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Abstract

Chromatographic retention time peak shifts between consecutive analyses is a well-known fact yet not fully understood.
Algorithms have been developed to align peaks between runs, but with no specific studies considering the causes of peak
shifts. Here, designed experiments reveal chromatographic shift patterns for a complex peptide mixture that are attributable
to the temperature and pH of the mobile phase. These results demonstrate that peak shifts are highly structured and are to
a high degree explained by underlying differences in physico-chemical parameters of the chromatographic system and also
provide experimental support for the alignment algorithm called the generalized fuzzy Hough transform which exploits this
fact. It can be expected that the development of alignment algorithms enters a new phase resulting in increasingly accurate

alignment by considering the latent structure of the peak shifts.

Keywords Chromatography - Alignment - PCA

Introduction

Chromatographic retention mechanisms have been studied
and modeled since the 1970s. In the field of quantita-
tive structure—retention relationships (QSRR), the focus has
been on predicting parameters, such as log k-values, log
P values, log D-values, and retention factor ratios, which
are based on molecular descriptors [1—4]. Other studies
have targeted the effect of pressure on chromatographic
selectivity for comparing the relatively new ultra-high-
pressure liquid chromatography (UHPLC) to more tradi-
tional high-performance liquid chromatography (HPLC)
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separations operated at lower pressures [5, 6]. However,
these approaches cannot be used to investigate the fine-
structure of peak shifts arising under nominally identical
chromatographic conditions.

Peak shifting is a common phenomenon observed in
chromatographic separations that may cause problems
identifying which peak is which, especially for datasets
with a large number of samples and many peaks per
sample. Failure to find the correct peaks that correspond
to the same analyte between samples often results in
poor statistical analysis. This problem has been coined the
correspondence problem [7—12]. The causes of peak shifting
in chromatography have been addressed and described in
literature [12]. However, so far, the research focused on
solving the correspondence problem has only aimed to
make sure the data are properly aligned for statistical
analysis, and several retention time alignment algorithms
have been reported in literature, such as nearest-neighbor
clustering [13, 14], binning [15, 16], and warping [17—
20]. Some of these algorithms have been implemented in
chromatography data analysis software, such as mslInspect,
MZmine, OpenMS, XCMS, or TracMass 2 [10, 21].

This work fuses alignment methodology with retention
time modeling to improve the understanding of chromato-
graphic retention in complex systems. For this purpose,
a liquid chromatography coupled with mass spectrometry
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(LC/MS) method for analyzing a complex mixture was
setup using an experimental design, with temperature of the
column and pH of the mobile phase as variables provoking
retention time shifts. The model sample used was a tryptic
digest of human serum albumin (HSA), which is a mixture
of peptides, resulting from the selective digestion by the
enzyme trypsin. This enzyme cleaves proteins exclusively at
specific amino acids along the sequence (C-terminal to argi-
nine or lysine). Along with the theoretical peptides, other
species may occur in the mixture, such as possible miscle-
avages and post-translational modifications in the protein.
This moderate sample complexity provides a good model
for this study, as the peptide elution is well distributed along
the chromatogram and the experimental design conditions
tested, i.e., pH of the mobile phase and column temperature,
influence the retention times with different patterns depend-
ing on the peptide. In addition, we also want to demonstrate
experimental evidence in favor of generalized fuzzy Hough
transform (GFHT) alignment algorithm.

Generalized fuzzy Hough transform

Peak alignment methods such as binning, nearest-neighbor,
clustering, warping, or combinations of these may result
in ambiguities in peak matching, especially when aligning
peaks from very complex mixtures [22]. Recent develop-
ment of alignment algorithms employing the generalized
fuzzy Hough transform (GFHT) has been reported [8].
GFHT is a derivation of the Hough transform, initially
applied in image analysis for the detection of patterns, such
as lines or features in images. Recently, it was adapted and
evolved into the GFHT with the purpose of aligning 1D
NMR peak data [8]. More recently, GFHT has also been
applied in the alignment of chromatographic peaks, as an
additional alignment step in TracMass 2, an open-source
program designed to align LC-MS (liquid chromatography
coupled with mass spectrometry) data. An important fea-
ture that arises with GHFT is that the ambiguities in peak
matching that frequently occur when using other alignment
methods can be resolved. This is accomplished by pre-
calibrating the model on the shifts of peaks with known
correspondence by means of principal component regres-
sion (PCR). Then, the retention times of the peaks with
unknown correspondence can be predicted [8—10]. This
method assumes that peaks shift according to patterns that
are attributed to causes related to chromatographic instabil-
ity. These patterns, however, have not yet been attributed to
specific causes and reported in literature. In this work, the
column temperature and the pH of the mobile phase were
taken as two of the several possible factors that may influ-
ence retention time shifts. Then, retention time shifts were
modeled using these parameters in a controllable fashion,

@ Springer

i.e., at predetermined levels using experimental design and
in magnitudes that influence the retention times more than
than expected random variations of these factors and other
uncontrollable factors.

