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Abstract
Mycotoxins produced by Alternaria fungi are ubiquitous food contaminants, but analytical methods for generating comprehen-
sive exposure data are rare. We describe the development of an LC-MS/MS method covering 17 toxins for investigating the
natural occurrence of free and modified Alternaria toxins in tomato sauce, sunflower seed oil, and wheat flour. Target analytes
included alternariol (AOH), AOH-3-glucoside, AOH-9-glucoside, AOH-3-sulfate, alternariol monomethyl ether (AME), AME-
3-glucoside, AME-3-sulfate, altenuene, isoaltenuene, tenuazonic acid (TeA), tentoxin (TEN), altertoxin I and II, alterperylenol,
stemphyltoxin III, altenusin, and altenuic acid III. Extensive optimization resulted in a time- and cost-effective sample preparation
protocol and a chromatographic baseline separation of included isomers. Overall, adequate limits of detection (0.03–9 ng/g) and
quantitation (0.6–18 ng/g), intermediate precision (9–44%), and relative recovery values (75–100%) were achieved. However,
stemphyltoxin III, AOH-3-sulfate, AME-3-sulfate, altenusin, and altenuic acid III showed recoveries in wheat flour below 70%,
while their performance was stable and reproducible. Our pilot study with samples from the Austrian retail market demonstrated
that tomato sauces (n = 12) contained AOH, AME, TeA, and TEN in concentrations up to 20, 4, 322, and 0.6 ng/g, while
sunflower seed oil (n = 7) and wheat flour samples (n = 9) were contaminated at comparatively lower levels. Interestingly and
of relevance for risk assessment, AOH-9-glucoside, discovered for the first time in naturally contaminated food items, and AME-
3-sulfate were found in concentrations similar to their parent toxins. In conclusion, the established multi-analyte method proved
to be fit for purpose for generating comprehensive Alternaria toxin occurrence data in different food matrices.
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Abbreviations

General
Arb Arbitrary units
ESI Electrospray ionization
IR Ion ratio
LC Liquid chromatography
MRM Multiple reaction monitoring
MS Mass spectrometry
RT Retention time

Alternaria toxins
AA-III Altenuic acid
ALT Altenuene
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ALP Alterperylenol
AME Alternariol monomethyl ether
AME-3-Glc Alternariol monomethyl ether-3-glucoside
AME-3-S Alternariol monomethyl ether-3-sulfate
AOH Alternariol
AOH-3-Glc Alternariol-3-glucoside
AOH-3-S Alternariol-3-sulfate
AOH-9-Glc Alternariol-9-glucoside
ALS Altenusin
ATX-I Altertoxin I
ATX-II Altertoxin II
isoALT Isoaltenuene
STTX-III Stemphyltoxin III
TeA Tenuazonic acid
TEN Tentoxin

Solvents and chemicals
ACN Acetonitrile
HAc Acetic acid
NH4Ac Ammonium acetate
isoProp Isopropanol
MeOH Methanol

Introduction

Alternaria is an ubiquitously occurring fungal genus belonging to
the division of Ascomycota. About 300 species are known of
these so-called black molds, which are considered as both sapro-
phytes and major plant pathogens. Alternaria spp. (e.g.,
A. alternata, A. tenuissima, A. solani, and A. infectoria) can infest
a wide variety of agricultural crops like cereals (wheat, barley, and
sorghum), tomatoes, sunflower seeds, citrus fruits, apples, grapes,
and olives [1–5]. Consequences are often considerable economic
losses due to crop spoilage or altered visual appearance of the
agricultural products. In addition,Alternaria strains are capable of
producing mycotoxins, toxic secondary metabolites, which can
be assigned to five substance classes (Fig. 1): dibenzo-α-pyrone
derivatives, e.g., alternariol (AOH), alternariol monomethyl ether
(AME), altenuene (ALT), isoaltenuene (isoALT), altenusin
(ALS); perylene quinone derivatives, e.g., altertoxin I, II, and III
(ATX-I, ATX-II, ATX-III), alterperylenol (ALP), stemphyltoxin
III (STTX-III); tetramic acid derivatives, e.g., tenuazonic acid
(TeA), allo-tenuazonic acid (alloTeA), altersetin (AST); miscella-
neous structures (tentoxin (TEN), altenuic acid III (AA-III); and
aminopentol esters, e.g., A. alternata f. sp. Lycopersici toxins
TA1, TA2, TB1, and TB2 (AAL toxins).

Due to the mutagenicity and genotoxicity of some com-
pounds, the contamination of food and feed with Alternaria
spp. can imply a serious health concern for both humans and
animals. TeA is acutely toxic to mice, chicken, and dogs [6].
AOH and AME showed genotoxic and mutagenic effects
in vitro [7] and AOH was further demonstrated to poison

topoisomerases I and II [8]. ATX-II proved to be an evenmore
potent mutagen causing DNA strand breaks [9, 10]. The
mechanisms behind its mode of action could not be clarified
so far. Nevertheless, genotoxicity was observed at compara-
tively low concentrations, but no enhanced levels of reactive
oxygen species, glutathione depletion, or topoisomerase inhi-
bition [11, 12]. Besides, AOH, AME, and some of their me-
tabolites additionally exhibit estrogenic potential [13, 14]
whichmay be enhanced by combinatory toxic effects [15–17].

