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Abstract
Wolframite has been specified as a ‘conflict mineral’ by a U.S. Government Act, which obliges companies that use these minerals
to report their origin. Minerals originating from conflict regions in the Democratic Republic of the Congo shall be excluded from
the market as their illegal mining, trading, and taxation are supposed to fuel ongoing violent conflicts. The German Federal
Institute for Geosciences and Natural Resources (BGR) developed a geochemical fingerprinting method for wolframite based on
laser ablation inductively coupled plasma-mass spectrometry. Concentrations of 46 elements in about 5300 wolframite grains
from 64 mines were determined. The issue of verifying the declared origins of the wolframite samples may be framed as a
forensic problem by considering two contrasting hypotheses: the examined sample and a sample collected from the declaredmine
originate from the same mine (H1), and the two samples come from different mines (H2). The solution is found using the
likelihood ratio (LR) theory. On account of the multidimensionality, the lack of normal distribution of data within each sample,
and the huge within-sample dispersion in relation to the dispersion between samples, the classic LR models had to be modified.
Robust principal component analysis and linear discriminant analysis were used to characterize samples. The similarity of two
samples was expressed by Kolmogorov-Smirnov distances, which were interpreted in view of H1 and H2 hypotheses within the
LR framework. The performance of the models, controlled by the levels of incorrect responses and the empirical cross entropy,
demonstrated that the proposed LR models are successful in verifying the authenticity of the wolframite samples.
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Introduction

In the eastern provinces (North Kivu, South Kivu, and
Maniema) of the Democratic Republic of the Congo (DRC),
ongoing violent conflicts are fuelled by illegal mining,

trading, and taxation of natural resources (e.g., tin, tantalum,
and tungsten, their ores, and gold). Foreign and local armed
groups profit from mining activities and use the revenue from
mineral trade to finance their troops [1, 2]. In 2010 the US
Congress passed the Dodd-Frank Wall Street Reform and
Consumer Protection Act and charged the Securities and
Exchange Commission (SEC) to take action to address virtu-
ally all of the mandatory rulemaking provisions of the Act.
Section 1502 of this Act requires US-listed companies to ex-
ercise due diligence on the traceability of so-called Bconflict
minerals^ (coltan, cassiterite, and wolframite mined to obtain
Ta, Sn, and W, respectively, and gold) or their derivatives
originating from DRC or adjoining countries if these minerals
are necessary for the functionality or production of their prod-
ucts [3]. On the one hand, the Dodd-Frank Act intends to
reduce income from mineral trade for armed groups, but on
the other hand this Act will also have great impact on regular
artisanal miners whose livelihood is strongly dependent on
mining of these minerals. However, recently a combination
of court opinions, regulatory reversals, and legislative
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proposals have joined to weaken the conflict mineral regula-
tions under Section 1502 [4]. In 2017, the European
Parliament and the Council laid down supply chain due dili-
gence obligations for Union importers of tin, tantalum, and
tungsten, their ores, and gold originating from conflict-
affected and high-risk areas [5].

Traceability systems for mineral supply chains are de-
signed to (1) indicate shipments which are of reliable origin
and not conflict affected, and (2) to hamper market access for
illegally mined and traded ores. Within such systems each ore
mineral shipment is accompanied by a document which pro-
vides information about the origin of the minerals. An analyt-
ical fingerprinting (AFP) approach has been developed at the
German Federal Institute for Geosciences and Natural
Resources (BGR) as a document-independent tool to verify
the declared origin of a shipment in case of doubt [6–8]. AFP
can be implemented as an optional proof of origin within the
framework of traceability systems.

For AFP, a sample is taken from a shipment in doubt, the
sample is analyzed, and the results are evaluated by compar-
ison with data from a reference sample database where mine-
specific information on ore minerals is stored. The result is a
statement whether the documented origin of the shipment in
doubt is credible or not.

Wolframite (Fe,Mn)WO4 is the most important ore mineral
for tungsten in Central Africa. Tungsten is a metal of high
economic importance with major applications in cutting tools
as tungsten carbide, in the production of various steel grades
as an alloying component, or as filaments in light bulbs.
Wolframite is traded as an ore concentrate which is produced
by miners at the mine site.

Recently, Gäbler et al. [8] presented an approach for the
analytical fingerprinting of wolframite ore concentrates based
on laser-ablation inductively coupled plasma-mass spectrom-
etry data, the evaluation of Kolmogorov-Smirnov distances of
two-sample comparisons, and an empirically derived decision
criteria. The data from wolframite concentrates are multivari-
ate, not normal-distributed, and due to the mining process
samples cannot be regarded as representative aliquots of a
population, which poses an additional challenge for data eval-
uation [8]. This study presents an alternative data evaluation
approach based on the likelihood ratio concept (e.g., [9–11])
and is based on the nearly identical data set used by Gäbler
et al. [8].

To confirm or dispel the doubt that arises concerning a sam-
ple’s origin, the following question must be considered – does
the sample under investigation originate from the declared
mine? Then, if (i) E stands for a sample under investigation
which is declared to come from source S (i.e., location, mine
site), and (ii) D stands for a reference sample truly coming from
this declared origin S, then the proposed methodology ad-
dresses the forensic comparison problem [9–12] in which
two competing hypotheses are stated:

H1 - samples D and E come from the same source S, i.e.,
mine site,
H2 - samples D and E originate from different sources.

The problem in practice boils down to verifying whether D
and E samples are so-called brother samples (samples sharing
a common origin) or not. Then such a comparison issue may
be simplified by grounding it in the classification task [13, 14]
in which the following hypotheses are investigated:

H1 - samples D and E are brother samples,
H2 - samples D and E are not brother samples.

One of the solutions of this issue requires comparing the
similarity of samples E and D with the similarity of sample E
and each individual sample X remaining in the reference da-
tabase based on the samples elemental composition. First, the
characteristic of samples D and X is derived by a chemometric
procedure (robust principal component analysis (rPCA) com-
bined with linear discriminant analysis (LDA), details are giv-
en below) recording the difference between them. Now the
data of sample E are projected on the variable characterizing
and differentiating samples D and X. The idea is that if sam-
ples D and E are brother samples, both samples should behave
similar relative to each individual sample X from the reference
sample database and not similar if they are not brother sam-
ples. The final conclusive stage involves decidingwhether this
similarity of samples E, D, and X is more likely to occur when
E and D are brother samples (H1) or when they are not (H2).
Such a problem raised in the perspective of two equivalent
hypotheses, H1 and H2, typically issued in the forensic sci-
ences, should preferably be solved using the likelihood ratio
theory of hypothesis testing [9]. The equivalence of both hy-
potheses stated in the LR approach remains in contrast to the
willingly applied statistical tests (e.g., t-test), in which the
hypotheses are not equiponderant. These tests only indicate
whether the null hypothesis (on which the emphasis is put) is
rejected or fails to be rejected. No conclusions can be made
about the acceptance/rejection of the alternative hypothesis.

