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Abstract: We analyse the Dirichlet convolution ring of arithmetic number theoretic
functions. It turns out to fail to be a Hopf algebra on the diagonal, due to the lack
of complete multiplicativity of the product and coproduct. A related Hopf algebra can
be established, which however overcounts the diagonal. We argue that the mechanism
of renormalization in quantum field theory is modelled after the same principle. Sin-
gularities hence arise as a (now continuously indexed) overcounting on the diagonals.
Renormalization is given by the map from the auxiliary Hopf algebra to the weaker
multiplicative structure, called Hopf gebra, rescaling the diagonals.
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1. Dirichlet Convolution Ring of Arithmetic Functions

1.1. Definitions. In this section we recall a few well know facts about formal Dirichlet
series and the associated convolution ring of Dirichlet functions [1,4]. An arithmetic
function is a map f : N → C. Equivalently we can consider integer indexed sequences
of complex numbers. It is convenient to introduce formal generating functions to encode
this information in a more compact form

f (s) :=
∑

n≥1

f (n)

ns
,

(1-1)
s = σ + i t ∈ C,

where the formal complex parameter is traditionally written as s. No confusion should
arise between the series elements f (n) and the generating function f (s) formally denoted
in the same way.

A ring structure is imposed in the obvious manner:

Definition 1.1. The Dirichlet convolution ring of arithmetic functions is defined on the
set of arithmetic functions as

( f + g)(s) :=
∑

n≥1

f (n) + g(n)

ns
,

( f � g)(s) :=
∑

n≥1

∑

d|n

f (d) · g(n/d)

ns
, (1-2)

where
∑

d|n is the sum over all divisors d of n.

The component-wise addition imposes a module structure on the arithmetic func-
tions, and the convolution product is actually the point-wise product of the generating
functions f (s) · g(s) as is easily seen. Furthermore the product is commutative, asso-
ciative, and unital with unit u(s) := ∑

n≥1 δn,1n−s , where δn,1 is the Kronecker delta
symbol.

If f (1) �= 0, then a unique inverse Dirichlet generating function exists w.r.t. the
convolution product

f � f −1 = u = f −1 � f,

n = 1 : f −1(1) = 1/ f (1),

n > 1 : f −1(n) = 1

f −1(1)

∑

d|n
d<n

f −1(
n

d
) f (d). (1-3)

The invertible arithmetic functions form a group:

f � u = f = u � f,

( f � g)−1 = g−1 � f −1, (1-4)

due to the associativity of the convolution.
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1.2. Multiplicativity versus complete multiplicativity. Two integers n,m are called
relatively prime if their greatest common divisor gcd(n,m) = (n,m) is 1, hence if
they have no prime factor in common. Many important number theoretical functions
enjoy a weakened homomorphism property, called multiplicativity.

Definition 1.2. An arithmetic function f is called complete multiplicative if

f (n · m) = f (n) · f (m) ∀n,m. (1-5)

An arithmetic function f is called multiplicative if

f (n · m) = f (n) · f (m) ∀n,m with (n,m) = 1. (1-6)

Hence multiplicative functions fail in general to be homomorphisms of the multipli-
cative structure of the natural numbers iff the product has a nontrivial common prime
number content (n,m) = k, such that n = k · n′ and m = k · m′. We may call k the
overlapping or meet part of n,m. Actually gcd and lcm form a distributive lattice on the
integers.

1.3. Examples. We give some examples of arithmetic functions, among them multipli-
cative, complete multiplicative and non-multiplicative ones, which all play important
roles in number theory.

Let n = ∏
pri

i , m = ∏
psi

i and define ν to be the function ν(n) = 2
∑

ri . One has

ν(n · m) = ν
(∏

pri +si
i

)
= 2

∑
(ri +si ) = 2(

∑
ri )+(

∑
si )

= 2
∑

ri 2
∑

si = ν(n) ν(m). (1-7)

Hence ν is a homomorphism or complete multiplicative function.
The Möbius function is defined as

µ(n) =
⎧
⎨

⎩

1 n = 1
0 n contains a square

(−1)k n = ∏k
i=1 pi , k distinct primes

. (1-8)

The sequence of integer values of the Möbius function is a random-looking list of ±1, 0
entries:

n 1 2 3 4 5 6 7 8 . . .
µ(n) 1 −1 −1 0 −1 1 −1 0 . . .

