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Abstract
We study stochastic Navier–Stokes equations in two dimensions with respect to peri-
odic boundary conditions. The equations are perturbed by a nonlinear multiplicative
stochastic forcing with linear growth (in the velocity) driven by a cylindrical Wiener
process. We establish convergence rates for a finite-element based space-time approx-
imation with respect to convergence in probability (where the error is measured in the
L∞

t L2
x ∩ L2

t W 1,2
x -norm). Our main result provides linear convergence in space and

convergence of order (almost) 1/2 in time. This improves earlier results from Carelli
and Prohl (SIAM J Numer Anal 50(5):2467–2496, 2012) where the convergence rate
in time is only (almost) 1/4. Our approach is based on a careful analysis of the pressure
function using a stochastic pressure decomposition.

Mathematics Subject Classification 65M15 · 65C30 · 60H15 · 60H35

1 Introduction

In this paper we are concerned with the stochastic Navier–Stokes equations

⎧
⎨

⎩

du = μΔu dt − (∇u)u dt − ∇π dt + Φ(u)dW in Q,

divu = 0 in Q,

u(0) = u0 in O,

(1.1)

on a filtered probability space (Ω,F, (Ft )t≥0,P). The equations are perturbed by an
(Ft )-Wiener process (possibly infinite dimensional) and Φ grows linearly in u (see
Sect. 2.1 for the precise assumptions). The quantity μ > 0 is the viscosity of the fluid
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and u0 is a given (random) initial datum. Here the unknowns are the velocity field
u : Ω × Q → R

N and the pressure π : Ω × Q → R, where Q = (0, T ) × O and
O ⊂ R

N with N = 2, 3.
The stochastic perturbation in the balance ofmomentum (1.1)1 can take into account

for physical, empirical or numerical uncertainties and thermodynamical fluctuations.
In addition to that, a main reason why the stochastic Navier–Stokes equations (1.1)
became so popular in fluidmechanical research is their application to turbulence theory
(see, for instance, [2,21]). Its mathematical investigation started in the 70’s with the
pioneering paper of Bensoussan and Temam [1]. They provide a semi-deterministic
approach based on the flow-transformation. A first fully stochastic theory has been
developed by Flandoli and Gatarek [14] by showing the existence of a martingale
solution. These solutions are weak in the stochastic sense meaning that the underlying
probability space as well the Wiener process W are not a priori known but become
an integral part of the solution. In two dimensions, when uniqueness is known, a
stochastically strong solution exists (it is defined on a given probability space with
a given Wiener process), see [12]. Nowadays there is a huge amount of literature
concerning the analysis of (1.1) and most of the results from the deterministic theory
found their stochastic counterpart. For an overview we refer to the recent survey
article [25].

The situation about the numerical approximation of (1.1) is totally different and
only very few results are available. In [8] a fully practical space-time approximation
for the three-dimensional stochastic Navier–Stokes equations in a bounded domain is
studied. It is shown that the sequence of approximate solutions converges in law (up
to a subsequence) to a martingale solution if both discretization parameters tend to
zero. This is the best result one can hope for without using some unproven hypotheses
about the space-regularity of solutions (or to be content with local-in-time results). In
two dimensions the situation is much better, at least if periodic boundary conditions
are considered, that is

O = T
2 = (

(−π, π)|{−π,π}
)2

.

The space-regularity of the unique strong solution is well-known (see for instance
[20]).Basedon this the convergence rates for afinite-element based space-time approx-
imation is analysed in [9]. The result is linear convergence in space and convergence
of order (almost) 1/4 in time. The precise estimate comparing the solution u and its
space-time approximation uh,m reads as

E

[

1ΩΔt,h

(

max
1≤m≤M

‖u(tm) − uh,m‖2L2
x
+

M∑

m=1

Δt‖∇u(tm) − ∇uh,m‖2L2
x

)]

≤ c
(
h2 + (Δt)2α

)
(1.2)

for any α < 1/4. Here we have ΩΔt,h ⊂ Ω with P
(
Ω \ ΩΔt,h

) → 0 as Δt, h → 0.
Consequently, one can infer from (1.2) convergence in probability (as defined by
Printems [24]) with asymptotic rates (almost) 1/4 and 1 respectively. The aim of
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the present paper is to improve the convergence rates in time from (almost) 1/4 to
(almost) 1/2, see Theorem 3 for the precise statement. This is certainly the optimal
convergence rate in time in viewof the stochastic forcing and should also be considered
as the natural result because of the space-regularity of the solution.

The reason for the low convergence rate in time in [9] is the low time-regularity
of the pressure function π in (1.1). Its appearance can only be avoided when working
with finite element functions which are exactly divergence-free. Unfortunately, their
construction is quite complicated such that the preferred descretizations (such as the
Taylor–Hood, the Crouzeix–Raviart, and the MINI element, see [7,16,17]) are only
asymptotically divergence-free. The low regularity of the pressure gradient arises from
the stochastic forcing (in fact, ∇π behaves as dW ) and improvements do not seem
possible unless the noise is divergence-free (this is quite restrictive as it only allows
certain additive or linear multiplicative noise). In the general case (non-divergence-
free finite elements and nonlinear multiplicative noise) a more subtle analysis of the
pressure function is required. Our main idea is a decomposition of the pressure into a
deterministic and a stochastic component (such a decomposition first appeared in [5]).
The deterministic pressure part behaves as the convective term u ⊗ u. The latter one
can be estimated along the lines of [9] (following classical deterministic arguments
combined with a discrete stopping time). In addition a second stochastic integral
appears which behaves similarly to the original stochastic integral. Although the time-
regularity of this part has not improved, we benefit from the averaging properties of
the Itô-integral. Combining these ideas finally leads to the optimal convergence rate
in Theorem 3.

The paper is organized as follows. In Sect. 2 we present the mathematical frame-
work, that is the probability setup, the concept of solutions and their qualitative
properties. In particular, we give improved (compared to [9]) results on the time-
regularity of ∇u, see Corollary 2 b). This is needed in Sect. 3 in order to estimate the
error between the continuous solution and the time-discrete solution. The heart of the
paper is Sect. 4 were we estimate the error between the time-discrete solution and the
space-time discretization. Crucial tools are the space-regularity of the time-discrete
solution from [8] and the decomposition of the corresponding pressure function.

2 Mathematical framework

2.1 Probability setup

Let (Ω,F, (Ft )t≥0,P)be a stochastic basiswith a complete, right-continuousfiltration.
The process W is a cylindrical Wiener process, that is, W (t) = ∑

k≥1 βk(t)ek with
(βk)k≥1 being mutually independent real-valued standard Wiener processes relative
to (Ft ) and (ek)k≥1 is a complete orthonormal system in a separable Hilbert space U.
To give the precise definition of the diffusion coefficient Φ, consider z ∈ L2(T2) and
let Φ(z) : U → L2(T2) be defined by Φ(z)ek = gk(·, z(·)). In particular, we suppose
that gk ∈ C1(T2 × R

2) and that the following conditions hold
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∑

k≥1

|gk(x, ξ)|2 ≤ c(1 + |ξ |2),
∑

k≥1

|∇ξgk(x, ξ)|2 ≤ c,

∑

k≥1

|∇xgk(x, ξ)|2 ≤ c(1 + |ξ |2), x ∈ T
2, ξ ∈ R

2.
(2.1)

If we are interested in higher regularity some further assumptions are in place and we
require additionally gk ∈ C2(T2 × R

2) together with

∑

k≥1

|∇2
xgk(x, ξ)|2 ≤ c(1 + |ξ |2),

∑

k≥1

|∇2
ξ gk(x, ξ)|2 ≤ c

1 + |ξ |2 ,

∑

k≥1

|∇x∇ξgk(x, ξ)|2 ≤ c, x ∈ T
2, ξ ∈ R

2.
(2.2)

We remark that the first inequality of (2.1) implies

‖Φ(u)‖L2(U;L2
x ) ≤ c

(
1 + ‖u‖L2

x

) ∀u ∈ L2(T2), (2.3)

all inequalities from (2.1) imply

‖Φ(u)‖L2(U;W 1,2
x )

≤ c
(
1 + ‖u‖W 1,2

x

) ∀u ∈ W 1,2(T2), (2.4)

and (2.1) finally yields

‖Φ(u)‖L2(U;W 2,2
x )

≤ c
(
1 + ‖u‖W 2,2

x

) ∀u ∈ W 2,2(T2). (2.5)

In fact, all our results apply if we replace (2.1) and (2.2) by the corresponding norm
estimates above.

