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Abstract
Wedesign and analyse the performance of amultilevel ensemble Kalman filter method
(MLEnKF) for filtering settings where the underlying state-space model is an infinite-
dimensional spatio-temporal process. We consider underlying models that needs to be
simulated by numerical methods, with discretization in both space and time. The mul-
tilevel Monte Carlo sampling strategy, achieving variance reduction through pairwise
coupling of ensemble particles on neighboring resolutions, is used in the sample-
moment step of MLEnKF to produce an efficent hierarchical filtering method for
spatio-temporal models. Under sufficent regularity, MLEnKF is proven to be more
efficient for weak approximations than EnKF, asymptotically in the large-ensemble
and fine-numerical-resolution limit. Numerical examples support our theoretical find-
ings.
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1 Introduction

Filtering refers to the sequential estimation of the state u and/or parameters of a system
through sequential incorporation of online data y. The most complete estimation of
the state un at time n is given by its probability distribution conditional on the obser-
vations up to the given time P(dun|y1, . . . , yn) [2,27]. For linear Gaussian systems,
the analytical solution may be given in closed form via update formulae for the mean
and covariance known as the Kalman filter [31]. More generally, however, closed
form solutions typically are not known. One must therefore resort to either algorithms
which approximate the probabilistic solution by leveraging ideas from control theory
in the data assimilation community [27,32], or Monte Carlo methods to approximate
the filtering distribution itself [2,11,15]. The ensemble Kalman filter (EnKF) [9,17,35]
combines elements of both approaches. In the linear Gaussian case it converges to the
Kalman filter solution in the large-ensemble limit [41], and even in the nonlinear case,
under suitable assumptions it converges [36,37] to a limit which is optimal among
those which incorporate the data linearly and use a single update iteration [36,40,44].
In the case of spatially extended models approximated on a numerical grid, the state
space itselfmay become very high-dimensional and even the linear solvesmay become
intractable, due to the cost of computing the covariance matrix. Therefore, one may be
inclined to use the EnKF filter even for linear Gaussian problems in which the solution
is computationally intractable despite being given in closed form by the Kalman filter.

The Multilevel Monte Carlo method (MLMC) is a hierarchical and variance-
reduction based approximationmethod initially developed forweak approximations of
random fields and stochastic differential equations [18,19,21]. Recently, a number of
works have emergedwhich extend theMLMC framework to the setting ofMonteCarlo
algorithms designed for Bayesian inference. Examples include Markov chain Monte
Carlo [14,22], sequential Monte Carlo samplers [6,26,42], particle filters [20,25], and
EnKF [23]. The filtering papers thus far [20,23,25] consider only finite-dimensional
SDE forward models. In this work, we develop a new multilevel ensemble Kalman
filtering method (MLEnKF) for the setting of infinite-dimensional state-space models
with evolution in continuous-time. The method consists of a hierarchy of pairwise
coupled EnKF-like ensembles on different finite-resolution levels of the underlying
infinite-dimensional evolution model that all depend on the same Kalman gain in the
update step. The method presented in this work may be viewed as an extension of
the finite-dimensional-state-space MLEnKF method [23], which only considered a
hierarchy of time-discretization resolution levels.

Under sufficient regularity, the large-ensemble limit of EnKF is equal in distribu-
tion to the so-calledmean-field EnKF (MFEnKF), cf. [34,36,37]. In nonlinear settings,
however, MFEnKF is not equal in distribution to the Bayes filter, which is the exact fil-
ter distribution. More precisely, the error of EnKF approximating the Bayes filter may
be decomposed into a statistical error, due to the finite ensemble size, and a Gaussian
bias that is introduced by theKalman-filter-like update step in EnKF.While the update-
step bias error in EnKF is difficult both to quantify and deal with, the statistical error
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can, in theory, be reduced to arbitrary magnitude. However, the high computational
cost of simulations in high-dimensional state space often imposes small ensemble size
as a practical constraint. Bymaking use of hierarchical variance-reduction techniques,
the MLEnKF method developed in this work is capable of obtaining a much smaller
statistical error than EnKF at the same fixed cost.