For discrete measurements, the probability that evidence
(ε) characterized by variable Z takes the value z if H1 is
true is denoted Pr(Z = z|H1). Similarly, Pr(Z = z|H2) denotes
the probability that Z takes the value z when H2 is true. The
likelihood ratio compares the probability that Z = z when
H1 is true with the probability that Z = z when H2 is true
(Equation 1).

LR ¼ Pr Z ¼ zjH1ð Þ
Pr Z ¼ zjH2ð Þ ¼

Pr εjH1ð Þ
Pr εjH2ð Þ ð1Þ

LR measures the strength of the evidence in favor of H1

compared with H2 when Z = z. For continuous measurements,
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similar reasoning holds with the probabilities replaced by
probability density functions f(Z=z|H1) and f(Z=z|H2):

LR ¼ f Z ¼ zjH1ð Þ
f Z ¼ zjH2ð Þ ¼

f εjH1ð Þ
f εjH2ð Þ ð2Þ

The likelihood ratio is not a probability but a ratio of prob-
abilities, and hence it takes values between 0 and infinity.
Values of the likelihood ratio above one support the H1, the
values below one support the H2, and those equal to one sup-
port neither of the hypotheses. The higher the value of the
likelihood ratio is, the stronger is the support for the H1 prop-
osition. The lower the value of the likelihood ratio is, the
stronger is the support for the H2 proposition.

Another advantage of the LR approach over other statisti-
cal tests is the consideration of the rarity of the samples’ data.
This rarity is available from databases storing information
about the same parameters measured for a representative set
of samples. Observing similar features for both compared
samples must always be carefully controlled as the match
between characteristics may be just a coincidence. This danger
is growing for features commonly observed in the relevant
population and decreases with their increasing rarity. Thus
the value of the evidence in support of the proposition that
compared samples have common origin is greater when the
determined values are similar and rare in the relevant popula-
tion than when the physicochemical values are equally similar
but common in the same population [9, 11]. The rarity con-
siderations are unfortunately ignored in the score-based LR
models, where the similarity between characteristics of two
samples is expressed by their distance. Since the distance is
identically measured for rare and common data, the score-
based LR models’ virtue mainly boils down to computational
efficiency. Nevertheless, the score-based LR models still keep
their superiority over other statistical tests by viewing the data
from two equivalent contrasting perspectives (hypotheses).

LR is a method for commenting on the evidential value of
the evidence material, which is recommended by the forensic
community, including the European Network of Forensic
Science Institutes [15–19]. The most successful application
of the LR approach in the forensic sphere is found in the
evaluation of DNA profiling for forensic purposes [20]. This
approach has also been used in the analysis of earprints, fin-
gerprints, firearms, and tool marks, hair, documents, and
handwriting (review can be found in [9]), as well as speaker
recognition [21]. An increasing number of applications of this
approach is found in the evaluation of physicochemical data
recorded for microtraces of glass [12–14, 22–27], explosives
[28], car paints [29–33], polymers [31, 32], fire debris [34],
inks [35, 36], fibers [29], drugs [37–39], food samples [40, 41]
and biological samples [42].

Since the work of Aitken and Lucy [10] was published,
LR models have been widely developed for data sets

described by a limited number of variables. Commonly ana-
lyzed evidence in the form of glass fragments characterized
by their elemental composition [12–14, 22, 23] concerning
only oxygen, sodium, magnesium, aluminium, silicon, potas-
sium, calcium, and iron, may serve as an example. Similar to
most of the statistical methods, classic, so-called feature-
based LR suffers from the curse of dimensionality when deal-
ing with highly multidimensional data, being currently a do-
main of most of the analytical techniques outcomes.
Moreover, difficulties emerge when the data are not normally
distributed within each sample and their variance structure
becomes complex. This may be the case when dispersion of
data within each sample and for the samples from the same
source (e.g., mine site) is comparable to the dispersion of data
for samples from different sources. Some strategies for deal-
ing with the multidimensionality have been proposed in [31,
32] for infrared and Raman spectra. They engage chemomet-
ric tools for reducing data dimensionality by studying various
sources of variability and extracting the most relevant infor-
mation in the form of a few latent variables. The outcomes of
the chemometric techniques are then incorporated in what is
referred to as hybrid LR models [31, 32]. The issues of the
lack of normality and significant within-sample data disper-
sion have not been tackled yet. However, some strategies
have been studied recently for keeping the proper relation
of the within- and between-samples variability, which is eas-
ily violated by the applied chemometric tools for reducing
data dimensionality.

The multidimensionality and lack of data normality within
each sample is not regarded to be an obstacle in the score-
based LR models. These models maximally reduce data di-
mensionality to only a single score describing two compared
samples. The score, which is for instance the distance between
two samples characteristics, is then interpreted in the light of
two hypotheses, H1 and H2. In the score-based LR models
constructed for the examined wolframite data, the score is
the similarity metric between the questioned sample, the sam-
ple from the declared mine site, and each of the remaining
samples collected in the database. These similarity metrics
must be significantly different for brother and non-brother
samples. This is possible only when the distances are comput-
ed in the space defined by the variables that well differentiate
between samples from different locations and effectively
group brother samples. Thus the dispersion of data for brother
samples should be kept much lower than for non-brother sam-
ples. This is easily achieved using chemometric tools optimal-
ly separating classes (or samples if each sample is regarded as
a class), such as linear discriminant analysis (LDA). The only
requirements of LDA are the reduction of data dimensionality
and the need to deal with a non-normal distribution within
each sample. Even then, when care must be taken to work
with normally distributed data and reduce their dimensionali-
ty, the use of score-based LR models is not purposeless. This
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is because scores provide an improved description of the sim-
ilarity between samples and consequently better enable the
decision of whether they are brothers or not than conventional,
feature-based LR models.