Furthermore, the conditions imposed on Φ, particularly the first assumption from
(2.1), allow us to define stochastic integrals Given an (Ft )-progressively measurable
process u ∈ L2(Ω; L2(0, T ; L2(T2))), the stochastic integral

t →
∫ t

0
Φ(u) dW

is a well defined process taking values in L2(T2) (see [13] for the detailed construc-
tion). Moreover, we can multiply by test functions to obtain

〈 ∫ t

0
Φ(u) dW ,φ

〉

=
∑

k≥1

∫ t

0
〈gk(u),φ〉 dβk, φ ∈ L2(T2).

Similarly, we can define stochastic integrals with values in W 1,2(T2) and W 2,2(T2)

respectively if u belongs to the corresponding class.
The following lemma is a helpful tool to analysis the time-regularity of stochastic

integrals (see, e.g., [6, Lemma 9.1.3. b)] or [19, Lemma 4.6]).
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Lemma 1 Let ψ ∈ Lr (Ω; Lr (0, T ; L2(U, L2(T2)))), r > 2, by an (Ft )-progressively
measureable process and W a cylindrical (Ft )-Wiener process on U. Then the paths
of the process Zt := ∫ t

0 ψ dW are P-a.s. Hölder continuous with exponent α ∈ ( 1
r , 1

2

)

and it holds

E

[
‖Z‖r

Cα([0,T ];L2(T2))

]
≤ cα E

[ ∫ T

0
‖ψ‖2L2(U,L2(T2))

dt

] r
2

.

2.2 The concept of solutions

In dimension two, pathwise uniqueness for weak solutions is known under (2.1), we
refer the reader for instance toCapiński–Cutland [12] andCapiński [11].Consequently,
we may work with the definition of a weak pathwise solution.

Definition 1 Let (Ω,F, (Ft )t≥0,P) be a given stochastic basis with a complete right-
continuous filtration and an (Ft )-cylindrical Wiener process W . Let u0 be an F0-
measurable random variable. Then u is called a weak pathwise solution to (1.1) with
the initial condition u0 provided

(a) the velocity field u is (Ft )-adapted and

u ∈ C([0, T ]; L2
div(T

2)) ∩ L2(0, T ; W 1,2
div (T2)) P-a.s.,

(b) the momentum equation

∫

T2
u(t) · ϕ dx −

∫

T2
u0 · ϕ dx

=
∫ t

0

∫

T2
u ⊗ u : ∇ϕ dx dt − μ

∫ t

0

∫

T2
∇u : ∇ϕ dx ds

+
∫ t

0

∫

T2
Φ(u) · ϕ dx dW .

holds P-a.s. for all ϕ ∈ C∞
div(T

2) and all t ∈ [0, T ].
Theorem 1 Let N = 2 and assume that Φ satisfies (2.1). Let (Ω,F, (Ft )t≥0,P) be
a given stochastic basis with a complete right-continuous filtration and an (Ft )-
cylindrical Wiener process W . Let u0 be an F0-measurable random variable such
that u0 ∈ Lr (Ω; L2

div(T
2)) for some r > 2. Then there exists a unique weak pathwise

solution to (1.1) in the sense of Definition 1 with the initial condition u0.

Now, for φ ∈ C∞(T2) we can insert φ − ∇Δ−1divφ and obtain

∫

T2
u(t) · ϕ dx +

∫ t

0

∫

T2
μ∇u : ∇φ dx dσ −

∫ t

0

∫

T2
u ⊗ u : ∇φ dx dσ

=
∫

T2
u(0) · ϕ dx +

∫ t

0

∫

T2
πdet divφ dx dσ
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+
∫

T2

∫ t

0
Φ(u) dW · ϕ dx +

∫

T2

∫ t

0
Φπ dW · ϕ dx, (2.6)

where

πdet = −Δ−1divdiv
(
u ⊗ u

)
,

Φπ = −∇Δ−1divΦ(u).

This corresponds to the stochastic pressure decomposition introduced in [5] (see also
[6, Chap. 3] for a slightly different presentation). However, the situation with peri-
odic boundary conditions we are considering here is much easier as the harmonic
component of the pressure disappears.

2.3 Regularity of solutions

Lemma 2 Let the assumptions of Theorem 1 be satisfied.

(a) We have

E

[

sup
0≤t≤T

∫

T2
|u|2 dx +

∫

Q
|∇u|2 dx dt

] r
2 ≤ cr E

[
1 + ‖u0‖2L2

x

] r
2
. (2.7)

(b) Assume that u0 ∈ Lr (Ω, W 1,2
div(T

2)) for some r ≥ 2. Then we have

E

[

sup
0≤t≤T

∫

T2
|∇u|2 dx +

∫

Q
|∇2u|2 dx dt

] r
2 ≤ cr E

[
1 + ‖u0‖2W 1,2

x

] r
2
. (2.8)

(c) Assume that u0 ∈ Lr (Ω, W 2,2
div(T

2))∩ L5r (Ω, W 1,2
div(T

2)) for some r ≥ 2 and that
(2.2) holds. Then we have

E

[

sup
0≤t≤T

∫

T2
|∇2u|2 dx +

∫

Q
|∇3u|2 dx dt

] r
2

≤ cr E

[
1 + ‖u0‖2W 2,2

x
+ ‖u0‖10W 1,2

x

] r
2
. (2.9)

Proof Part (a) is the standard a priori estimate which follows from applying Itô’s
formula to the functional f (u) = 1

2‖u‖2
L2

x
(and using Burkholder–Davis–Gundy

inequality, assumption (2.1) and Gronwall’s lemma). Note that this is legit in two
dimensions since we have u ⊗ u ∈ L2(Q) P-a.s. by Ladyshenskaya’s inequality.

The proof of (b) and (c) is quite similar to [20, Corollary 2.4.13]. However, we
are working with a different setup. So, we decided to give a formal proof although
it is certainly known to experts. The proof can be made rigorous by working with a
Galerkin-type approximation and show that the following estimates are uniform with
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respect to the dimension of the ansatz space. Such a procedure is quite standard, so
we leave the details to the reader.

In order to show (b) we apply Itô’s formula to the function fγ (u) := 1
2‖∂γ u‖2

L2
x

(with γ ∈ {1, 2}) and obtain

1

2
‖∂γ u(t)‖2L2

x
= 1

2
‖∂γ u0‖2L2

x
+

∫ t

0
f ′
γ (u) du + 1

2

∫ t

0
f ′′
γ (u) d〈〈u〉〉

= 1

2
‖∂γ u0‖2L2

x
+

∫

T2

∫ t

0
∂γ u · d∂γ u dx

+ 1

2

∫

T2

∫ t

0
d
〈〈 ∫ ·

0
∂γ

(
Φ(u) dW

)〉〉
dx

=: (I ) + (I I ) + (I I I ). (2.10)

We take the supremum in time, the r
2 th power and apply expectations. Summing over

γ , we find

(I I ) = −(I I )1 − (I I )2 + (I I )3,

(I I )1 := μ

∫ t

0

∫

T2
|∇2u|2 dx dσ,

(I I )2 :=
∫

T2

∫ t

0
∂γ u · ∂γ

(
Φ(u) dW

)
dx,

(I I )3 :=
∫ t

0

∫

T2
(∇u)u · Δu dx dσ.

