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Abstract
Two complementary methodologies for extracting useful insights into electronic structure and bonding from contemporary 
wavefunctions are compared. The first of these, known as the analysis of domain-averaged Fermi holes (DAFH), mostly 
provides visually appealing descriptions of the role and the extent of electron sharing in chemical bonding. The second one, 
known as the fragment, atom, localized, delocalized and interatomic (FALDI) charge density decomposition scheme, uses 
the partitioning of certain localization and delocalization indices to focus on highly visual contributions associated with 
individual domains and with pairs of domains, respectively. Four variants of a FALDI-like approach are investigated here in 
some detail, mostly to establish which of them are the most reliable and the most informative. In addition to ‘full’ calculations 
that use the correlated pair density, the consequences for the DAFH and FALDI-like procedures of using instead a popular 
one-electron approximation are explored. Additionally, the geometry dependence of the degree of acceptability of the errors 
that this introduces for delocalization indices is assessed for different formal bond multiplicities. The familiar molecular 
test systems employed for these various linked investigations are the breaking of the bonds in H2 and in N2, as well as the 
nature of the bonding in B2H6, as a simple example of multicenter bonding. One of the key outcomes of this study is a clear 
understanding of how DAFH analysis and a particular variant of FALDI-like analysis could be most profitably deployed to 
extract complementary insights into more complex and/or controversial bonding situations.

Keywords  Fragment, atom, localized, delocalized and interatomic (FALDI) charge density decomposition · Domain-
averaged Fermi hole (DAFH) analysis · Shared-electron distribution index (SEDI) · One-electron approximation · Pair 
density

1  Introduction

Advances in understanding electronic structure and bonding 
continue to rely not only upon the development and applica-
tion of computational strategies for carrying out accurate 
calculations, but also upon the development and applica-
tion of reliable techniques for extracting useful insights from 
contemporary calculations. Some 6 decades ago, Charles 
Coulson suggested that a key role of quantum chemistry is 
to understand concepts and to show what are the essential 
features of chemical behavior [1] and the motto of Rich-
ard Hamming’s textbook on numerical methods is that the 
purpose of computing is insight, not numbers [2]. Eugene 
Wigner has often been quoted as saying: ‘It is nice to know 
that the computer understands the problem. But I would like 
to understand it too.’ Somewhat more recently, Frank Neese 
and co-workers have reminded all of us that nowadays we 
need both the insights and the numbers [3].
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Unsurprisingly an impressive array of techniques has 
been developed for extracting useful chemical insights 
from contemporary calculations, even though some of the 
most useful concepts in electronic structure and bonding do 
tend to be difficult to pin down with unambiguous precise 
definitions. Examples of such broad families of approaches 
include various energy partitioning schemes, those which 
rely on partitioning densities and/or density matrices, con-
ceptual density functional theory and procedures for extract-
ing descriptions of the valence bond type, just to mention 
but a few. Often, it turns out that combinations of techniques 
give the most useful and reliable insights, with one such 
example being EDA–NOCV [4, 5] which combines a par-
ticular form of energy decomposition analysis with highly 
visual natural orbitals for chemical valence. In the present 
work, we focus on two methodologies that are linked to the 
partitioning of density matrices, with one of the aims being 
to find a combination in which they provide complementary 
useful information.

The two methodologies considered here have both proved 
to be particularly useful for visualizing the actual bonding 
situation in molecular systems. One of them is domain-aver-
aged Fermi hole (DAFH) analysis [6–14] which is especially 
useful for the manner in which it depicts the role and the 
extent of electron sharing in bonding situations. The other 
is linked to the original fragment, atom, localized, delocal-
ized and interatomic (FALDI) charge density decomposi-
tion scheme [15–19]. The FALDI scheme provides, amongst 
other things, information about the partitioning of shared 
electrons into the contributions of individual bonded atoms.

In essence, DAFH analysis involves integration over a 
chosen domain of one of the electron coordinates in the 
exchange–correlation density, �xc

(

�1, �2

)

 , so as to generate 
a one-electron quantity that can loosely be labeled a ‘hole.’ 
Although the eigenvectors and associated eigenvalues of a 
matrix representation of that ‘hole’ could in principle be 
interpreted directly as domain natural orbitals, they are more 
usually transformed using an isopycnic (meaning ‘same den-
sity’) localization procedure [20]. Examination of the forms 
of the resulting (nonorthogonal) one-electron DAFH func-
tions and their corresponding occupation numbers then pro-
vides highly visual interpretations of chemical bonding. In 
general, it proves to be particularly useful to perform DAFH 
analysis for ‘holes’ that are averaged over (combinations of) 
individual quantum theory of atoms in molecules (QTAIM) 
[21] domains.

Except for the special case of closed-shell restricted 
Hartree–Fock wavefunctions, the actual construction of 
�xc

(

�1, �2

)

 does of course require use of the pair density, 
which is not always readily available. Fortunately, it has 
been shown that the significant simplifications that arise 
from the use instead of a convenient one-electron approxi-
mation do not lead to significant changes in the forms of 

the dominant DAFH functions [22], but there are modest 
changes to the associated occupation numbers.

Integration of the ‘hole’ over the same or a different 
domain generates quantities known as localization and 
delocalization indices [23], respectively. Bader argued that 
the information provided by these delocalization indices 
is independent of any association with chemical bonding 
between the atoms involved and, as such, the delocaliza-
tion index should not be identified as a bond order [23]. 
Furthermore, it was argued that the delocalization index 
does not determine the number of Lewis-bonded pairs 
[23], except in the special case of equally shared elec-
tron pairs. Nonetheless, such delocalization indices have 
been widely used as bond orders or as surrogates for bond 
orders in a wide variety of applications. In particular, it 
has been strongly suggested relatively recently in a study 
of nearly 200 inorganic and organic molecules that such 
delocalization measures in real space could be used to 
revitalize the whole concept of bond order [24].