. (1-9)

Another interesting arithmetic function is the Euler totient function, which counts the
number of relative prime numbers d having (d, n) = 1 smaller than n. Using # for
cardinality it reads φ = #{d ∈ N; d < n, (d, n) = 1}:

n 1 2 3 4 5 6 7 8 . . .
φ(n) 1 1 2 2 4 2 6 4 . . .

. (1-10)

Introducing the arithmetic function N (n) = n, ∀n one finds φ(n) = (µ � N )(n) =
n

∏
p|n(1 − 1

p ). The Möbius and Euler totient functions are multiplicative, but not
complete multiplicative.
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A further example of a non multiplicative function is the von Mangoldt function:

�(n) =
{

log p if n = pm , m ≥ 1, p a prime
0 otherwise (including 1) . (1-11)

Tabulated this reads

n 1 2 3 4 5 6 7 8 . . .

�(n) 0 log 2 log 3 log 2 log 5 0 log 7 log 2 . . .
. (1-12)

The importance of the von Mangoldt function stems from the fact that it encodes the
derivation with respect to the formal parameter s of a Dirichlet generating function in
terms of the convolution product. We use

∑
d|n �(d) = log n to show this:

∂

∂s
f (s) =

∑

n≥1

f (n)
∂

∂s
n−s =

∑

n≥1

f (n)(− log n)n−s . (1-13)

In particular one obtains for the Riemann zeta function ζ−1 = µ, ζ(n) = 1 ∀n the
formula

− ζ(s)′

ζ(s)
= − ∂

∂s
log ζ(s) = �(s). (1-14)

The von Mangoldt function appears in the Selberg formula [23], which allows one to
embark on an ‘elementary’, that is nonanalytic, proof of the prime number theorem.

2. Products and Coproducts Related to Dirichlet Convolution

In previous work, we studied extensively the Dirichlet Hopf algebra of arithmetics [12].
We extract from that work the two coproducts needed for the present purpose. We dualize
the (semi)ring structure1 of the natural numbers (N,+, ·) using the Kronecker duality
written as a scalar product 〈 | 〉 : N × N → Z2, 〈n | m〉 = δn,m .

Definition 2.3. The coproduct of addition is defined as

	+(n) :=
∑

n1+n2=n

n1 ⊕ n2

= n(1) ⊕ n(2), (2-1)

and the coproduct of multiplication is defined as

	·(n) :=
∑

n1·n2=n

n1 × n2 =
∑

d|n
d × n

d

= n[1] × n[2]. (2-2)

We introduced Sweedler indices and the Brouder-Schmitt convention [3] to denote Swee-
dler indices of different coproducts by different parentheses.

1 We will later on always complete the natural numbers à la Grothendieck to a group, the integers, hence
‘ring’ will be a posteriori justified.
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Our coproducts allow us to define convolution algebras on the (set of coefficients
of) arithmetic functions f : N → C together with the product µ in C. If the codomain
of such a function is in the nonnegative integers, it is an endomorphism of C under
a suitable identification of N in C. The process of extending the convolution of (set)
endomorphisms on N to (set) homomorphisms hom(N,C) is subtle, since ring exten-
sions have to be considered. In our formal treatment we do not care about this.

Definition 2.4. A convolution algebra Conv(µ,	) is defined on homomorphisms f,
g ∈ hom(N,C) as

( f + g)(n) = ‘ +′ ( f × g)	+(n) = f (n) + g(n),

( f � g)(n) = µ( f × g)	(n) =
∑

d|n
f (n) · g

(n

d

)
(2-3)

for the addition ‘+′ the product µ and coproducts 	+ respectively 	·.

