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Abstract
The radial components of the natural orbitals (NOs) pertaining to the 1S

+
 ground state of the two-electron harmonium atom 

are found to satisfy homogeneous differential equations at the values of the confinement strength � at which the respec-
tive correlation factors are given by polynomials. Together with the angular momentum l of the NOs, the degrees of these 
polynomials determine the orders of the differential equations, eigenvalues of which (arising from well-defined boundary 
conditions) yield the natural amplitudes. In the case of l = 0 , analysis of these equations uncovers certain properties of the 
NOs whereas application of a WKB-like approximation produces asymptotic expressions for both the NOs and the corre-
sponding natural amplitudes that hold when the latter are small negative numbers. Extensive numerical calculations reveal 
that these expressions remain valid for arbitrary values of � . The approximate s-type NOs, which are remarkably accurate 
at sufficiently small radial distances and exhibit universal scaling, differ qualitatively from the eigenfunctions of the core 
Hamiltonian even at the � → ∞ limit of vanishing electron correlation.

Keywords Two-electron harmonium atom · Natural orbitals · WKB approximation · Hill’s asymptotics

1 Introduction

The time-independent Schrödinger equation with the 
Hamiltonian

possesses closed-form solutions for infinitely many values of 
the confinement strength � [1]. For this reason, the nonrela-
tivistic system it describes, known as the two-electron har-
monium atom, is often employed as a benchmarking tool in 
testing of approximate electronic structure methods, includ-
ing those based on the density functional theory [2–12] 
and other formalisms [13–16]. Thanks to realistic electron 

densities involved, such tests are more suitable for calibra-
tion of density functionals and assessment of their accuracy 
than those relying on the homogeneous electron gas.

Electronic properties of the two-electron harmonium atom 
are readily elucidated not only at select values of � but also at the 
weak- and strong-correlation limits. Within the former regime, 
which corresponds to strong confinement, the Hamiltonian (1) 
describes a system of two weakly coupled three-dimensional 
harmonic oscillators that is amenable to perturbative treatment 
[17–22]. On the other hand, the strongly correlated species that 
ensues at small values of � can be regarded as a classical Wigner 
molecule subject to minor quantum corrections [17, 23].

In this paper, some recently derived properties of natural 
orbitals (NOs) and their occupation numbers pertaining to 
the 1S

+
 ground state of the two-electron harmonium atom are 

reported. Although this state has been the subject of numer-
ous studies involving both rigorous mathematical analysis 
[1, 17–30] and numerical approaches [17, 28], the atten-
tion devoted to the corresponding NOs has been limited to 
investigations of their asymptotic behavior at the � → 0 limit 
[23] and of their collective occupancies at various values of 
� [24–26], formulation of accurate approximations to the 
strongly occupied NOs at � =

1

2
 and � =

1

10
 [27], and find-

ing definitive answers [28] to the questions concerning the 
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existence of NOs with vanishing occupation numbers [17, 
29, 30]. With amelioration of this unsatisfactory state of 
knowledge as its objective, the present work aims at uncov-
ering universalities in NOs and their occupation numbers that 
persist throughout the entire range of confinement strengths.

2  Theory

The spatial part Ψ(r⃗1, r⃗2) ≡ Ψ(𝜔;r⃗1, r⃗2) of the 1S
+
 ground-

state wavefunction of the two-electron harmonium atom 
reads [1, 17]

where the correlation factor g(r12) ≡ g(�;r12) (inclusive of 
the normalization constant) is given by the polynomials

for certain values of � ∈ {�k} ( k ≥ 1 ), the first four ele-
ments of the set {�k} being �1 =

1

2
 , �2 =

1

10
 , �3 =

5−
√
17

24
 , 

and �4 =
35−3

√
57

712
 [1, 17]. It is worth noting that, since 

the ratio C1(�)∕C0(�) is fixed at 1
2
 by the electron-coales-

cence cusp condition, setting r⃗1 = r⃗2 = 0 in Eq. (2) yields 
C0(𝜔k) = Ψ(𝜔k;0⃗, 0⃗) and C1(𝜔k) =

1

2
Ψ(𝜔k;0⃗, 0⃗) . Throughout 

the text, the {Re(Ψ(0⃗, 0⃗)) > 0, Im(Ψ(0⃗, 0⃗)) = 0} phase con-
vention is employed for the wavefunction, which is assumed 
to be square-normalized to one.