Whether or not it should actually be considered a bond 
order, the delocalization index is clearly an example of an 
electron sharing index [25], quantifying the extent of the 
sharing of the electron distribution between two QTAIM 
domains. Accordingly, we have chosen to use instead 
the term shared-electron distribution index (SEDI) [26], 
thereby also avoiding any possible confusion with alterna-
tive delocalization measures or electron sharing indices. 
Indeed, purely for convenience, we will refer to the cor-
responding localization indices as diagonal SEDI values, 
whereas the off-diagonal ones are of course delocalization 
indices. It proves straightforward to resolve such values 
of SEDI into contributions that involve individual DAFH 
functions [27] (see also [12, 13]).

The original FALDI scheme [15–19] quantifies pseudo-
second-order contributions arising from electrons within 
QTAIM domains. One of its outcomes is in essence a 
means of visualizing SEDI values (albeit calculated within 
the usual one-electron approximation) in terms of sets of 
one-electron functions and their associated eigenvalues. 
We note that it has been found that whereas the significant 
simplifications provided by the one-electron approxima-
tion introduce errors in off-diagonal SEDI values that are 
less than 5% for many bonds, the corresponding errors for 
high bond multiplicities, such as the formal triple bonds 
in N2 and HCN, can exceed 10% [24]. Provided that it is 
readily available, it would of course be straightforward to 
avoid the one-electron approximation that is implicit in the 
original formulations of FALDI [15–19] by using instead 
the actual pair density; we could also choose to localize 
the resulting one-electron functions by means of an isop-
ycnic transformation [20], exactly as in DAFH analysis. 
The variants of FALDI considered here have been labeled 
FALDI-like, to distinguish them from the original, but it is 



Theoretical Chemistry Accounts         (2020) 139:179 	

1 3

Page 3 of 14    179 

our expectation that any lessons learnt here can be carried 
back to the original formulation.

The main purpose of the present work is to try to provide 
answers to a series of interrelated questions associated with 
DAFH analysis, the FALDI-like approach and SEDI values:

•	 For the different variants of the FALDI-like approach, as 
explained later, which are the most useful?

•	 How similar/different are the functions generated by the 
DAFH and FALDI-like approaches for a particular mol-
ecule at a given level of theory and how similar/different 
are the corresponding eigenvalues?

•	 Is there a combination of the DAFH and FALDI-like 
approaches in which they provide complementary useful 
information?

•	 Can the FALDI-like approach give a more compact (or 
more ‘efficient’) expansion of SEDI values than does 
DAFH analysis?

•	 Given the extent to which use of the usual one-electron 
approximation has been shown to affect SEDI values [24], 
would its use in the DAFH and FALDI-like approaches 
affect also the relative importance of the different functions 
in the expansions of SEDI values?

•	 Do the answers to any of the above questions depend on the 
formal bond multiplicity and do any of the answers change 
for a given system when nuclear separations are increased/
decreased?

Along the way, we also examine for representative systems the 
extent to which the accuracy of the one-electron approximation 
for calculating SEDI values varies with nuclear separation.

2 � Theoretical and computational details

A convenient starting point for introducing DAFH analysis is 
to define the ‘hole’ gΩ for a particular domain Ω as follows:

(1)

gΩ
(

r1, r
�

1

)

= �
r2 = r

�

2

Ω

�xc
(

r1, r
�

1
;r2, r

�

2

)

dr2

= �(1)
(

r1, r
�

1

)

�
r2 = r

�

2

Ω

�(1)
(

r2, r
�

2

)

dr2

− 2 × �
r2 = r

�

2

Ω

�(2)
(

r1, r
�

1
;r2, r

�

2

)

dr2

≡ ∑

I

∑

J

�I

(

r1

)

GΩ(I, J)�J

(

r
�

1

)

where ρ(1) and ρ(2) are spinless one- and two-electron densi-
ties and the �I are (real) orthonormal natural orbitals with 
occupation numbers �I . It is straightforward to construct 
this matrix representation �Ω of the ‘hole’ gΩ by combin-
ing elements of the (spinless) one- and two-electron density 
matrices, expressed in this natural orbital basis, with so-
called domain-condensed overlap integrals:

A convenient one-electron approximation that can be 
traced back to work by Müller [28], as well as to certain 
bond orders introduced by Fulton [29], has been redis-
covered many times and continues to be used for various 
purposes, especially when the two-electron density is not 
readily available. This one-electron approximation, which 
is exact in the special case of closed-shell restricted Har-
tree–Fock wavefunctions, effectively reduces the expres-
sion for GΩ(I, J) to 

√

�I�JSΩ(I, J).
Whether we do the full calculation using the pair den-

sity or we use instead the much simpler form based on the 
one-electron approximation mentioned above, the eigen-
vectors and eigenvalues of �Ω are transformed using an 
implementation of Cioslowski’s isopycnic localization 
procedure [20], resulting for the chosen domain Ω in a set 
of (real) DAFH functions �iΩ with occupation numbers 
niΩ . In effect, the so-called hole gΩ for domain Ω has been 
re-expressed in the following simple form

where the diΩI is the expansion coefficient of the DAFH 
functions �iΩ in the basis of the natural orbitals �I:

It is the inspection of visual depictions of the DAFH func-
tions �iΩ for various domains in the molecule, alongside 
a consideration of the corresponding occupation numbers 
niΩ , which provides insights into the chemical bonding, 
including direct links to familiar chemical concepts such as 
bonds, lone pairs and so on. The DAFH analysis detects any 
electron pairs that remain intact within a given domain and 
provides information about the broken or dangling valences 
that are created by the (formal) bond splitting that would be 
required to isolate that domain from the rest of the molecule. 
It straightforwardly elucidates the manner and the extent to 
which the electrons associated with a given domain (often 

(2)SΩ(I, J) = ∫
Ω

�I

(

r1

)

�J

(

r1

)

dr1

(3)

gΩ
(

r1, r
�

1

)

=
∑

i

niΩ�iΩ

(

r1

)

�iΩ

(

r
�

1

)

=
∑

i

(

niΩ

∑

I,J

diΩJdiΩI�I(r)�J

(

r
�

1

)

)

(4)�iΩ(r) =
∑

I

diΩI�I(r).
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an atom) are involved in interactions with those for other 
domains in the molecule.