In addition to design anMLEnKFmethod for spatio-temporal processes,we provide
an asymptotic performance analysis of the method that is applicable under suffi-
cient regularity of the filtering problem and L p-strong convergence of the numerical
method approximating the underlying model dynamics. Sections 5 and 6 are devoted
to a detailed analysis and practical implementation of MLEnKF applied to linear and
semilinear stochastic reaction–diffusion equations. In particular, we describe how the
pairwise coupling of EnKF-like hierarchies should be implemented for one specific
numerical solver (the exponential-Euler method), and provide numerical evidence for
the efficiency gains of MLEnKF over EnKF.

Since particle filters are known to often perform better than EnKF, we also include a
few remarks on how we believe such methods would compare to MLEnKF in filtering
settings with spatial processes. Due to the poor scaling of particle ensemble size in
high dimensions, which can even be exponential [7,38], particle filters are typically not
used for spatial processes, or even modestly high-dimensional processes. There has
been some work in the past few years which overcomes this issue either for particular
examples [5] or by allowing for some bias [4,45,48,49]. But particle filters cannot yet
be considered practically applicable for general spatial processes. If there is a well-
defined limit of the model as the state-space dimension d grows such that the effective
dimension of the target density with respect to the proposal remains finite or even
small, then useful particle filters can be developed [33,39]. As noted in [10], the key
criterion which needs to be satisfied is that the proposal and the target are not mutually
singular in the limit. MLMC has been applied recently to particle filters, in the context
where the approximation arises due to time discretization of a finite-dimensional SDE
[20,25]. It is an interesting open problem to design multilevel particle filters for spatial
processes: Both the range of applicability and the asymptotic performance of such a
method versus MLEnKF when applied to spatial processes are topics that remain to
be studied.

The rest of the paper is organized as follows. Section 2 introduces the filtering
problem and notation. The design of theMLEnKFmethod is presented in Sect. 3. Sec-
tion 4 studies the weak approximation ofMFEnKF byMLEnKF, and shows that in this
setting, MLEnKF inherits almost the same favorable asymptotic “cost-to-accuracy”
performance as standardMLMC applied to weak approximations of stochastic spatio-
temporal processes. Section 5 presents a detailed analysis and description of the
implementation of MLEnKF for a family of stochastic reaction–diffusion models.
Section 6 provides numerical studies of filtering problems with linear and semilinear
stochastic reaction–diffusion models that corroborate our theoretical findings. Con-
clusions and future directions are presented in Sect. 7, and auxiliary theoretical results
and technical proofs are provided in “Appendices A, B and C”.
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2 Set-up and single level algorithm

2.1 General set-up

Let (�,F , P) be a complete probability space, where P is a probability measure on
the measurable space (�,F). Let V be a separable Hilbert space with inner product
〈·, ·〉V and norm ‖ · ‖V = √〈·, ·〉V . Let V denote a subspace of V which is closed in
the topology induced by the norm ‖·‖V = √〈·, ·〉V , which is assumed to be a stronger
norm than ‖ · ‖V . For an arbitrary separable Hilbert space (K, ‖ · ‖K), we denote the
associated L p-Bochner space by

L p(�,K) = {u : � → K | u is measurable and E
[‖u‖p

K
]

< ∞}, for p ∈ [1,∞),

where ‖u‖L p(�,K) = (E
[‖u‖p

K
]
)1/p, or the shorthand ‖u‖p whenever confusion is

not possible. For an arbitrary pair of Hilbert spaces K1 and K2, the space of bounded
linear mappings from the former space into the latter is denoted by

L(K1,K2) := {
H : K1 → K2 | H is linear and ‖H‖L(K1,K2) < ∞}

,

where

‖H‖L(K1,K2) := sup
x∈K1\{0}

‖Hx‖K2

‖x‖K1

.