In two dimensions we have (I I )3 = 0 by elementary calculations. So we are left with
estimating (I I )2 and obtain

(I I )2 =
∑

k

∫

T2

∫ t

0
∂γ u · ∂γ

(
Φ(u)ek dβk

)
dx

=
∑

k

∫

T2

∫ t

0
∂γ u · ∂γ

(
gk(·,u) dβk

)
dx

=
∑

k

∫

T2

∫ t

0
∇ξgk(·,u)(∂γ u, ∂γ u) dβk dx

+
∑

k

∫

T2

∫ t

0
∂γ u · ∂γ gk(·,u) dβk(σ ) dx

=: (I I )12 + (I I )22.
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On account of assumption (2.1), Burkholder–Davis–Gundy inequality and Young’s
inequality we obtain for arbitrary δ > 0

E

[

sup
0≤t≤T

|(I I )12|
] r

2 ≤ E

[

sup
0≤t≤T

∣
∣
∣

∫ t

0

∑

k

∫

T2
∇ξgk(·,u)(∂γ u, ∂γ u) dx dβk

∣
∣
∣

] r
2

≤ cE

[ ∑

k

∫ T

0

( ∫

T2
∇ξgk(·,u)(∂γ u, ∂γ u) dx

)2

dt

] r
4

≤ cE

[(∫ T

0

(∫

T2
|∂γ u|2 dx

)2

dt

] r
4

≤ δ E

[

sup
0≤t≤T

∫

T2
|∇u|2 dx

] r
2 + c(δ)E

[ ∫ T

0

∫

T2
|∇u|2 dx dt

] r
2

≤ δ E

[

sup
0≤t≤T

∫

T2
|∇u|2 dx

] r
2 + c(δ)E

[
1 + ‖u0‖2L2

x

] r
2

using (2.7) in the last step. By similar arguments we gain

E

[

sup
0≤t≤T

|(I I )22|
] r

2 ≤ cE

[ ∫ T

0

( ∫

T2
∂γ gk(·,u) · ∂γ u dx

)2

dt

] r
4

≤ cE

[( ∫ T

0

(∫

T2
|∂γ u||u| dx

)2

dt

] r
4

≤ cE

[

sup
(0,T )

∫

T2
|u|2 dx +

∫ T

0

∫

T2
|∇u|2 dx dt

] r
2

≤ cE
[
1 + ‖u0‖2L2

x

] r
2
.

Finally, we have by (2.1)

(I I I ) = 1

2

∫

T2

∫ t

0
d
〈〈 ∫ ·

0
∂γ

(
Φ(u) dW

)〉〉
dx

= 1

2

∑

k

∫

T2

∫ t

0
d
〈〈 ∫ ·

0
∂γ

(
Φ(u)ek

)
dβk

〉〉
dx

≤ 1

2

∑

k

∫ t

0

∫

T2

∣
∣∇ξgk(·,u)∂γ u

∣
∣2 dx dσ

+ 1

2

∑

k

∫ t

0

∫

T2

∣
∣∂γ gk(·,u)

∣
∣2 dx dσ

≤ c
∫ t

0

∫

T2
|∇u|2 dx dσ + c

∫ t

0

∫

T2
|u|2 dx dσ.
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Hence we obtain by (2.7) that

E

[

sup
0≤t≤T

|(I I I )|
] r

2 ≤ cE
[
1 + ‖u0‖2L2

x

] r
2
.

Plugging all together and choosing δ small enough we have shown (2.8).
The proof of (c) is similar: we simply differentiate once more. We apply Itô’s

formula to the function f β(u) := 1
2‖∂βu‖2

L2
x
where β ∈ N

2
0 is a multi-index of length

2. We obtain

1

2
‖∂βu(t)‖2L2

x
= 1

2
‖∂βu0‖2L2

x
+

∫

T2

∫ t

0
∂βu · d∂βu dx

+ 1

2

∫

T2

∫ t

0
d
〈〈 ∫ ·

0
∂β

(
Φ(u) dW

)〉〉
dx =: (I ) + (I I ) + (I I I ),

where

(I I ) = −(I I )1 + (I I )2 − (I I )3,

(I I )1 := μ

∫ t

0

∫

T2
|∂β∇u|2 dx dσ,

(I I )2 :=
∫ t

0

∫

T2
∂βu · ∂β

(
Φ(u) dW

)
dx,

(I I )3 :=
∫ t

0

∫

T2
∂β

(
(∇u)u

) · ∂βu dx dσ.

Themain difference is that (I I )3 does not vanish. By [20, Lemma2.1.20] (withm = 2)
and Young’s inequality we have

∣
∣
∣
∣

∫

T2
∂βdiv(u ⊗ u) · ∂βu dx

∣
∣
∣
∣ ≤ c‖u‖

7
4

W 3,2
x

‖u‖
3
4

W 1,2
x

‖u‖
1
2
L2

x

≤ δ‖u‖2
W 3,2

x
+ c(δ)‖u‖6

W 1,2
x

‖u‖4L2
x

≤ δ‖u‖2
W 3,2

x
+ c(δ)

(‖u‖10
W 1,2

x
+ ‖u‖10L2

x

)
,

where δ > 0 is arbitrary. This implies

E

[

sup
0≤t≤T

|(I I )3|
] r

2 ≤ δE

[ ∫ T

0
‖u‖2

W 3,2
x

dt

] r
2 + c(δ)E

[

sup
0≤t≤T

‖u‖2
W 1,2

x
+ sup

0≤t≤T
‖u‖2L2

x

] 5r
2

≤ δE

[ ∫ T

0
‖u‖2

W 3,2
x

dt

] r
2 + c(δ)E

[
‖u0‖W 1,2

x

] 5r
2

due to (2.8). By arguments similar to the proof of (b), using (2.2), we gain

E

[

sup
0≤t≤T

|(I I )2|
] r

2
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≤ δ E

[

sup
0≤t≤T

‖u‖2
W 2,2

x
dx

] r
2 + c(δ)E

[

sup
0≤t≤T

‖u‖2L2
x
+ sup

0≤t≤T
‖u‖2

W 1,2
x

+
∫ T

0
‖u‖2

W 2,2
x

dt

] r
2

≤ δ E

[

sup
0≤t≤T

‖u‖2
W 2,2

x
dx

] r
2 + cE

[
1 + ‖u0‖2W 1,2

x

] r
2

using again (2.8). Finally, we get (2.7) that

E

[

sup
0≤t≤T

|(I I I )|
] r

2 ≤ cE
[
1 + ‖u0‖2W 1,2

x

] r
2

arguing again similarly to (b) and using (2.2). Again the claim follows by choosing δ

small enough.

Under the assumptions of Lemma 2 (b) equation (1.1) is satisfied strongly in the
analytical sense. That is we have

u(t) = u(0) +
∫ t

0

[
μΔu − (∇u)u − ∇πdet

]
dσ +

∫ t

0

[
Φ(u) + Φπ

]
dW (2.11)

P-a.s. for all t ∈ [0, T ], recall equation (3.5). In the followingwe analyze the regularity
of the pressure components πdet and Φπ . In the following the subscript w∗ denotes
Bochner-measurability with respect to the weak∗-topology.

Corollary 1 (a) Under the assumptions of Lemma 2 we have

πdet ∈ L
r
2 (Ω, L2(0, T ; L2(T2)),

Φπ ∈ Lr (Ω; L∞
w∗(0, T ; L2(U; L2(T2)))).

(b) Under the assumptions of Lemma 2(b) we have

πdet ∈ L
r
2 (Ω, L2(0, T ; W 1,2(T2)),

Φπ ∈ Lr (Ω; L∞
w∗(0, T ; L2(U; W 1,2(T2)))).

(c) Under the assumptions of Lemma 2 (c) we have

πdet ∈ L
r
2 (Ω, L2(0, T ; W 2,2(T2)),

Φπ ∈ Lr (Ω; L∞
w∗(0, T ; L2(U; W 2,2(T2)))).

