
(

ui + ∇iψ(x)− ∇i
∂K

∂φ(x)
(·)
)2

+
1

λ

∑

x∈T
d
M

d∑

i=1

∣∣∣∣∇i
∂K

∂φ(x)

∣∣∣∣
2
〉

Hu,ψ

⎫
⎪⎬

⎪⎭
, (4.8)
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where Y is defined by (3.7). Now (gi )′′ = (V i )′′ + g′′
0 ≥ g′′

0 (see (2.28) and (2.29)) and
together with the estimate (a − b)2 ≤ 2a2 + 2b2 and the assumption −C0 ≤ g′′

0 ≤ 0,
this yields

(
D2 R1(G)(u, ψ), (u̇, ψ̇), (u̇, ψ̇)

)

≥ 2
∑

x∈Td
m

d∑

i=1

〈
(gi

0)
′′(ui + ∇iψ(x) + ∇i · (x)) (ui + ∇iψ(x))

2
〉

Hu,ψ

+

〈(
1

λ
− 2C0

) ∑

x∈T
d
M

d∑

i=1

∣∣∣∣∇i
∂K

∂φ(x)
(·)
∣∣∣∣
2
〉

Hu,ψ

, (4.9)

where 1
λ

− 2C0 ≥ 0. We will now use the following result, which will be proven at the
end of this section.

Lemma 4.1. For h ∈ L1(R) ∩ C0(R), ψ ∈ X, x ∈ T
d
M and i ∈ {1, 2, . . . d} consider

F ∈ C(X) given by

F(θ) = h(ui + ∇iψ(x) + ∇iθ(x)). (4.10)

Then
∣∣∣〈F〉Hu,ψ

∣∣∣ ≤ 2

π
(12dC̄)1/2||h||L1(R). (4.11)

Together with (4.9), the smallness condition (2.9) and the relation
∑

x∈T
d
M

∇iψ(x) = 0,

this lemma yields

D2 R1G(u, ψ)(u̇, ψ̇)(u̇, ψ̇)

≥ −1

2

∑

x∈T
d
M

d∑

i=1

∣∣u̇i + ∇i ψ̇(x)
∣∣2 = −1

2
|Td

M ||u̇|2 − 1

2
||∇ψ̇ ||2. (4.12)

Thus

H2(ψ) := (R1G)(u, ψ) +
1

2(1 − λ)
||∇ψ ||2 (4.13)

is uniformly convex and another application of Lemma 3.2 gives
(

D2(R2 R1G)(u, 0)(u̇, 0), (u̇, 0)
)

≥ inf
K

〈
D2(R1G)(u, ·)(u̇,−DK )(u̇,−DK ) +

1

1 − λ
||∇DK ||2

〉

H2

≥ −1

2
|Td

M ||u̇|2 + inf
K

{(
1

1 − λ
− 1

2

) 〈
||∇DK ||2

〉

H2

}

≥ −1

2
|Td

m ||u̇|2, (4.14)
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where in the last inequality we used that fact that 1
1−λ − 1

2 ≥ 0. In view of (4.1), this
finishes the proof of Theorem 2.1. ��
Proof of Lemma 4.1. Note that u and ψ are fixed. Since the function h̃(s) = h(ui +
∇iψ(x)+ s) has the same L1 norm as h, it suffices to prove the estimate for the function
F ∈ C(X) given by

F(θ) = h(∇iθ(x)). (4.15)

Moreover, we write H instead of Hu,ψ . Let

ĥ(k) =
∫

R

e−iksh(s) ds (4.16)

denote the Fourier transform of h. Then

||ĥ||L∞(R) ≤ ||h||L1(R) (4.17)

and

h(s) = 1

2π

∫

R

eiks ĥ(s) ds. (4.18)

Set

A(k) = 〈Fk〉H , where Fk(θ) = eik∇i θ(x). (4.19)

Then

〈F〉H = 1

2π

∫

R

A(k)h(k) dk (4.20)

and, in view of (4.17), it suffices to show that
∫

R

|A(k)| dk ≤ 4(12dC̄)1/2. (4.21)

First note that |Fk | = 1. Hence

|A(k)| ≤ 1, ∀k ∈ R. (4.22)

To get decay of A(k) for large k we use integration by parts. First note that for
Gi ∈ C1(X), with supa∈X e−δ|a|(|Gi |(a) + |DGi |(a)) < ∞ for all δ > 0, we have