The spatial parts {𝜓nlm(r⃗)} ≡ {𝜓nlm(𝜔;r⃗)} of the NOs 
pertaining to Ψ(r⃗1, r⃗2) are eigenfunctions of a homogeneous 
Fredholm equation of the second kind [31]

Squares of absolute values of the respective natural ampli-
tudes {�nl} ≡ {�nl(�)} equal the occupation numbers 
{�nl} ≡ {�nl(�)} . Thanks to the spherical symmetry of 
the underlying wavefunction, the angular degrees of free-
dom can be integrated out from Eq. (4), yielding [compare 
Eq. (2)]

for the NOs with the angular momenta of l [27, 30]. In 
Eq.  (5), {�nl(r)} ≡ {�nl(�;r)} (normalized according to 

(2)Ψ
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∞

0

exp
[
−
�

2

(
r2
1
+ r2

2

)]
gl(r1, r2)�nl(r2) r

2
2
dr2

= �nl �nl(r1)

∫ ∞

0
[�nl(r)]

2 r2 dr = 1 ) are the real-valued radial parts of 
{𝜓nlm(r⃗)},

and the angularly averaged correlation factor gl(r1, r2) ≡
gl(�;r1, r2) reads

where the standard notation of Ym
l
(�,�) and Pl(t) is used for 

the respective spherical harmonic and Legendre polynomial.

2.1  A differential equation for NOs

Combining Eqs. (3), (5), and (7) affords

where the eigenfunctions {�knl(r)} ≡ {�nl(�k;r)} are related 
to the spatial parts of NOs through the equation

Here and in the following, the notation Ckj ≡ Cj(�k) and 
�knl ≡ �nl(�k) is employed for the sake of convenience, 
whereas the standard notation of P(q)

l
(t) is used for the qth 

derivative of the respective Legendre polynomial in the 
definitions

and
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As the sums over j in the l.h.s. of Eq. (8) are polynomials 
of degree2l + 2 [

k+1

2
] + 1 in r1 (here and in the following, [t] 

denotes the integer part of t), differentiating both sides of 
this equation 2l + 2 [

k+1

2
] + 2 times with respect to r1 pro-

duces a homogeneous differential equation for �knl(r) that 
reads

Together with 2l + 2 [
k+1

2
] + 2 boundary conditions

(12)
2�

(
�

�r1

)2l+2 [
k+1

2
]+2

∫
r1

0

exp
(
−�k r

2
2

)
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(
�
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k+1

2
]+2[

r2l
1
�knl(r1)

]
.

(13)
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�
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)p (
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) |||||r1=0
= �knl �

(p)

knl
(0), p = 0, … , 2l + 2

[
k + 1

2

]
+ 1,

is the first member of the sequence of large-r asymptotic 
approximants {𝜒> [q]

knl
(r1)} defined recursively as [compare 

Eq. (8)]

2.2  The case of l = 0

For l = 0 , the differential Eq. (12) and the boundary condi-
tions (13) assume particularly simple forms, namely

(15)

𝜒
> [q+1]

knl
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>
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2𝜋
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this eigenequation is fully equivalent to Eq. (8).
There are l + [

k+1

2
] + 1 conditions (13) corresponding to 

even p that simply imply vanishing of �knl(r) and all its even-
order derivatives at r = 0 . The remaining l + [

k+1

2
] + 1 condi-

tions that ensue for odd p are rather cumbersome. However, 
satisfying them is equivalent to enforcing the large-r asymptot-
ics of 𝜒knl(r) ������������������→

r→∞

𝜒
>
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(r) + o(1) , where the rational function
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together with

and
(17)

�
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− 4�
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where

The large-r asymptotics becomes a polynomial (note the 
linear dependences among its coefficients)

and the approximants (15) are given by

2.3  The s‑type NOs pertaining to ! = !
1
 

and ! = !
2

For the first two instances of the explicitly known eigenfunc-
tions of the Hamiltonian (1), the sum in the l.h.s. of Eq. (16) 
reduces to a single term, yielding

Despite arising from the same eigenequation, the eigenfunc-
tions �1n0(r) and �2n0(r) are not related through an argument/
value scaling because of their different large-r asymptotics, 
namely [compare Eq. (20)]

versus

(19)�knl,j = 4� ∫
∞

0

exp
(
−�k r

2
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(20)

𝜒
>

kn0
(r) = 𝜆

−1
kn0

(
[
k+1

2

]

∑

j=1

1

2j + 1
Ck,2j−1 𝜇kn0,2j+1

+

k+1∑

p=1

rp

p!

