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Abstract
Complex processes meet and need Industry 4.0 capabilities. Shorter product cycles, flexible production needs, and direct
assessment of product quality attributes and raw material attributes call for an increased need of new process analytical
technologies (PAT) concepts. While individual PAT tools may be available since decades, we need holistic concepts to
fulfill above industrial needs. In this series of two contributions, we want to present a combined view on the future of
PAT (process analytical technology), which is projected in smart labs (Part 1) and smart sensors (Part 2). Part 2 of this
feature article series describes the future functionality as well as the ingredients of a smart sensor aiming to eventually
fuel full PAT functionality. The smart sensor consists of (i) chemical and process information in the physical twin by
smart field devices, by measuring multiple components, and is fully connected in the IIoT 4.0 environment. In addition,
(ii) it includes process intelligence in the digital twin, as to being able to generate knowledge from multi-sensor and
multi-dimensional data. The cyber-physical system (CPS) combines both elements mentioned above and allows the
smart sensor to be self-calibrating and self-optimizing. It maintains its operation autonomously. Furthermore, it
allows—as central PAT enabler—a flexible but also target-oriented predictive control strategy and efficient process
development and can compensate variations of the process and raw material attributes. Future cyber-physical production
systems—like smart sensors—consist of the fusion of two main pillars, the physical and the digital twins. We discuss the
individual elements of both pillars, such as connectivity, and chemical analytics on the one hand as well as hybrid
models and knowledge workflows on the other. Finally, we discuss its integration needs in a CPS in order to allow its
versatile deployment in efficient process development and advanced optimum predictive process control.
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Introduction

The ability of the process industry and its suppliers to sustain-
ably deliver high-quality products at competitive prices and
quickly adapt to evolving customer needs will be crucial to the
future competitiveness of the process industry and its sup-
pliers. For this reason, competitiveness means safeguarding
the required product quality while making ideal use of equip-
ment, raw materials, and energy.

Process analytical technology (PAT) is particularly valu-
able for chemical production and manufacturing, especially
in the pharmaceutical, food, and (petro)chemical industries.
Such tools can be used in the production process for control-
ling a process as well as for quality assurance of an end prod-
uct in order to meet the required product specifications as they

Published in the topical collection Advances in Process Analytics and
Control Technology with guest editor Christoph Herwig.

* Christoph Herwig
christoph.herwig@tuwien.ac.at

1 Arbeitskreis Prozessanalytik, Gesellschaft Deutscher Chemiker,
60486 Frankfurt am Main, Germany

2 Covestro Deutschland AG, /Uerdingen, 47829 Krefeld, Germany
3 Daiichi Sankyo Europe GmbH, 81379 Munich, Germany
4 Bundesanstalt für Materialforschung und -prüfung (BAM),

12489 Berlin, Germany
5 ICEBE, Research Area Biochemical Engineering, TU Wien,

1060 Vienna, Austria

https://doi.org/10.1007/s00216-020-02421-1
Analytical and Bioanalytical Chemistry (2020) 412:2037–2045

/Published online: 14 February 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s00216-020-02421-1&domain=pdf
mailto:christoph.herwig@tuwien.ac.at


provide dynamic information about product properties, mate-
rial flow properties, or operating conditions [1, 2].

We are convinced that the benefits of establishing and op-
erating smart (process) analytical labs, as mentioned in Part 1
[3] will become easier accessible via use of PAT along the
whole asset life cycle together with connectivity to smart sen-
sors. But PAT does not provide isolated measurements alone.
PAT needs to be interpreted in its full definition, hence a sys-
tem to design, analyze, and control the process for ensuring
product quality and safety of the process [4]. Therefore, we
have to broaden our perception, beyond of that we only need a
sensor in the field. The sensor needs to be smart. It may be a
hardware field device, a pure software element, or a combina-
tion of these—called soft sensor. Hence, the smart PAT sensor
needs a combination of a chemical analytical device (elucidat-
ing the chemical and process information) and process intel-
ligence (Fig. 1).