It is easy to show the following

Proposition 2.5. Conv(+,	+) is biassociative, biunital, bicommutative with antipode
S+ : N → Z given by S+(n) = −n

Note that the antipode is Z valued forcing us to extend the codomain of the
homomorphisms at least to Z. We introduce the Hadamard product . : hom(N,C) ×
hom(N,C) → hom(N,C), that is the coefficient-wise product of Dirichlet series, as
( f.g)(s) = ∑

n≥1 f (n) · g(n)n−1 to be able to state the

Proposition 2.6. Conv(·,	·) is biassociative, biunital, bicommutative with antipode
S· : N → Z given by S·(n) = (N .µ)(n) = n · µ(n) or alternatively written as gener-
ating function S·(s) = µ(s − 1).

While the first statements are almost trivial, the antipode can be derived as a group
inverse using a recursion argument. Tabulated it reads

n 1 2 3 4 5 6 7 8 . . .
S·(n) 1 −2 −3 0 −5 6 −7 0 . . .

, (2-4)

which should be compared with the table (1-9).
The coproduct of multiplication models exactly split arguments in the Dirichlet con-

volution. In this case the Hopf algebraic version acts directly on the elements of the
series representation of the arithmetic functions. The remarkable fact is that this coprod-
uct can be obtained from an almost trivial dualization of multiplication of integers. The
coproduct of addition will come into play later. We want to make this duality explicit,
using the Kronecker pairing 〈n | m〉 = δn,m ,

〈n + m | k〉 = 〈n ⊕ m | 	+(k)〉 = 〈n | k(1)〉〈m | k(2)〉
⇔ 	+(k) =

∑

k1+k2=k

k1 × k2 = k(1) ⊕ k(2), (2-5)

and for the coproduct of multiplication one has

〈n · m | k〉 = 〈n × m | 	·(k)〉 = 〈n | k[1]〉〈m | k[2]〉
⇔ 	·(k) =

∑

k1·k2=k

k1 × k2 =
∑

d|n
d × n

d
= k[1] × k[2]. (2-6)
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We close this discussion by exhibiting the primitive elements with respect to
coaddition and comultiplication. A (1, 1)-primitive element (or simply primitive ele-
ment) p is defined satisfying the relation 	(p) = p ⊗ 1 + 1 ⊗ p. Using the particular
monoidal structure, i.e. direct sums for addition, cartesian product for multiplication,
and the respective units for addition and multiplication, we find as an easy consequence
of the definitions:

Corollary 2.7. With respect to the coproduct of addition 	+, 1 is the only primitive
element and N is additively generated by 1.

Corollary 2.8. With respect to the coproduct of multiplication	·, {pi }∞i=1 the set of all
prime numbers represents all primitive elements and N is multiplicatively generated by
these primes.

This poses the opportunity to introduce two gradings on N turning the integers into a
graded set, first by setting N = ⊕n∈N1n , where every number represents its own grade.
Addition is a graded map (binary ‘product’) under this grading. Now let P be the set of
all prime numbers and P

k the set of all integers having exactly k prime factors (including
multiplicities). Let P

0 = 1. The grading suggested by the multiplicative structures is
defined as:

N = ⊕i≥0P
i . (2-7)

This regrouping will have a great influence on how densities or the asymptotic behaviour
of Dirichlet arithmetic functions have to be considered, see Appendix B. For a detailed
discussion of the algebraic aspects, including Hopf algebra cohomology, see [12].

2.1. Multiplicativity of the coproducts. A remarkable fact is the following

Proposition 2.9. The coproduct of multiplication 	· is a multiplicative function.