[
k+1−p

2

]

∑

j=0

(2j + p)!

(2j + 1)!
Ck,2j+p−1 𝜇kn0,2j+1

)

(21)

𝜒
> [q+1]

kn0
(r1) = 𝜒

>

kn0
(r1) +

4𝜋

𝜆kn0
∫

∞

r1

exp
(
−𝜔k r

2
2

)

×

[
k−1

2

]

∑

j=0

Ck,2j+1

2j + 3
(r1 − r2)

2j+3
𝜒
> [q]

kn0
(r2) dr2.

(22)
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2
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(4)
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k = 1, 2.
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(
1
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2

)
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(
1

3
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2
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3

)
.

It should be emphasized that none of the NOs can be 
unoccupied as setting �kn0 = 0 in Eq. (22) would imply van-
ishing of �kn0(r) for all r. On the other hand, integration of 
this eigenequation subject to the boundary conditions (17) 
produces

allowing for elucidation of some properties of the NOs. To 
achieve this goal, one conveniently assumes without any 
loss of generality that 𝜒 (1)

kn0
(0) > 0 (i.e., the respective NO is 

positive-valued at r = 0 ) and notes that Ck1 > 0 . Inspection 
of Eq. (25) leads to the conclusion that the combination of 
𝜒
(3)

kn0
(0) > 0 and 𝜆kn0 < 0 assures � (2)

kn0
(r) being positive-val-

ued for r > 0 and thus � (1)

kn0
(r) being both positive-valued and 

strictly increasing with r as long as �kn0(r) ≥ 0 . As vanish-
ing of �kn0(r0) at some r0 > 0 [note that �kn0(0) = 0 per the 
boundary conditions (17)] would contradict these findings, 
the corresponding NO must be nodeless and the moments 
{�kn0,j} must be positive-valued for all j.

For � = �1 , the boundary conditions (18) become

and

Since both the coefficients C10 and C11 are positive-valued, 
one infers from Eq. (26) that at least one of the moments 
that enters its r.h.s. has to have the same sign as �1n0 . Con-
sequently, all the NOs pertaining to negative-valued natural 
amplitudes must possess nodes and thus, per the considera-
tions of the preceding paragraph and the boundary condi-
tion (27), the corresponding third-order derivatives {� (3)

kn0
(0)} 

must be negative-valued and the moments {�1n0,0} must be 
greater than zero. On the other hand, nothing precludes the 
existence of a nodeless NO pertaining to a positive-valued 
natural amplitude. However, due to the orthonormality of 
the NOs, only one such natural orbital [characterized by 
𝜒
(3)

kn0
(0) > 0 ] is possible.

All of those inferences carry over to the case of � = �2 , 
where the boundary conditions (26) and (27) are replaced with

and
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the coefficients C20 , C21 , and C22 again being all 
positive-valued.

2.4  Approximate solutions of Eq. (16)

For negative-valued natural amplitudes, applying a WKB-
like approximation [32] to Eq. (16) yields the (unnormal-
ized) eigenfunctions

where

[note that the other two linearly independent approxi-
mate solutions that involve the cos and cosh functions do 
not enter Eq. (30) because of the vanishing of �kn0(0) and 
�
(2)

kn0
(0) required by the boundary conditions (17)]. The 

small-r approximation (30) is asymptotically exact at the 
�kn0 → 0 limit and is expected to be accurate for r satisfying 
the inequality exp(𝜔k r

2
) ≪ 𝛽

4
kn0

.
In principle, an approximation valid throughout the entire 

range of radial distances could be obtained by stitching the 
above result with the large-r asymptotics given by Eq. (20). 
However, the resulting quantization of the natural amplitudes 
turns out to be unduly sensitive to the choice of the stitching 
point, rendering such an approach impractical. Instead, one can 
either set Akn0 to zero or determine it by matching the radial 
location of the outermost node of the approximant (30) with 
that of its exact counterpart. When employed in conjunction 
with exact natural amplitudes, either of those choices produced 
NOs of remarkable accuracy (see the next section of this paper).