Thus, as our hypothesis we define the optimum smart sen-
sor as follows:

The smart sensor measures multiple components, is self-
calibrating and self-optimizing. It is easy to be integrat-
ed in the process environment – with regard to process
connections and communication connectivity – and
maintains its operation autonomously. In addition, it
possesses process intelligence and can generate infor-
mation from multi-sensor and multi-dimensional data.

Integrated in a PAT environment it allows for a flexible
but also target-oriented predictive control strategy and
can compensate variations of the process and raw mate-
rial attributes.

In this contribution, we will shortly summarize require-
ments for smart sensors, revisiting the needs and requirements
of smart field devices and linking the gathered physical and
chemical information to process intelligence and control solu-
tions inside of digital twin environments.

Data from the physical twin: smart field
devices for chemical and process information

Need for smart field devices

At present, innovative concepts in the field of process engi-
neering and in particular process intensification are being pro-
moted for the analysis and design of innovative equipment
and production methods. This leads to a considerable im-
provement in sustainability and efficiency. Environmental
performance will be improved, for example, through alterna-
tive energy conversion. Such concepts also improve hydrody-
namics and heat transfer within processes.

Current research focuses on intensifying continuous pro-
cesses. Compared with conventional batch processes, it allows

Fig. 1 Conceptual representation of future smart sensors, consisting of a
combination of elements of (1) process and chemical information (dark
blue) and process intelligence (light blue). The chemical information
elements feed the physical twin, the process installation, while process
intelligence is implemented in the digital twin. In each of them, individual

technological elements (orange) are implemented, as they will be
discussed in this contribution. The smart sensor is a result of the combi-
nation of abbe elements implemented in the cyber-physical system (CPS,
red) and can finally be deployed in a multitude of industrial applications
in a PAT environment (top)
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for more intensive continuous production, the adoption of new
compounds that are difficult to produce (see example in the
“Knowledge from the digital twin: hybrid models, artificial
intelligence and machine learning for process intelligence”
section) improves product uniformity and significantly re-
duces the consumption of raw materials and energy. In addi-
tion, continuous processes often meet higher safety require-
ments, as they only produce hazardous chemicals when need-
ed and do not have to be stored in large quantities. This is a
clear advantage for plants located near or in urban areas,
which is typical for most major chemical parks in Europe.
Flexible (modular) chemical plants can produce multiple com-
modities with the same equipment, with short inter campaign
downtime and fast time to market for new products. Typically,
such plants are smaller in scale than basic chemical plants in
batch production, but are still able to produce between kilo-
grams and tons of specialty products daily.

Avery high degree of automation is therefore a prerequisite
for the realization of such benefit from intensified continuous
plants. In continuous flow processes, continuous, automated
measurements and strict product quality control are indispens-
able. If these are not readily available, there is a high potential
danger of producing large volume of out-of-spec (OOS)
products.

In pharmaceutical production, the agreed long-term vi-
sion is “continuous manufacturing” (CM), based on “real
time release testing” (RTRT), i.e., risk-based and fully in-
tegrated QC in every process unit. For flexible production,
modular facilities based on standardized architectures to be
developed in the near future will enable plug-and-produce
approaches suitable for small batches. This provides a flex-
ible connection of smaller production plants, production
transfer to fully autonomous plants, less user intervention,
less non-productive time, and a continuous process knowl-
edge over the product life cycle, future expertise, and a
faster market entrance. It is also supposed that the costs
for quality control within a CM concept will be substan-
tially reduced at the same time.

The increasing demand for automation in general and
PAT sensors in particular will changes the way PAT engi-
neers design, install, and operate sensors in the field, es-
pecially in the context of modular plants and the reusabil-
ity of respective PAT modules. A smart field device,
which is capable to fulfill this, does know what its col-
league devices in the smart labs—as defined in Part 1, our
preceding contribution [2]—did during the process devel-
opment and connects to the sensors and actuators around
it. Furthermore, smart field devices have process connec-
tions, built-in safety, and regulatory specifications already
implemented to ease the installation and enhance the re-
usability of PAT. This will increase the yield of chemical
information and will significantly support the respective
control strategy, if combined with process information.