In finite dimensions, (Rm, 〈·, ·〉) represents them-dimensional Euclidean vector space
with norm | · | := √〈·, ·〉, and for matrices A ∈ L(Rm1 , R

m2), |A| := ‖A‖L(Rm1 ,Rm2 ).

2.1.1 The filtering problem

Given u0 ∈ ∩p≥2L p(�, V ) and the mapping � : L p(�, V ) × � → L p(�, V ), we
consider the discrete-time dynamics

un+1(ω) = �(un, ω), for n = 0, 1, . . . , N − 1. (1)

and the sequence of observations

yn(ω) = Hun(ω) + ηn(ω), n = 1, 2, . . . , N . (2)

Here, H ∈ L(V, R
m) and the sequence {ηn} consists of independent and identically

N (0, �)−distributed randomvariableswith� ∈ R
m×m positive definite. In the sequel,

the explicit dependence on ω will be suppressed where confusion is not possible. A
general filtering objective is to track the signal un given a fixed sequence of observa-
tions Yn := (y1, y2, . . . , yn), i.e., to track the distribution of un|Yn for n = 1, . . .. In
this work, however, we restrict ourselves to considering the more specific objective
of approximating E[ϕ(un)|Yn] for a given quantity of interest (QoI) ϕ : V → R. The
index n will be referred to as time, whether the actual time between observations is
1 or not (in the examples in Sect. 5 and beyond it will be called T ), but this will not
cause confusion since time is relative.
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2.1.2 The dynamics

We consider problems in which � is the finite-time evolution of an SPDE, e.g. (35),
and we will assume that� cannot be evaluated exactly, but that there exists a sequence
{�� : L p(�,V) × � → L p(�,V)}∞�=0 of approximations to the solution � := �∞
satisfying the following uniform-in-� stability properties

Assumption 1 For every p ≥ 2, it holds that� : L p(�, V )×� → L p(�, V ), and for
all u, v ∈ L p(�,V), the solution operators {��}∞�=0 satisfy the following conditions:
there exists a constant 0 < c� < ∞ depending on p such that

(i) ‖��(u) − ��(v)‖L p(�,V)≤c�‖u − v‖L p(�,V) , and
(ii) ‖��(u)‖L p(�,V) ≤ c�(1 + ‖u‖L p(�,V)).

For notational simplicity, we restrict ourselves to settings in which the map �(·)
does not depend on n, but the results in this work do of course extend easily to non-
autonomous settings when the assumptions on {�n}Nn=1 are uniform with respect to
n.

Remark 1 The two approximation spaces V ⊂ V are introduced in order to obtain
convergence rates for numerical simulationmethods�� that are discretized in physical
or state space. See Assumption 2(i)–(ii) and inequality (41) for an example of how
this may be obtained in practice.

2.1.3 The Bayes filter

The pair of discrete-time stochastic processes (un, yn) constitutes a hidden Markov
model, and the exact (Bayes-filter) distribution of un|Yn may in theory be determined
iteratively through the system of prediction-update equations

P(dun|Yn) = 1

Z(Yn)
L(un; yn)P(dun|Yn−1),

P(dun|Yn−1) =
∫

un−1∈V
P(dun|un−1)P(dun−1|Yn−1),

L(un; yn) = exp
{

− 1

2
|�−1/2(yn − Hun)|2

}
,

Z(Yn) =
∫

un∈V
L(un; yn)P(dun|Yn−1).