Proof. First consider relative prime numbers pr , qs ,

	·(pr · qs) =
∑

d|pr ·qs

d × pr · qs

d
. (2-8)

Since pr | qs = 1, from which follows d | pr · qs = a | pr · b | qs , we obtain

	·(pr · qs) =
∑

a|pr

b|qs

a · b × pr · qs

a · b
=

r∑

l=0

s∑

k=0

plqk × pr−lqs−k

=
r∑

l=0

pl × pr−l
s∑

k=0

qk × qs−k =
∑

c|pr

c × pr

c

∑

d|qs

d × qs

d

= 	·(pr )	·(qs). (2-9)

	· is not complete multiplicative due to

	·(4) = 1 × 4 + 2 × 2 + 4 × 1
(2-10)

	·(2)	·(2) = (1 × 2 + 2 × 1)2 = 1 × 4 + 2 × 2 + 2 × 2 + 4 × 1,

which completes the proof. �
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The lack of complete multiplicativity of the coproduct map spoils a major axiom of
Hopf algebra theory, namely the homomorphism axiom

	µ(n × m) = (µ⊗ µ)(Id ⊗ sw ⊗ Id)(	⊗	)(n × m), (2-11)

which fails to hold(!) in the present case, but is only true as a multiplicative relation for
(n,m) = 1. The multiplicative convolution, despite being bicommutative, biassociative,
biunital, and having a nice antipode, is alas not a Hopf algebra.

3. Hopf Gebra: Multiplicativity Versus Complete Multiplicativity

The fact that the convolution Conv(·,	·) is not a Hopf algebra spoils the idea of employ-
ing a vast amount of standard machinery. To distinguish the presently studied antipodal
convolution from a proper Hopf algebra we give it a new name.

Definition 3.10. A biassociative, biunital, antipodal convolution Conv(µ,	,S) is called
a Hopf gebra (HG). If the product is a comultiplicative map and if the coproduct is a
multiplicative map fulfilling Eq. (2-11) then the Hopf gebra is called multiplicative.2

3.1. Plan A: The modified crossing. To be able to deal with the multiplicative, or even
the general case, one has to introduce new technical devices. For definitions etc. see
[15,10]. A first attempt at a cure would be to ask if there could be a deformed crossing
or switch cV,U : V ⊗ U → U ⊗ V so that the homomorphism axiom Eq. (2-11) could
be reestablished in a complete multiplicative fashion. This hope is nourished by the
following:

Theorem 3.11. [20]: Every biassociative antipodal convolution has a unique crossing
cV,U , such that 	 is a monoid homomorphism and µ is a comonoid homomorphism

cV,U =S S (3-1)

If cV,U is a braid, i.e. (cV,W ⊗ IdU )(IdV ⊗ cU,W )(cU,V ⊗ IdW ) = (IdW ⊗ cU,V )(cU,W ⊗
IdV )(IdU ⊗ cV,W ), on U ⊗ V ⊗ W , then the Hopf gebra is a braided Hopf algebra. If
cU,V is a (graded) switch the Hopf gebra becomes a (graded) Hopf algebra.

The further route of such studies involves the possible classifications of crossings
obtained this way, and to detect if they are braided, compute their minimal polynomial
and so on. Such research is quite tedious, as was shown in [15]. The difficulties are so
large that in fact plan A has to be disregarded.

2 This notion is in the Bourbaki tradition [2] and was used in [10] but originally coined by Oziewicz [20],
however, with a different connotation.
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3.2. Plan B: Unrenormalization. We need to come up with a new strategy. The idea is
to reestablish a Hopf algebra structure as close as possible to the given multiplicative
Hopf gebra in question. Then use the nicely behaved Hopf algebra for computations, and
try to find a transformation back to the Hopf gebra formulation. That there is actually
hope to do so, stems from the fact that we are going to establish a Hopf algebra which
is isomorphic to the multiplicative Hopf gebra on all relatively prime inputs and differs
only on common ‘overlapping’ prime factors. To comply with the usage of the term
‘renormalization’ in physics, we need to call such a map assigning to a multiplicative
Hopf gebra a Hopf algebra an ‘unrenormalization’ map.