Experimental design by MLR and PCA

Factorial design is a chemometrical tool designed to assess
hypothetical contributions of factors towards a response of
interest. The mathematical approach employed in factorial
design is typically a multiple linear regression (MLR). A
response data matrix X or vector X containing the results
of the experiments is obtained according to a design of
experiments and is regressed on a design matrix D. This
matrix contains coded values corresponding to the levels of
the factors studied and their interactions. The number of
levels can vary although for simplicity the most common
factorial designs have two levels [23].

X =DB ey

The MLR coefficients B, which reflect the impact of the
studied factors on the response(s), are obtained applying the
pseudo-inverse,

B=®d"p)"'D'X )

Principal component analysis (PCA) decomposes a data
matrix into abstract features and is represented algebraically
as

X=TPT +E (3)

where X is a data matrix, e.g., containing experimental
responses, decomposed into scores T and loadings P.
Scores contain structure as the relation between samples
and size, loadings contain structure in the form of relations
between variables, and E is the unexplained residual
information of the data. For this work, an algebraic relation
between MLR and PCA is established in order obtain
the experimental design coefficients B from the response
data X and the design matrix D via both methods (MLR
and PCA). The experimental design matrix D and the
regression coefficients B, analogously to PCA, contain
structure related to size and to their relations between
variables respectively. Therefore, D can be related to the
scores T and B to the loadings P. A least squares conversion
factor C is introduced to establish this relationship, where
D = TC + Ec. Because the scores matrix is not necessarily
square, depending on the number of samples and rank, this
equation can be solved applying the pseudo-inverse,

C=1"n) 'T"D )

This conversion factor C can convert scores into the design
matrix or the design matrix into scores. Introducing D =
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TC in the MLR equation results in X = Té]B + E, and
relating to the PCA equation, PT ~ CB. Therefore, the
experimental design coefficients can be calculated from the
PCA loadings and the conversion matrix as B = C1pT.
If the number of principal components differs from the
number of MLR parameters, the pseudo-inverse is used
instead,

Bpca = (CTC)~!CTPT )

The analysis of experimental design factors from complex
experimental design data can be assessed with ANOVA-
simultaneous component analysis (ASCA). This algorithm
can manage analyses of complex multivariate data that may
contain underlying experimental design factors. ASCA is
generalization ANOVA to the multivariate case by means of
PCA. In this work, we have used ASCA and PCA together
to analyze the studied factors and calculate the design of
experiments (DoE) regression coefficients [24].

Experimental
Reagents, materials, and instrumentation

Human serum albumin (HSA), trypsin from bovine pan-
creas, dithiothreitol, iodoacetamide, ammonium bicarbon-
ate, formic acid, and ammonium formate were purchased
from Sigma-Aldrich (Steinheim, Germany). Gradient grade
acetonitrile and analytical grade water were purchased
from Honeywell Riedel-de Haén (Seelze, Germany). A
HPLC-MS system composed of a Thermo Fisher Scien-
tific (Waltham, MA) Q Exective HF orbitrap mass analyzer
coupled with a Thermo Fisher Scientific (Waltham, MA)
UltiMate BioRS HPLC, equipped with a Thermo Fisher
Scientific (Waltham, MA) HyPURITY column (C-18, i.d.
2.1 mm, length 100 mm, particle size 3 um) was used in
this study. The mass detector operated in full-scan posi-
tive mode, for m/z values ranging from 100 to 2000. The
HPLC was programmed to run with a flow rate of 0.25 mL
min~!. The organic mobile-phase gradient was set to start
at 5%, raising to 45% for 30 min, then to 100% for 10 min,
and back to 5% for 5 min. The temperature of the column
was set in each run according to the experimental design as
described bellow.

Sample preparation (HSA tryptic digest)

To 5 mL of human serum albumin (150 uM in 100 mM
ammonium bicarbonate), 5 mL of dithiothreitol (100 mM)
were added and let to react for 30 min at 60 °C. After
cooling down, 5 mL of iodoacetamide (100 mM) was added
and the mixture was kept in the dark for 30 min at room
temperature. Five milliliters of trypsin (150 M in water)

was added to the mixture and let to react overnight at
37.5 °C. The sample was divided in small aliquots and
preserved at —20 °C. Before analysis, 100 uL of sample
were diluted in 20 mM formic acid/ammonium formate
buffer solution with pH 3.75.

Mobile-phase preparation

Five aqueous (water) and organic (1:9 water/acetonitrile)
mobile phases were prepared containing 20 mM formic
acid/ammonium formate buffers with pH values 3.25, 3.50,
3.75, 4.00, and 4.25 respectively.