“Chemistry controls chemistry”

A production plant in the process industry usually changes the
chemical and physical properties of the used substrate.
Thereby, an increase in value is achieved by using knowledge
how to transform rawmaterials into value products and goods.
In chemical plants, for example, a substrate like propene is
oxidized to acrolein or acrylic acid. Therefore, the chemical
plant breaks and makes chemical bonds to achieve an added
value. Still, control strategies within the process industry
mainly focus on classical instrumentation measuring variables
like pressure, temperature, level, or flow and not specific in-
formation (i.e., “chemical” such as physico-chemical proper-
ties and chemical reactions) that present the changes in chem-
ical structure and composition. For example, measuring the
functional groups that are changed by the plant (C=C, C=O,
and COOH) during propene oxidation would obtain the con-
centration of main or by-products.

Future processes will need to be more flexible in using a
broad range of raw materials, such as bio-based materials for
circular economy solutions. So far, the substances added to a
process show very small ranges of fluctuation in their specifi-
cations. In contrast, renewable and recycled input materials
are subject to severe changes and fluctuations of the band-
width of their properties—depending on their specific origin.
However, since these rawmaterials are increasingly used, new
requirements for PAT tools need to be met—e.g., due to foul-
ing of measurement probes that need to be overcome [5].

The flexibility with respect to the use of raw materials is,
for example, shown today in energy industry using secondary
fuels or biofuels. This results in new requirements for the
chemical analytics of the raw materials in discontinuous pro-
cesses (e.g., incoming goods inspection) and continuous pro-
cesses (e.g., material flows in pipelines and on conveyor
belts).

For the chemical industries, the monitoring of chemical
information is the key to “chemical” process control. A chem-
ical factory that performs chemical reactions is controlled in a
closed loop by specific information. As an example, a case
study was made of a given aromatic coupling reaction step
(lithiation reaction). The project challenge was to integrate a
commercially available low-field NMR spectrometer from a
desktop application to the complete requirements of an indus-
trial automation environment, including accurate interpreta-
tion of measurement data [6].

Today, in process industry, spectroscopic methods are in-
creasingly applied to measure specific chemical information
online. For example, NIR spectroscopy is often applied for
online analytics in the liquid phase and is an excellent
industry-proven tool for a wide range of applications. The
need of future flexibility demands more chemical sensors re-
vealing comprehensive chemical information, like Raman
spectroscopy, mass spectrometry, or the above-mentioned
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NMR spectroscopy. It will be a joint task of the PAT users,
research, and equipment and software manufactures bringing
these “too complex” analyzers to the field through encapsula-
tion of the complexity by modular approaches.

Current and future requirements to smart process
sensors and actuators

Sensors are the sensing organs of industrial automation. There
are presently profound developments in information and com-
munication technology that provide great opportunities for
optimized process control and added value with dedicated
cross-linked communicative sensors. These types of “intelli-
gent” sensors can provide services within a particular network
and use information from there. Consequently, smart process
sensors enable new innovative business models for users, de-
vice manufacturers, and service providers.

Recently the technology roadmap “Process Sensors 4.0”
was published. It describes the necessary requirements as well
as the communication capabilities of such process sensors—
from simple temperature sensors to state-of-the-art technolo-
gies still being developed. Important smart features are shown
in Fig. 2. Many of these requests have meanwhile been suc-
cessfully and reliably realized in first case studies being evi-
dence of excellent cooperation between users in the process
industry and their device and software manufacturers in com-
mittees and joint projects.