When the state space is infinite-dimensional and the dynamics cannot be evaluated
exactly, however, this is an extremely challenging problem. Consequently, we will
here restrict ourselves to constructing weak approximation methods of the mean-field
EnKF, cf. Sect. 2.4.
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2.2 Some details on Hilbert spaces, Hilbert–Schmidt operators, and
Cameron–Martin spaces

For two arbitrary separable Hilbert spaces K1 and K2, the tensor product K1 ⊗ K2 is
also a Hilbert space. For rank-1 tensors, its inner product is defined by

〈u ⊗ v, u′ ⊗ v′〉K1⊗K2 = 〈u, u′〉K1〈v, v′〉K2 ∀u, u′ ∈ K1, ∀v, v′ ∈ K2,

which extends by linearity to any tensor of finite rank. The Hilbert space K1 ⊗ K2 is
the completion of this set with respect to the induced norm

‖u ⊗ v‖K1⊗K2 = ‖u‖K1‖v‖K2 . (3)

Let {ek} and {êk} be orthonormal bases for K1 and K2, respectively, and observe that
finite sums of rank-1 tensors of the form X := ∑

i, j αi j ei ⊗ ê j ∈ K1 ⊗ K2 can be
identified with a bounded linear mapping

TX : K∗
2 → K1 with TX ( f ) :=

∑

i, j

αi j f (ê j )ei , for f ∈ K∗
2. (4)

For two bounded linear operators A, B : K∗
2 → K1 we recall the definition of the

Hilbert-Schmidt inner product and norm

〈A, B〉HS =
∑

k

〈Aê∗
k , Bê

∗
k 〉K1 , |A|HS = 〈A, A〉1/2HS,

where {ê∗
k } is the orthonormal basis of K∗

2 satisfying ê∗
k (ê j ) = δ jk for all j, k in the

considered index set. A bounded linear operator A : K∗
2 → K1 is called a Hilbert-

Schmidt operator if |A|HS < ∞ and HS(K∗
2,K1) is the space of all such operators.

In view of (4),

|TX |2HS =
∑

k

〈
∑

i, j

αi j e
∗
k (ê j )ei ,

∑

i ′, j ′
αi ′ j ′e

∗
k (ê j ′)ei ′

〉

K1

=
∑

i, j

|αi j |2

= ‖X‖K1⊗K2 .

By completion, the space K1 ⊗ K2 is isometrically isomorphic to HS(K∗
2,K1) (and

also to HS(K2,K1) by theRiesz representation theorem). For an element A ∈ K1⊗K2
we identify the norms

‖A‖K1⊗K2 = |A|HS,

and such elements will interchangeably be considered either as members of K1 ⊗K2
or of HS(K∗

2,K1). When viewed as A ∈ HS(K∗
2,K1), the mapping A : K∗

2 → K1 is
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defined by

A f :=
∑

i, j

Ai j f (ê j )ei , for f ∈ K∗
2,

where Ai j := 〈ei , Aê∗
j 〉K1 , and when viewed as A ∈ K1 ⊗ K2, we use tensor-basis

representation

A =
∑

i, j

Ai j ei ⊗ ê j .

The covariance operator for a pair of random variables Z , X ∈ L2(�, V ) is denoted
by

Cov[Z , X ] := E[(Z − E[Z ]) ⊗ (X − E[X ])] ∈ V ⊗ V ,

and whenever Z = X , we employ the shorthand Cov[Z ] := Cov[Z , Z ]. For com-
pleteness and later reference, let us prove that said covariance belongs to V ⊗ V .

Proposition 1 If u ∈ L2(�, V ), then C := Cov[u] ∈ V ⊗ V .

Proof By Jensen’s inequality,

‖C‖V⊗V = ‖E[(u − E[u]) ⊗ (u − E[u])] ‖V⊗V

≤ E
[‖(u − E[u]) ⊗ (u − E[u])‖V⊗V

]

= ‖u − E[u]‖2L2(�,V )

= ‖u‖2L2(�,V )
− ‖E[u]‖2V < ∞.