As was mentioned in the Introduction, further integration 
of gΩ over the same or a different domain generates locali-
zation and delocalization indices, respectively. Specifically, 
we may write:

and then define ‘diagonal’ (i.e., one-domain) elements 
SEDI(Ω,Ω) = kΩΩ and the corresponding off-diagonal (i.e., 
two-domain) quantities SEDI

(

Ω,Ω�
)

= kΩΩ� + kΩ�Ω . It fol-
lows from Eqs. 3 and 5 that the values of kΩΩ and kΩΩ� (and 
thus SEDI) can straightforwardly be expressed [27] (see also 
[12, 13]) as the simple summation of terms Pi that involve 
individual DAFH functions �iΩ . These Pi are very straight-
forward to compute given the following expression:

We turn now to the FALDI-like approach, which involves 
the generation of the eigenfunctions and corresponding 
eigenvalues of �Ω�Ω� rather than those of �Ω . Whereas the 
matrices �Ω and �Ω� are symmetric, their product �Ω�Ω� 
need not be (unless �Ω and �Ω� commute) and so �Ω�Ω� can 
exhibit different sets of left- and right-hand eigenvectors, 
albeit with the same eigenvalues. Instead of solving directly 
the right-hand FALDI-like eigenvalue equation, namely

or the corresponding left-hand FALDI-like eigenvalue 
problem

we can in principle recast both of these equations in the 
more convenient symmetric form:

with xΩΩ� = �
−1∕2

Ω� zΩΩ� and yΩΩ� = �
1∕2

Ω� zΩΩ� . It is of course 
straightforward to generate �1∕2

Ω�  from the symmetric matrix 
�Ω� , and provided that �Ω� is also positive definite, we can 
also easily generate �−1∕2

Ω�  . A simple pragmatic alternative 
to the use of Eqs. 7–9 is to find instead the eigenvectors 
and corresponding eigenvalues of the following symmetric 
problem:

(5)

kΩΩ� = ∫
r1 = r

�

1

Ω�

gΩ
(

r1, r
�

1

)

dr1 =
∑

I,J

GΩ(I, J)SΩ�(I, J) = Trace
(

�Ω�Ω�

)

(6)Pi

(

Ω,Ω�
)

= niΩ

∑

I,J

diΩIdiΩJSΩ�(I, J).

(7)
(

�Ω�Ω�

)

xΩΩ� = �ΩΩ�xΩΩ�

(8)y
T

ΩΩ�

(

�Ω�Ω�

)

= �ΩΩ�y
T

ΩΩ� ,

(9)
(

�
1∕2

Ω� �Ω�
1∕2

Ω�

)

zΩΩ� = �ΩΩ�zΩΩ�

(10)1∕2
(

�Ω�Ω� + �Ω��Ω

)

vΩΩ� = �s
ΩΩ�vΩΩ�

We note that such a strategy does in fact mimic the approach 
adopted in the original FALDI studies [15–19] that were 
based on a one-electron approximation to �Ω.

Regardless of which of Eqs. 7–10 we use, the eigen-
values must sum to kΩΩ� (see Eq. 5) so that we can easily 
identify the principal contributions to a given SEDI value. 
In common with what is done in DAFH analysis, we have 
chosen here to carry out a subsequent isopycnic transfor-
mation [20] of the corresponding eigenvectors and then to 
analyze the transformed functions with the largest eigen-
values. The full sets of eigenvalues will of course still sum 
to kΩΩ� in each case, and the sum of all diagonal (i.e., one-
domain) and off-diagonal (i.e., two-domain) k values for a 
given system must still match the trace of the one-electron 
density matrix, i.e., the number of active electrons. It is 
important to note a fundamental difference between the 
DAFH and FALDI-like approaches when it comes to the 
individual contributions to these different k values. On 
the one hand, FALDI and FALDI-like approaches involve 
solving separate one-domain and two-domain eigenvalue 
problems, thereby generating two different sets of func-
tions, with the former related only to diagonal k values and 
the latter only to off-diagonal k values. On the other hand, 
DAFH functions, which are obtained from one-domain 
eigenvalue problems, contribute (whether significantly or 
not) both to diagonal and off-diagonal k values.

It is useful to notice that whereas full DAFH analysis 
requires construction of the matrix representation �Ω of 
the ‘hole’ gΩ , as was described earlier, we can regenerate 
that matrix with minimal effort when we then go on to 
the FALDI-like analysis. This is because we can identify 
from Eq. 3 that

which involves little more than the calculation of dot prod-
ucts. (Note that it is important in the summations in Eqs. 3 
and 11 to include all of the functions, labeled by i, whether 
or not they were actually included in the isopycnic trans-
formation, which deals only with nonnegative eigenvalues 
[20].)

In order to provide answers to various questions posed 
in the Introduction, we first examine the breaking of the 
single bond in H2 so as to compare DAFH analysis with 
variants of FALDI-like approaches. We also examine the 
geometry dependence of the reliability of the usual one-
electron approximation to the full treatment. We then do 
much the same for the breaking of the formal triple bond 
in N2, not least to discover whether various observations 
for H2 also apply for higher bond multiplicity. Finally, we 
use B2H6 near its equilibrium geometry as an example that 
features bonds that are not only heteronuclear but that also 

(11)GΩ(I, J) =
∑

i

niΩdiΩIdiΩJ



Theoretical Chemistry Accounts         (2020) 139:179 	

1 3

Page 5 of 14    179 

involves a bonding pattern which transcends the conven-
tional two-center paradigm. It is also useful to note that 
whereas the isopycnic transformation actually does rela-
tively little to the DAFH eigenfunctions and eigenvalues 
in the cases of H2 and N2, it does somewhat more in the 
case of B2H6; these observations also turn out to be true 
for the FALDI-like approaches we considered. It is impor-
tant to stress that our emphasis in the present work is on 
the testing of (combinations of) methodologies rather than 
on looking for new insights into the electronic structure 
and bonding in the chosen intentionally familiar molecular 
systems.