The cost of connectivity is dropping dramatically, pro-
viding the great chance to connect people, assets, and in-
formation across the industrial enterprise. While only pro-
viding add-on information for the initial stage, future com-
prehensive cloud services may not require a high dispos-
ability or real-time capabilities. Though, worldwide known
tech companies already demonstrated the available cloud
computing power with respect to real-time data analysis—
but for (process) industry, real-time transmission of com-
plex and a large number of signals/data is a major chal-
lenge. If these are given in future, even process control
tasks will be possible using cloud services, e.g., when com-
plex computing algorithms are needed, which require more
computing power than can be possibly provided by edge
computing devices.

Future requirements to communication/connectivity

In automation technology, there is currently a large number of
process control systems (PCS), such as automation and control
systems, operating and monitoring systems, and manufacturing
execution systems for controlling a process, while process in-
formation management systems (PIMS) are used for data ac-
quisition and evaluation. The transitions are smooth.
Meaningful data acquisition takes place in PIMS together with
stored process steps (“recipe”), which are called up as required
and specify all raw materials, materials, and production equip-
ment used (plant, reactors, plant equipment). In this way, devi-
ations can be stored in the system accordingly. The database
contains further fields for all relevant data from production,
quality control of substances and materials, and the product.

Access to the system is ideally secured by, e.g., controlling
user roles or traffic monitoring and can be logged in an audit
trail if required. In critical cases, it is even today already pos-
sible (but not yet implemented as industry-standard) to only
allow raw materials to enter production if their identity and
specification are unique—for example by using fast finger-
print methods such as Raman spectroscopy. Of course, data
safety needs to be solved as well, but is out of scope of the
present contribution. In areas subject to regulatory supervi-
sion, opinions on the need to store in-process data or to doc-
ument OOS results are often less sharp than those for release
data [7]. From a technical point of view, a complete interme-
diate storage of all measured data is not always necessary if,
for example, the frequency of data collection is very high.
Depending on the dynamics of the process step, representative
data should be stored.

How can complex process analytical devices be integrated?
In the field of industrial communication, an unmanageable
variety of bus systems are used to transmit complex informa-
tion: Industrial Ethernet, Profinet, Modbus, AS-Interface, IO-
Link, Industrial Wireless Communication—just to name a
few. For some procedures, which originate from the laboratory
environment, no professional bus systems are (yet) available
and one is dependent on the connection of a (local) evaluation
computer. This is unacceptable from the control technology
point of view if no status control of the evaluation computer is
installed in order to achieve the necessary robustness and to
establish a safe operating point in the event of system failure.

Fig. 2 Important features of a smart analytical device, process sensor, or actuator
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In order to achieve this, steps were taken towards simplifi-
cation and standardization, because today automation compo-
nents in a plant are not at all standardized. Thus, a uniform
protocol and a uniform fieldbus are required for trouble-free
communication between all automation components.
Meanwhile, the standard OPC Unified Architecture (OPC-
UA) [8] is considered to be set and can be regarded as a small
triumph of industry 4.0. Non-ethernet field buses are still
dominant today against the background of a grown landscape
in existing plants and the often very special requirements for
power supply and explosion protection.

In the figurative sense, OPC-UA is comparable to the PDF
standard or HTML standard, which define the properties of
graphical objects, e.g., print products. It is also independent of
manufacturers or system suppliers, programming language,
operating system, or communication standard (e.g., fieldbus)
and standardizes the underlying data format, e.g., for online
measured values. The German Federal Office for Information
Security (BSI) confirmed in 2016 that OPC-UA can be used to
implement IT-safe industrial 4.0 communication [9].

Because the maintenance and operational functions are of
great benefit, some innovative companies in the process indus-
try are currently covering their plants with additional network
access, mostly wireless technologies. Companies have also
started to completely digitize their asset and plant plans. The
question whether the high amount of information needs to be
integrated in the classical pyramid automation structure or there
might be another interface between the classical PCS domain
and the monitoring and optimization domain is covered by the
NAMUR open architecture concept (NOA) [10, 11].