Experimental design

The influence of column temperature and pH of the mobile
phase on the retention time of each compound in the
model sample was determined by means of experimental
design. In order to determine possible non-linear effects
with a good resolution, more than two typical experimental
levels should be modeled, with the cost of extra number of
experiments. Thus, a full factorial design with five levels
for the two factors (pH of the mobile phase and column
temperature) was generated, corresponding to a total of 25
chromatographic runs. In addition, the center point was
replicated five times as controls and to access experimental
errors due to other possible uncontrollable sources of
variability between runs. The levels are represented in
Table 1.

Data analysis

The data analysis and calculations (PCA and MLR)
were performed in MATLAB 2017b (Mathworks, Natick,
MA). TracMass 2, an open-source program running in
MATLAB environment [10], was employed to extract
the chromatographic ions (XIC) from the raw data and
align the retention times across samples. The parameters
used are represented in Table 2. Furthermore, in-house
algorithms were employed to detect isotopes and adducts.
These species were removed from the data, maintaining
only the monoisotopic species, and a total of 98 species
were considered in the calculations. These calculations,
namely multi-linear regression (MLR), principal component
analysis and regression (PCA and PCR), and partial least

Table 1 Experimental values of the factors for the five-level full
factorial design

Level -2 -1 0 +1 +2

pH 3.25 3.50 3.75 4.00 4.25
Temperature (°C) 35.0 37.5 40.0 42.5 45.0
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Table2 TracMass 2 parameters

Parameter Value
Tracking minLength 20
minlntensity 30000
mzTolerance 0.005
mzTransformation ‘Square root’
Peak detection ZAF Sigma 1 0.09
ZAF Sigma 2 0.18
gaussSigma 0.0048
nSignalToNoise 20
stdFiltWidth 6
Warping alignment deltaTime 7
deltaMass 0.01

squares regression (PLS), were also preformed using also
in-house MATLAB scripts. The ASCA algorithm for
MATLAB was obtained from literature [24].

Results and discussion
Experimental design regression coefficients

The experimental design MLR coefficients for the peaks
of the 98 studied compounds, sorted according to their
elution times, are represented in Fig. 1. The pH coefficients
are both positive and negative, and their magnitudes vary
from compound to compound, independently of the elution
times. The temperature, on the other hand, exhibits mostly
negative coefficients, which means that higher temperatures
decrease retention times, except for ten compounds that
display the opposite behavior. The quadratic term for
the pH effect appears to be significant, whereas for the
temperature, it does not. The coefficients corresponding
to the interaction between pH and temperature have a
positive effects. However, these coefficients also appear
to be insignificant, as their magnitudes are lower than
the errors due to repeatability (error bars), which were
calculated as confidence intervals from five replicates in the
center point performed in different days.

PCA of the retention time data

The PCA of the experimental responses, i.e., the retention
times of the 98 selected compounds in 25 experimental
design runs (Fig. 2), reveals a very well-defined structure.
From the observation of this figure, it is noticeable that
the temperature has linear trends, whereas the pH exhibits
a curvature, which suggests a quadratic effect. This result
demonstrates a qualitative agreement between PCA scores,
T and the design matrix, D. The ASCA scores also confirm
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Fig. 1 Factorial design MLR coefficients for 98 compounds (sorted
according to their average elution times). The error bars represent
confidence intervals with 95% confidence level, calculated from the
retention times measured in five independent replicates analyzed in the
center point conditions on different days

this, as represented in Figs. S3, S4, and S5 in the Electronic
Supplementary Material (ESM).

PCR of the retention time data

By means of principal component regression (PCR), it is
possible to create calibration models to predict the retention
times of each compound while calibrating with the data
from the remaining compounds. To obtain more trustworthy
models, these calibration blocks were built in such way that
no peaks between the calibrant data and predictor vector
overlapped, as illustrated in Fig. 3a, b. This demonstrates
that all obtained retention time data are correlated, i.e.,
the retention time shifts of each individual compound are
correlated with those of other compounds in the mixture
when varying the chromatographic conditions (in this case,
the pH of the mobile phase and the column temperature).
Figure 3b represents an example on how one of the 98
calibration models was created, i.e., all the vectors outside
the lines are the calibration predictors (X), and inside the
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Fig.2 Principal component analysis of the experimental retention time
data of 98 compounds in 25 runs. a First three principal components.
b Fourth to sixth principal components