Thus the aim of this work is to demonstrate that hybrid
score-based likelihood ratio models are capable of verifying
the authenticity of wolframite concentrate origins declared in
the official documents. The issue is tackled with the combina-
tion of chemometric tools and the LR approach in the form of
hybrid LR models [31, 32]. They utilize various chemometric
techniques for (1) reducing data dimensionality, and (2) deal-
ing with different aspects of database structure, i.e., lack of
normality and significant dispersion arising from huge ranges
of elements content observed within each sample and between
them. The models engaged (i) robust variant of principal com-
ponent analysis for reducing data dimensionality [43–45], (ii)
linear discriminant analysis (LDA) [43] for finding the direc-
tions that capture the differences between samples, and (iii)
Kolmogorov-Smirnov distance [46] for expressing their sim-
ilarity, which, as a score, was then viewed within the LR
framework.

Materials and methods

Samples, sample preparation, and analysis

Throughout this study, a sample is referred to as an aliquot of
an ore concentrate which contains several hundred or several
thousand individual mineral grains. The majority of those
grains are wolframite grains if a good ore concentrate is ob-
tained. Sample properties in terms of distributions of element
concentrations in wolframite are obtained from about 40 to 50
individual wolframite grains of a sample.

For analysis a polished section is prepared for each sample.
Wolframite grains are identified by scanning electron micros-
copy and analyzed by laser-ablation inductively coupled
plasma-mass spectrometry. Details on sample preparation,
grain identification, and grain analyses are given by Gäbler
et al. [8].

The database used for this study consists of information on
elemental composition of 104 wolframite samples and is near-
ly identical to the database used by Gäbler et al. [8]. The
wolframite ore concentrate samples originate from 45 differ-
ent mine sites from 10 countries worldwide, with special em-
phasis on Central Africa (30 mine sites). In total, 5327 wol-
framite grains have been analyzed for the elements Mg, Ca,
Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Sr, Y, Zr, Nb,
Mo, Ag, Cd, In, Sn, Sb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb,
Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Tl, Pb, Bi, Th, and U. There
were 105 pairs of brother samples (samples coming from the
same mine site) and 4972 pairs of non-brother samples (sam-
ples coming from different mine sites).

LR models construction protocol

The problem of wolframites authenticity was investigated
by considering two hypotheses, H1 (E and D are brother
samples) and H2 (E and D are not brother samples). The
idea of evaluating the similarity of E, D, and X samples in
the context of the two hypotheses is visually presented in
Fig. 1. As it is displayed there, the probability density of
observing a particular similarity metric between samples E,
D, and X (illustrated by a vertical solid green line in Fig. 1)
is estimated for numerator and denominator, i.e., in the
context of the distributions representing the similarity
values observed when E and D are brother samples (H1)
and when they are not (H2). Then both probability density
values are compared by taking their ratio, which is known
as the likelihood ratio (Equation 2).

Score-based LR models successfully distinguish samples
only if the characteristics among brother samples are much less
dispersed than the characteristics between non-brother samples.
As will be evidenced in BDescriptive statistics^ section, the
dispersion of the data within brother samples is for many ele-
ments basically comparable to the dispersion of data observed
for the non-brother samples. Moreover, the distributions of data
within each sample cannot be considered normal and the num-
ber of variables needs to be reduced. Thus the key to build the
appropriate LRmodels for making inferences whether the sam-
ples are brothers or not is first by reducing data dimensionality
and dealing with the lack of normality, and second by finding
the most informative variables with the best discrimination
power, which uniquely characterize each mine site and well
differentiate each from the others. Thus maximizing the simi-
larity of the brother samples and minimizing the similarity of
the non-brother samples is of crucial importance.

First, the original variables were log-transformed for re-
ducing huge data ranges (even 6 orders of magnitude).
Then robust PCA (rPCA) [43–45] was applied with the aim
of data mining to explore and find patterns in a multivariate
dataset containing many extreme values. Its principle is to
expose such projections of the original data that maximize
their variation in a few components and hence reduce the
number of variables. In rPCA robust measures of location
and dispersion (namely median and median absolute devia-
tion (MAD) [43]) are used to autoscale the data so that the
variables introduce equal amount of variation and neither is
favored. The autoscaling formula is expressed as zij = (xij −
median(xi))/MAD(xi) where: xij is the j-th observation of i-th
variable; median(xi) and MAD(xi) are the median and median
absolute deviation of the i-th variable. The utmost advantage
of the algorithms for rPCA is that they seek for the directions
along which the robust measure of spread (MAD) is maxi-
mized. This ensures that the creation of the PCA space is
minimally affected by extreme values since robust measures
of dispersion are resistant to them.
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Even though in many cases PCA is reported as sufficient
for visualizing data and finding the grouping patterns, the
method, when applied to the entire database, was much more
successful in catching the significant within-samples variabil-
ity instead of the variability responsible for the differences
between samples. Consequently, the first few PCs carrying
the highest part of variability usually did not address the part
of information associatedwith the discrepancies between sam-
ples as illustrated schematically in Fig. S1 in the Electronic
Supplementary Material (ESM). Thus, instead of applying the
rPCA to the entire database, it was then used for reducing data
dimensionality for pairs of samples D and each of its non-
brother samples available in the database (Xf, with f = 1 to
kD, kD-number of non-brother samples of D in the database) to
the number of components explaining 95% of MAD2. Thanks
to this treatment it was easier to handle the problem with huge
dispersion within and between samples for a pair of samples
than for the entire database.

Second, LDA [43] was applied for locating the direction
that successfully finds the differences between samples D and
Xf coming from different mine sites. The data of samples D,
Xf, and Ewere projected on the developed PCA directions and
then on the LDA direction (t) as shown in Fig. 2. The idea is
that if samples D and E are brother samples, both samples
should behave similar relative to each individual sample Xf

from the reference sample database and not similar if they are
not brother samples.

The similarity of the distributions of projections of E, D,
and Xf samples was studied by computing the Kolmogorov-
Smirnov distance between the distributions for E and D
[KSD(ED)] and between the distributions for E and Xf

[KSD(EXf)] as shown in Fig. 2. The Kolmogorov-Smirnov
distance is given as the maximum distance between two cu-
mulative distribution functions (Fig. 2b and d). In the wol-
framite context the KSD(ED) values are supposed to be low
for brother samples [see KSD(ED) distance between E and D
samples in Fig. 2b], whereas for non-brother samples they

should demonstrate higher values (Fig. 2d). Finally, each set
of samples D, Xf, and E was characterized by the ΔKSD
defined as ΔKSD = ΔKSDEDXf = KSD(ED) – KSD(EXf).