Proof The key tool is the continuity of Δ−1 (from W k−2,p(T2) → W k,p(T2) for all
k ∈ N0 and 1 < p < ∞). So, the regularity transfers from u ⊗ u to πdet. We obtain
by Ladyshenskaya’s inequality

∫ T

0

∫

T2
|πdet|2 dx dt =

∫ T

0

∫

T2
|Δ−1divdiv(u ⊗ u)|2 dx dt ≤ c

∫ T

0

∫

T2
|u|4 dx dt
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≤ c ‖u‖2L∞
t L2

x
‖∇u‖2

L2
t L2

x
≤ c

(
‖u‖4L∞

t L2
x
+ ‖∇u‖4

L2
t L2

x

)

such that

E

[ ∫ T

0

∫

T2
|πdet|2 dx dt

] r
4 ≤ cE

[
‖u‖2L∞

t L2
x
+ ‖∇u‖2

L2
t L2

x

] r
2

< ∞

using Lemma 2 (a). The estimates for (b) and (c) are very similar. We have to compare
∇π with |u||∇u|, where we have

|u||∇u| ≤ |u|2 + |∇u|2 ∈ L
r
2 (Ω; L2(Q))

under the assumptions of Lemma 2 (b). Similarly, ∇2π behaves as |u||∇2u| + |∇u|2
which belongs to the same class since Lemma 2 (c) applies.
Now, we investigate the regularity of Φπ . We use continuity Δ−1 to obtain

E

[

sup
0≤t≤T

‖Φπ‖2L2(U;L2
x )

] r
2 = E

[

sup
0≤t≤T

‖∇Δ−1divΦ(u)‖2L2(U;L2
x )

] r
2

= E

[

sup
0≤t≤T

∑

k≥1

‖∇Δ−1divgk(·,u)‖2L2
x

] r
2

≤ cE

[

sup
0≤t≤T

∑

k≥1

‖gk(·,u)‖2L2
x

] r
2

≤ cE

[

1 + sup
0≤t≤T

‖u‖2L2
x

] r
2

< ∞

using (2.1) and Lemma 2 (a). Similarly, we have

E

[

sup
0≤t≤T

‖Φπ‖2
L2(U;W 1,2

x )

] r
2 ≤ cE

[

sup
0≤t≤T

∑

k≥1

‖gk(·,u)‖2
W 1,2

x

] r
2

≤ cE

[

1 + sup
0≤t≤T

‖u‖2
W 1,2

x

] r
2

< ∞

using (2.1) and Lemma 2 (b), as well as

E

[

sup
0≤t≤T

‖Φπ‖2
L2(U;W 2,2

x )

] r
2 ≤ cE

[

sup
0≤t≤T

∑

k≥1

‖gk(·,u)‖2
W 2,2

x
dt

] r
2

≤ cE

[

1 + sup
0≤t≤T

‖u‖2
W 2,2

x

] r
2

< ∞

by (2.2) and the Lemma 2 (c). ��
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564 D. Breit, A. Dodgson

Finally, we investigate the time-regularity of the velocity field.

Corollary 2 (a) Let the assumptions of Lemma 2 (b) be satisfied for some r > 2. Then
we have

E

[
‖u‖Cα([0,T ];L2

x )

] r
2

< ∞ (2.12)

for all α < 1
2 .

(b) Let the assumptions of Lemma 2 (c) be satisfied for some r > 2. Then we have

E

[
‖u‖Cα([0,T ];W 1,2

x )

] r
2

< ∞ (2.13)

for all α < 1
2 .

Proof We start with (a) and analyse each term in equation (2.11) separately. Lemma 2
(b) implies

∫ ·

0
Δu dσ ∈ Lr (Ω; W 1,2(0, T ; L2(T2))).

As seen in the proof ofCorollary 1πdet andu⊗u have the same regularity. In particular,
Corollary 1 (b) yields

∫ ·

0

(
div(u ⊗ u) + ∇πdet

)
dσ ∈ L

r
2 (Ω; W 1,2(0, T ; L2(T2))).

Finally, we have

∫ ·

0
Φ(u) dW ∈ Lr (Ω; Cα([0, T ]; L2(T2))).

by combing Lemma 1 with (2.3). The same conclusion holds for Φπ using Lemma 1
(a). Plugging all together and noting the embedding W 1,2(0, T ; X) ↪→ Cα([0, T ]; X)

for any separably Banach space X the claim follows.
The proof of (b) follows along the same lines using the higher regularity fromLemma2
(c), Corollary 1 (c) and (2.4). ��

2.4 Discretization in space

We work with a standard finite element set-up for incompressible fluid mechanics,
see e.g. [7,15]. We denote by Th a quasi-uniform subdivision of T2 into triangles
of maximal diameter h > 0. For S ⊂ R

2 and � ∈ N0 we denote by P�(S) the
polynomials on S of degree less than or equal to �. Moreover, we setP−1(S) := {0}.
Let us characterize the finite element spaces V h(T2) and Ph(T2) as

V h(T2) := {vh ∈ W 1,2(T2) : vh |S ∈ Pi (S) ∀S ∈ Th},
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Ph(T2) := {πh ∈ L2(T2) : πh |S ∈ P j (S) ∀S ∈ Th}.

We will assume that i and j are both natural to get (2.15) below (this is different from
[9], where also j = 0 is allowed). In order to guarantee stability of our approximations
we relate V h(T2) and Ph(T2) by the inf-sup condition, that is we assume that

sup
vh∈V h(T2), vh �=0

∫

T2 divvh πh dx

‖∇vh‖L2
x

≥ C ‖πh‖L2
x

∀πh ∈ Ph(T2),

where C > 0 does not depend on h. This gives a relation between i and j (for instance
the choice (i, j) = (1, 0) is excluded whereas (i, j) = (2, 0) is allowed). Finally, we
define the space of discretely solenoidal finite element functions by

V h
div(T

2) :=
{

vh ∈ V h(T2) :
∫

T2
divvh πh dx = 0 ∀πh ∈ Ph(T2)

}

.

Let Πh : L2(T2) → V h
div(T

2) be the L2(T2)-orthogonal projection onto V h
div(T

2).
The following results concerning the approximability of Πh are well-known (see, for
instance [18]). There is c > 0 independent of h such that we have

∫

T2

∣
∣
∣
v − Πhv

h

∣
∣
∣
2
dx +

∫

T2
|∇v − ∇Πhv|2 dx ≤ c

∫

T2
|∇v|2 dx (2.14)

for all v ∈ W 1,2
div (T2) and

∫

T2

∣
∣
∣
v − Πhv

h

∣
∣
∣
2
dx +

∫

T2
|∇v − ∇Πhv|2 dx ≤ c h2

∫

T2
|∇2v|2 dx (2.15)

for all v ∈ W 2,2
div (T2). Similarly, if Ππ

h : L2(T2) → Ph(T2) denotes the L2(T2)-
orthogonal projection onto Ph(T2), we have

∫

T2

∣
∣
∣

p − Ππ
h p

h

∣
∣
∣
2
dx ≤ c

∫

T2
|∇ p|2 dx (2.16)

for all p ∈ W 1,2(T2) and

∫

T2

∣
∣
∣

p − Ππ
h p

h

∣
∣
∣
2
dx ≤ c h2

∫

T2
|∇2 p|2 dx (2.17)

for all p ∈ W 2,2(T2). Note that (2.17) requires the assumption j ≥ 1 in the definition
of Ph(T2), whereas (2.16) also holds for j = 0.
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566 D. Breit, A. Dodgson

3 Time-discretization

We consider an equidistant partition of [0, T ] with mesh size Δt = T /M and set
tm = mΔt . Let u0 be an F0-mesureable random variable with values in W 1,2

div (T2).
We aim at constructing iteratively a sequence of Ftm -measurable random variables um

with values in W 1,2
div (T2) such that for every φ ∈ W 1,2

div (T2) it holds true P-a.s.

∫

T2
um · ϕ dx + Δt

(∫

T2
(∇um)um · φ dx + μ

∫

T2
∇um : ∇φ dx

)

=
∫

T2
um−1 · ϕ dx +

∫

T2
Φ(um−1)Δm W · ϕ dx,

(3.1)

where Δm W = W (tm) − W (tm−1). The existence of a unique um (given um−1 and
Δm W ) solving (3.1) is straightforward as it is a stationary Navier–Stokes system. The
following result follows from Lemma 3.1 in [9].