��

2.3 Ensemble Kalman filtering

EnKF is an ensemble-based extension of Kalman filtering to nonlinear settings. Let

{v̂0,i }Mi=1 denote an ensemble of M i.i.d. particles with v̂0,i
D= u0. The initial dis-

tribution Pu0 can thus be approximated by the empirical measure of {v̂0,i }Mi=1. By
extension, let {v̂n,i }Mi=1 denote the ensemble-based approximation of the updated dis-
tributionun|Yn (at n = 0we employ the conventionY0 = ∅, so that u0 = u0|Y0).Given
an updated ensemble {v̂n,i }Mi=1, the ensemble-based approximation of the prediction
distribution un+1|Yn is obtained through simulating each particle one observation time
ahead:

vn+1,i = �(v̂n,i ), i = 1, 2, . . . , M . (5)

We will refer to {v̂n+1,i }Mi=1 as the prediction ensemble at time n + 1, and we also
note that in many settings, the exact dynamics � in (5) have to be approximated by a
numerical solver.
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Next, given {v̂n+1,i }Mi=1 and a new observation yn+1, the ensemble-based approx-
imation of the updated distribution un+1|Yn+1 is obtained through updating each
particle path

ỹn+1,i = yn+1 + ηn+1,i ,

v̂n+1,i = (I − KMC
n+1H)vn+1,i + KMC

n+1 ỹn+1,i ,
(6)

where {ηn+1,i }Mi=1 is an independent and identically N (0, �) − distributed sequence,
the Kalman gain

KMC
n+1 =

(
CMC
n+1H

∗) (SMC
n+1)

−1

is a function of

SMC
n+1 = HCMC

n+1H
∗ + �,

the adjoint observation operator H∗ ∈ L(Rm,V∗), defined by

(H∗a)(w) = 〈a, Hw〉 for all a ∈ R
m and w ∈ V,

and the prediction covariance

CMC
n+1 = CovM [vn+1] ,

with

CovM [un, vn] := M

M − 1
(EM [un ⊗ vn] − EM [un] ⊗ EM [vn])

EM [vn] := 1

M

M∑

i=1

vn,i (7)

and the shorthand CovM [un] := CovM [un, un].
We introduce the following notation for the empirical measure of the updated

ensemble {v̂n,i }Mi=1:

μ̂MC
n = 1

M

M∑

i=1

δv̂n,i , (8)

and for any QoI ϕ : V → R, let

μ̂MC
n [ϕ] :=

∫
ϕdμ̂MC

n = 1

M

M∑

i=1

ϕ(v̂n,i ).

Due to the update formula (6), all ensemble particles are correlated to one another
after the first update. Even in the linear Gaussian case, the ensemble will not remain
Gaussian after the first update. Nonetheless, it has been shown that in the large-
ensemble limit, EnKF converges in L p(�) to the correct (Bayes-filter) Gaussian in
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the linear and finite-dimensional case [37,41], with the rate O(M−1/2) for Lipschitz-
functional QoI with polynomial growth at infinity. Furthermore, in the nonlinear cases
admitted by Assumption 1, EnKF converges in the same sense and with the same rate
to a mean-field limiting distribution described below.

Remark 2 The perturbed observations ỹn,i were originally introduced in [9] to correct
the variance-deflation-type error that appeared in its absence in implementations fol-
lowing the original formulation of EnKF [16]. It has become known as the perturbed
observation implementation.

2.4 Mean-field ensemble Kalman filtering

In order to describe and study convergence properties of EnKF in the large-ensemble
limit, we now introduce the mean-field EnKF (MFEnKF) [36]: Let ˆ̄v0 ∼ Pu0 and

Predict

⎧
⎨

⎩

v̄n+1 = �( ˆ̄vn),
m̄n+1 = E

[
v̄n+1

]
,

C̄n+1 = E
[
(v̄n+1 − m̄n+1) ⊗ (v̄n+1 − m̄n+1)

] (9)

Update

⎧
⎪⎪⎨

⎪⎪⎩

S̄n+1 = HC̄n+1H∗ + �

K̄n+1 = C̄n+1H∗ S̄−1
n+1

ỹn+1 = yn+1 + ηn+1
ˆ̄vn+1 = (I − K̄n+1H)v̄n+1 + K̄n+1 ỹn+1.