Their expected values are listed in Table 1.
For a single case when the source of sample E is declared as

common with the location of sample D, kD ΔKSD values
(ΔKSDEDX1, ..., ΔKSDEDXkD ) were produced. All these kD
ΔKSD values must be integrally and globally interpreted in the
context of H1 and H2 for commenting whether E and D come
from the same source or not. Unfortunately, incorporating all kD
ΔKSD values at once for producing a single LR value is not
feasible since the LR is computed only for a single value (as in
Fig. 1); hence, each value generates a single LR. Thus, dealing
with a set of kDΔKSD either results in receiving kDLR values or
in one LR value when all kDΔKSD are somehow aggregated in
a single number and subsequently interpreted within the LR
framework.

The latter idea was tackled in two approaches illustrated in
Fig. 3. They are both found in analogy to the conventional prob-
lem of computing LR for a single value. This analogy is put
forward in computing the common areas of:

(a) the distribution ofΔKSD for random selection of brother
samples (distribution considered under H1) and the dis-
tribution of kDΔKSD obtained for the studied set of D, E
and kD samples X (Fig. 3a),

(b) the distribution of ΔKSD for random selection of non-
brother samples (distribution considered under H2) and
the distribution of kD ΔKSD obtained for the studied set
of D, E, and kD samples X (Fig. 3a).

In the first model, referred to as ΔKSD-AR (Fig. 3a), the
ratio of both areas (AR) was computed to indicate which of the
hypotheses is supported. It should exceed 1 when E and D are
brother samples and should remain below 1 for non-brother
samples. Though it may appear that this is an LR

Fig. 1 The idea of using score-based LR models in (a) an ideal situation
when distributions in the numerator and denominator are separate, and (b)
real situation when the distributions partial overlay. The green line

demonstrates the way data should be interpreted in the context of both
distributions in the numerator and denominator considered under hypoth-
eses H1 and H2
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approach, it is not. This is a consequence of the fact that
conventional LRmodels are computed as a ratio of probability
density functions, not the areas below the probability density
curves. Thus the proper LR model (denoted as ΔKSD-AR-
LR; Fig. 3) was developed in which the sets of common areas
ratios received when E and D samples are brothers and when
they are not, are stored to find the distributions under H1 and
H2, respectively. Then for the studied set of E and D samples
and all kD X samples the areas’ ratio is computed and
interpreted in the context of the modeled distributions under
H1 and H2.

The distribution of common areas ratio studied under H1

for numerator and H2 for denominator cannot be assumed

normal, hence kernel density estimation [47] was used for
modeling the underlying distributions. For ΔKSD-AR-LR
model the equation reads as follows [9, 11]:

LR ¼ f ARjAR values under H1ð Þ
f ARjAR values under H2ð Þ

¼
h12c21
� �‐1=2 1

m1
∑
i¼1

m1

exp ‐
1

2
y‐x1ið Þ2 h12c21

� �‐1� �

h22c22
� �‐1=2 1

m2
∑
i¼1

m2

exp ‐
1

2
y‐x2ið Þ2 h22c22

� �‐1� � ð3Þ

Fig. 2 Illustration of the distributions of E, D, and Xf samples on the LDA direction (t) when (a) D and E are brother samples, and (c) D and E are not
brother samples. The corresponding Kolmogorov-Smirnov distances (KSD) are given in (b) and (d), for details see text

3078 Martyna A. et al.



Where: y - the common areas ratio (AR) under assess-
ment for E, D, and kD X samples, c21, c

2
2 - variances of the

m1 and m2 common areas ratios (iterated x1i, x2i) consid-
ered under H1 for numerator and H2 for denominator, re-
spectively, h1, h2 - smoothing parameter for a single vari-

able (p =1) hg ¼ hopt ¼ 4
mg 2pþ1ð Þ

� � 1
pþ4
, (g=1 – for numerator,

2 – for denominator) [47].

Measure of performance

Validation scheme

Separate sets of training data for building up the rPCA space,
finding LDA direction (t), and for modeling theΔKSD distri-
butions were implied. It is worth emphasizing that the training
sets are composed of randomly selected grains from each
sample. Thus the dispersion of the data subset after the ran-
dom selection is kept at the same level as observed for the
entire database.

The process of model construction and testing its perfor-
mance is repeated for several training and test sets. The pro-
cedure is applied for averaging the results and making the
conclusions resistant and robust towards the cases when the
selection of the grains is not representative enough and de-
livers extremely high or low rates of false responses.

For ΔKSD-AR model, two datasets are required:

(a) set A consisting of 2b pairs of D and E samples (b when
E and D are brothers and b when they are not), each pair
with kD Xf samples (Table 1), for computing 2b∑kD
ΔKSD values. These ΔKSD values are used for model-
ing the distributions when E and D are brothers and when
they are not (black distributions in Fig. 3a, each com-
posed of b∑kD ΔKSD values);

(b) set B consisting of 2Z pairs of D and E samples (Z when
E and D are brothers and Z when they are not), each pair
with kD Xf samples (Table 1), for computing 2Z∑kD
ΔKSD values; 2Z sets of kD ΔKSD values each for 2Z
pairs of E and D samples will be used for computing 2Z
common areas ratios (AR) with distributions of set A
when E and D are brothers and when they are not. The
distribution of kD ΔKSD values for one of 2Z pairs of E
and D samples is shown in green in Fig. 3a. Then the
areas taken for computing ratios are illustrated in orange
in Fig. 3a. These AR values are used for estimating the
levels of false positive answers (when AR should be
lower than unity but it demonstrates values above 1)
and false negative rates (when AR should exceed unity
but it is does not reach 1).

For ΔKSD-AR-LR sets A and B are used for producing Z
values of area ratios for brother samples and Z values for non-
brother samples. They are both regarded, respectively, for the
numerator and denominator of the LRmodels according to the
illustration in Fig. 3b. Then there are two more datasets re-
quired for generating Z values of area ratios for brother sam-
ples and Z values for non-brother samples for computing LR
and testing its performance.