Knowledge from the digital twin: hybrid
models, artificial intelligence, and machine
learning for process intelligence

Data contextualization

Beyond of the subjects on data connectivity and data integrity,
as exemplified in the previous section, data need to be con-
textualized for holistic data science–based process analysis.
Data sources contain time value pairs, and also discrete data
from LIMS (Laboratory Information Management Systems)
or ELN (Electronic Laboratory Notebooks), and will increas-
ingly include 2D and 3D data from LC-MS (liquid
chromatography–mass spectrometry) or image-based analyt-
ics. Tools and algorithms will need to be in place for automat-
ed feature extraction (e.g., towards chemical information)
from above-mentioned data sources and unfolding of data
dimensionality [12]. This will allow jointly analyzing links
between density features from images to growth kinetics as
an example. Feature-based analysis will also help differentiat-
ing valuable data from noise, being independent of scale and

initial conditions of an individual data set. Remember: a time
axis without context information is a lost axis in process data
analysis.

Between the poles of mechanistic understanding
and AI

Once data are contextualized and preprocessed (see the
“Smart sensor applications: the only constant is change” sec-
tion) process analysis can start. Multivariate statistics such as
PCA (principle component analysis); PLS (partial least
squares); and LDA (latent discriminant analysis) as well as
more advanced methods such as sparse and robust PLS [13]
will remain the initial basis for hypothesis generation “how”
features of process parameters and raw material attributes act
on key performance indicators and quality attributes.
However, this only solves the “how” but not the “why.”
Therefore, multivariate statistics will remain as an essential
hypothesis generator for advanced mechanistic exploration.

But will mechanistic understanding still be required in the
age of AI (artificial intelligence)? As for the process industry,
we strongly encourage to use AI first as an image of our
intelligence, hence transferring our intellectual knowledge in-
to an artificial system so that we are freeing up our minds for
new challenges that require more creativity. However, AI is
more: It is “any device that perceives its environment and
takes actions that maximize its chance of successfully achiev-
ing its goals” [14].

Those solutions are supposed to adapt or learn autono-
mously to new data sets and derive new causal links between
process parameters and process variables, for which the un-
derlying algorithms ML (machine learning) and DL (deep
learning) algorithms will come in to play. ML uses supervised
learning algorithms [15]. This is the part in our domain knowl-
edge, which is of highest importance when interpreting data
sets with lots of parameters (p) with a low number of obser-
vations (n) (classical n<<p problem) and relates strongly to
what we already do in multivariate sparse data science [16].
DL is unsupervised but demands larger data sets. Pure DL
solutions in the world of PATare attractive for smart decisions,
but need clear traceability in a regulated environments and
model validation gets explicitly important, as currently
discussed [17].

Hence, we strongly suggest that mechanistic understanding
shall be the basis before blindly dumping data into a black box
of ML or DL algorithms. We would lose one more generation
of process understanding. Hybrid models, as we recently de-
fined it [18], will be the most suitable platform to capture
knowledge and provide the knowledge as a hybrid model, a
highly potent element of a smart sensor. We can implement
this model in a cyber-physical system in order to create a
digital twin.
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The huge application potential of digital twins

We have a hybrid model, what can we do with it? What do we
need for its application as smart sensor? There are several
dimensions of deploying a model along the product life cycle:

& Model-based experimental design for acceleration of
(bio-)process development

& In combination with hard sensors/field devices for redun-
dant measurements for enhanced process robustness

& As integration in cyber-physical systems (CPS)
& CPS-integrated digital twins allowing suggestion

schemes, i.e., for control solutions, predicting events, or
process optimization

& Digital twins as essential element for training via VR (vir-
tual reality)

The integration of the twins in cyber-physical
systems

Intelligent field devices, digital communication, Internet
Protocol (IP)–enabled connectivity and easy-to-use appli-
cations form the basis for the future project “Industry 4.0”
and industrial internet of things (IIoT). Historically and
continuously recorded data are analyzed by advanced data
analysis software. This is a prerequisite for the implemen-
tation of Cyber-Physical Systems (CPS) as part of these
upcoming automation concepts for the process industry.
“Cyber-Physical Systems are integrations of computational
models with physical processes, the real time environment.
Embedded models, computers and networks monitor and
control the physical processes, usually with feedback loops
where physical processes affect computations and vice
versa” [19].