Lemma 3 Assume that u0 ∈ L2q
(Ω, W 1,2

div(T
2)) for some 1 ≤ q < ∞. Suppose that Φ

satisfies (2.1). Then the iterates (um)M
m=1 given by (3.1) areFtm -measurable. Moreover,

the following estimates hold uniformly in M:

E

[

max
1≤m≤M

‖um‖2q

W 1,2
x

+ Δt
M∑

k=1

‖um‖2q−2
W 1,2

x
‖∇2um‖2L2

x

]

≤ c(q, T ,u0), (3.2)

E

[ M∑

k=1

‖um − um−1‖2W 1,2
x

‖∇um‖2L2
x

]

≤ c(T ,u0), (3.3)

E

[( M∑

k=1

‖um − um−1‖2W 1,2
x

)4

+
(

Δt
M∑

k=1

‖∇2um‖2L2
x

)4]

≤ c(T ,u0). (3.4)

Now, for φ ∈ W 1,2(T2) we can insert φ − ∇Δ−1divφ ∈ W 1,2
div (T2) in (3.1) and

obtain

∫

T2
um · ϕ dx + Δt

(∫

T2
(∇um)um · φ dx + μ

∫

T2
∇um : ∇φ dx

)

=
∫

T2
um−1 · ϕ dx + Δt

∫

T2
πdet

m divφ dx

+
∫

T2
Φ(um−1)Δm W · ϕ dx +

∫

T2

∫ t

0
Φπ

m−1 Δm W · ϕ dx, (3.5)

where

πdet
m = −Δ−1divdiv

(
um ⊗ um

)
,

Φπ
m−1 = −∇Δ−1divΦ(um−1).
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Lemma 4 Assume that u0 ∈ L8(Ω, W 1,2
div(T

2)) and that Φ satisfies (2.1). For all
m ∈ {1, ..., M} the random variable πdet

m is Ftm -measureable, has values in W 1,2(T2)

and we have

E

[

Δt
M∑

m=1

∥
∥∇πdet

m

∥
∥2

L2
x

]

≤ C

uniformly in Δt .

Remark 1 A corresponding result is shown in [9, Lemma 3.2] for the full pressure
provided the noise is divergence-free (in this caseΦπ

m vanishes). This is quite restrictive
as it means that Φ is linear in u.

Proof The Ftm -measurability of πdet
m follows directly from the one of um stated in

Lemma 3. By continuity of the operator ∇Δ−1div on L2(T2) we have

∥
∥∇πdet

m

∥
∥2

L2
x

≤ c
∥
∥div(um ⊗ um)

∥
∥2

L2
x

≤ c ‖um‖2L4
x
‖∇um‖2L4

x

≤ c ‖um‖L2
x
‖∇um‖2L2

x
‖∇2um‖L2

x
≤ c ‖um‖2L2

x
+ c ‖∇um‖4L2

x
‖∇2um‖2L2

x

P-a.s. using also Ladyshenskaya’s inequality ‖v‖2
L4

x
≤ c ‖v‖L2

x
‖∇v‖L2

x
which holds

in two-dimensions. Now, summing with respect to m, applying expectations and using
Lemma 3 yields the claim. ��
Lemma 5 Assume that u0 ∈ L8(Ω, W 1,2

div(T
2)) and that Φ satisfies (2.1). For

all m ∈ {1, ..., M} the random variable Φπ
m is Ftm -measureable, has values in

L2(U; W 1,2(T2)) and we have

E

[

Δt
M∑

m=1

∥
∥Φπ

m

∥
∥2

L2(U;W 1,2
x )

]

≤ C

uniformly in Δt .

Proof As for Lemma 4 the proof mainly relies on the continuity of ∇Δ−1div on
L2(T2). Here, we have by (2.4)

‖Φπ
m‖2

L2(U;W 1,2
x )

=
∑

k≥1

‖∇Δ−1div
(
Φ(um)ek

)‖2
W 1,2

x

≤ c
∑

k≥1

‖Φ(um)ek‖2W 1,2
x

= c ‖Φ(um)‖2
L2(U;W 1,2

x )
≤ c

(
1 + ‖∇um‖2

W 1,2
x

)
.

Summing over m, applying expectations and using Lemma 3 finishes the proof. ��
Following [9] we set for ε > 0

Ωε
Δt =

{
ω ∈ Ω

∣
∣
∣ max
1≤m≤M

‖∇um‖2L2
x

≤ −ε log(Δt)
}

(3.6)
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such that

P
(
Ωε

Δt

) ≥ 1 −
E

[
max1≤m≤M ‖∇um‖2

L2
x

]

−ε log(Δt)
≥ 1 + C

ε logΔt

using Lemma 3. We obtain the following result.

Theorem 2 Assume that (2.1) holds and that u0 ∈ L8(Ω, W 1,2
div(T

2)) is an F0-
measureable random variable. Let u be the unique strong solution to (1.1) in the
sense of Definition 1. Assume that we have

E

[
‖u‖4Cα([0,T ];L4

x )

]
< ∞, E

[
‖u‖2

Cα([0,T ];W 1,2
x )

]
< ∞, (3.7)

for some α ∈ (0, 1
2 ); recall Corollary 2. Let (um)M

m=1 be the solution to (3.1). Then
we have the error estimate

E

[

1Ωε
Δt

(

max
1≤m≤M

‖u(tm) − um‖2L2
x
+ Δt

M∑

m=1

‖∇u(tm) − ∇um‖2L2
x

)]

≤ cε (Δt)2α−ε

(3.8)

for any ε > 0.

Remark 2 – Estimate (4.3) improves the result from [9, Thm. 3.1], where the con-
vergence rate is only α − ε.

– In the paper [4] the time-discretization of the stochastic Navier–Stokes equations
is analysed. The corresponding error does not contain an indicator function such
as 1Ωε

Δt
. The convergence rate is, however, only of logarithmic order.

Proof Subtracting (1.1) and (3.1) we obtain the equation for the error em = u(tm)−um

which reads as

∫

T2
em · ϕ dx +

∫ tm

tm−1

(∫

T2

(
(∇u)u − (∇um)um

) · φ dx + μ

∫

T2
∇em : ∇φ dx

)

dt

=
∫

T2
em−1 · ϕ dx + μ

∫ tm

tm−1

∫

T2

(∇u(tm) − ∇u(t)
) : ∇φ dx dt

+
∫

T2

( ∫ tm

tm−1

Φ(u) dW − Φ(um−1)Δm W

)

· ϕ dx (3.9)

for all φ ∈ W 1,2
div (T2). Choosing φ = em implies

1

2

∫

T2
|em |2 dx + 1

2

∫

T2
|em − em−1|2 dx + μΔt

∫

T2
|∇em |2 dx

= 1

2

∫

T2
|em−1|2 dx − μ

∫ tm

tm−1

∫

T2

(∇u(tm) − ∇u(t)
) : ∇em dx dt
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+
∫ tm

tm−1

∫

T2

(
(∇u)u − (∇um)um

) · em dx dt

+
∫

T2

( ∫ tm

tm−1

Φ(u) dW − Φ(um−1)Δm W

)

· em dx .

Iterating this equality and following the arguments in [9, proof of Thm. 3.1] yields

E

[

1Ωε
Δt

(

max
1≤m≤M

‖u(tm) − um‖2L2
x
+ Δt

M∑

m=1

‖∇u(tm) − ∇um‖2L2
x

)]

≤ c (Δt)2α−ε + cE

[ M∑

m=1

∫ tm

tm−1

∫

T2

∣
∣∇u(tm) − ∇u(t)

∣
∣2 dx dt

]

.