(c) set C, which is constructed likewise as in set A. These
ΔKSD values are used for modeling the distributions
when E and D are brothers and when they are not (black
distributions in Fig. 3a, each composed of b∑kD ΔKSD
values);

(d) set D consisting of 2Z pairs of D and E samples (Z when
E and D are brothers and Z when they are not), each pair
with kD Xf samples (Table 1), for computing 2Z∑kD
ΔKSD values. 2Z sets of kD ΔKSD values each for 2Z
pairs of E and D samples will be used for computing 2Z
common areas ratios (AR) with distributions of set C

Table 1 Possible configurations of brother samples (B) and non-brother samples (nB) and the Kolmogorov-Smirnov distance (KSD) values they
generate

Case D and Xf
a D and E a Xf and E a KSD(ED)b KSD(EXf)

b ΔKSD b Considered under

I B B nB impossible -

II B nB B impossible -

III nB B B impossible -

IV B B B ↓ ↓ ~0 -

V nB nB nB ↑ ↑ ~0 Hd

VI nB nB B ↑ ↓ >0 Hd

VII nB B nB ↓ ↑ <0 Hp

VIII B nB nB ↑ ↑ ~0 -

a D – sample from the declared mine site, E – sample with questioned origins, Xf – any other sample from the reference database;
b KSD(ED), KSD(EXf),ΔKSD –Kolmogorov-Smirnov distances and their difference (for explanations see BLRmodels construction protocol^ section)
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when E and D are brothers and when they are not. The
AR value for one of 2Z pairs of E and D samples is
shown as a green line in Fig. 3b. The ARs are interpreted
under H1 and H2 [distributions generated in (b)] to give
LR. These LR values are used for estimating the levels of
false positive answers (when LR should be lower than
unity but it demonstrates values above 1), false negative
rates (when LR should exceed unity but it is does not
reach 1) and producing empirical cross entropy curves.

ForΔKSD-AR-LR there must be 2b+2Z pairs of brother
D and E samples and 2b+2Z non-brother D and E samples.
There is a limit of 210 pairs of brother D and E samples,
thus b was arbitrarily set as 30, 50, 65, and Z as 40, so that
it exploits the database quite efficiently (2∙65 + 2∙40 =
210). Test and training sets were developed s = 10 times
for averaging results. For ΔKSD-AR model there must be
b + Z pairs of brother D and E samples and b + Z non-
brother D and E samples. The limit of 210 brother samples

Fig. 3 The scheme presenting the idea of (a) ΔKSD-AR and (b) ΔKSD-AR-LR models.ΔKSD-AR-LR model bases on computing the common areas
ratios as in (a), and incorporating them in the LR framework as in (b)
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still holds, thus b was arbitrarily set as 60, 120, 170, and Z
as 40 (170 + 40 = 210).

False positive and false negative answers

The performance of the proposed models was initially
evaluated by estimating the levels of false positive re-
sponses for a set of Z non-brother samples and false
negative responses for a set of Z brother samples, ran-
domly selected in B set for ΔKSD-AR model and D set
for ΔKSD-AR-LR model. False positive answers are
observed when AR > 1 or LR > 1 for samples coming
from different sources, which should yield AR < 1 or
LR < 1. False negative answers are received when AR
< 1 or LR < 1 for samples sharing the same origins,
which should yield AR > 1 or LR > 1.

Empirical cross entropy approach

Nonetheless, validation of LR models solely through the
prism of false response rates is an incomplete measure
of performance, as it evaluates only the qualitative as-
pect of model functioning. It should be highlighted that
the ability to discriminate between samples, however
important, is not the only required characteristic of LR
values set. Besides supporting the correct hypothesis, it
is desired that the strength of this support is as high as
possible for the particular proposition (i.e., LR >> 1
when H1 is correct and LR << 1 when H2 is correct).
It is also crucial that the LR value provides weak sup-
port (LR value close to one) in case of rejecting the
correct proposition. Only if both requirements are met
it can be stated that the model effectively performs its
function in the light of Bayesian theorem (Equation 4).
Even if the model happens to support the incorrect hy-
pothesis, it would deceive the representatives of jus-
tice only to a minor extent.

Pr H1ð Þ
Pr H2ð Þ ⋅

Pr EjH1ð Þ
Pr EjH2ð Þ ¼

Pr H1jEð Þ
Pr H2jEð Þ ð4Þ

Empirical cross entropy (ECE) [11, 48, 49] is a procedure
that allows the assessment of the qualitative and the quantita-
tive aspect (strength of the support) of the model performance.

ECE is based on the idea of rewarding and penalizing the
obtained LR values. The penalty is defined by logarithmic
strictly proper scoring rules (if H1 is true: −log2(Pr(H1| E)),
if H2 is true: −log2(Pr(H2| E))) and grows with stronger sup-
port for the incorrect hypothesis.

The ECE is a mean penalty weighted by the relevant prior
probabilities Pr(H1) and Pr(H2):

ECE ¼ Pr H1ð Þ
M 1

∑
i∈1

log2 1þ Pr H2ð Þ
LRiPr H1ð Þ

� �

þ Pr H2ð Þ
M 2

∑
j∈2

log2 1þ LRjPr H1ð Þ
Pr H2ð Þ

� �
ð5Þ

In general, the knowledge about a priori probabilities
is not available because it can be acquired from a num-
ber of sources. For example, any specific knowledge
about the person or company claiming the samples’ au-
thenticity may serve as prior information. If the fact
finder lacks the knowledge of the prior probabilities,
or for the sake of objectivity, ECE for a set of all
possible a priori probability quotients (prior odds) can
be calculated and plotted. The ECE plot (Fig. 4) is
composed of three components [49]:

(a) Observed curve (solid red) – represents the ECE values
calculated in accordance with equation (5) for LR values
subjected to the evaluation.

(b) Calibrated curve (dashed blue) – corresponds to the ECE
values calculated for the LR values which have been
transformed with the use of a pool adjacent violators
(PAV) algorithm [48, 49]. The calibrated curve serves
as an indicator of the LR values with the best perfor-
mance of all LR sets that offer the same discriminating
power.

(c) Null or reference curve (dotted black) – refers to the
situation in which no evidential value is assigned to the
data, i.e., LR = 1. Always being the same, the null curve
should be treated as a reference.