It is also important to notice that whereas for the DAFH 
and diagonal FALDI-like approaches, we solve a separate 
eigenvalue problem for each domain Ω in turn, the off-
diagonal FALDI-like case does of course involve two such 
domains, Ω and Ω′. Although kΩΩ′ and kΩ′Ω must coincide, 
the FALDI-like partitioning of them leads to two differ-
ent sets of functions. Depending on their forms, we can 
thus expect to be able to identify (by visual inspection) the 
FALDI-like functions which are mostly associated with one-
domain (Ω) or with the other one (Ω′). For homonuclear 
systems, such as H2 and N2, the functions in the two sets are 
trivially related to one another by symmetry. On the other 
hand, for (say) a B–H bond in a system such as B2H6, the 
two sets of functions will be different from one another so 
that, depending on the forms of the functions, we can say 
that they provide a view of the bonding from either the B or 
the H perspective.

As is well known, a variety of definitions of bond orders 
have proved to be especially useful in attempts to under-
stand electronic structure and bonding, with variants of 
the Wiberg–Mayer (W–M) index being particularly widely 
used. For the special case of correlated singlet systems, 
Mayer introduced a so-called improved definition [30] of 
such a two-center W–M index which, when re-expressed in 
QTAIM-generalized form [31], can be written [32]:

It proves useful for the bond breaking in H2 and N2 to 
compare the geometry dependence of W−M

(

Ω,Ω�
)

 and 
SEDI

(

Ω,Ω�
)

.
We used here full configuration interaction (FCI) descrip-

tions of H2 based on a standard cc-pVTZ basis. In practice, 
these FCI/cc-pVTZ wavefunctions for H2 were generated for 
a range of nuclear separations (R) by means of ‘2 electrons 
in 28 orbitals’ complete active space self-consistent field 
(CASSCF) calculations. We also used standard cc-pVTZ 
basis sets, always in spherical form, for the other systems 
we studied, with all of the various calculations carried out in 

(12)

W−M
(

Ω,Ω�
)

=
∑

I

∑

J

{(

�
I
�

J
+
[

�
I

(

2 − �
I

)

�
J

(

2 − �
J

)]1∕2
)

×SΩ(I, J)SΩ� (I, J)
}

D2h symmetry. In the case of N2, we employed full-valence 
CASSCF (‘10 electrons in 8 orbitals’) descriptions, again for 
a range of nuclear separations, and we also carried out full-
valence CASSCF (‘12 electrons in 14 orbitals’) calculations 
for B2H6 near its equilibrium geometry. (The coordinates used 
for the symmetry-unique atoms are available in Table S1 in the 
electronic supplementary material.) All of the wavefunctions 
required for the present work were calculated using MOLPRO 
[33, 34] and the subsequent DAFH, FALDI-like, SEDI and 
bond order analysis including isopycnic transformations used 
our own codes, with the QTAIM analysis [21] carried out with 
AIMAll [35]. Using the same isovalue throughout, pictorial 
depictions of DAFH and FALDI-like functions were produced 
using Virtual Reality Markup Language (VRML) files gener-
ated with Molden [36].

3 � Results and discussion

We start with an examination of the bond-breaking process 
in H2. Then, taking account of what we find for H2, we 
carry out similar analysis for the breaking of the formal 
triple bond in N2 before moving on to consider the bonding 
situation in B2H6.

3.1 � H2

The geometry dependence of (off-diagonal) SEDI values and 
of the results of DAFH analysis for H2 have been described 
in detail several times. In particular, wavefunctions at exactly 
the same level of theory as used in the present work were 
deployed by Cooper and Ponec [14] to show how combi-
nations of DAFH and bond order analysis can be used to 
provide insights into the electron reorganization that accom-
panies the making and breaking of chemical bonds.

We report in Table 1 the values of SEDI
(

H,H
′
)

 as a 
function of R, calculated using the full methodology as 
well as with the usual one-electron approximation. (Given 
that SEDI(H,H) + 1∕2 SEDI

(

H,H
�
)

= 1 in this case, the 
diagonal SEDI elements provide no additional informa-
tion.) We observe that the sign of the errors introduced 
for this system by the one-electron approximation is con-
sistent throughout and that the magnitudes remain rather 
small, increasing to no more than 1.1% for the largest of 
the R values that we have considered. Also reported in 
Table 1 are values of the QTAIM-generalized ‘improved’ 
W–M index, as defined in Eq. 12. We observe that the 
reduction in the value of SEDI

(

H,H
′
)

 with increasing R is 
similar to the corresponding behavior of the W–M index, 
although the two curves are not parallel. Even so, it is clear 
that SEDI

(

H,H
′
)

 behaves very much like a bond order.
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Dominant DAFH functions associated with the domain 
of one of the H atoms in H2 are shown in Fig. 1 for three 
representative values of R. As in previous work, we use 
here the term ‘dominant functions’ to signify all of those 
with eigenvalues (or occupation numbers) of at least 0.1. 
Also displayed in Fig. 1 for each function is the corre-
sponding occupation number as well as the proportion of 
kHH� = 1∕2 SEDI

(

H,H
�
)

 that is contributed by the value 
of Pi (see Eq. 6). Quoting these proportions (expressed as 
percentages) rather than the actual numerical values of Pi 
proves to be somewhat more convenient for direct compari-
sons with the corresponding results when using instead the 
one-electron approximation. In each case, the occupation 
number is fairly close to unity and the proportion of kHH′ is 
very high. As can be seen from Figure S1 in the electronic 
supplementary material, the analogous DAFH functions and 
numerical values generated using the one-electron approxi-
mation are quite similar to those presented here for the full 
calculation.