Due to the ability of Alternaria spp. to grow even at low
temperatures, fungal infestation of agricultural crops and
products may also occur post-harvest, even during refrigerated
storage or transport [4, 18]. More recently, the European Food
Safety Authority (EFSA) released a scientific report on the
potential health risks caused by Alternaria toxin contamina-
tions of food and elaborated a dietary exposure assessment.
The thresholds of toxicological concern (TTC values) were
defined as 2.5 ng/kg body weight per day for the genotoxic
compounds AOH and AME and 1500 ng/kg body weight per
day for non-genotoxic TEN and TeA. Furthermore, EFSA
clearly stated the critical need for more comprehensive toxi-
cological characterization and exposure assessment of
Alternaria toxins to enable a detailed risk assessment [19, 20].

Despite the strict regulatory limits and intensive surveil-
lance features established for a number of major mycotoxins
in the European Union and elsewhere, neither legally binding
limits nor guidelines are established for Alternaria toxins in
food or feed to date. An emerging concern in their safety
evaluation is the chemical modification of Alternaria toxins
in the course of plant or animal xenobiotic metabolism [21] or
even the metabolism of fungi themselves [22]. Thereby, con-
jugates of mycotoxins may be formed and referred to as
Bmasked^ or Bmodified^ mycotoxins [23].

Liquid chromatography coupled to tandem mass spectrom-
etry has become the technology platform of choice for accurate
multi-mycotoxin analysis reaching limits of detection in or even
below the nanogram per gram range. Starting from methods
targeting only a few Alternaria toxins like the AOH and
AME [24], additional toxins were included in some methods.
Due to the complexity of food matrices, sample preparation
strategies like solid phase or QuEChERS extraction were often
required to reach satisfying sensitivity [25, 26]. Additionally,
the chemical diversity of the target analytes implied chromato-
graphic challenges to overcome. Derivatization of analytes (e.g.
TeA) or adapted eluent systems (eluent additives or pH adjust-
ments) helped to improve chromatographic peak shapes [27].
After the total synthesis of masked AOH and AME forms (glu-
cosides and sulfates) [28], these were included into a multi-
analyte method to investigate potential contaminations with
these selected modified toxins [29, 30]. Walravens et al. [30]
investigated 10 Alternaria toxins (including the four modified
toxins AOH-3-Glc, AOH-3-S, AME-3-Glc, AME-3-S)
reaching limits of detection (LOD) between 0.5 and 5 ng/g in
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cereal-based foodstuffs and in a later publication between 3 and
18.3 ng/g in tomato products [29]. More recent studies included
further toxins such as the AAL toxins TA1 and TA2, isoALT
[31–33], and altertoxins [5, 34]. Using solid-phase extraction,
LODs between 0.1 and 0.6 ng/mL were achieved for 12
Alternaria toxins in wine and fruit and vegetable juices [5].
Isotopically labeled internal standards can be used to ensure
the performance of quantitative methods and were employed
in first applications [30, 35, 36]. The most frequently analyzed
food matrices were cereal- and tomato-based products, fruit
juices, wine, maize, and sunflower seeds [4, 20, 26, 27, 29,
31–34, 37–40].

The objectives of the study at hand were the development
and validation of an LC-ESI-MS/MS method for the simulta-
neous detection and quantitation of the most relevant
Alternaria mycotoxins in food. Twelve parent compounds as
well as five modified toxins, partly assessed for the first time,

were included to allow for the broadest coverage of Alternaria
toxins reported in literature. The method validation was per-
formed for three highly diverse matrices, namely tomato
sauce, sunflower seed oil, and wheat flour. To demonstrate
the applicability of the method and to gain first insights on
Alternaria toxin contaminations in food available on the
Austrian retail market, a small-scale survey was performed.

Materials and methods

Reagents, solvents, and chemicals

Commercially available reference materials were purchased
from the following sources: TeA and TEN from Sigma-
Aldrich (Steinheim, Germany), AOH and AME from
Toronto Research Chemicals (Ontario, Canada), and ALS

Fig. 1 Chemical structures of the 17 Alternaria toxins and metabolites included in the developed LC-MS/MS method
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from Eubio (Vienna, Austria). ALT, isoALT, and AA-III were
synthesized at the Institute of Organic Chemistry (Karlsruhe
Institute of Technology, Germany) [41, 42], while AOH-3-
Glc, AOH-9-Glc, AOH-3-S, and AME-3-Glc were synthe-
sized at the Institute of Applied Synthetic Chemistry (Vienna
University of Technology (TU Wien), Vienna, Austria) [28].
ATX-I, ATX-II, STTX-III, and ALPwere isolated from fungal
cultures grown on rice by an optimized protocol based on
Schwarz et al. [10]. Methanol (MeOH), water, and acetonitrile
(ACN, LC-MS grade) were purchased from Honeywell
(Seelze, Germany); ammonia solution (25% in water, for
LC-MS) and ammonium acetate (NH4Ac, LC-MS grade)
were purchased from Sigma-Aldrich. For sample preparation,
Milli-Q water, MeOH (HPLC grade), and acetic acid (p.a.)
from Sigma-Aldrich (Steinheim, Germany) and n-hexane
(p.a.) fromCarl Roth GmbH (Karlsruhe, Germany) were used.