Definition 3.12. The unrenormalized coproduct of multiplication	· related to the (renor-
malized) coproduct of multiplication 	· is recursively defined as

i) 	·(p) = 	·(p) = p × 1 + 1 × p on primes

ii) 	·(n · m) = 	·(n) ·	·(m) ∀n,m (3-2)

forcing complete multiplicativity.

In this way the homomorphism axiom (2-11) holds automatically on all pairs n,m
of (non-negative) integers. It is important to note that this is a minimal alteration of the
coproduct in the sense that the unrenormalized coproduct differs only on the diagonal
(on the gcd’s) from the original coproduct. While the counit still remains as the counit
of the unrenormalized coproduct, unrenormalization has, however, serious impacts, for
example

Corollary 3.13. The unrenormalized antipode is given as S·(n) = (−)
∑

ri n, where
n = ∏

i pri
i .

This result shows that the antipode is just the grade involution with respect to the
grading of the natural numbers by prime number content. This is a natural map in Hopf
algebra theory, but far from being an interesting number theoretic arithmetic function,
like the Möbius function, which was related to the renormalized antipode.

We can now wonder which duality connects multiplication and the new unrenormal-
ized co-product.

Corollary 3.14. Let n = ∏
i pri

i and m = ∏
j p

s j
j . The pairing ( | ) defined by

(n | m) =
∏

i

δri ,si ri ! = zn (3-3)

dualizes the multiplication · into 	·.

Proof. (Sketch). Use Laplace expansion demanding that · and	· are Milnor-Moore dual
w.r.t. ( | ). For details see [12]. �

Note that also in this case all alterations are just scalings: (n | m) = zn〈n | m〉, which
is up to a rescaling by zn , the Kronecker delta again.
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3.3. The co-ring structure. Before we try to set up the number theoretical model of
renormalization, we want to exhibit the co-ring structure. This implies a relation between
the coproduct of addition and the coproduct of multiplication in analogy with a ring
structure. Such relations were used in [14] to investigate new group branchings.

Let us introduce a further group-like coproduct δ : P → P × P, δ(p) = p × p.
Coaddition and comultiplication are related as (n = ∏

i pri
i )

	·(n) =
∑

d|n
d × n

d

= δ	
+
(n) =

∏

i

(pi × pi )
	+(ri )

=
∑

r ′
i +r ′′

i =ri

(
∏

i

p
r ′

i
i

)
×

(
∏

i

p
r ′′

i
i

)
, (3-4)

where the notion 	· = δ	
+

should be taken as a mnemonic only.
The unrenormalized case follows along the same lines, and actually can be used to

define the unrenormalized coproduct of addition:

	+(n) :=
∑

n1+n2=n

(
n

n1

)
n1 × n2. (3-5)

Let n = ∏
i pri

i , unrenormalized addition and unrenormalized multiplication relate as:

	·(n) = δ	
+
(n)

=
∑

r ′
i +r ′

i ′=ri

(
r ′

i + r ′
i ′

ri

) ∏

i

p
r ′

i
i ×

∏

i

p
r ′

i ′
i . (3-6)

The appearance of the binomial factors is well known from calculations in quantum field
theories, describing the coproduct of scalar fields for example.

3.4. Coping with overcounting : renormalization. Our paradigm is that the number the-
oretically interesting structure is the renormalized one, which is only multiplicative, and
hence forms a multiplicative Hopf gebra (HG) only. To use nice algebraic machinery,
we associate to it an unrenormalized Hopf algebra (HA) which differs only on common
prime content, hence in a minimal way. The relation of the HG and HA can be summa-
rized in the following commutative diagram:

H G(·,	·) H A(·,	·)