The large-r asymptotics of the approximant (30) is not 
compatible with the polynomial (20) unless the latter is set 
to zero. In that case, one obtains

and

i.e., an approximate quantization of the negative-valued 
natural amplitudes {�kn0} . Equation  (33) admits infi-
nitely many positive-valued solutions, all of which are 

(30)�
kn0(r) ≈

�
4�

k

�

�1∕4

exp

�
3�

k

8
r
2

��
sin

�
� �

kn0 erf

�√
�
k

2
r

��
+ A

kn0 sinh

�
� �

kn0 erf

�√
�
k

2
r

���
,

(31)�kn0 =

(
−

8Ck1

� �
2
k
�kn0

)1∕4

(32)Akn0 = −

sin��kn0

sinh��kn0

(33)
tan��kn0

tanh��kn0
= 1,

very close to n + 1

4
(n = 1, 2,…) . When substituted into 

Eq.  (32), these solutions produce the coefficients {Akn0} 
whose rapid decay with n follows the asymptotics of 
(−1)n+1

√
2 exp[−�(n +

1

4
)] . In light of these facts, one 

expects the quantity Δkn0 in the expression

to be small and dependent on n only weakly.
Setting Akn0 = 0 in Eq.  (30), which implies setting 

Δkn0 = 1 in Eq. (34) [required by suppression of the lead-
ing divergence of �n0(�k;r) at r → ∞ ], affords a primitive 
approximation,

to the radial part �n0(�k;r) of the natural orbital pertaining 
to the natural amplitude �kn0 (note the presence of n radial 
nodes). Although the approximants (35) are rather inaccu-
rate, for a given �k they form a set of orthonormal func-
tions whose simplicity facilitates evaluation of asymptotic 
expressions for matrix elements of one-electron operators. 
In particular, one obtains

and

In turn, combining Eqs. (34), (36), and (37) with the alterna-
tive expression for the natural amplitudes, which reads [28]

(34)
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2
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8
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�
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2
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|||
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2
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where

Ek ≡ E(𝜔k) = ⟨Ψ(𝜔k;r⃗1, r⃗2)�Ĥ�Ψ(𝜔k;r⃗1, r⃗2)⟩,  and h
kn0

≡
h
n0
(�

k
) = t

n0
(�

k
) + v

n0
(�

k
) , produces the asymptotics

(38)�kn0 =
�kn0

Ek − 2 hkn0
,

(39)

𝜂kn0 ≡ 𝜂n0(𝜔k) =
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|||
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r12
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⟩
,

(40)�kn0 �������������������→
n→∞

8Ck1√
3�k

n−2.

3  Numerical verification of theoretical 
predictions

Numerical algorithms for computation of highly accurate 
energies E(�) and wavefunctions Ψ(𝜔;r⃗1, r⃗2) together with 
the corresponding natural amplitudes {�nl(�)} and the spatial 
parts {𝜓nlm(𝜔;r⃗)} of the natural orbitals for arbitrary finite 
values of the confinement strength � have been described in 
detail elsewhere [28]. At the � → ∞ limit, these algorithms 
are superseded by a simplified treatment based upon pertur-
bation theory [25] that involves evaluation of the elements
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Fig. 1  The exact (black) reduced radial parts exp(− 3�k
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of the s-type NOs for k = 1 together with the respective large-r 
asymptotics (20) (red) and the WKB approximants (30) with A

kn0 

either set to zero (green) or obtained by matching the radial position 
of the outermost node (blue): (a) n = 10 , (b) n = 20 , and (c) n = 30
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and the respective eigenvectors {Dnl} ≡ {{Dnl,q}
M
q=1+�l0

} 

enter the approximants [where Ll+1∕2
q−1

(t) is the pertinent asso-

ciated Laguerre polynomial]

for the reduced spatial parts {�̄�nlm(r⃗)} of the natural orbitals 
defined as

(43)
�̄�nlm(r⃗) ≈ 2𝜋−1∕4

M∑

q=1+𝛿l0

[
(2q − 2)!!

(2q + 2l − 1)!!