Stock solutions of reference standards were prepared by
dissolving solid substances to a final concentration of 10–
500 μg/mL in MeOH. Mycotoxin conjugates (AOH-3-Glc,
AOH-9-Glc, AOH-3-S, AME-3-Glc, AME-3-S) were dis-
solved in water/ACN (20/80, v/v). Working solutions contain-
ing all analytes at a concentration of 2.5–12.5 μg/mL were
prepared in MeOH by diluting the individual stock solutions.
Working solutions were prepared freshly after 4 weeks.
Reference standards and the prepared solutions were stored
at − 20 °C.

Sample preparation

Homogenized samples (1.000 ± 0.005 g) were extracted with
5 mL of extraction solvent (MeOH/water/HAc, 79/20/1, v/v/v)
for 60 min using an overhead shaker (Roto-Shake Genie,
Scientific Industries, NY, USA). The addition of n-hexane
(1 mL) to sunflower seed oil samples before shaking lowered
the viscosity and improved homogenization and extraction.
Subsequently, extracts were diluted 1:1 with MeOH/water
(10/90, v/v) after removing the n-hexane layer in case of sun-
flower seed oil samples. The diluted extracts were centrifuged
at 20,000 rcf and 4 °C for 15 min. Flour samples were addi-
tionally filtered using a syringe filter (Cameo™, PTFE,
0.22 μm pore size, Carl Roth, Germany), since centrifugation
did not remove fine particles sufficiently.

LC-MS/MS parameters and analysis

Sample analysis was performed on a high-performance liquid
chromatography system (UltiMate3000) connected to a triple-
quadrupole mass spectrometer (TSQ Vantage) equipped with
a heated electrospray ionization interface (all from Thermo
Scientific). Chromatographic separation was realized on a
Supelco Ascentis Express column (C18, 2.7 μm, 10 cm ×
2.1 mm) by a binary gradient elution at a flow rate of
0.4 mL/min. The column was equipped with a Phenomenex

SecurityGuard™ precolumn (C18, 2 mm). Eluent A was an
NH4Ac solution in water (5 mM, pH adjusted to 8.7 with 25%
ammonia solution), while MeOH was used as eluent B. The
multi-step gradient was optimized in order to baseline separate
even analyte isomers as follows: During the first minute, the
column was kept at 10% eluent B, before raising to 38%
within half a minute. Subsequently, the percentage of eluent
B was linearly raised to 40% until minute 6, to 58% until
minute 6.1, to 61% until minute 7.5, and to 85% until minute
9. Then, an isocratic column-purging phase at 100% eluent B
(from 9.1 to 13 min) was followed by 2 min of equilibration at
initial conditions. Overall, this resulted in a run time of
15.5 min. A volume of 5 μL was injected onto the column.
The autosampler compartment and the column oven temper-
ature were maintained at 10 and 30 °C, respectively. A divert
valve was utilized to direct the effluent to the waste between
0.5 and 1.5 min.

The mass spectrometer was operated in multiple reaction
monitoring (MRM) mode using negative ionization, which
was switched to positive mode for the last 2.5 min of each
run to prevent potential charging effects. Ion source (ESI)
parameters were optimized as follows: spray voltage −
3000 V; vaporizer temperature 400 °C; sheath gas pressure
35 Arb; ion sweep gas pressure 5 Arb; auxiliary gas pressure
20 Arb; capillary temperature 325 °C. The MS and MS/MS
parameters were optimized by direct injection of reference
standards and are reported in Table 1.

Multi-analyte solutions, both in neat solvent and matrix,
were obtained by diluting the working solutions to eight con-
centration levels covering three orders of magnitude. Linear
regressions were weighted by a factor of 1/x. Due to matrix
effects, matrix-matched calibration was used for quantitation
(see Electronic Supplementary Material (ESM), Figs. S1, S2,
and S3). During longer sequences, the calibration set was
repeated after every 20 sample injections to account for po-
tential intensity shifts. Solvent standards were measured be-
fore and after every sequence as an additional QC measure.
Moreover, solvent and matrix blanks were regularly injected.
The general integrity of the instrumentation was confirmed
before and after every sequence by the measurement of a
QC reference standardmix in triplicate by evaluating retention
t ime s , p eak shape s , and a r ea s . Ch rome l eon™
Chromatography Data System Software (version 6.80 SR13
Build 3818) and Xcalibur™ Software (version 3.0, Thermo
Scientific) were used for instrument control and data acquisi-
tion. Data evaluation was performed with TraceFinder™ (ver-
sion 3.3) and parameters for compound optimization were
tuned using Thermo TSQ Tune Master (version 2.5.0.1305).

Validation experiments

Since certified reference materials for the analysis of
Alternaria toxins are not commercially available to date, the
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development and validation of the presented method were
based on the fortification of blank matrix samples with refer-
ence standards. Chromatographic peaks of the quantifier and
qualifier ions of the 17 analytes in spiked tomato sauce are
shown in the ESM (Fig. S4). According to Commission
Decision (EC) No. 657/2002 [43] and the Eurachem
Laboratory Guide for the validation of analytical methods
[44], the method validation for the three matrices was evalu-
ated by the following parameters: selectivity, linearity, matrix
effects, recovery, limit of detection (LOD) and quantitation
(LOQ), repeatability (intraday precision, RSDr), and interme-
diate precision (interday precision, RSDR).