H G(·,	·) H A(·,	·)

unrenormalization

alg. manip. /pQFTdiff. comp. /NT

renormalization (3-7)
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Number theoretical (NT) computations in the Dirichlet ring of arithmetic functions,
i.e. in the convolution ring over the Hopf gebra (HG), are performed along the left
down arrow and are usually involved and complex. Perturbative quantum field theory
(pQFT) starts with a Hopf algebra structure assuming an algebra structure on the duals
of the fields, either explicitly or implicitly. Then algebraic calculations are performed
explicitly or implicitly using the underlying Hopf algebra (HA) structure. However, the
final formal expressions are plagued by infinities, which are removed by a rescaling
technique called renormalization. Our point is that this rescaling ends up in a Hopf ge-
bra in analogy to number theory. The first step, the unrenormalization, is not seen in
physics, since the modelling is done by assuming a Hopf algebra structure or equiv-
alently a compatible algebra structure of the fields and their duals, which vice versa
implies a comultiplication. The technique of renormalization hence copes with over-
counting on the diagonals (gcd generalized to common maximal ideals). In pQFT these
overcountings are infinite, since summations are replaced by integrations which in gen-
eral diverge. In number theory one obtains finite overcountings, and a Hopf algebra
approach would have just failed to work by producing wrong results. However, after
having established the relation of the diagram Eq. (3-7) one attempted to try to unr-
enormalize problems in number theory and to use methods from QFT to handle them
and ‘renormalize’ the formal result. Our approach opens at least two new possibili-
ties:

a: pQFT starts with a HA structure, the unrenormalization is hence superfluous. Due
to scalings by counterterms renormalization takes care of ‘overcounting the diagonal’.
An enlargement of modelling to start with unrenormalized quantities would possibly
allow to introduce number theoretic machinery, i.e. celebrated theorems and particular
techniques, to solve problems in physics.

b: Via the unrenormalization, there may arise new possibilities to deal with hard
number theoretic problems in the ring of arithmetic functions by using methods from
quantum field theory.

Hence renormalization should be understood as a sort of rewriting rule, allowing
insights to be moved from one side to the other.

There are several approaches to the theory of renormalization, discussed for exam-
ple in the topical review [7]. However, from our point of view, the approach proposed
by Brouder-Schmitt [3], based on Epstein-Glaser renormalization [8], seems to be more
natural and we have adopted it in our work [12]. Therein it was shown for the example of
occupation number representations that the ordering process which we introduced in [9]
also applies for QM and used both algebraic structures, the unrenormalized and renor-
malized ones. Since the same process of deformation, but on another level of complexity,
produces the renormalization mechanism, we argue that the ‘ordering’ or ‘deformation’
if done on the higher level of complexity –multiplication versus addition, or composition
versus multiplication– enters at least in a twofold manner, the more complex one giving
rise to the renormalization map. In terms of symmetric functions this leads to the Hopf
algebra of plethysm [13]. The crucial fact is that addition can be obtained as iteration
of the successor map, multiplication as the iteration of the addition, and exponentia-
tion as the iteration of multiplication. Further generalization fails, since the iteration
functor needs a transposition, which is equivalent to demanding a commutative binary
underlying operation [17]. In that sense, our number theoretic model needs to be en-
larged to include exponentiation to actually parallel the ‘renormalization’ encountered in
pQFT.
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4. Taming Multiplicativity

A complete multiplicative function g is defined if its values are known on all primes,
i.e. on P. Let n = ∏

i pri
i , then complete multiplicativity allows to write

g(n) = g

(
∏

i

pri
i

)
=

∏

i

g(pi )
ri . (4-1)

However, a multiplicative function f needs to be specified on all prime powers {pk
i },

∀i, k

f (n) = f

(
∏

i

pri
i

)
=

∏

i

f (pri
i ). (4-2)

While both sets have the same cardinality it is awkward that a multiplicative function is
not well defined by its values on generators, here the primes in P.

In what follows, we want show how one might tame multiplicativity by giving data
only on primes, and controlling the values on f (pn) by a recursion involving a complete
multiplicative function. This idea is based on the analogy that the expectation values of
powers of quantum fields 〈0 | (ψ(x))2 | 0〉 should be computable from a function of the
expectation values 〈0 | ψ(x)ψ(y) | 0〉 in a suitable limit y → x .