〈
∂G1

∂φ(x)
G2

〉

H
=
〈
−G1

∂G2

∂φ(x)

〉

H
+

〈
∂H

∂φ(x)
G1G2

〉

H
. (4.23)

Assume first that x ∈ T
d
M\{0}. Then

Fk(θ) = − 1

k2

∂2 Fk

∂θ2(x)
(θ) (4.24)
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and thus

− k2 A(k) =
〈
∂2 Fk

∂θ2(x)
· 1

〉

H
=
〈
∂Fk

∂θ(x)

∂H

∂θ(x)

〉

H

= −
〈
Fk

∂2 H

∂θ2(x)

〉

H
+

〈
Fk

(
∂H

∂θ(x)

)2
〉

H

. (4.25)

Since |Fk | = 1, this yields

|A(k)| ≤ 1

k2

〈∣∣∣∣
∂2 H

∂θ2(x)

∣∣∣∣

〉

H
+

1

k2

〈(
∂H

∂θ(x)

)2
〉

H

. (4.26)

Application of (4.23) with G2 = 1,G1 = ∂H
∂θ(x) gives

〈
∂2 H

∂θ2(x)

〉

H
=
〈(

∂H

∂θ(x)

)2
〉

H

. (4.27)

Thus

|A(k)| ≤ 2

k2

〈∣∣∣∣
∂2 H

∂θ2(x)

∣∣∣∣

〉

H
. (4.28)

Now recall that

H(θ) =
∑

x∈T
d
M

d∑

i=1

gi (ui + ∇iψ(x) + ∇iθ(x)) +
1

2λ
|∇iθ(x)|2. (4.29)

Since λ−1 = 2C̄ , it follows that

∣∣∣∣
∂2 H

∂θ2(x)

∣∣∣∣ ≤ 2d

(
sup
R

∣∣∣(gi )′′
∣∣∣ +

1

λ

)
≤ 6dC̄ . (4.30)

Hence

|A(k)| ≤ 12dC̄

k2 . (4.31)

Using (4.31) for |k| ≥ (12dC̄)1/2 and (4.22) for |k| ≤ (12dC̄)1/2, we get (4.21).
Finally, if x = 0 we note that

Fk(θ) = − 1

k2

∂2

∂θ2(ei )
Fk(θ), (4.32)

and we proceed as before. ��
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2

4

6

8

V(s)

-4 -2 0 2 4 s

Fig. 4. 1. Example (a)

Remark 4.1. The proof shows that for h = g′′ we can also use norms involving only
lower derivatives of g. In particular, we have

| 〈g′′〉
H | ≤ 1

2π

∫

R

|ĝ′′(k)||A(k)| dk

≤ 1

2π
||ĝ′(k)||L2(R)

⎛

⎝
∫

R

k2|A(k)|2 dk

⎞

⎠
1/2

≤ 1√
2π

||g′||L2(R)

(
2

(
1

3
+ (12dC̄)2

))1/2

, (4.33)

where we used (4.22) for |k| ≤ 1 and (4.31) for |k| ≥ 1.

Remark 4.2. Note that our proofs can be very easily adapted to any decomposition of
µ = µ1 ∗ µ2, where µ1 and µ2 are Gaussian with covariances C1 and C2, such that
Hu,ψ (θ) := G(u, ψ + θ) + 1

2 (C
−1θ, θ) is uniformly convex.

Remark 4.3. The procedure for the one-step decomposition can be iterated and the proofs
can be adapted to the multi-scale decomposition; iterating the method would lower the
temperature and weaken the conditions on the perturbation function g. However, our
iteration procedure would not allow us to get results involving the low temperature case.

Example. (a) V (s) = s2 + a − log(s2 + a), where 0 < a < 1. Then, using the
notation from Remark 2.3, take Y (s) = s2 and h(s) = − log(s2 + a). We have
Y ′′(s) = 2, so D1 = D2 = 2; also h′′(s) = 2 s2−a

(s2+a)2
, with − 2

a ≤ h′′(s) ≤ 0

for s ∈ [−√
a,

√
a] and 0 < h′′(s) ≤ 2

25a otherwise. Then C0 = 2
a , C1 = 2,

C2 = 2 + 2
25a and ||g′′

0 (s)||L1(R) = 2√
a

and β ≤ a2π2

6×162d
.