According to the Commission Decision (EC) No. 657/2002,
Bconcerning theperformance of analyticalmethods and the inter-
pretation of results^, four identification points were considered
for each analyte. The chromatographic peak area of the product
ion with the most favorable intensity and signal-to-noise ratio
properties was used for quantitation (quantifier MRM parent-to-
product transition). A second product ion chromatogram (quali-
fier MRM parent-to-product transition) was used to confirm the
identity of the signal as well as the ratio between these two tran-
sitions (relative ion intensity). Furthermore, the retention time
(RT) was compared to the reference standard [43].

The selectivity was investigated by the analysis of blank ma-
trix samples for eachmatrix. The chromatogramswere compared
to artificially fortified (spiked) blankmatrix samples to ensure the

absence of interfering peaks. The linearity of the calibration
curves (5–7 concentration levels in solvent and matrix-matched)
was evaluated by the regression coefficient (R2). Signal suppres-
sion and enhancement (SSE) caused by matrix effects was cal-
culated as the ratio of calibration curve slopes of each analyte in
the respective matrix and in neat solvent. The relative recoveries
(RE in %; equal to extraction efficiency) were calculated as the
ratio of analyte concentration quantified using the matrix-
matched calibration curve and the known spiking level in the
fortified blank samples. For this purpose, analysis of samples
spiked at three levels (low, medium, high) was performed in
triplicate for all food matrices. The in-house validation was car-
ried out over a duration of three consecutive weeks in triplicate
(independent sample preparation, extraction, and analysis) by
two operators.

To determine the LOD and LOQ values, measurements of
blank samples spiked at the lowest concentration level and the
matrix-matched calibration solutions were examined. For
each individual analyte in a specific matrix, LOD and LOQ
values were determined by manual estimation of the analyte’s
signal-to-noise ratio of three and six, respectively. The repeat-
ability (intraday precision, RSDr) and intermediate precision
(interday precision, RSDR) were calculated from the standard
deviations of the samples spiked at three levels as described
above and measured twice within the same sequence on three
different days during 3 consecutive weeks.

Table 1 Mass spectrometric
parameters and analyte specific
retention times as optimized by
direct infusion experiments and
obtained during method
validation

Analytes RTs Parent ion S-Lens Product ions Ion ratioa

Quantifier Qualifier

[min] [m/z] [V] [m/z] CE [V] [m/z] CE [V] [%]

AOH 6.6 ± 0.3 257 [M-H]- 70 215 27 147 33 44 ± 2

AME 10.0 ± 0.0 271 [M-H]- 73 256 23 227 38 17 ± 0.4

ALT 6.9 ± 0.0 291 [M-H]- 76 229 18 248 20 52 ± 13

isoALT 7.3 ± 0.0 291 [M-H]- 76 203 32 248 20 78 ± 4

TeA 2.1 ± 0.1 196 [M-H]- 88 139 22 112 26 51 ± 8

TEN 8.9 ± 0.0 413 [M-H]- 100 271 19 141 22 88 ± 3

AOH-3-Glc 3.5 ± 0.1 419 [M-H]- 101 256 31 228 42 23 ± 1

AOH-9-Glc 4.8 ± 0.0 419 [M-H]- 101 256 31 228 42 25 ± 3

AOH-3-S 3.7 ± 0.1 337 [M-H]- 86 257 22 213 37 14 ± 1

AME-3-Glc 8.5 ± 0.0 433 [M-H]- 104 270 34 227 44 76 ± 5

AME-3-S 8.0 ± 0.0 351 [M-H]- 88 256 34 271 22 60 ± 1

ATX-I 8.5 ± 0.0 351 [M-H]- 73 315 18 333 14 65 ± 4

ATX-II 9.5 ± 0.0 349 [M-H]- 88 285 34 332 15 26 ± 1

ALP 8.6 ± 0.0 349 [M-H]- 68 303 18 261 28 90 ± 3

STTX-III 9.7 ± 0.0 347 [M-H]- 71 329 19 301 29 168 ± 26

ALS 3.7 ± 0.0 289 [M-H]- 76 245 18 230 22 39 ± 2

AA-III 2.6 ± 0.3 321 [M-H]- 82 233 17 189 22 74 ± 1

a The ion ratio (quantifier/qualifier*100) in spiked samples was calculated as an average of the values obtained for
the three matrices
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Collection of retail samples

Food commodities (tomato sauces (n = 12), sunflower seed
oils (n = 7), and wheat flowers type 480 (n = 9)) were collect-
ed from different supermarket stores in Vienna, Austria, be-
tweenMarch and April 2017. A homogenized, aggregate sam-
ple of at least 1 kg was prepared according to the Commission
Regulation (EC) No. 2006/401, Blaying down the methods of
sampling and analysis for the official control of the levels of
mycotoxins in foodstuffs^ [45]. Laboratory samples of 50–
100 g were stored (tomato sauces at − 20 °C, sunflower seed
oils at 4 °C, and wheat flower samples at room temperature)
until sample preparation and LC-MS/MS analysis.