Hence, the CPS fuses the physical and digital twin and
allows its connectivity to edge computing, historians etc.
This will allow real-time execution of hybrid sensors for ad-
vance feedback process control and efficient experimental de-
sign as digital twin.

Hybrid model derived process states from data gathered
by smart field devices using data-driven or mechanistic
links could be realized in future. Thus, these provide re-
dundant estimates to the field devices. In future models,
such kind of models will be combined with the filed de-
vices as hybrid sensors. Hence, hybrid sensors can vice
versa be used to calibrate field devices or other models in
certain process states. Data science solutions on multivar-
iate consistency check and fault diagnosis [20] of estimat-
ed and redundant measurements will need to be in place in
real time.

Smart sensor applications: the only constant
is change

Avery important facet of smart is when knowledge is used for
applications, hence, when knowledge meets control strategies
and wisdom/intelligence. Whatever will be set up in an indus-
trial application, the change will occur soon. The change is
due to change in raw material, scale, site, equipment, person-
nel, and many more causes.

We have to adapt field devices in its calibration, using
hybrid sensor approaches, as mentioned above. Auto-
calibration could be accessible via connection from the
sensor-processing unit to a database that is itself connected
to PIMS and LIMS. When the chemistry is known (e.g., the
functional groups of a reagent and its effect on sensor signals
are known, i.e., a physical understanding is given) and refer-
ence data is available—even complex sensors could perform a
self-calibration.

For the transition from process analytical technology to
process analysis, we will analyze data for consistency in au-
tomated data preprocessing workflows, e.g., using multivari-
ate data-driven tools for outlier detection, diagnosis algo-
rithms for checking calibration/model validity and drifts. We
will use fingerprint tools for pattern recognition, for example
robust and sparse PLS models [21].

We will maintain or even better adapt digital twins along
good modelling practice using cloud-based automated
workflows [22]. Self-adapting digital twins will identify pro-
cess phases and process states and allow multiple models to
run in real time in parallel. Data science solutions for model
switching will choose the best model being part of the digital
twin for the current, control, optimization, or estimation task.
This can be supplemented with sematic sensors, in which
expert knowledge is embedded—speeding up an implemen-
tation project of model-based real-time optimization (RTO) in
the process industry [23].

However, we have to have control on the hybrid sensors we
deploy, because we need to demonstrate data integrity of data
sources, processing solutions as well as adaptive digital twins
for the full production control strategy [24]. Therefore, to
guarantee authenticity of such hybrid sensors, blockchain so-
lutions may be suitable means for demonstrating data integrity
in the future [25]. Hence, the overarching subject of model
maintenance will be an own research field in the future, which
will include traceability of self-adapting AI and ML solutions,
important for products in the regulated process industry.

Smart sensor facilitated PAT applications

Finally, the smart sensor represents the essential enabler for
industrial applications, in which PAT plays a central role. Here
we will only mention some of those applications along the
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product life cycle, from smart process development to robust
manufacturing controls:

Model-based experimental designs

Hybrid models are a means to measure efficiently, because
fewer measurements are required. For example, quality attri-
butes or physiological process parameters, which are difficult
to measure, can be become available. With this, production
can move from purely explorative designs such as design of
experiments (DoE) to model-based designs. The advantages
are multiple [26]: controlling based on non-measurable pro-
cess parameters, reducing the amount of experiments, more
efficient determination of sweet spots, avoiding non-
executable process conditions due to flexible experimental
boundaries.

Digital twin based process control

CPS-integrated digital twins will enable to control complex
processes on an objective function for process optimization.
While in place in chemical industry since a long time, we will
see multiple input multiple output control (MIMO) solutions
also for processes with complex product quality attributes.
The novelty will be the capability to operate the control strat-
egy inside of the multidimensional design space and therefore
benefit from the interactivity of the process parameters [27].
Apart from specific process control objectives of a certain unit
operation, this will also revolutionize the overall production
control strategy along the life cycle [28], enabling smooth
scale-up and technology transfer.