(3.10)

Note that only the first bound from (3.7) has been used for (3.10). The second bound
from (3.7), not used in [9], allows us to estimates the remaining integral by

E

[ M∑

m=1

∫ tm

tm−1

∫

T2

∣
∣∇u(tm) − ∇u(t)

∣
∣2 dx dt

]

≤ c (Δt)2α

which finishes the proof. ��

4 Finite element based space-time approximation

Now we consider a fully practical scheme combining the implicite Euler scheme in
time (as in the last section) with a finite element approximation in space. For a given
h > 0 let uh,0 be an F0-mesureable random variable with values in V h

div(T
2) (for

instance Πhu0). We aim at constructing iteratively a sequence of random variables
uh,m with values in V h

div(T
2) such that for every φ ∈ V h

div(T
2) it holds true P-a.s.

∫

T2
uh,m · ϕ dx + Δt

∫

T2

(
(∇uh,m)uh,m−1 + (divuh,m−1)uh,m

) · φ dx (4.1)

+ μΔt
∫

T2
∇um : ∇φ dx =

∫

T2
uh,m−1 · ϕ dx +

∫

T2
Φ(uh,m−1)Δm W · ϕ dx,

where Δm W = W (tm) − W (tm−1). We quote the following result concerning the
existence of solutions uh,m to (4.1) from [8, Lemma 3.1].

Lemma 6 Let 1 ≤ q < ∞. Assume that uh,0 ∈ L2q
(Ω, V h

div(T
2)) is anF0-mesureable

random variable and thatE
[‖uh,0‖2q

L2
x

∣
∣] ≤ K uniformly in h for some K > 0. Suppose

that Φ satisfies (2.1). Then the iterates (uh,m)M
m=1 given by (4.1) are Ftm -measurable.
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Moreover, the following estimate holds uniformly in M and h:

E

[

max
1≤m≤M

‖uh,m‖2q

L2
x
+ Δt

M∑

k=1

‖uh,m‖2q−2
L2

x
‖∇uh,m‖2L2

x

]

≤ c(q, T , K ). (4.2)

4.1 Error analysis

In this subsection we establish convergence with rates of the above defined algorithm.
We introduce for ε > 0 the sample set

Ωε
h =

{
ω ∈ Ω

∣
∣
∣ max
0≤m≤M

(
‖∇um‖4L2

x
+ ‖uh,m‖2L2

x

)
≤ −ε log h

}

which can be controlled by

P
(
Ωε

h

) ≥ 1 −
E

[
max1≤m≤M

(‖∇um‖4
L2

x
+ ‖uh,m‖2

L2
x

)]

−ε log h
≥ 1 + C

ε log h

using Lemma 3 and 6. We also recall the definition of Ωε
Δt in (3.6). We are now ready

to state our main result.

Theorem 3 Let u0 ∈ L2(Ω, W 1,2
div (T2)) ∩ L8(Ω; L2

div(T
2)) be F0-measurable and

assume that Φ satisfies (2.1). Let u be the unique strong solution to (1.1) in the sense
of Definition 1. Suppose further that

E

[
‖u‖4Cα([0,T ];L4

x )

]
< ∞, E

[
‖u‖2

Cα([0,T ];W 1,2
x )

]
< ∞,

for α ∈ (0, 1
2 ); recall Corollary 2. Assume that LΔt ≤ (−ε log h)−1 for some L > 0.

Then we have

E

[

1Ωε
Δt ∩Ωε

h

(

max
1≤m≤M

‖u(tm) − uh,m‖2L2
x
+

M∑

m=1

Δt‖∇u(tm) − ∇uh,m‖2L2
x

)]

≤ c
(
h2 + (Δt)2α−ε

)
,

(4.3)

where (uh,m)M
m=1 is the solution to (4.1) with uh,0 = Πhu0. The constant c in (4.3) is

independent of M and h.

Remark 3 We do not expect that it is possible to avoid an indicator function in general
(see [24] for the numerical approximation of stochastic PDEs with non-Lipschitz
nonlinearities). But it is not clear if our choice of the sample subset is optimal.

The rest of the paper is devoted to the proof of Theorem 3. In fact Theorem 3 will
follow from combining Theorem 2 with the following theorem which estimates the
error between the time-discrete solution um to (3.1) and the solution uh,m to (4.1).
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Theorem 4 Let u0 ∈ L2(Ω; W 1,2
div (T2)) ∩ L8(Ω; L2

div(T
2)) be F0-measurable and

assume that Φ satisfies (2.1). Let (um)M
m=1 be the solution to (3.1). Assume that LΔt ≤

(−ε log h)−1 for some L > 0. Then we have

E

[

1Ωε
h

(

max
1≤m≤M

‖um − uh,m‖2L2
x
+ Δt

M∑

m=1

‖∇um − ∇uh,m‖2L2
x

)]

≤ c
(
h2 + Δt

)
,

(4.4)

where (uh,m)M
m=1 is the solution to (4.1) with uh,0 = Πhu0. The constant c is (4.4) is

independent of M and h.

Remark 4 In the estimate of [9, Thm. 4.1] the error is estimated by h−3ε(h2 + (Δt) +
h2
Δt ). By our refined pressure analysis we are able to get rid of the term

h2
Δt which leads

to a restrictive assumption between space and time-discretization. Additionally, we
can remove the factor h−3ε arising from the convective term, see (4.6) below. Note
that the error term h2

Δt also appears in [10], where the finite-element based space-time
discretization of the stochastic Stokes equations (that is the linearized version of (1.1)
without convective term) is studied.

Proof of Theorem 4 Define the error eh,m = um −uh,m . Subtracting (3.5) and (4.1) we
obtain

∫

T2
eh,m · ϕ dx + Δt

∫

T2
μ

(
∇um − ∇uh,m

)
: ∇φ dx

=
∫

T2
eh,m−1 · ϕ dx − Δt

∫

T2

(
(∇um)um − (

(∇uh,m)uh,m−1 + (divuh,m−1)uh,m
)) · φ dx

+
∫

T2

(
Φ(um) − Φ(uh,m−1)

)
Δm W · ϕ dx

−
∫

T2
∇Δ−1divΦ(um−1)Δm W · ϕ dx + Δt

∫

T2
πdet

m divφ dx

for every φ ∈ V h
div(T

2). Setting φ = Πheh,m and applying the identity a · (a − b) =
1
2

(|a|2 − |b|2 + |a − b|2) (which holds for any a,b ∈ R
n) we gain

∫

T2

1

2

(|Πheh,m |2 − |Πheh,m−1|2 + |Πheh,m − Πheh,m−1|2
)
dx + Δt

∫

T2
μ|∇eh,m |2 dx

= Δt
∫

T2
μ∇eh,m : ∇(

um − Πhum
)
dx

− Δt
∫

T2

(
(∇um)um − (

(∇uh,m)uh,m−1 + (divuh,m−1)uh,m
)) · Πheh,m dx

+ Δt
∫

T2
πdet

m divΠheh,m dx

+
∫

T2

(
Φ(um) − Φ(uh,m−1)

)
Δm W · Πheh,m dx

−
∫

T2
∇Δ−1divΦ(um−1)Δm W · Πheh,m dx
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= I1(m) + · · · + I5(m). (4.5)

Young’s inequality yields

I1(m) ≤ κ Δt
∫

T2
|∇eh,m |2 dx + cκΔt

∫

T2
|∇um − ∇Πh∇um |2 dx

≤ κ Δt
∫

T2
|∇eh,m |2 dx + cκ h2Δt

∫

T2
|∇2um |2 dx .

for every κ > 0 using also (2.15). The convective term I2(m) can be decomposed as

I2(m) = I 12 (m) + I 22 (m) + I 32 (m),

I 12 (m) = −Δt
∫

T2
(∇eh,m)um−1 · (

um − Πhum
)
dx,

I 22 (m) = Δt
∫

T2
(∇eh,m)eh,m−1 · (

um − Πhum
)
dx

+ Δt
∫

T2
(diveh,m−1)eh,m · (

um − Πhum
)
dx,

I 32 (m) = −Δt
∫

T2
(∇Πheh,m)eh,m−1 · um dx

− Δt
∫

T2
(diveh,m−1)Πheh,m · um dx .

