Erratum

The Norm Convergence of the Trotter–Kato Product Formula with Error Bound

Takashi Ichinose¹, Hideo Tamura²

- Department of Mathematics, Faculty of Science, Kanazawa University, Kanazawa, 920–1192, Japan. E-mail: ichinose@kenroku.kanazawa-u.ac.jp
- Department of Mathematics, Faculty of Science, Okayama University, Okayama, 700–8530, Japan. E-mail: tamura@math.okayama-u.ac.jp

Received: 10 June 2003 / Accepted: 19 August 2004

Erratum published online: 2 December 2004 - © Springer-Verlag 2004

Commun. Math. Phys. 217, 489-502 (2001)

It was kindly pointed out by Vidmantas Bentkus that there is a small gap, in the proof of Lemma 2.1, for the case where C is strictly positive, i.e. $C \ge \eta$ for some constant $\eta > 0$.

We have to establish an estimate

$$||e^{-tS_{\varepsilon}} - e^{-tC}|| \le Mt^{-1}\varepsilon^{\alpha}$$

for every $\varepsilon > 0$ with a constant M independent of t and ε . To do so, we need to prove that for $S_{\varepsilon} = \varepsilon^{-1}(1 - F(\varepsilon))$, the inverse S_{ε}^{-1} exists and is uniformly bounded for every $\varepsilon > 0$.

The proof given in the paper is correct for sufficiently small $\varepsilon>0$, up to a certain $\varepsilon_0>0$, because we can show S_ε^{-1} is uniformly bounded with $\|S_\varepsilon^{-1}\|<2/\eta$ for all positive $\varepsilon\leq\varepsilon_0$. However, we need to supplement that with a proof for the large ε case. To this end, in the statement of Lemma 2.1, we should have further assumed on F(t), in the case C is strictly positive, that for this ε_0 there exists $\delta_0=\delta_0(\varepsilon_0)>0$ such that $F(t)\leq 1-\delta_0(\varepsilon_0)$ for every $t\geq\varepsilon_0$, or that for every $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that $F(t)\leq 1-\delta(\varepsilon)$ for every $t\geq\varepsilon$. Hence we can easily see that for these large ε , S_ε is uniformly bounded with $\|S_\varepsilon^{-1}\|<\varepsilon_0/\delta_0$.

Such an additional assumption on F(t) in Lemma 2.1, for the case C is strictly positive, does not affect the rest of the proof of the main Theorem.

Communicated by M. Aizenman