Results and discussion

Optimization of MS and MS/MS parameters

The optimization of the electrospray ionization interface
and the tandem-mass-spectrometric parameters were
achieved by infusions of reference material solutions (in-
dividual analytes in MeOH, 5 μg/mL) using a syringe
pump. To mimic actual infusion conditions, a flow rate of
3–10 μL/min tune solution was combined with an LC flow
of 0.3 mL/min using a T-piece before entering the ESI
source. During the infusion optimization, the ratio of elu-
ent A and B was selected according to the polarity of a
certain analyte (i.e., highly polar analytes were optimized
at between 10 and 40% eluent B and lipophilic analytes
between 60 and 90% eluent B). MS and MS/MS parame-
ters were optimized in both polarities using the instru-
ments’ tuning software. First, the most appropriate precur-
sor ions were selected by maximum intensity in full scan
mode. Interestingly, negative ionization led to higher sig-
nals for all 17 target analytes. The eight most abundant
product ions and their corresponding collision energies
were determined for each analyte by comparing signal in-
tensities with changing parameters. To achieve highest sen-
sitivity and selectivity in the three food matrices, S/N ratios
for all eight transitions were evaluated by independent LC-
MS injections of spiked blank matrix samples. The two
ions with the highest relative S/N value, which were fortu-
nately identical in all matrices, were selected as quantifier
and qualifier ion (Table 1). ESI parameters (spray voltage,
vaporizer temperature, sheath gas, ion sweep gas, auxiliary
gas, and capillary temperature) were examined manually
and set to provide the best overall performance. It was
suggested that charging effects in an ESI interface may
result in signal suppression of certain challenging analytes
including TeA [5]. Hence, the ionization polarity was
switched from negative to positive mode for the final
2.5 min of each run.

Development of the chromatographic method

An important aim of the developed chromatographic method
was to baseline-separate the isomeric analytes of interest in
reasonable run times resulting in reproducible, sharp, and
symmetrical signals. The selected reversed phase column
was described before to be favorable for the separation of
the five Alternaria toxins, namely AOH, AME, ALT, TeA,
and TEN [27]. By optimization of eluents, temperature, and
the multi-step gradient, we were able to separate our 17 target
analytes of highly diverse polarity. A basic eluent system (el-
uent A, 5 mM NH4Ac in water, pH 8.7) was crucial for a
symmetric peak shape of the polar TeA, which is typically
measured after derivatization or alternatively exhibits very
broad peaks and peak tailing in acidic eluents. Also, the
AOH-3-S and AME-3-S showed peak tailing with acidic elu-
ents, which could be resolved using the basic conditions.
Importantly, also, the most lipophilic toxins (AME, TEN,
and the perylen quinones) showed a favorable behavior with
very narrow peak shapes allowing for enhanced signal inten-
sities. Due to the optimizedmulti-step gradient, it was possible
to baseline-separate the isomers ALT and isoALT, as well as
the glucosides of AOH for the first time (Fig. 2). Purging of
the column after finishing measurement sequences at 95%
MeOH ensured an acceptable column lifetime despite the ap-
plied basic eluents. The flow rate and column temperature
were optimized to yield the overall best signal-to-noise ratios
and shortest run time. In general, retention times of the target
analytes were stable and reproducible (see Table 1). Only the
retention times of TeA, AA-III, and AOH and its modified
forms were prone to minor pH changes observed after prepar-
ing fresh eluent A. Maximum shifts have been observed for
TeA (0.1 min), AOH (0.3 min), and AA-III (0.3 min).
However, since signals derived from reference standards and
unknown samples behave equally, this was not an issue. No
relevant carry-over between injections was observed.
However, the absence was constantly verified by monitoring
solvent and matrix blank samples. The injection needle of the
LC autosampler was washed with 100 μL isopropanol/water
(75/25, v/v) before and after each sample injection.

Optimization of the sample preparation protocol

The sample preparation protocol was intended on one hand to
be as generic as possible to prevent the discrimination of any
of the chemically diverse analytes and, on the other hand, to be
time- and cost-effective. Hence, sample extracts were centri-
fuged and diluted by a factor of two resulting in an overall
dilution of 1:10 (w/v). Since the LC-MS/MS method was
thoroughly optimized and allows for highly sensitive and se-
lective quantitation, no further derivatization [27] or solid-
phase extraction [5, 27] steps were required. This makes the
method attractive for large-scale food-monitoring programs as
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suggested by the EFSA in their recent scientific report [20].
Due to fine particles suspended in the wheat flour extracts, an
additional filtration prior to analysis was required. This en-
sured reproducible pressure conditions of the LC system even
after a high number of injections. The addition of n-hexane to
the sunflower seed oil samples simplified their handling and
led to enhanced extraction efficiency. This was not necessary
for tomato sauce and wheat flower samples.