Near equilibrium geometry, the dominant DAFH function 
for each H atom domain has an occupation close to unity 
(0.992). These two functions have a high overlap (0.984), 

with each of them resembling a slightly asymmetric version 
of a 1σg molecular orbital. Clearly, such a DAFH descrip-
tion corresponds rather closely to an almost doubly occupied 
1σg orbital. This is of course consistent with the occupation 
number of the corresponding natural orbital, which is also 
close to two (1.964). Increasing the nuclear separation leads 
to further asymmetry in the dominant DAFH functions and 
to a reduction in the overlap between them, corresponding to 
a decrease in the extent of sharing, but it has relatively little 
effect on their occupation numbers (which gradually move 
slightly closer to unity).

Of course, from a purist point of view, there is some-
thing slightly unsettling about some of these results not least 
because, in the absence of same-spin interactions, there can 
be no Fermi hole [37]. Nonetheless, the DAFH analysis does 
lead to functions that can easily be interpreted in terms of the 
R-dependence of the bonding and to values of SEDI

(

H,H
′
)

 
which, in general terms, display the sort of behavior antici-
pated for a bond index.

We now turn to the results of the FALDI-like approaches, 
for which we have considered the four variants introduced 
above:

A.	 Direct use of zΩΩ� and �ΩΩ� from the solution of Eq. 9.
B.	 Use of vΩΩ� and �s

ΩΩ� from the artificially symmetrized 
problem in Eq. 10.

C.	 Use of the left-hand eigenvectors xΩΩ� = �
−1∕2

Ω� zΩΩ� fol-
lowing solution of Eq. 9.

D.	 Use of the right-hand eigenvectors yΩΩ� = �
1∕2

Ω� zΩΩ� fol-
lowing solution of Eq. 9.

For the same nuclear separations as are considered in 
Fig. 1, the resulting dominant FALDI-like functions that can 
be associated (by visual inspection) with the domain of one 
of the H atoms are shown in Fig. 2 together with their eigen-
values and the relative contributions to the relevant k values. 
For each value of R, the first row corresponds to partitioning 
of the (diagonal, i.e., one-domain) kHH value and the second 
one to the corresponding partitioning of the (off-diagonal, 
i.e., two-domain) kHH′ value. The columns are labeled A–D 

Table 1   Geometry dependence of off-diagonal (i.e., two-domain) 
SEDI values for H2 and of the W–M bond order defined in Eq. 12

R/Å SEDI
(

H,H
′
)

W–M

Full One-electron Error (%)

0.40 0.916 0.912 − 0.4 0.984
0.50 0.900 0.896 − 0.5 0.980
0.60 0.882 0.877 − 0.5 0.974
0.75 0.848 0.843 − 0.6 0.961
1.00 0.771 0.765 − 0.8 0.924
1.25 0.667 0.661 − 0.9 0.855
1.50 0.538 0.532 − 1.0 0.740
1.60 0.481 0.476 − 1.1 0.679
1.70 0.424 0.419 − 1.1 0.612
1.75 0.396 0.391 − 1.1 0.577
1.80 0.368 0.364 − 1.1 0.541

Fig. 1   Dominant DAFH 
functions associated with the 
domain of one of the H atoms 
in H2 at three representative 
nuclear separations. Also shown 
for each function is the cor-
responding occupation number 
as well as the proportion of 
kHH� = 1∕2 SEDI

(

H,H
�
)

 which 
can be assigned to a term P

i
 (see 

Eq. 6) that involves this function
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according to the variant of the approach that was used. As 
can be seen from Figure S2 in the electronic supplementary 
material, the analogous results when using the one-electron 
approximation are rather similar to those presented here for 
the full calculation.

An immediate observation from Fig. 2 is that scheme B, 
namely use of the artificially symmetrized problem (Eq. 10), 
can produce eigenvalues that exceed the relevant k values. 
They are of course balanced by contributions from functions 
with negative eigenvalues, but the fact that the dominant 
functions can contribute more than 100% seems to be an 
unwelcome distraction. As such, we do not consider any 
further the results for H2 from scheme B. For somewhat 
different reasons, we also do not dwell on the results for H2 
from scheme D, namely use of the right-hand eigenvectors 
yΩΩ� = �

1∕2

Ω� zΩΩ� following solution of Eq. 9. This is because 
the forms of these functions turn out to be rather similar to 
those from the DAFH analysis and so it seems unlikely that 
the results of scheme D will provide much additional infor-
mation. This leaves us with Schemes A and C, for which 
the two sets of results turn out to be rather similar. From a 
purely computational point of view, Scheme A (direct use 
of the functions from the solution of Eq. 9) is slightly pref-
erable to Scheme C because it avoids the requirement to 
generate S−1∕2

Ω�  (as would be required for the construction of 
xΩΩ� = �

−1∕2

Ω� zΩΩ� in Scheme C).
Focusing on the results of Scheme A, we observe in each 

case that the dominant FALDI-like function for a given 
value of R accounts for a high proportion (> 97%) of the 
relevant k value. Except for the largest of the three nuclear 
separations considered in Fig. 2, the dominant functions 
from the partitioning of diagonal (i.e., one-domain) and off-
diagonal (i.e., two-domain) k values are remarkably similar 
to one another. Looking first at the dominant function for 
the diagonal case (top row for each value of R), we notice 
that it becomes increasingly s-like at larger R and that it is 
somewhat more localized for all three R values than was the 
case for the corresponding DAFH functions. Turning now 
to the dominant FALDI-like functions for the off-diagonal 
case, we notice that these are also somewhat more localized 
than are the corresponding DAFH functions, but that there 
is a deviation from pure s-like character for the largest value 
of R shown in Fig. 2—exactly the same behavior is observed 
for the Scheme C functions.