Conclusions

The key function of the smart sensor is to simplify their use,
their maintenance as well as their calibration, supervised by
digital twin intelligence and facilitated by plug-and-play inte-
gration in a CPS. This requires standardization as well as a
module type re-design of process connection and connectivity.
Hence, smart sensors enable concepts like self-diagnostics,
self-calibration, and self-configuration/parameterization. The
ingredients of a smart sensor are summarized in Table 1.

There is an increasing need to measure quality attributes and
rawmaterial attributes, which is enabled by smart sensors such as
digital twin deployment. This also represents a basis for compre-
hensive use of chemistry-controlled chemistry plants.

Compared with Industry 3.0, IIoT is nothing else than inte-
gration of individual tools. The individual sensors may already
exist and used. The individual PAT sensors have no IIoT 4.0
relevance without its integration/combination to a smart sensor.

To turn this into reality, we propose several levels of inte-
gration that turn individual PAT sensors into a high potent

smart sensor tool. The integration needs to be flexible, be-
cause we talk of a flexible manufacturing platform for multi-
ple products and a product life cycle approach:

& Software agility: We propose DevOps techniques, i.e.,
software development practices that combine software de-
velopment (Dev) and information technology operations
(Ops), and a DevOps mindset, as an agile approach, with-
out gigantic deployment, test, or validation overheads.
Although DevOps is successfully applied currently, espe-
cially for software as a service deployment, it is not yet
fully established for IT/OT environments in all process
industry segments [29].

& Data agility: SaaS (software as a service) Cloud solutions
will be the future basis for data and knowledge exchange.
We have to solve cyber biosecurity concerns, on technical
but mainly on political level. Beyond of this, we are con-
vinced that SaaS tools will provide the required agility of
exchanging data, but also for model and digital twin life
cycling for enabling smart sensors.

& Holistic data management and data analysis: We need to
push data connectivity, including standardization of data
interfaces and consistent data models. However, data avail-
ability is not enough. We need also to extend this to ability
to holistically analyze the different data sources, integrat-
ing time value pairs, spectra, images, ELN, LIMS, and
MES data. We need standardized analysis platforms and
agreements on dashboards for knowledge display.

& Model and digital twin agility: We need a flexible but still
validatable environment for capturing and deploying knowl-
edge, because the models and digital twins will need to be

Table 1 Main ingredients of smart sensors

Smart sensor segment Elements

Chemical and process
information

Connectivity
Chemistry controls chemistry
Multiple components at once

Process intelligence Data contextualization and holistic
data analysis

Workflows to generate information
and understanding

Knowledge capture in
digital twins/AI/ML/DL

CPS, the integration element Combined HW and SW Solutions
Historian connectivity
Edge computing

Smart sensor applications IIoT platform
Adaptive solutions for sensor optimization
Self-maintenance/management
Self-calibration

Smart sensor–facilitated
PAT applications

Digital twin–based experimental design
Digital twin–driven optimum control
Continued process verification
Golden batch controls
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adapted along the life cycle and still be continuously deploy-
able in a regulated and running manufacturing environment.
This includes, AI andML, but solution should be found in all
kind of hybrid solutions. Therefore, we need validated
workflows for automated model development and digital
twin deployment, including integrated model maintenance,
model management and fault detection algorithms.

& Interdisciplinary curricula: Numerous data scientists will be
required to run the factory of the future. Workforce develop-
ment standardization would be useful to ensure that expec-
tations for training and proficiency are uniform across the
industry. Agreement upon a standard curricula and assess-
ment measures would facilitate this standardization.
Initiatives should be launched at universities but shall include
data science schools on industrial level as well. This includes
usage of virtual reality (VR) for training.

& The full potential of PAT, in combination within smart labs
(as elaborated in part 1 of this series), will increase quality,
reduce costs, be a clear contribution to the internet of
things and accelerate time to market.
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