The performance of the chosen LR method can be
evaluated through ECE plot analysis, where the observed
curve can be assessed in terms of its position with respect
to the calibrated and null curves. Figure 4 presents two
ECE plots for LR models with satisfactory (Fig. 4a) and
poor (Fig. 4b) performances. The arrows indicate how
much information is unexplained by eachmodel. In other
words, they demonstrate the uncertainty about the correct
hypothesis that remains when using particular LRmodel.
For the satisfactory LR model the observed curve lies in
between calibrated and null lines and points out some
reduction of information loss. Such a reduction of infor-
mation loss resulting from the employed LR method can
be represented by the ECE value from the observed curve
for the point of log10Odds(H1) = 0, which is referred to as

Cexp
llr value. Likewise, the value denoted as Cmin

llr refers to
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the same point, but with respect to the calibrated curve.
For the example shown in Fig. 4a, there is ca. 23% of
information that is still unexplained by the model; hence,
the reduction of information loss reaches 100% – 23% =
77%. For the LR model with poor performance, the
observed curve exceeds the null curve, indicating that
using such a model for data evaluation may end up in
delivering more misleading information than when as-
suming that the data do not support any of the hypotheses
(LR = 1 as in the null method illustrated by dotted black
curve).

ECE approach was applied for controlling the performance
of the LR-based model, i.e.,ΔKSD-AR-LR. The ΔKSD-AR
model is accomplished with the area ratio only, which just
indicates which hypothesis is supported, but does not give
the strength of the support towards the hypotheses.

Software

The scripts were prepared in R programming language [50]
using pcaPP and MASS packages.

Results and discussion

Descriptive statistics

The data matrix consists of concentrations of 46 elements
(Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Sr,
Y, Zr, Nb, Mo, Ag, Cd, In, Sn, Sb, Ba, La, Ce, Pr, Nd, Sm, Eu,
Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Tl, Pb, Bi, Th, and U)

in 5327 wolframite grains analyzed by LA-ICP-MS. In LA-
ICP-MS, limits of detection (LOD) are obtained individually
for each element in each grain and depend on the day to day
performance of the instrument. For each element the results
below LOD have been replaced by the median value of all
element-specific LODs.

The element concentration data of single samples are not
normally distributed according to the Shapiro-Wilk test (Fig.
S2 in the ESM). Logarithmic transformation (ESM Fig. S2b)
brings them a little bit closer to normality, but it still does not
improve the situation significantly. A summary statistics of
element concentrations in wolframite grains are given in
Gäbler et al. 2017 [8]. Table 2 gives examples of distributions
of element concentrations from different mine sites to illus-
trate the geochemical basis for sample discrimination.
Figure 5a shows an example of the indium (log-data) distribu-
tion for four samples (two pairs of brother samples) and for the
entire database. The plot clearly demonstrates that in spite of
the similarity between brother samples, the significant data
dispersion makes it difficult to differentiate between non-
brother samples. This is typically observed when only single
element content is studied. The differences between samples
emerge only when more variables are considered at once.

Various sources of dispersion of the log-data were studied
using the robust measures, i.e., median and MAD2 (instead of
mean and variance):

(a) uMAD2 - the within-samples MAD2 computed as a me-
dian of the MAD2 within each of the samples,

(b) uMADB
2 - the MAD2 within brother samples computed

as a median of the MAD2 estimated within the sets com-
bined of brother samples,

Fig. 4 Empirical cross entropy (ECE) plots for LR models with (a) satisfactory, and (b) poor performance (detailed description in the text)
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(c) cMADnB
2 - theMAD2 between non-brother samples (dif-

ferent mine sites) computed as the MAD2 of the medians
representing each mine site,

(d) cMADB
2 - theMAD2 between brother samples computed

as the median of the MAD2 of the medians representing
each sample within each of the brother sample sets.

There were a fewmajor observations regarding the estimat-
ed dispersion sources shown in Fig. 5b:

(i) The dispersion of data between brother samples,
cMADB

2, is much lower than the dispersion between
non-brother samples, cMADnB

2. This result is advanta-
geous from the perspective of LR models, which easily
differentiate non-brother samples and detect brother sam-
ples, when the similarity of the data observed for brother
samples is greater than the similarity of the data for non-
brother samples.

(ii) The within-samples dispersion, uMAD2, and dispersion
within brother samples, uMADB

2, are comparable, but
much greater than the variability between brother sam-
ples, cMADB

2 (which is hardly visible in the plot in Fig.
5b). This proves that the collective variability in the data
for all of the brother samples is well reflected in the data
recorded for a single sample. This is a promising state-
ment, which confirms that despite brother samples being
collected as separate samples from a single mine site,

their data variability is still kept on the level observed
for the grains collected as one sample. The latter obser-
vation is quite surprising and clearly points out huge
variability of the data within each sample. Both uMAD2

and uMADB
2 are computed using all the measurements

(i.e., grains) recorded for each sample. Contrary to that,
cMADB

2 is estimated from the medians representing the
measurements recorded for each sample. Thus the con-
tribution of the data dispersion within each sample is not
accounted for in cMADB

2. This is the reason for observ-
ing cMADB

2 lower than uMAD2 and uMADB
2.

(iii) The desired relation, i.e., lower dispersion of data between
brother samples than between non-brother samples, is on-
ly observed when the samples are described by their me-
dians, summarizing all measurements recorded for sam-
ples grains. Then the significant dispersion of these mea-
surements is not accounted for and the non-brother sam-
ples become less similar than the brother samples.