As in [9, pages 2489–2491] we introduce the sample set

Ωε
h,m =

{
ω ∈ Ω

∣
∣
∣ max
0≤n≤m

(
‖∇un‖4L2

x
+ ‖uh,n‖2L2

x

)
≤ −ε log h

}

and obtain

1Ωε
h,m−1

I 22 (m) ≤ κ1Ωε
h,m−1

(
‖∇eh,m−1‖2L2

x
+ ‖∇eh,m‖2L2

x

)

+ cκ Δt h4
(

max
1≤n≤m

‖eh,n‖2L2
x

)
‖∇um‖2L2

x
‖∇2um‖2L2

x
,

1Ωε
h,m−1

I 32 (m) ≤ κ1Ωε
h,m−1

(
‖∇eh,m−1‖2L2

x
+ ‖∇eh,m‖2L2

x

)

+ cκ Δt log(h−ε)
(

max
1≤n≤m

1Ωε
h,n−1

‖eh,n‖2L2
x

)

+ cκ Δt‖∇(um − um−1)‖2L2
x

(
max

1≤n≤m
‖∇un‖2L2

x

)(
max

0≤n≤m
‖eh,n‖2L2

x

)
,

where κ > 0 is arbitrary. For I 12 (m), however, we get a slightly better estimate than
in [9] since our definition of I 12 (m) makes use of divum = 0. We obtain

1Ωε
h,m−1

I 12 (m) ≤ κ1Ωε
h,m−1

‖∇eh,m‖2L2
x
+ cκh3 log(h−ε)‖∇2um‖2L2

x
(4.6)
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due to (2.14).
The crucial point in this proof (making the essential difference to [9]) are the estimates
for the pressure terms I3(m) and I5(m). We will estimate I3(m) first whereas I5(m)

will only be bounded after iterating (4.5), see the estimates forMm,2 below. By (2.15)
we have

I3(m) = Δt
∫

T2

(
πdet

m − Ππ
h πdet

m

)
divΠheh,m dx

≤ cκΔt
∫

T2
|πdet

m − Ππ
h πdet

m |2 dx + κΔt
∫

T2
|∇Πheh,m |2 dx

≤ cκΔth2
∫

T2
|∇πdet

m |2 dx + κΔt
∫

T2
|∇eh,m |2 dx,

where κ > 0 is arbitrary. Plugging all together and choosing κ small enough (to absorb
the corresponding terms to the left-hand side) we have shown

1Ωε
h,m−1

( ∫

T2
|Πheh,m |2 dx +

∫

T2
|Πheh,m − Πheh,m−1|2 dx + Δt

∫

T2
|∇eh,m |2 dx

)

≤ 1Ωε
h,m−1

∫

T2
|eh,m−1|2 dx + c Δt log(h−ε)

(
max

1≤n≤m
1Ωε

h,n−1
‖eh,n‖L2

x

)

+ cΔt h2
(∫

T2
|∇πdet

m |2 dx +
∫

T2
(1 + |∇um |2) dx

∫

T2
|∇2um |2 dx

)

+ c Δt h4
(

max
1≤n≤m

‖eh,n‖2L2
x

) ∫

T2
|∇um |2 dx

∫

T2
|∇2um |2 dx

+ c Δt
∫

T2
|∇(um − um−1)|2 dx

(

max
1≤n≤m

∫

T2
|∇un|2 dx

)(

max
1≤n≤m

∫

T2
|eh,n|2 dx

)

+ c 1Ωε
h,m−1

∫

T2

( ∫ tm

tm−1

Φ(um−1) − Φ(uh,m−1)
)
dW

)

· Πheh,m dx

− c 1Ωε
h,m−1

∫

T2

( ∫ tm

tm−1

∇Δ−1divΦ(um−1) dW

)

· Πheh,m dx .

Iterating this inequality yields

1Ωε
h,m−1

∫

T2
|Πheh,m |2 dx +

m∑

n=1

1Ωε
h,n−1

( ∫

T2
|Πheh,n − Πheh,n−1|2 dx + Δt

∫

T2
|∇eh,n |2 dx

)

≤
∫

T2
|eh,0|2 dx + c Δt log(h−ε)

m∑

n=1

(
max
1≤�≤n

1Ωε
h,�−1

‖eh,�‖2L2
x

)

+ c h2Δt
m∑

n=1

( ∫

T2
|∇πdet

n |2 dx +
∫

T2
(1 + |∇un |2) dx

∫

T2
|∇2un |2 dx

)

+ c Δt h4
m∑

n=1

(
max
1≤�≤n

‖eh,�‖2L2
x

) ∫

T2
|∇un |2 dx

∫

T2
|∇2un |2 dx
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+ c Δt
m∑

n=1

∫

T2
|∇(un − un−1)|2 dx

(

max
1≤�≤n

∫

T2
|∇u�|2 dx

)(

max
1≤�≤n

∫

T2
|eh,�|2 dx

)

+ c
m∑

n=1

1Ωε
h,n−1

∫

T2

( ∫ tn

tn−1

Φ(un−1) − Φ(uh,n−1)
)
dW

)

· Πheh,n dx

− c
m∑

n=1

1Ωε
h,n−1

∫

T2

( ∫ tn

tn−1

∇Δ−1divΦ(un−1) dW

)

· Πheh,n dx .

Now, we explain how to bound line by line in expectation. The error in the initial
datum can be bounded by h2 by (2.14) and the assumption u0 ∈ L2(Ω; W 1,2

div (T2)).
The second term on the right-hand side can be handled by the discrete Gronwall
lemma using the assumption LΔt ≤ (−ε log h)−1. The expectation of the second
line is bounded by h2 using Lemmas 3 and 4 (the estimate for ∇πdet

m is the first main
ingredient in our proof). This estimate is better than the corresponding one in [9] as
only the deterministic part of the pressure appears here. The expectation of the terms
in the third line is bounded by

E

[(

max
1≤�≤M

‖eh,�‖2L2
x

)(

max
1≤�≤M

‖∇u�‖2L2
x

)

Δt
M∑

n=1

∫

T2
|∇2un |2 dx

]

≤
(

E

[
max

1≤�≤M
‖eh,�‖2L2

x

]2
) 1

2
(

E

[

max
1≤�≤M

‖∇u�‖2L2
x

]4) 1
4
(

E

[

Δt
M∑

n=1

∫

T2
|∇2un |2 dx

]4) 1
4

.

This is uniformly bounded as a consequence of Lemmas 3 and 6. The fourth line is
controlled by Δt due to the estimate

E

[ m∑

n=1

∫

T2
|∇(un − un−1)|2 dx

(

max
1≤�≤n

∫

T2
|∇u�|2 dx

)(

max
1≤�≤n

∫

T2
|eh,�|2 dx

)]

≤
(

E

[ M∑

n=1

∫

T2
|∇(un − un−1)|2 dx

]2) 1
2
(

E

[

max
1≤�≤M

∫

T2
|∇u�|2 dx

]4) 1
4 ×

×
(

E

[

max
1≤�≤M

∫

T2
|eh,�|2 dx

]4) 1
4

and the uniform bounds from Lemmas 3 and 6 (with q = 3). It remains to estimate
the two stochastic terms

Mm,1 =
m∑

n=1

1Ωε
h,n−1

∫

T2

∫ tn

tn−1

(
Φ(un−1) − Φ(uh,n−1)

)
dW · Πheh,n dx,

Mm,2 =
m∑

n=1

1Ωε
h,n−1

∫

T2

∫ tn

tn−1

(
Id − Ππ

h

)
Δ−1divΦ(un−1) dW divΠheh,n dx .
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Note that we used integration by parts and Πheh,n ∈ V h
div(T

2) together with the
definition of Ππ

h to rewriteMm,2 into the form above. Finally, we write

Mm,1 =
m∑

n=1

1Ωε
h,n−1

∫

T2

∫ tn

tn−1

(
Φ(un−1) − Φ(uh,n−1)

)
dW · Πheh,n−1 dx

+
m∑

n=1

1Ωε
h,n−1

∫

T2

∫ tn

tn−1

(
Φ(un−1) − Φ(uh,n−1)

)
dW · (Πheh,n − Πheh,n−1) dx

=: M 1
m,1 + M 2

m,1

as well as

Mm,2 =
m∑

n=1

1Ωε
h,n−1

∫

T2

∫ tn

tn−1

(
Id − Ππ

h

)
Δ−1divΦ(un−1) dW divΠheh,n−1 dx

+
m∑

n=1

1Ωε
h,n−1

∫

T2

∫ tn

tn−1

(
Id − Ππ

h

)
Δ−1divΦ(un−1) dW div(Πheh,n − Πheh,n−1) dx

=: M 1
m,2 + M 2

m,2.