lines is the response vector (y). The removal of vectors
containing overlapping data with the response vector was
performed in order to prove that the models are built on
information from other analyses and that the X-block does
not contain isotopes, adducts, or fragments that would make
the modeling trivial. Using the MLR experimental design
coefficients in auto-prediction and calculating the relative
residual variance (Fig. 3c), it is noticeable that the quality
of the models is not as good as with PCR. This lack of
fit suggests that along with the effects that were studied,
i.e., linear and quadratic pH and linear temperature effects,
there may be other uncontrollable factors that were not
included in the model, or errors associated with the nominal
parameters, i.e., the column temperature and the pH of
the mobile phase values are prone to deviate from those
established by the experimental design levels. With PCR
and with a correct choice of principal components (PCs),
the predictions were better than with those of MLR. In
this study, six PCs were used to create the PCR models
because, as observed in Fig. 2, there appears to be structure
up until the sixth PC. The total PCA variance explained
is 99.7%. Also, in the predictions of the design levels,
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Fig. 3 Quality in prediction by MLR and PCR. a Retention time
profiles for 98 compounds (sorted according to their elution times). b
Example used in a PCR model for one compound. Between the red
lines is the predictor vector and outside is the calibrant data. ¢ Relative
residual variance of auto-prediction and cross-validation for the PCR
models and auto-prediction for the MLR models

as described bellow (Fig. 5), the RMSE of calibration
and cross-validation suggests that a better PCR model is
obtained with six principal components. Cross-validation
is a typical approach in PCR and partial least squares
(PLS) to determine the best number of latent components to
include in a model [23]. The PCR cross-validation RMSE
results indicate that not much over-fitting occurred when
modeling with this number of PCs. Moreover, the non-
linearity associated with the pH of the mobile phase also
adds at least one extra principal component. Uncontrollable
factors are implicitly included in a PCR model, whereas in
MLR, these have to be explicitly included in the regression
model equation. These results are practically the same when
modeled by means of PLS (Figs. S1 and S2 in ESM) and
comply with the theory behind the development of the
GFHT algorithm [8-10], where the shifts of peaks with
unknown correspondence can be predicted from calibration
models of the shifts that have known correspondence
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because shifts have patterns that can be attributable to
a finite number of causes related to chromatographic
instability. Here, it has been demonstrated that there is at
least as much information about the column temperature
and the pH of the mobile phase in the shifts of the peaks
as there is in the design matrix. Therefore, the GFHT
approach to alignment is sound in the sense that peak shifts
can be trusted to reliably predict the position of missing
or ambiguous peaks in other clusters or groups of peaks
belonging to the same analyte.

Experimental design coefficients by MLR and PCA

When comparing the DoE coefficients obtained from MLR
and from the ASCA loadings (Fig. 4), an agreement
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Fig.4 Regression coefficients calculated by ASCA against MLR. The
colors represent the elution times of the compounds. Closely related
compounds or compounds that are affected by temperature and pH
to the same extent will cluster together from having about the same
coefficients both when fitting the retention time shifts with MLR and
with PCR
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between the results is noticeable for all considered factors
and interaction. However, the column temperature quadratic
and interaction between pH of the mobile phase and column
temperature terms have very small coefficients and it is
expected that modeling these effects may be greatly affected
by noise. This is confirmed when modeling the experimental
design levels from the retention time data, where the terms
with small coefficients result in poor auto-prediction and
cross-validation (Fig. 5). When calculating the coefficients
from the PCA loadings (instead of ASCA) for these two
factors, they do not match those obtained with MLR
(Fig. S6 in ESM). As explained above, other uncontrollable
factors besides column temperature and pH of the mobile
phase, and possible deviations from the experimental design
nominal values (levels) of these factors, are modeled by
PCA but not included in a MLR model. Nonetheless, these
contributions are very small in comparison to the studied
imposed factors in these performed experiments.
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Fig. 5 Quality in prediction of the experimental design levels by
PCR using different numbers of principal components. Root mean
square errors of calibration (a) and cross-validation (b). The variance
explained ¢ in the PCR auto-prediction of the experimental design
levels from the retention times
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Conclusions

An application of experimental design to study the influence
of column temperature and pH of the mobile phase on
the chromatographic separation of peptides revealed well-
defined retention time shift patterns. The temperature
affects retention times in a linear fashion, which means
that peaks will shift linearly with changes in the column
temperature. On the other hand, the pH of the mobile
phase affects the retention times in a quadratic fashion.
Yet, different peaks were affected to different extents and
six patterns of peak shifts were found varying these two
factors. Moreover, it was demonstrated that the retention
time can be modeled better from the retention times of other
compounds by means of PCR than from the experimental
design. This provides experimental evidence that supports
the previously reported generalized fuzzy Hough transform
alignment algorithm, which aligns shifted peaks based on
patterns derived from the data, by demonstrating that the
GFHT approach to alignment is trustworthy, in the sense
that shifts of peaks from other analytes can reliably predict
the position of missing or ambiguous peaks from groups
of peaks belonging to the same analyte. In all, a better
understanding of the shift patterns may contribute to the
development of better alignment algorithms.
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