Even though working with medians sounds like a solution
to the problem, generalizing a sample’s data to a single num-
ber may be regarded as a loss of information. For this reason,
the proposed LR models are constructed for pairs of samples
instead of accounting for the entire database. Then the huge
dispersion within each sample is easily managed using e.g.,
LDA. Another issue concerns lack of normality of the data
within each sample and their multidimensionality, which

Table 2 Examples of distributions of selected element concentrations in wolframite ore concentrates from different mine sites. Capital letters represent
different mine sites. A1 and A2 represent two ore concentrates independently taken from the same mine site

Element Zn [mg kg-1] As [mg kg-1] Lu [mg kg-1] Pb [mg kg-1]

Percentile 10th 50th 90th 10th 50th 90th 10th 50th 90th 10th 50th 90th

Rwanda

A1 11 22 311 8.7 28.0 57.6 2.0 4.9 8.2 50.4 72.7 122.0

A2 7 13 151 14.1 35.4 94.1 0.9 5.2 9.4 44.5 70.5 110.0

B 16 25 109 153.1 546.6 2895.8 1.8 4.4 10.3 51.1 78.3 119.3

C 12 29 216 20.6 95.5 840.4 2.7 3.8 5.6 54.1 116.1 214.9

D 45 51 63 <0.3 <0.3 0.5 0.0 0.1 0.2 <0.2 0.9 2.9

DR Congoa

E 67 113 156 <0.3 <0.3 <0.3 0.2 9.4 19.2 <0.2 <0.2 0.9

F 138 159 213 <0.3 <0.3 1.1 0.2 0.3 0.7 0.5 2.8 13.9

G 96 167 219 <0.3 <0.3 <0.8 3.5 8.3 18.8 <0.2 <0.2 <0.2

H 142 226 1375 0.3 0.5 1.9 0.3 0.4 0.9 3.0 6.8 20.0

Australia

I 47 73 135 <0.3 12.2 162.6 68.9 186.2 423.6 0.4 20.6 291.4

K 124 137 159 <0.3 <0.3 <0.3 0.2 0.3 0.9 <0.2 0.5 1.3

a Democratic Republic of the Congo
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should be sorted out to enable LDA. To handle these prob-
lems, rPCAwas applied on the log-data to reduce data dimen-
sionality by studying all variables at once. LDAwas then used
to find the direction that captures the differences between

samples and is supposed to demonstrate greater similarity be-
tween brother samples than between non-brother samples.
Finally the similarity between samples was expressed by
Kolmogorov-Smirnov distances.

G
a

A
s Y

M
o

A
g

C
d In S
n

S
b

B
a La C
e P
r

N
d

S
m E
u

G
d

T
b

D
y

H
o E
r

T
m Y
b Lu H
f T
l

B
i U

M
g

C
a

S
c T
i V C
r

M
n

F
e

C
o N
i

C
u

Z
n S
r

Z
r

N
b

Ta T
h

P
b

uMADB
2

uMAD2 cMADnB
2 cMADB

2

0

1

2

3

4

−0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

data

D
en

si
ty

a

b

Fig. 5 (a) The distribution of indium content (log-data) for the entire
database (bolded red line) and for two pairs of brother samples (black
and gray lines). (b) MAD2 computed for each element data (description

can be found in the text). (c)MADB2 (the bottom bar) is so low that it is
practically invisible in the plot
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Models performance

Figure 6 demonstrates the levels of false model responses with
respect to the number of pairs of E and D samples modeling
the distributions for AR or LR calculations, i.e., b pairs in sets
A and C. Each boxplot is drawn from the outcomes generated
in all s = 10 sets for averaging the results. It must be stressed
that it becomes quite difficult to clearly indicate best behaving
model. All models seem to yield acceptable outcomes with the
levels of false positive and false negative responses usually
oscillating up to 15%. The levels of misleading outcomes
seem not to be affected by varying number of pairs of E and
D samples modeling the distributions for AR or LR calcula-
tions (see labels under the boxplots in Fig. 6). This observa-
tion leads to the conclusions that the models are stable and
deliver invariant results with respect to the number of samples
used for modeling the distributions for AR or LR calculations.

It enables receiving acceptable and reliable outcomes even
using the small set for modeling the distributions under H1

and H2, which substantially saves computational time.
Figure 7 illustrates the empirical cross entropy (ECE) plots

for the ΔKSD-AR-LR model accomplished with LR compu-
tations in regard to the number of pairs of E and D samples
modeling the distributions for LR calculations. The diagrams
portray the empirical cross entropy plots in a modified way in
comparison to traditional ECE curves as introduced above.
The experimental and calibrated curves are replaced by the
sets of boxplots accounting for all ECE values calculated in
s = 10 sets. Thus, for each quotient of the prior odds the
boxplot is drawn from all s = 10 sets. ECE plots clearly indi-
cate that ΔKSD-AR-LR models explain a large part of the
information in the data; however, they sometimes introduce
misleading information. There is no remarkable improvement
of the ECE plots appearance with growing number of pairs of
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Fig. 6 The levels of false positive
(FP) and false negative (FN)
model responses observed in s =
10 sets with respect to the number
of pairs of E and D samples
modeling the distributions for AR
or LR calculations in (a) ΔKSD-
AR, and (b) ΔKSD-AR-LR
models
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Fig. 7 The ECE plots observed in
s = 10 iterations for the ΔKSD-
AR-LR model in regard to the
number of pairs of D and E
samples [(a) 30 pairs, (b) 50 pairs,
(c) 65 pairs] modeling the
distributions for LR calculations
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E and D samples taken for modeling the distributions for LR
calculations.

The undesirable shape of the ECE curves, which go beyond
the neutral (null) curve for some ranges of the logarithm of the
prior odds, i.e., log10Odds(H1), was studied in-depth in order
to determine whether this model truly yields poor perfor-
mance, or this statement is just exaggerated as it may be
caused by only a single sample delivering strong misleading
support towards the incorrect hypothesis. It appears that in
most cases the deteriorated curvature of the ECE plots is the
consequence of generating only few LR values that support
the incorrect hypothesis (usually H2) much stronger than the
remaining values support the correct hypothesis (usually H1).
This drawback of the ECE plots forces the researcher to be
careful when the performance of the models assessed by ECE
approach appears to be poor.

Observable differences between the experimental (known
also as observed) and calibrated curves point out that there still
exist some opportunities for developing the proposed method-
ology for receiving more reliable outcomes.

Figure 8 shows the distribution of log10LR values received
for brothers (left) and non-brothers (right) for all developed
three variants of the model ΔKSD-AR-LR (serving as an
example) involving 30, 50, 65 pairs of E and D samples gen-
erating the distributions. Each distribution refers to the 40 LR

values between brothers or non-brothers received in all s = 10
sets, which is in total 400 LR values. The plots confirm pre-
vious observations that the models are insensitive to the vary-
ing number of pairs of E and D samples modeling the distri-
butions. This favorable remark leads to the conclusion that the
developed models are stable and are not subject to parameters
fluctuations easily.