Method validation

In-house validation was performed based on the requirements
defined by the Commission Decision (EC) No. 657/2002 [43]
and the Eurachem Laboratory Guide for the validation of an-
alytical methods [44]. Three food commodities with diverse
chemical composition and frequently contaminated by
Alternaria mycotoxins [1, 3, 46–48] were chosen for

Time [min]

4.50E5

3.78E5

6.77E5

9.32E5

6.24E5

3.58E5

1.82E5

1.56E6

1.51E5

8.69E4

1.34E5

2.87E5

3.43E5

1.33E5

1.78E6

Fig. 2 Chromatographic separation of the multi-component standard (highest level of the linear range, see Table 2) containing the 17 target analytes
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comprehensive evaluation of the developed method and in-
cluded tomato sauce (representative for aqueous matrices),
sunflower seed oil (non-polar and fatty matrices), and wheat
flour (carbohydrate-based matrices). The following parame-
ters were successfully validated: selectivity linearity, matrix
effects, recovery, sensitivity, repeatability, and intermediate
precision. Due to a lack of certified reference materials of
Alternaria toxins, the validation was based on the fortification
of blank matrix samples at three concentration levels. These
concentrations were based on the preliminary calculation of
LOQ values (Table 2).

Selectivity was verified by the analysis of representative
blank samples for each matrix. Signals from fortified blank
samples and unknown samples collected from the Austrian
retail marked were evaluated and no relevant co-eluting inter-
fering signals were detected. For all analytes, suitable blank
matrix samples were identified with the exception of TEN in

sunflower seed oil in which all samples contained very low
concentrations (see Table 3). TEN was clearly identified in
these oils, seeing that this analyte proved very stable retention
times (in all matrixes), reproducible narrow peak shapes, and a
low background noise. The sample contaminated with the
lowest amount of TEN (< LOQ) was used in the spiking ex-
periments. The regression coefficients (R2) between 0.97 and
0.99 confirmed linearity of both solvent- and matrix-matched
calibration curves over at least 3 orders of magnitude (5–7
concentration levels, Table 2).

Matrix effects varied depending on the type of matrix as
reported in Table 2. Signal suppression or enhancement (SSE)
for AOH, ALT, isoALT, TeA, TEN, AOH-3-S, AME-3-Glc,
ATX-I, ATX-II, and ALP was between 80 and 120%. AME
and its sulfate showed a signal enhancement in wheat flour of
124 and 156%, respectively. Sulfate conjugates of other my-
cotoxins have been described to be prone to signal

Table 3 Results of a pilot survey to determine Alternaria toxins in food
samples purchased in Austria: tomato sauces (n = 12), sunflower seed oils
(n = 7), wheat flours (n = 9). Eight of the 17 analytes included in the

method were not detected in any sample and are thus not reported in
the table. Abbreviations: n.d. not detected

Origin Cultivation AOH AME isoALT TeA TEN AOH-3-Glc AOH-9-Glc AOH-3-S AME-3-S

Tomato sauce 1 Italy Conventional n.d. n.d. n.d. 42 n.d. n.d. < LOQ n.d. n.d.

2 Italy Conventional < LOQ n.d. n.d. 117 n.d. n.d. n.d. n.d. < LOQ

3 Italy Conventional n.d. n.d. n.d. < LOQ n.d. n.d. n.d. n.d. n.d.

4 Morocco Conventional n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

5 Italy Organic 20.2 4.0 n.d. 323 < LOQ n.d. 12.7 < LOQ 3.2

6 Italy Organic n.d. < LOQ < LOQ 125 < LOQ n.d. n.d. n.d. <LOQ

7 Italy Organic < LOQ n.d. n.d. 114 < LOQ n.d. n.d. n.d. n.d.

8 Spain Organic n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

9 Italy Organic 1.4 < LOQ n.d. 72 < LOQ < LOQ n.d. < LOQ 1.4

10 Italy Organic < LOQ < LOQ n.d. 233 0.6 n.d. n.d. n.d. < LOQ

11 Italy Organic < LOQ n.d. n.d. < LOQ n.d. n.d. n.d. n.d. n.d.

12 Italy Organic < LOQ < LOQ n.d. 65 n.d. n.d. n.d. n.d. < LOQ

Sunflower seed oil 1 Austria Conventional n.d. n.d. n.d. n.d. < LOQ n.d. n.d. n.d. n.d.

2 Austria Conventional < LOQ 2.2 n.d. n.d. < LOQ n.d. n.d. n.d. n.d.

3 Austria Conventional n.d. < LOQ n.d. n.d. < LOQ n.d. n.d. n.d. n.d.

4 Germany Organic < LOQ 1.7 n.d. 29 3.4 n.d. n.d. n.d. n.d.

5 Austria Organic 0.5 < LOQ n.d. 25 1.8 n.d. n.d. n.d. n.d.

6 Germany Organic n.d. n.d. n.d. < LOQ < LOQ n.d. n.d. n.d. n.d.

7 Germany Organic n.d. 0.7 n.d. 21 < LOQ n.d. n.d. n.d. n.d.

Wheat flour 1 Austria Conventional n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