The device we want to use is that of Bell series. These are series encoding an arith-
metic function on all prime powers of a given prime p.

Definition 4.15. A Bell series of an arithmetic function f for a fixed prime p is given
as an ordinary power series

f p(x) =
∑

n≥0

f (pn)xn, (4-3)

employing a formal indeterminate x.

Corollary 4.16. If f is complete multiplicative its Bell series reads

f p(x) =
∑

f (p)n xn = 1

1 − f (p)x
. (4-4)

The Bell series of the Möbius function and the Euler totient function read

µp(x) = 1 − x,
(4-5)

φp(x) = 1 − x

1 − px
,

showing that they are not complete multiplicative. The most important fact about Bell
series for us is that the Dirichlet convolution product of arithmetic functions is trans-
formed into the Cauchy product of Bell series. Let h = f � g, then

h p(x) = f p(x)gp(x), (4-6)

reducing the complexity of the operation dramatically.
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We use an example from Apostol [1] to demonstrate how this might be used to model
the process of renormalization in number theory in analogy to renormalization in pQFT,
by adding counterterms or modifying the pole structure of the ‘propagator’.

Let g be complete multiplicative, and recall that then g(1) = 1. We define a recursion
for a multiplicative function f so that all values of f on prime powers are determined.
In terms of coefficients a particular recursion reads

f (pn+1) = f (p) f (pn)− g(p) f (pn−1). (4-7)

This allows to compute the Bell series

f p(x) = 1

1 − f (p)x + g(p)x2 . (4-8)

It can be shown that Eq. (4-8) follows from Eq. (4-7) and vice versa. Using this recursion,
it is now possible to establish the following product formula:

f (m · n) = f (m) f (n)− ∑
d|gcd(n,m)

1<d≤gcd(n,m)
g(d) f

(
m·n
d2

)
. (4-9)

Together with Eq. (4-8) this establishes a number theoretic analog of renormalization the-
ory. g(p)would serve as an additive renormalization of the ‘propagator’ 1

1− f (p)x+g(p)x2

and the sum in the right hand side of Eq. (4-9) constitutes counterterms.

Acknowledgements. It is a pleasure to thank Peter Jarvis for many helpful discussions and for ongoing col-
laboration on this subject. Part of this work was done in Hobart during a visit supported by the ARC research
grant DP0208808, and the Alexander von Humboldt Foundation.

Appendix A. Some Facts about Dirichlet and Bell Series

A.1. Characterizations of complete multiplicativity. Since multiplicativity versus com-
plete multiplicativity plays a major role in our argumentation we want to recall useful
characterizations of multiplicativity.

Lambek [16] proved that an arithmetical function f is completely multiplicative iff
its Hadamard product distributes over every Dirichlet product:

f.(g � h) = ( f.g) � ( f.h) (A-1)

for all arithmetical functions g, h. In terms of coefficients this reads

f (n)
∑

d|n
g(d)h(n/d) =

∑

d|n
f (d)g(d) f (n/d)h(n/d). (A-2)

This can be rephrased saying that the convolution is a Laplace pairing [11] for the Had-
amard product. Carlitz [5] posed the problem to characterize complete multiplicativity
by distributivity over particular Dirichlet convolutions. Let τ = ζ � ζ be the number of
positive divisors function. f is complete multiplicative iff

f.τ = ( f.ζ ) � ( f.ζ ) = f � f. (A-3)

A nice way to generalize such notions is by using Möbius categories C [18,19]. These
are categories defined to generalize and unify the theory of Möbius inversions. In terms
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of morphisms one investigates incidence functions f, g forming an incidence algebra
A(C) by employing the product

( f � g)(α) =
∑

α′α′′=α
f (α′)g(α′′). (A-4)

An incidence function is complete multiplicative iff

f (α) = f (α′) f (α′′) (A-5)

with α = α′α′′ the composition of morphisms. Now, Lambek’s characterization gener-
alizes to this case, while Carlitz’ characterization has to be altered [22]. It is, however,
nice to have a generalization to this general setting allowing to export the concept of
multiplicativity to incidence (or functionals on operator) algebras. This way of general-
ization is needed on the way to establish our analogy between number theory and pQFT
in a more concrete way.