Casework example

The performance of the proposed ΔKSD-AR and ΔKSD-
AR-LR models is shown for two casework examples:

(i) Five samples from the wolframite trading chain with re-
liable source documents (origin M) were used as evi-
dence samples E. The database comprises nine reference
samples from mine site M which were regarded as D
samples. The arising question was whether E samples
really came from the declared source (mine site M). Put
in other words, whether E and D were brother samples
(H1) or not (H2). To answer this query, there were 9∙5 = 45
pairs of E and D samples tested. Since they are labeled as
brother samples (H1), they are supposed to deliver LR or
AR greater than 1.

Fig. 8 The distribution of log10LR values observed in model ΔKSD-AR-LR in regard to varying number of samples (30, 60, 75 marked in different
colors) modeling the distributions under H1 and H2. Each distribution refers to all s = 10 sets, i.e., 400 LR values
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(ii) For comparison, with the results obtained from (i) 45
non-brother pairs of samples coming from two different
mine sites were selected by chance from the database.
One sample of each pair was treated as sample E, the
other one as sample D. LR or AR below 1 (H2) were
expected for these comparisons.

Both developed models are applied on the casework
data. Unfortunately, they cannot be directly compared

with regard to the strength of the support towards the
hypotheses. This is a consequence of the fact that LR
value is not obtained by the ΔKSD-AR model, contrary
to the ΔKSD-AR-LR model.

The results are illustrated in the form of boxplots given
in Fig. 9 showing the sets of log10LR or log10AR values
for each pair of E and D samples generated in 10 itera-
tions for averaging the outcomes. The AR or LR values
for individual calculations of the same pair of samples E

Fig. 9 (a) log10AR, and (b) log10LR values observed for an example
casework in model ΔKSD-AR and ΔKSD-AR-LR, respectively. Each
boxplot (blue for brothers and red for non-brothers) refers to 10 outcomes

computed for averaging the results. Green horizontal line represents the
threshold for decision making (log10AR or log10LR = 0)

3088 Martyna A. et al.



and D cannot be expected to be identical. This is because
the brother and non-brother pairs which are selected from
the database to construct the distributions typical for
brothers and non-brother sample pairs vary for each
calculation.

The area ratios (AR) obtained for the sample pairs in case
(i) are all above 1 (or 0 on the log scale) and oscillate around 2.
The ΔKSD-AR-LR model supports the H1 quite strongly,
though there are a few false negative responses. They, how-
ever, support the incorrect hypothesis only moderately and are
therefore rather incidental.

For non-brother pairs in case (ii) hypothesis H2 is support-
ed for the majority of the non-brother pairs, but there are a few
outcomes observed that misleadingly suggest that the samples
originate from the same mine site, although they truly come
from different sources. However, it is observable as well that
these results for the ΔKSD-AR-LR model do not support the
incorrect hypothesis H1 strongly and that the support is com-
parable to the support for the incorrect hypothesis H2 gener-
ated for brother samples.

This example clearly illustrates that the models place an
emphasis on minimizing the levels of false negative an-
swers considered when the samples are brothers. This
seems quite important for real casework, where accusing
a person or company of declaring the wrong origin of a
wolframite delivery in a situation when the declared origin
is actually true, should always be avoided. Conversely, the
reverse situation, when the fact finder is deceived about the
origins of wolframites, has no legal consequences and sim-
ply allows the deception to go undetected in that instance.
For this reason, the levels of false negative rates must be
strictly controlled while it is acceptable for the levels of
false positive answers to be slightly greater.

Conclusions

The research presented herein addresses the issue of verifying
the authenticity of the declared origins of wolframite samples
based on their elemental composition determined by LA-ICP-
MS. In the case of a database with multivariate data, huge
dispersion of the samples, and clearly not-normal distribution
of the data, the evaluation of the evidential value can be sup-
ported by using hybrid likelihood ratio models that take the
best from the chemometric tools and smartly apply the results
within the LR framework. The robust PCA and LDA used in
this study are applied to efficiently reduce data dimensionality
and extract the features that maximally differentiate between
samples coming from different mine sites (non-brother sam-
ples). A score-based LR model that incorporated similarity
metrics like the Kolmogorov-Smirnov distance (KSD) into
the likelihood ratio approach was developed to conclude
whether a sample in question with a declared origin and a

reference sample (truly coming from the declared location)
are brother samples or not.

Two models called ΔKSD-AR and ΔKSD-AR-LR were
proposed. TheΔKSD-ARmodel used the ratio of the common
areas of distributions of similarity metrics found for the sample
in question (E) compared with its reference sample (D) and
typical brother or non-brother samples, respectively. The
ΔKSD-AR-LR model extended this model by coupling it with
the likelihood ratio approach. Then it was possible not only to
conclude which hypothesis was supported (as in ΔKSD-AR
model), but also to express the strength of such support.

Both models deliver acceptable results with false posi-
tive and false negative rates oscillating around 10%–15%.
ΔKSD-AR-LR model significantly reduces information
loss expressed by the empirical cross entropy curves. The
only drawback of the ΔKSD-AR model relates to its ac-
complishment with the ratio, which cannot be treated di-
rectly as LR. The advantage of theΔKSD-AR-LR model is
the fact that its performance can be objectively assessed by
the ECE approach stressing the magnitude of the support
towards each of the hypotheses. In a casework example,
both models were tested successfully, confirming the
brother nature of reliable samples from the trading chain
relative to their respective reference samples.

The evaluation of the models performance indicates
that the levels of false negative rates are minimized in
regard to the false positive rates. This allows for avoiding
the situation in which true declared origins of samples are
regarded as spurious and the declaring person or company
is recognized as a liar. This remains in contrast to the
typical forensic issues where an emphasis is put on low-
ering the levels of false positive rates, leading to accusa-
tion of an innocent person or company. This is because in
the wolframites case innocence means finding two sam-
ples supporting the H1 (stating that they come from the
same source), whilst in the forensic science innocence
involves finding e.g., two pieces of evidence as coming
from different sources, hence in support for the H2.

The proposed models have been developed for the con-
flict mineral wolframite. They also work for other min-
erals that are traded as ore concentrates like coltan or
cassiterite because, just like wolframite, those minerals
are not chemically modified at the mine site and keep
their chemical signature during trade down to the
smelter/metal refinery. The application of the proposed
models on minerals like heterogenite or gold, which are
often chemically modified at the mine site, seems to be
more difficult as the chemical modification might change
the characteristic geochemical signature of the mined ore.
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