Having examined the breaking of the single bond in H2, 
we can now move onto a comparison of our observations 
with those that we can make for the formal triple bond in N2.

3.2 � N2

It is clear from the SEDI
(

N,N
′
)

 values for N2 which are 
reported in Table 2 that the magnitudes of the errors intro-
duced for this system by the one-electron approximation are 

somewhat larger than was the case for H2, as might have 
been anticipated from the larger number of electrons. Fur-
thermore, the errors show much more dependence on R for 
breaking the formal triple bond in N2 than they do for the 
single bond in H2. An error of 18% near the equilibrium 
geometry of N2 increases to 24% at intermediate R before 
changing sign at larger nuclear separations. Also reported 
in Table 2 are values of the ‘improved’ W–M index and 
we observe that the reduction in the value of SEDI

(

N,N
′
)

 
in the region from 1.5 to 2 Å is somewhat more gradual 
than is the corresponding behavior of the W–M index. 
(Given for these calculations with 10 active electrons that 
SEDI(N,N) + 1∕2 SEDI

(

N,N
�
)

= 5 , the diagonal SEDI ele-
ments provide no additional information.)

Dominant DAFH functions associated with the domain 
of one of the N atoms are shown in Fig. 3 for three repre-
sentative values of R with the smallest of the three values 
(1.1 Å) being close to Re. Also displayed for each of these 
functions is the corresponding occupation number as well as 
the proportion of kNN� = 1∕2 SEDI

(

N,N
�
)

 that is contributed 
by the value of Pi (see Eq. 6). As can be seen from Figure 
S3 in the electronic supplementary material, the analogous 
DAFH functions and numerical values generated using the 
one-electron approximation are similar to those presented 
here for the full calculation.

It is clear from Fig. 3 that we observe a consistent pat-
tern for the dominant DAFH functions for N2 at the dif-
ferent values of R. The first function, with an occupancy 
approaching two, resembles a nonbonding ‘lone pair’ σ func-
tion near equilibrium geometry and evolves into an s orbital 
at larger R. It accounts for ~ 50% of kNN� = 1∕2 SEDI

(

N,N
�
)

 
near equilibrium, dropping toward 40% as the two atoms 
are moved apart. Next, we observe a degenerate pair of 
functions of π symmetry, each with an occupation number 
that is close to unity. Each of these functions accounts for 
18% of 1∕2 SEDI

(

N,N
�
)

 near the equilibrium geometry, but 
this proportion increases slightly as R is increased. Finally, 
we observe another σ function, again with an occupancy 
that is close to unity. It evolves from a σ bonding function 
near equilibrium geometry into a 2pz function at larger R. 
Although it contributes less than 16% of 1∕2 SEDI

(

N,N
�
)

 
near the equilibrium geometry, this proportion increases 
with R (albeit to a slightly larger fraction of a somewhat 
smaller total number).

For the same nuclear separations as are considered in 
Fig. 3, the resulting dominant Scheme A FALDI-like func-
tions that can be associated (by visual inspection) with the 
domain of one of the N atoms are shown in Fig. 4 together 
with their eigenvalues as well as the relative contribu-
tions that these make to the relevant k values. The cor-
responding results when using instead Schemes B-D (see 
Figures S4–S6 in the electronic supplementary material) 
tell a familiar story: The combined contributions from the 
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dominant Scheme B functions typically exceed 100%, the 
outcome of Scheme D is strongly reminiscent of the results 
of the DAFH analysis, and the results from Schemes A 

and C are rather similar to one another. The analogous 
functions and numerical values for Schemes A–D when 
using instead the one-electron approximation are observed 

Fig. 2   Dominant FALDI-like functions that can be associated (by vis-
ual inspection) with the domain of one of the H atoms in H2 at three 
representative nuclear separations, together with their eigenvalues 
and relative contributions to the relevant k values. For each of these 

values of R, the first row corresponds to partitioning of kHH and the 
second one to partitioning of kHH′ . Columns are labeled a–b accord-
ing to the variant of the approach, as described in the text
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in each case to be similar to those from the full calcula-
tions (see Figures S7–S10 in the electronic supplementary 
material).

Looking at the dominant Scheme A FALDI-like functions 
for the two-domain off-diagonal (NN′) case for R = 1.1 Å 
(near Re), we observe in Fig. 4 a σ function that accounts 

for nearly 40% of kNN′ and then a pair of degenerate π func-
tions, each of which accounts for nearly 30% of kNN′ . Mov-
ing on to R = 1.5 Å, we find that the π functions become 
somewhat more localized on the relevant N atom domain 
and now contribute a slightly reduced proportion of kNN′ , 
with an increase to 45% for the σ function. It is clear for both 
of these values of R that the dominant Scheme A FALDI-
like functions provide a more efficient representation of kNN′ 
than was the case for the corresponding DAFH functions. 
This is because just three FALDI-like functions (one σ and 
two π) account for most of kNN′ , whereas we require instead 
four DAFH functions (two σ and two π). Moving to larger R 
(2.5 Å), the value of kNN� = 1∕2 SEDI

(

N,N
�
)

 drops below 
0.1 (see Table 2) and so it is not surprising that none of the 
Scheme A FALDI-like functions reached our chosen thresh-
old (eigenvalue > 0.1) to be displayed.