A.2. Groups and subgroups of Dirichlet convolution. This section follows the exposi-
tion of Dehaye [6]. Let F0 be the set of multiplicative functions different from the zero
function 0(n) = 0 for all n. This amounts to have f (1) = 1 for all f in F0. The pair
(F0, �) is an abelian group with Dirichlet convolution as product.

For any prime p we define Fp = { f ∈ F0 | f (n) = 0 for every n s.t. p � n}. That
is, an f ∈ Fp has support on prime powers pk only. For every prime p, (Fp, �) is a
subgroup of F0. Furthermore, there exists an isomorphism between Fp and the group of
upper-triangular non-zero infinite matrices M1,

M1 = {m ∈ M | m(a, a) = 1,∀a ∈ N, and m(a, b) = 0,∀a, b ∈ N s.t. a > b}.
(A-6)

M1 is a group with the infinite unit matrix as identity element. The isomorphism φ :
Fp → M1 is given by

φ( f ) =

⎛

⎜⎜⎜⎜⎝

1 f (p) f (p2) f (p3) · · ·
0 1 f (p) f (p2) · · ·
0 0 1 f (p) · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎠
(A-7)

and

φ( f ) · φ(g) = φ( f � g), (A-8)

where in the l.h.s. the product is matrix multiplication. This isomorphism shows that
the Bell series are particular Dirichlet series or restrictions of Dirichlet series to the
subgroup Fp. These groups are isomorphic for every pair of primes pi , p j .

It is possible to consider F0 as a complete (or Cartesian) direct product of the sub-
groups Fpi for all primes

F0 =
∏

i∈N
Fpi . (A-9)

It can be shown [6] that
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a) The group F0 is torsion free (i.e. has no element of finite order).
b) Fp is a subgroup of F0 for every prime p, all such subgroups are pairwise isomorphic

and are isomorphic to infinite upper-triangular non-zero matrices or to Bell series.
c) F0 is isomorphic to the complete direct product of the subgroups Fp.
d) F0 is divisible and has a natural structure of a vector space over Q.

Appendix B. Densities of Generators

We want to emphasise another point which connects our work with renormalization of
quantum fields. As our discussion here and in [12] demonstrated, one can grade the
natural numbers in two canonical ways attached to addition and multiplication. If we
generate the natural numbers additively, we have but one generator, the one 1, which is
the target of the successor map, and all numbers are generated as successors of the zero
0. The successor map is assumed to have no torsion and composition is associative. From
this construction it is evident that the density of natural numbers in the natural numbers
d(n, n0) with respect to the 1 as generator is constant. That is, in every neighbourhood,
that is an interval containing n0, of a natural number n0, one finds the same density of
natural numbers.

The second way to grade the natural numbers was induced by the multiplicative
structure and the primitive elements, i.e. generators, were shown to be the set of prime
numbers {pi }. However, the density of prime numbers in the natural numbers is a non-
trivial function. The celebrated prime number theorem states that the number of prime
numbers below n0 is n0

log n0
for n0 → ∞. This renders it obvious that a multiplicative

construction of the integers behave quite differently with respect to the densities of gen-
erators in the natural numbers. A. Petermann showed in a remarkable paper [21] that
a renormalization group analysis provides a proof for the prime number theorem. This
supports our claim that the present simplified model of renormalization is actually rich
enough to contain main features of renormalization in quantum field theory.

It is possible to iterate this process by asking what kind of ‘primitive elements’ occur
if one looks for exponentiation as an iteration of multiplication. This question leads into
the realm of modular forms and one obtains higher order corrections in the densities
of ‘higher primitive elements’ along the same lines as one obtains higher order loop
corrections, and divergencies in perturbative quantum field theory. This will be explored
elsewhere.
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