(10)

Here ηn are i.i.d. draws from N (0, �). In the finite-dimensional state-space setting, it
was shown in [36,37] that for nonlinear state-space models and nonlinear models with
additive Gaussian noise, respectively, EnKF converges to MFEnKF with the L p(�)

convergence rateO(M−1/2), as long as themodels satisfy a Lipschitz criterion, similar
to (but stronger than) Assumption 1. And in [23], we showed for that MLEnKF con-
verges toward MFEnKF with a higher rate than EnKF does in said finite-dimensional
setting. Thework [34] extended convergence results to infinite-dimensional state space
for square-root filters. In this work, the aim is to prove convergence of theMLEnKF for
infinite-dimensional state space, with the same favorable asymptotic cost-to-accuracy
performance as in [23].

The following L p-boundedness properties ensures the existence of the MFEnKF-
process and its mean-field Kalman gain, and they will be needed when studying the
properties of MLEnKF:

Proposition 2 Assume the initial data of the hiddenMarkov model (1) and (2) satisfies
u0 ∈ ∩p≥2L p(�, V ). Then the MFEnKF process (9) and (10) satisfies v̄n, ˆ̄vn ∈
∩p≥2L p(�, V ) and ‖K̄n‖L(Rm ,V ) < ∞ for all n ∈ N.

Proof Since ˆ̄v0 = u0, the property clearly holds for n = 0. Given ˆ̄vn ∈ L p(�, V ),
Assumption 1 guarantees v̄n+1 ∈ L p(�, V ). By Proposition 1, C̄n+1 ∈ V ⊗ V . Since
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HC̄n+1H∗ ≥ 0 and � > 0, it follows that H∗ S̄−1
n+1 ∈ L(Rm,V∗) as

‖H∗ S̄−1
n+1‖L(Rm ,V∗) ≤ ‖H∗‖L(Rm ,V∗)|S̄−1

n+1|
≤ ‖H‖L(V,Rm )|�−1|
< ∞.

Furthermore, since V∗ ⊂ V ∗ it also holds that ‖H∗ S̄−1
n+1‖L(Rm ,V ∗) < ∞ and

‖K̄n+1‖L(Rm ,V ) ≤ ‖C̄n+1‖L(V ∗,V )‖H∗ S̄−1
n+1‖L(Rm ,V ∗)

≤ ‖C̄n+1‖V⊗V ‖H∗ S̄−1
n+1‖L(Rm ,V ∗)

< ∞.

The result follows by recalling that V ⊂ V and by the triangle inequality:

‖ ˆ̄vn+1‖L p(�,V ) ≤ ‖v̄n+1‖L p(�,V )

+ ‖K̄n+1‖L(Rm ,V )

(‖H v̄n+1‖L p(�,Rm ) + ‖ỹn+1‖L p(�,Rm )

)

< ∞.

��
We conclude this section with some remarks on tensorized representations of the

Kalman gain and related auxiliary operators that will be useful when developing
MLEnKF algorithms in Sect. 3.3.

2.4.1 The Kalman gain and auxiliary operators

Introducing complete orthonormal bases {ei }mi=1 for R
m , and {φ j } for V , it follows

that H ∈ L(V, R
m) can be written

H =
m∑

i=1

∞∑

j=1

Hi j ei ⊗ φ∗
j

with Hi j := 〈ei , Hφ j 〉. And since ‖H‖L(V,Rm ) < ∞, it holds that

∞∑

j=1

Hi jφ
∗
j ∈ V∗, for all i ∈ {1, 2, . . . ,m}.