These representations have the advantage thatM 1
m,1 andM

2
m,2 are martingales (note

the index n−1 in the indicator functions). Consequently, we can apply theBurkholder–
Davis–Gundy inequality to estimate them. As far as Mm,1 is concerned we have

E

[

max
1≤m≤M

∣
∣M 1

m,1

∣
∣

]

≤ cE

[ M∑

n=1

1Ωε
h,n−1

∫ tn

tn−1

‖Φ(un−1) − Φ(uh,n−1)‖2L2(U,L2
x )

‖Πheh,n−1‖2L2
x
dt

] 1
2

≤ cE

[

max
0≤n≤M

1Ωε
h,n

‖Πheh,n‖L2
x

( M∑

n=1

1Ωε
h,n−1

∫ tn

tn−1

‖Φ(un−1) − Φ(uh,n−1)‖2L2(U,L2
x )
dt

) 1
2
]

≤ κ E

[

max
0≤n≤M

1Ωε
h,n

‖Πheh,n‖2L2
x

]

+ cκ E

[ M∑

n=1

1Ωε
h,n−1

∫ tn

tn−1

‖un−1 − uh,n−1‖2L2
x
dt

]

≤ κ E

[

max
0≤n≤M

1Ωε
h,n

‖Πheh,n‖2L2
x

]

+ cκ E

[

Δt
M∑

n=1

1Ωε
h,n−1

‖Πheh,n−1‖2L2
x

]

+ cκ E

[

Δt
M∑

n=1

1Ωε
h,n−1

‖un−1 − Πhun−1‖2L2
x

]

Here, we also used (2.1) as well as Young’s inequality for κ > 0 arbitrary. Now, the
first term can be absorbed for κ small enough. The second term can be handled by the
discrete Gronwall lemma (note that Ωε

h,n ⊂ Ωε
h,n−1 such that 1Ωε

h,n
≤ 1Ωε

h,n−1
P a.s.)
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Using (2.14) the last term can be estimated by

cκh2
E

[

Δt
M∑

n=1

1Ωε
h,n−1

‖∇un−1‖2L2
x

]

which is bounded by ch2 using Lemma 3 (recall that u0 ∈ L2(Ω; W 1,2(T2))). For
the term M 2

m,1 we obtain by Cauchy–Schwartz inequality, Young’s inequality, Itô-
isometry and (2.1)

E

[

max
1≤m≤M

|M 2
m,1|

]

≤ κ E

[ M∑

n=1

1Ωε
h,n−1

∥
∥Πheh,n − Πheh,n−1

∥
∥2

L2
x

]

+ cκ E

[ M∑

n=1

1Ωε
h,n−1

∥
∥
∥
∥

∫ tn

tn−1

(
Φ(un−1) − Φ(uh,n−1)

)
dW

∥
∥
∥
∥

2

L2
x

]

≤ κ E

[ M∑

n=1

1Ωε
h,n−1

‖Πheh,n − Πheh,n−1‖2L2
x

]

+ cκ E

[ M∑

n=1

1Ωε
h,n−1

∫ tn

tn−1

‖un−1 − uh,n−1‖2L2
x
dt

]

.

The first term can be absorbed for κ small enough whereas the second one can be
estimated as for M 1

m,1.
Now, we come to the second main ingredient which is the estimate for Mm,2. We
obtain using (2.17), (2.1) and continuity of ∇2Δ−1

E

[

max
1≤m≤M

∣
∣M 1

m,2

∣
∣

]

≤ cE

[ M∑

n=1

1Ωh,n−1

∫ tn

tn−1

‖(Id − Ππ
h

)
Δ−1divΦ(un−1)‖2L2(U,L2

x )
‖∇Πheh,n−1‖2L2

x
dt

] 1
2

≤ c h2
E

[

max
1≤n≤M

‖∇2Δ−1divΦ(un−1)‖L2(U,L2
x )

( M∑

n=1

1Ωh,n−1

∫ tn

tn−1

‖∇Πheh,n‖2L2
x
dt

) 1
2
]

≤ cκh4
E

[

max
1≤n≤M

‖∇un−1‖2L2
x

]

+ κ E

[

Δt
M∑

n=1

1Ωh,n−1‖∇Πheh,n‖2L2
x

]

.

Thefirst term is boundedby cκh4 usingLemmas 3 (recall thatu0 ∈ L2(Ω; W 1,2(T2))).
The second term can be absorbed if κ � 1. As a consequence of Young’s inequality,
inverse estimates on V h(T2), Itô-ismotry and (2.17) we infer

E

[

max
1≤m≤M

|M 2
m,2|

]

≤ κh2
E

[ M∑

n=1

1Ωh,n−1

∥
∥∇(

Πheh,n − Πheh,n−1
)∥
∥2

L2
x

]
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+ cκh−2
E

[ M∑

n=1

1Ωh,n−1

∥
∥
∥
∥

∫ tn

tn−1

(
Id − Ππ

h

)
Δ−1divΦ(un−1) dW

∥
∥
∥
∥

2

L2
x

]

≤ c κ E

[ M∑

n=1

1Ωh,n−1

∥
∥Πheh,n − Πheh,n−1

∥
∥2

L2
x

]

+ cκh−2
E

[ M∑

n=1

1Ωh,n−1

∫ tn

tn−1

∥
∥
(
Id − Ππ

h

)
Δ−1divΦ(un−1)

∥
∥2

L2(U;L2
x )
dt

]

≤ c κ E

[ M∑

n=1

1Ωh,n−1

∥
∥Πheh,n − Πheh,n−1

∥
∥2

L2
x

]

+ cκh2
E

[ M∑

n=1

∫ tn

tn−1

∥
∥∇2Δ−1divΦ(un−1)

∥
∥2

L2(U;L2
x )
dt

]

.

The first term can be absorbed for κ small enough. Arguing as forM 1
m,2 the last term

is bounded by ch2
E

[
maxn ‖∇un−1‖2L2

x

] ≤ ch2. Plugging all together and noting that

Ωε
h ⊂ ⋃M

n=1 Ωε
h,n shows

E

[

1Ωε
h

(

max
1≤m≤M

‖Πheh,m‖2L2
x
+ Δt

M∑

m=1

‖∇eh,m‖2L2
x

)]

≤ c
(
h2 + Δt

)
.

Recalling that eh,m = um −Πhum +Πheh,m and using (2.14) as well as Lemma 3 (a)
gives the claim. ��
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8. Brzeźniak, Z., Carelli, E., Prohl, J.A.: Finite-element-based discretizations of the incompressible
Navier–Stokes equations with multiplicative random forcing. IMA J. Num. Anal. 33, 771–824 (2013)

9. Carelli, E., Prohl, A.: Rates of convergence for discretizations of the stochastic incompressible Navier–
Stokes equations. SIAM J. Numer. Anal. 50(5), 2467–2496 (2012)

10. Carelli, E., Hausenblas, E., Prohl, A.: Time-splitting methods to solve the stochastic incompressible
Stokes equation. SIAM J. Numer. Anal. 50, 2917–2939 (2012)

11. Capiński, M.: A note on uniqueness of stochastic Navier–Stokes equations. Univ. Iagell. Acta Math.
30, 219–228 (1993)
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