Moving on to the one-domain diagonal (NN) case, we 
observe from Fig. 4 that there are striking similarities to the 
outcome of the DAFH analysis (see Fig. 3). Indeed, the dom-
inant Scheme A FALDI-like functions account for almost 
the same proportion of kNN = SEDI(N,N) as did the DAFH 
functions for kNN� = 1∕2 SEDI

(

N,N
�
)

. Focusing instead on 
the differences, we observe in particular that the degenerate 

Table 2   Geometry dependence of off-diagonal (i.e., two-domain) 
SEDI values for N2 and of the W–M bond order defined in Eq. 12

R/Å SEDI
(

N,N
′
)

W–M

Full One-electron Error (%)

0.95 2.178 2.492 14.4 2.917
1.00 2.107 2.436 15.6 2.887
1.10 1.963 2.318 18.1 2.819
1.20 1.817 2.190 20.5 2.738
1.30 1.671 2.050 22.7 2.637
1.50 1.376 1.713 24.5 2.341
1.70 1.064 1.264 18.8 1.830
1.90 0.731 0.761 4.1 1.133
2.10 0.455 0.420 − 8.3 0.610
2.50 0.176 0.156 − 12.9 0.201

Fig. 3   Dominant DAFH 
functions associated with the 
domain of one of the N atoms 
in N2 at three representative 
nuclear separations. Also shown 
for each function is the cor-
responding occupation number 
as well as the proportion of 
kNN� = 1∕2 SEDI

(

N,N
�
)

 which 
can be assigned to a term P

i
 (see 

Eq. 6) that involves this function
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pair of π functions is much more localized to a single N atom 
domain that are the corresponding DAFH functions.

As our final example, we move on to B2H6 near its equi-
librium geometry. Not only does this system feature bonds 
between different types of atom, unlike the cases of H2 and 
N2, but it also presents a bonding pattern that goes beyond 
the usual two-electron two-center paradigm.

3.3 � B2H6

Various off-diagonal SEDI
(

Ω,Ω�
)

 values for B2H6 are 
reported in Table 3. The corresponding diagonal elements 
are also listed (last three rows of Table 3) for a terminal 
hydrogen atom (Ht), a bridging hydrogen atom (Hb) and for 
a boron atom. We have used primes to distinguish between 

Fig. 4   Dominant Scheme A 
FALDI-like functions that can 
be associated (by visual inspec-
tion) with the domain of one of 
the N atoms in N2 at three rep-
resentative nuclear separations, 
together with their eigenvalues 
and relative contributions to the 
relevant k values
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atoms of the same type, such that SEDI
(

Ht, Ht′

)

 corresponds 
to the value for two different terminal H atoms that are 
attached to the same boron center. For the directly bonded 
atoms, the error from use of the one-electron approxima-
tion is somewhat smaller than was the case for N2, varying 
only from −1.4 to + 2.1%. On the other hand, it is certainly 
true that there are large deviations for some of the other 
cases, but it is important to remember that the correspond-
ing SEDI

(

Ω,Ω�
)

 values are actually very small, with the 
consequence being that large percentage changes correspond 
to rather small absolute changes. This is especially true for 
the case of SEDI

(

B,B
′
)

.
The dominant DAFH functions for various QTAIM 

domains in B2H6 are depicted in the first column of Fig. 5, 
together with occupation numbers and the proportion of a 
relevant kΩΩ� = 1∕2 SEDI

(

Ω,Ω�
)

 value. The function in the 
top row (occupation 1.526), which is for the domain of one 
of the terminal hydrogen atoms, represents the main con-
tribution from that atom to one of the B–Ht bonds and it 
accounts for nearly 94% of 1∕2 SEDI

(

B,Ht

)

 . The function in 
the second row (occupation 0.346), which is instead for the 
domain of the corresponding boron atom, is the complemen-
tary contribution to this B–Ht bond, and it accounts for over 
95% of 1∕2 SEDI

(

B,Ht

)

 . (Notice also that 1.526 + 0.346 is 
almost 1.9, consistent with conventional notions of a two-
center two-electron B–Ht bond.) The function in the third 
row (occupation 0.192) is for the domain of the same boron 
atom and represents the main contribution from this center 
to the bonding that involves one of the bridging hydrogen 
atoms, but it only accounts for ~ 85% of 1∕2 SEDI

(

B,Hb

)

 . 
Finally, the function in the bottom row (occupation 1.419) 
is for the domain of that bridging hydrogen and it does of 
course represent the main contribution from that atom to 
the anticipated three-center two-electron (3c–2e) B–Hb–B′ 
bonding. (Notice also that 2 × 0.192 + 1.419 slightly exceeds 

1.8, consistent with notions of 3c–2e bonding.) This func-
tion only accounts for ~ 79% of each 1∕2 SEDI

(

B,Hb

)

 
value, being somewhat more suited to the diagonal term 
SEDI

(

Hb, Hb

)

 , for which it accounts for 97.7%.
The dominant Scheme A FALDI-like functions are 

depicted in the second and third columns of Fig. 5. The cor-
responding results using Schemes B-D (see Figures S11–S13 
in the electronic supplementary material) again show that 
the dominant Scheme B functions tend to overestimate k 
values, that the outcome of Scheme D is strongly reminis-
cent of the results of the DAFH analysis, and that it is the 
results from Schemes A and C which are rather similar to 
one another. Additionally, the corresponding functions and 
numerical values for Schemes A–D when using instead the 
usual one-electron approximation are again similar to those 
from the full calculations (see Figures S14–S17 in the elec-
tronic supplementary material).

Looking first at the dominant Scheme A FALDI-like 
functions for the off-diagonal (i.e., two-domain) SEDI val-
ues (middle column of Fig. 5), the top two functions corre-
spond to one of the B–Ht linkages, but seen from the Ht and 
B perspectives, respectively. Each function accounts for a 
high proportion of 1∕2 SEDI

(

B,Ht

)

 . In a similar fashion, the 
final two functions in the middle column correspond to one 
of the B–Hb linkages, as seen from the B and Hb perspec-
tives, but both functions account for a slightly lower propor-
tion of 1∕2 SEDI

(

B,Hb

)

 than was the corresponding case 
for B–Ht. Nonetheless, in general terms, we observe that the 
Scheme A FALDI-like functions do provide a slightly more 
efficient expansion of SEDI values that do those from the 
corresponding DAFH analysis. The third column of Fig. 5 
shows depictions of the dominant Scheme A FALDI-like 
functions for the diagonal (i.e. one-domain) cases, specifi-
cally Ht and Hb, each of which accounts for a high propor-
tion of the relevant SEDI(Ω,Ω) element. The largest eigen-
value for the B domain was below our usual cutoff (0.1), 
and so this function has not been shown. (It is for much the 
same reason that we have not depicted here the FALDI-like 
functions for the two-domain BB′ and HH′ cases.) We notice 
that the ‘diagonal’ FALDI-like functions shown in the third 
column of Fig. 5 are rather reminiscent of the DAFH func-
tions associated with the same atomic domains.