]1∕2
Dnl,q

× L
l+1∕2

q−1

(
r2
) (

2 r2
)l∕2

exp
(
−
1

2
r2
)
Ym
l
(𝜃,𝜑)
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asymptotics (20) (red) and the WKB approximants (30) with A
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either set to zero (green) or obtained by matching the radial position 
of the outermost node (blue): (a) n = 10 , (b) n = 20 , and (c) n = 30

of the matrices {Gl} ≡ {{Gl,pq}
M
p,q=1+�l0

} whose eigenvalues 

approximate the negative-valued reduced natural amplitudes 
{�̄�nl},

(41)

Gl,pq = −

(
2

�

)1∕2

24−(2p+2q+l)
(2p + 2q + 2l − 5)!

(p + q + l − 2)!

×

[
(p + l − 1)! (q + l − 1)!

(p − 1)! (2p + 2l − 1)! (q − 1)! (2q + 2l − 1)!

]1∕2

(42)�̄�nl = lim
𝜔→∞

𝜔
1∕2

𝜆nl(𝜔),
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Computations of Tr
[
G1(�)

]2 and Tr
[
G2(�)

]2 by infinite 
algebraic summations yield the large-� asymptotics of the 
collective occupancies per spin and single value of m that 
read, respectively, 127−48�+36 ln 2

72�
�
−1

≈ 5.11440 ⋅ 10−3 �
−1 

and −2053+720�−300 ln 2
1800�

�
−1

≈ 1.77291 ⋅ 10−4 �−1 , in agree-
ment with the previously published estimates [17]. The 
numerical data of the present study that are quoted below 
have been calculated with 2000-digit arithmetic available 
within the algebraic manipulation software [33] from matri-
ces truncated at M = 1000.

Numerical verification of the theoretical predictions for-
mulated in the previous section of this paper commences 

(44)�̄�nlm(r⃗) = lim
𝜔→∞

𝜔
−3∕4

𝜓nlm(𝜔;𝜔
−1∕2 r⃗).

with comparisons between the exact and approximate natural 
orbitals (here and in the following, the s-type NOs are 
ordered according to decreasing absolute magnitudes of the 
corresponding negative-valued natural amplitudes, with 
n = 1 assigned to first such NO, etc.). Inspection of Figs. 1 
and 2 reveals remarkable accuracy of the reduced radial 
parts [given by exp(− 3�

8
r2)�n0(�;r) or, equivalently, 

exp(
�

8
r2) r�n0(�;r) ] of the 10th, 20th, and 30th NOs com-

puted from the approximants (30) at both � =
1

2
 and � =

1

10
 . 

The excellent agreement at sufficiently small radial distances 
is unaffected by the choice of Akn0 being either set to zero or 
determined by matching the radial location of the outermost 
node of the approximant with that of its exact counterpart. 
On the other hand, as expected, neither choice gives rise to 
correct asymptotics at r → ∞ [which is, however, faithfully 

0.0 5.0 10.0 15.0 20.0 25.0 30.0
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

ex
p(
-3
ω

3r2 /8
)χ

20
,0
( ω

3;r
)

r
0.0 1.0 2.0 3.0 4.0 5.0 6.0

-1.2

-0.9

-0.6

-0.3

0.0

0.3

0.6

0.9

1.2

ex
p(
-3
ω
r2 /8

)χ
20

,0
( ω
;r)

r

0.0 1.0 2.0 3.0 4.0 5.0 6.0
-1.2

-0.9

-0.6

-0.3

0.0

0.3

0.6

0.9

1.2

-
-

-

-

ex
p(
-3
r2 /8

)χ
20

,0
(r
)

r

(a) (b)

(c)
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mants (30) with A

kn0 either set to zero (green) or obtained by match-

ing the radial position of the outermost node (blue): (a) � = �3 , (b) 
� = 1 , and (c) � → ∞ (see the text for explanation)



Theoretical Chemistry Accounts (2018) 137:173 

1 3

Page 9 of 11 173

reproduced by exp(− 3𝜔

8
r2)𝜒>

kn0
(r) ]. These features of the 

approximants are found to carry over not only to other values 
of k, such as in the case of � = �3 (Fig. 3a), but also to arbi-
trary magnitudes of the confinement strength such as � = 1 
(Fig. 3b) and even the � → ∞ limit of vanishing correlation 
[Fig.  3c, note that �̄�n0(r̄) = lim