2 Austria Conventional n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

3 Austria Conventional n.d. n.d. n.d. n.d. < LOQ n.d. n.d. n.d. n.d.

4 Austria Conventional n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

5 Austria Conventional n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

6 Austria Organic n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

7 Austria Organic n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

8 Austria Organic < LOQ n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

9 Austria Organic n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
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enhancement before [49]. Signals of AOH-3-Glc and AOH-9-
Glc were suppressed in tomato sauces (51 and 79%) and
wheat flour (68 and 72%), but enhanced in sunflower seed
oil (118 and 114%). Signal enhancement in wheat flour was
also found for STTX-III and AA-III. ALS showed to be sus-
ceptible to matrix effects with 144% in tomato sauce and 14
and 56% in sunflower seed oil and wheat flour, respectively,
for its parent ion [M-H]− atm/z 289. Previous methods did not
determine the deprotonated parent ion, but an ion at m/z 287,
which may represent a ring-closing reaction product [5, 50].
This ion of unknown structure shows lower matrix effects;
however, it also yielded lower signal-to-noise ratios and thus
significantly higher LOD values. Therefore, we selected the
[M-H]− ion for the final method.

The relative recovery (RE, extraction efficiency) of most
analytes ranged between 70 and 110% in all three matrices,
a range comparable with other methods published in literature
[5, 27, 30]. Best results were obtained for sunflower seed oil,
where the values ranged between 74 and 100% for all three
spiking levels. The extraction proved to be very suitable for
tomato sauce as well, only the recovery of STTX-III was
below the target value. Wheat flour was a comparatively more
challenging matrix. The more polar analytes AA-III, AOH-3-
S, and AME-3-S exhibited recoveries between 55 and 64%,
while it was even lower for ALS. Recoveries for AOH-3-S
and AME-3-S in cereal-based food items published by
Walravens et al. [30] were close to 100%, but no recoveries
for AA-III and ALS in similar matrices were reported so far.
Apparently, molecules holding deprotonable sulfate or car-
boxyl groups are less effectively extracted from wheat flour
with the utilized extraction procedure. Recoveries of STTX-
III, which are the first reported for any food matrix, were 94%
in sunflower seed oil, but only 28–51% in tomato sauce and
wheat flour. Due to the limited amounts available of the ref-
erence standard, no further investigations could be performed.
Consequently, accurate quantitation of this analyte in two ma-
trices (tomato sauces and wheat flour) is not possible but the
analyte was kept in the final method for semi-quantitative
assessment. Since this analyte was never determined in any
food commodity before, to the best of our knowledge, it may
enable first indications of the presence of this potentially po-
tent toxin holding an epoxide group [51, 52].

The limits of detection (LODs) of the presented method
were between 0.03 ng/g (AME) and 7 ng/g (ALS), whereas
the limits of quantitation (LOQ) were between 0.06 ng/g
(AME) and 19 ng/g (ALS). Key toxins including AOH and
ATX-II can be detected down to 1 ng/g, in the case of AME
and TEN even down to 0.1 and 0.5 ng/g, respectively. For
TeA, which was indicated as a challenging analyte before [5,
27], but frequently occurs at higher concentrations in food
stuff, an LOD of 6 ng/g in tomato sauce, 4 ng/g in sunflower
seed oil, and 7 ng/g in wheat flour was achieved. Moreover,
the modified mycotoxins (AOH-3-Glc, AOH-9-Glc, AOH-3-

S, AME-3-Glc, and AME-3-S) can be detected as low as
0.05–6 ng/g. The repeatability (intraday precision, RSDr)
and intermediate precision (interday precision, RSDR) proved
to be satisfying for nearly all analytes and matrices. Even
though the presented method’s sample preparation does not
include derivatization or solid-phase extraction steps, com-
pared to earlier published studies, LOD values reached a sim-
ilar or even lower range for most analytes [5, 27, 30]. For
AME, TEN, ATX-I, AOH-3-S, AME-3-Glc, and AME-3-S,
lower LODs were achieved compared to Zwickel et al. [5],
Walravens et al. [30], while for TeA and ALT, they were
slightly higher. Due to the shortage of reference materials for
perylene quinones (ATX-I, ATX-II, STTX-III, ALP), modi-
fied forms of AOH and AME or toxins like iso-ALT, ALS,
and AA-III, there is not much data available in literature about
these compounds. In conclusion, the performed validation
demonstrated that the newly developed method is fit for pur-
pose, generating valuable occurrence data of up to 17
Alternaria toxins for the first time simultaneously.

Application to naturally contaminated food samples

To gain first insights on contamination levels and patterns of
Alternaria toxins including modified forms, samples from the
Austrian market (n = 28) were analyzed in a small-scale sur-
vey. Three independent measurements of tomato sauce (n =
12), sunflower seed oil (n = 7), and wheat flower (n = 9) sam-
ples were performed and average values are reported in
Table 3.

Overall, nine of the 17 toxins included in the developed
method have been determined in products intended for human
consumption. This is intriguing given the rather small sample
number analyzed in this preliminary study. In future large-
scale occurrence surveys, or when analyzing visually mold-
infested samples, it is likely to observe even a greater number
of these emerging contaminants.

Tomato sauce was the commodity with both the highest
number of detected analytes and generally the highest concen-
trations. This is in line with literature suggesting tomato-based
products to be often contaminated by comparatively high
levels of the four to six typically reported Alternaria toxins
AOH, AME, TeA, TEN, ALT, and ATX-I [2, 4, 20, 27, 29, 31,
37]. Interestingly, organic products seem to be slightly more
contaminated than conventionally farmed samples. However,
this should not be over-interpreted due to the limited sample
size but investigated in more detail in further studies.