4 � Conclusions

We have presented here a systematic comparison of the per-
formance of two complementary methodologies, namely 
DAFH analysis and FALDI-like analysis, both of which 
aim to provide useful insights into electronic structure and 
bonding by means of partitioning the densities and/or the 
density matrices provided by contemporary calculations. 
Whereas DAFH analysis provides information about the 

Table 3   Off-diagonal (i.e., two-domain) SEDI values for B2H6, with 
the corresponding diagonal (i.e., one-domain) values shown in the 
last three rows

Domains SEDI
(

Ω,Ω�
)

Full One-electron Error (%)

B, Ht 0.484 0.495 2.1
B, Hb 0.291 0.287 − 1.4
Hb, Hb′ 0.179 0.187 4.9
Ht, Ht′ 0.116 0.107 − 8.9
Hb, Ht 0.099 0.096 − 3.5
B, B′ 0.027 0.048 78.6
Ht 1.222 1.230 0.7
Hb 1.095 1.101 0.6
B 0.234 0.214 − 9.3
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role and the extent of electron sharing in bonding situations, 
the complementary FALDI-like picture is in some senses 
somewhat richer. In particular, FALDI-like analysis pro-
vides detailed insights into the partitioning of localization 
and delocalization indices (collectively called SEDI) into 
contributions associated with individual domains and with 
pairs of domains, respectively.

We are now in a strong position to provide some answers 
to the series of interrelated questions that were posed in 
the Introduction. We wondered just how similar/different 
are the functions generated by the DAFH and FALDI-
like approaches for a particular molecule at a given level 
of theory, and how similar/different are the correspond-
ing eigenvalues. A minor complication is that �Ω�Ω� need 

not be symmetric, so that we are faced with more than one 
FALDI-like scheme. A simple pragmatic approach (which 
we called Scheme B) of using instead 1∕2

(

�Ω�Ω� + �Ω��Ω

)

 
turns out not be wholly satisfactory because the combined 
contributions from the dominant functions often exceed 
100%. The left-hand eigenfunctions of �Ω�Ω� (Scheme D) 
do turn out to be rather similar to those generated by DAFH 
analysis, but the eigenvalues are somewhat different, in one 
case being a direct measure of the contribution to the rel-
evant k value and in the other being an occupation number. 
On the other hand, the right-hand eigenfunctions of �Ω�Ω� 
(Scheme C) are somewhat different so that they could, in 
principle, provide additional, complementary information 
that is not already available from the DAFH analysis. Our 

Fig. 5   Dominant DAFH func-
tions (first column) and Scheme 
A FALDI-like functions (second 
and third columns) for B2H6, 
together with their eigenvalues 
and relative contributions to 
relevant k values. The specific 
domains used for each of these 
functions are identified in the 
main text
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computationally preferred approach (Scheme A), which is 
based on the convenient symmetric form �1∕2

Ω� �Ω�
1∕2

Ω�  , pro-
duces results which are rather similar to those from Scheme 
C. The consequences of our findings as to which of the dif-
ferent variants of the FALDI-like approach are the most use-
ful can of course now be carried back to implementations 
of the original FALDI scheme [15–19]. In the remainder of 
this discussion, we consider only FALDI-like Scheme A.

One aim of the FALDI-like approach is to provide a com-
pact description corresponding to expansions of the SEDI 
values. As such, an obvious question is whether such expan-
sions are more compact (or more ‘efficient’) than are those 
provided by DAFH analysis via the values of Pi

(

Ω,Ω�
)

 cal-
culated using Eq. 6. As might have been anticipated, we 
found for H atom domains in H2 at each value of R that there 
is a single dominant DAFH function and that there is a single 
dominant FALDI-like function. Each of these accounts for 
most of the total kHH� = 1∕2 SEDI

(

H,H
�
)

 value, but the pro-
portions are slightly higher with the FALDI-like approach, 
especially for larger nuclear separations. In this sense, the 
preferred FALDI-like approach (Scheme A) could be said 
to provide a slightly more efficient expansion of two-domain 
SEDI values than does DAFH analysis.

The errors in SEDI
(

Ω,Ω�
)

 values from use of the usual 
one-electron approximation turned out to be rather small 
(up to 1.1%) for breaking the formal single bond in H2, and 
they all have the same sign. On the other hand, the situation 
turned out to be somewhat different for breaking the formal 
triple bond in N2. Not only did an error of 18% near the 
equilibrium geometry increase to 24% at intermediate R, but 
it then changed sign at larger nuclear separations. The cor-
responding errors at a fixed geometry of B2H6 were some-
what smaller for the directly bonded atoms, varying only 
from −1.4 to + 2.1%. Nonetheless, it turns out that the forms 
of the dominant DAFH and FALDI-like functions from a 
given Scheme show rather little sensitivity to use of the 
one-electron approximation. Furthermore, the differences 
in the relative importance of the different functions in the 
expansions of the nontrivial SEDI values (when expressed 
as percentages) were always small, regardless of the formal 
bond multiplicity or of variations in the nuclear separations.

Having now established which of the four FALDI-like 
variants that we have considered provides information that 
complements DAFH and bond order analysis, we are now in 
a strong position to deploy such a combination of techniques 
for studies of systems with unknown and/or controversial 
bonding patterns. Based on the various observation in the 
present work, our preference will be for the full treatments, 
whenever they are possible, but we do now have clear indi-
cations of the extents to which we can rely instead on the 
somewhat more convenient one-electron approximation.
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