𝜔→∞

𝜔
−1∕4

𝜒n0(𝜔;𝜔
−1∕2 r̄) ], 

uncovering approximate universal scaling of the s-type NOs.
Two remarks are in order at this point. First of all, due to 

the presence of the factor of exp(�
8
r2) , the absolute errors 

exhibited at larger values of r by the approximate reduced 
radial parts of the NOs displayed in Figs. 1, 2, and 3 are 

much larger than those of the actual natural orbitals. Sec-
ond, as the number of nodes increases with n, the spacing 
between them becomes proportionally reduced, leaving the 
radial extents of the NOs barely changed. This observation 
explains the large-n asymptotic behavior of the expectation 
values of both the kinetic energy operator [Eq. (36)] and 
the operator describing the interaction with the confining 
potential [Eq. (37)]. The asymptotic constancy of vn0(�) 
with respect to n, which reflects the almost constant radial 
extents of the NOs, is consistent with the quadratic depend-
ence of tn0(�) on n that is reminiscent of that known for 
a particle in one-dimensional box. These asymptotics are 
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expected to persist for all values of � , including the limit 
of � → ∞ at which the interelectron interaction becomes 
vanishingly small in comparison with the other components 
of the Hamiltonian (1). When juxtaposed against the lin-
ear dependences on n exhibited by the kinetic and potential 
energy components pertaining to the s-type wavefunctions 
of the three-dimensional harmonic oscillator (which become 
more and more diffuse upon successive excitations), these 
asymptotics vividly illustrate the fundamental difference 
between the natural orbitals and the eigenfunctions of the 
one-electron Hamiltonians that are left in Ĥ upon removal 
of the interelectron interaction term.

The natural amplitudes {�kn0} computed for k = 1 , k = 2 , 
k = 3 , and k = 4 are found to follow the asymptotics (34) as 
attested by both the smallness and the weak dependence on 
n of the expression 

(
−

� �
2
k
�kn0

8Ck1

)−1∕4
− n (Fig. 4a). In general, 

the rate at which this asymptotics is approached appears to 
diminish with increasing k. Quite unexpectedly, the natural 
amplitudes {�nl(�)} computed at arbitrary values of � and 
even for l ≠ 0 turn out to exhibit the same large-n behavior 
(which is reflected in the values of 

[
−

𝜋 𝜔
2
𝜆nl(𝜔)

4Ψ(𝜔;0⃗,0⃗)

]−1∕4
− n plot-

ted against n in Fig. 4b). The analogous plots of the quanti-
ties 

�
−

√
3 (Ek−2 hkn0)

� �k

�1∕2
− n (Fig. 5a) and 

�√
3 �k �kn0

8Ck1

�−1∕2
− n 

(Fig. 5b) confirm the predicted asymptotics (36), (37), and 
(40).

4  Conclusions

The radial components of the natural orbitals (NOs) pertain-
ing to the 1S

+
 ground state of the two-electron harmonium 

atom are found to satisfy homogeneous differential equa-
tions at the values of the confinement strength � at which 
the respective correlation factors are given by polynomi-
als. Together with the angular momentum l of the NOs, the 
degrees of these polynomials determine the orders of the dif-
ferential equations, eigenvalues of which (arising from well-
defined boundary conditions) yield the natural amplitudes. 
In the case of l = 0 , analysis of these equations uncovers cer-
tain properties of the NOs whereas application of a WKB-
like approximation produces asymptotic expressions for 
both the NOs and the corresponding natural amplitudes that 
hold when the latter are small negative numbers. Extensive 
numerical calculations reveal that these expressions remain 
valid for arbitrary values of � . The approximate s-type NOs, 
which are remarkably accurate at sufficiently small radial 
distances and exhibit universal scaling, differ qualitatively 
from the eigenfunctions of the core Hamiltonian even at the 
� → ∞ limit of vanishing electron correlation.

The prediction that the product of the nth negative-valued 
natural amplitude and n4 tends to a constant at the n → ∞ 
limit implies the asymptotic n−8 decay of the occupation 
numbers {�nl(�)} of the NOs. In fact, the expression

where {Δnl(�)} are small numbers weakly dependent on 
n, appears to be universal, i.e., to hold for arbitrary � and 
l. Interestingly, naive summation of this expression over n 
yields collective occupancies that exhibit the same propor-
tionality constant of |Ψ(𝜔;0⃗,0⃗)|

2

𝜔
4

 as those that follow from the 
large-l asymptotics of Hill [34].
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