(b) Let 0 < δ < 1 and

V (s) =
{

x2

2 − 4
δ4 x3(δ − x)3 if 0 ≤ x ≤ δ

x2

2 otherwise.
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0.002

0.004

0.006

0.008

V(s)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 s

Fig. 4. 2. Example (b)

V(s)

0 s

Fig. 4. 3. Example (c)

Then C1 = C2 = 1, C̄ = 6
5 , ||(gi

0)
′′||L1(R) ≤ 3

10
√

5
δ5 and β ≤

(
5
√

5dπ
2δ

)2
.

Note that if δ << 1, the surface tension is convex for very large values of β.
(c) Let p ∈ (0, 1) and 0 < k2 < k1. Let

V (s) = − log

(
pe−k1

s2
2 + (1 − p)e−k2

s2
2

)
.

Then

V ′′
0 (s) = pk1e−k1

s2
2 + (1 − p)k2e−k2

s2
2

pe−k1
s2
2 + (1 − p)e−k2

s2
2

and

g′′
0 (s) = − p(1 − p)(k1 − k2)

2s2

p2e−(k1−k2)
s2
2 + 2p(1 − p) + (1 − p)2e(k1−k2)

s2
2

.

We have

k2 ≤ V ′′
0 (s) ≤ pk1 + (1 − p)k2 and − p(k1 − k2)

1 − p
≤ g′′

0 (s) ≤ 0,
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where the lower bound inequality for g′′
0 (s) follows from the fact that g′′

0 (s) attains

its minimum for s ≥
√

2
k1−k2

. Then

||g′′
0 (s)||L1(R) ≤ 2p

1 − p

√
(k1 − k2)π and β ≤

(
1 − p

16p

)2
πk2

12dC̄(k1 − k2)
.

Note that example c) is the one used in [1] to prove that uniqueness of ergodic
states can be violated for non-convex V for large enough β.

Acknowledgement. Codina Cotar thanks David Brydges and Haru Pinson for invaluable advice and suggesti-
ons during the writing of the manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial
License which permits any noncommercial use, distribution, and reproduction in any medium, provided the
original author(s) and source are credited.

References

1. Biskup, M., Kotecky, R.: Phase coexistence of gradient Gibbs states. Probab. Theory Relat. Fields 139,
1–39 (2007)

2. Biskup, M., Spohn, H.: Scaling limit for a class of gradient fields with non-convex potentials. Preprint
3. Brydges, D.: Park City lecture notes, 2007
4. Brydges, D., Yau, H.T.: Grad φ perturbations of massless Gaussian fields. Commun Math. Phys. 129(2),

351–392 (1990)
5. Cotar, C., Deuschel, J.D.: Decay of covariances, uniqueness of ergodic component and scaling limit for

∇φ systems with non-convex potential. Preprint
6. Deuschel, J.D., Giacomin, G., Ioffe, D.: Large deviations and concentration properties for ∇φ interface

models. Prob. Theory Relat. Fields 117, 49–111 (2000)
7. Fröhlich, J., Pfister, Ch.: On the absence of spontaneous symmetry breaking and of crystalline ordering in

two-dimensional systems. Commun. Math. Phys. 81, 277–298 (1981)
8. Funaki, T., Spohn, H.: Motion by Mean Curvature from the Ginzburg-Landau ∇φ Interface Model.

Commun. Math. Phys. 185, 1–36 (1997)
9. Giacomin, G., Olla, S., Spohn, H.: Equilibrium fluctuations for ∇φ interface model. Ann. Prob. 29(3),

1138–1172 (2001)
10. Helffer, B.: Semiclassical analysis, Witten Laplacians and statistical mechanics. River Edge, NJ: World

Scientific, 2002
11. Pinson, H.: Towards a Nonperturbative Renormalization Group Analysis. Commun. Math. Phys. 282(1),

11–54 (2008)
12. Sheffield, S.: Random surfaces: large deviations principles and gradient Gibbs measure classifications.

Asterisque 304, 2005

Communicated by H. Spohn


	Strict Convexity of the Free Energy for a Classof Non-Convex Gradient Models
	Abstract:
	Introduction
	Main Result and Outline of the Proof
	Consequence of the Helffer-Sjöstrand Representation
	Proof of Theorem 2.1
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