As expected, TeA concentrations were higher than the
other Alternaria toxins and reached concentrations of
300 ng/g. Compounds with genotoxic properties, AOH
and AME, were found in about half of the tomato sauce
samples. The concentrations determined are in a similar
range as published in other recent studies [29, 31, 53]. To
the best of our knowledge, the masked mycotoxin AOH-
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9-Glc was identified and quantified for the first time in
any food matrix. Interestingly, only the C9 isomer conju-
gate was detected, despite the threefold lower LOD of
AOH-3-Glc. This indicates that, at least in tomatoes,
AOH-9-Glc is the prevalent formed metabolite of AOH.
This is in line with in vitro studies where AOH-9-Glc was
reported to be the major metabolite in tobacco suspension
cell culture experiments after 48 h of AOH incubation
[21]. Other recently published methods also included glu-
cosides but did not detect them in naturally contaminated
samples [29, 30, 33, 53]. Furthermore, sulfate conjugates
of both AOH and AME have not been described in liter-
ature as food contaminants before. We were able to detect
these compounds in naturally contaminated tomato sauce
samples. For confirmation purpose, selected samples con-
taminated at low concentrations were enriched by a factor
of five and re-measured. MRM chromatograms showing
quantifier and qualifier ion transitions of AOH-3-S and
AME-3-S in a naturally contaminated tomato sauce sam-
ple (sample #5) are illustrated in Fig. 3. Direct compari-
son to a spiked blank matrix sample allowed for unam-
biguous identification. Surprisingly and of relevance for
risk assessment, in some samples, the modified myco-
toxins were present in similar concentrations as their par-
ent toxins (Table 3, sample #5 and #9) [21, 22]. However,
these first insights suggest that glycosylation is preferred

for AOH, while its monomethyl ether (AME) tends to
form a sulfate conjugate. It is also possible that the sul-
fates are not produced by the plant but by the fungus as
reported by Soukup et al. [22].

All sunflower seed oil samples were contaminated by
minor amounts of TEN (< LOQ-3.4 ng/g). Major
Alternaria toxins were detected in fewer samples and low-
er concentrations when compared to tomato samples or to
other studies [31, 33, 37, 53]. Conjugates have not been
detected in any of the sunflower seed oil and wheat flour
samples. The latter matrix was generally less contaminat-
ed; only AOH and TEN were detected at levels < LOQ,
and surprisingly, no TeA was detected. Other studies from
China reported higher Alternaria toxin concentrations in
wheat [38, 39]. TeA, TEN, AOH, and AME were found in
100, 97, 7, and 97% of 181 wheat flour samples, in the
range of 1.76–520 ng/g, 2.72–129 ng/g, 16–98.7 ng/g and
0.32–61.8 ng/g, respectively [39].

Maximum contamination levels of Alternaria toxins in
food and feed are currently not defined, monitored, or regu-
lated in the European Union. According to the recent EFSA
report [19, 20], this is caused by a substantial lack of occur-
rence and toxicity data. The method presented here clearly
fulfills the requirements for contributing important informa-
tion on Alternaria toxin contamination patterns and levels.
Since the method was successfully validated and is also

Fig. 3 MRM-chromatograms of
the modified Alternaria toxins
AOH-3-S (a) and AME-3-S (b) in
a naturally contaminated tomato
sauce sample (sample #5, AOH-
3-S < LOQ, AME-3-S 3.2 ng/g)
compared to the respective sig-
nals in the tomato sauce matrix-
matched standard solution (3 ng/
mL). The chromatograms show
overlaid quantifier and qualifier
transitions for AOH-3-S (m/z
337→ 257 and m/z 337→ 213)
and AME-3-S (351→ 256 and
351→ 271), respectively. Signals
of higher intensity represent the
quantifier transitions
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comparatively time- and cost-effective, it proved to be fit for
the intended purpose.

Conclusion and outlook

We report an LC-MS/MS method for the simultaneous deter-
mination of 12 parent and 5 modified Alternaria toxins in
three food matrices frequently contaminated by these ubiqui-
tous natural toxins, namely tomato sauce, sunflower seed oil,
and wheat flour. The method was validated successfully ac-
cording to the Eurachem Laboratory Guide for the validation
of analytical methods [44], apart from single analytes in wheat
flour showing reproducible performance, but recoveries lower
than the required 70%. Overall, the method proved to be fit for
purpose, its application to naturally contaminated samples. A
pilot study provided first insights on Alternaria toxin contam-
ination patterns and levels in food commodities purchased on
the Austrian retail market. While sunflower seed oil and par-
ticularly wheat flour samples showed minor contaminations,
we found five parent toxins and four modified forms of AOH
and AME, partly for the first time in any food commodity, in
tomato sauce samples. These results confirm that the hidden
toxicological potential of masked/modified mycotoxins could
be an issue and should be considered in future risk assess-
ments. To obtain more comprehensive figures regarding oc-
currence patterns, follow-up large-scale surveys are required.
Furthermore, the role of modified toxins and combinatory
toxicological effects calls for thorough evaluation to enable
proper risk assessment.
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