For the covariance matrix, it holds almost surely that CMC
n+1 ∈ V ⊗ V ⊂ V ⊗ V , so it

may be represented by

CMC
n+1 =

∞∑

i, j=1

CMC
n+1,i jφi ⊗ φ j , where CMC

n+1,i j := 〈φi ,C
MC
n+1φ

∗
j 〉V .
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For the auxiliary operator, it holds almost surely that

RMC
n+1 := CMC

n+1H
∗ ∈ L(Rm, V ),

so it can be represented by

RMC
n+1 =

m∑

i=1

∞∑

j=1

RMC
n+1,i jφi ⊗ e j , where RMC

n+1,i j =
∞∑

k=1

CMC
n+1,ik Hjk .

Lastly, since (SMC)−1 ∈ L(Rm, R
m) and KMC ∈ L(Rm, V ) almost surely, it holds

that

SMC
n+1,i j =

( ∞∑

k=1

Hik R
MC
n+1,k j

)

+ �i j and KMC
n+1,i j =

m∑

k=1

RMC
n+1,ik

(
(SMC

n+1)
−1
)

k j
.

3 Multilevel EnKF

3.1 Notation and assumptions

Recall that {φk}∞k=1 represents a complete orthonormal basis for V and consider the

hierarchy of subspaces V� = span{φk}N�

k=1, where {N�} is an exponentially increasing
sequence of natural numbers further described below in Assumption 2. By construc-
tion, V0 ⊂ V1 ⊂ · · · ⊂ V . We define a sequence of orthogonal projection operators
{P� : V → V�} by

P�v :=
N�∑

j=1

〈φ j , v〉Vφ j ∈ V�.

It trivially follows that V� is isometrically isomorphic to R
N� , so that any element

v� ∈ V� will, when convenient, be viewed as the unique corresponding element of
R

N� whose kth component is given by 〈φk, v
�〉V for k ∈ {1, 2, . . . , N�}. For the

practical construction of numerical methods, we also introduce a second sequence of
projection operators {�� : V → V�}, e.g., interpolant operators, which are assumed
to be close to the corresponding orthogonal projectors and to satisfy the constraint
��V = P�V = V�. This framework can accommodate spectral methods, for which
typically �� = P�, as well as finite element type approximations, for which �� more
commonly will be taken as an interpolant operator. In the latter case, the basis {φ j }
will be a hierarchical finite element basis, cf. [8,47].

We now introduce two additional assumptions on the hierarchy of dynamics and
two assumptions on the projection operators that will be needed in order to prove the
convergence of MLEnKF and its superior efficiency compared to EnKF. For two non-
negative sequences { f�} and {g�}, the notation f� � g� means there exist a constant
c > 0 such that f� ≤ cg� holds for all � ∈ N ∪ {0}, and the notation f� � g� means
that both f� � g� and g� � f� are true.
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Assumption 2 Assume the initial data of the hiddenMarkovmodel (1) and (2) satisfies
u0 ∈ ∩p≥2L p(�, V ). Consider a hierarchy of solution operators {�� : L p(�,V) ×
� → L p(�,V�)} for which Assumption 1 holds that are associated to a hierarchy of
subspaces {V�} with resolution dimension N� � κ� for some κ > 1. Let h� � N−1/d

�

and �t� � hγt
� , for some γt > 0, respectively denote the spatial and the temporal

resolution parameter on level �. For a given set of exponent rates β, γx , γt > 0, the
following conditions are fulfilled:

(i) ‖��(u) − �(u)‖L p(�,V) � (1 + ‖u‖L p(�,V ))h
β/2
� , for all p ≥ 2 and u ∈

∩p≥2L p(�, V ),
(ii) for all u ∈ V ,

‖(I − P�)u‖V � ‖u‖V hβ/2
� and ‖(�� − P�)u‖V � ‖u‖V hβ/2

� ,

(iii) the computational cost of applying �� to any element of V is O(N�) and that of
applying �� to any element of V is

Cost(��) � h−(dγx+γt )

� ,

where d denotes the dimension of the spatial domain of elements in V , and
dγx + γt ≥ d.

3.2 TheMLEnKFmethod

MLEnKF computes particle paths on a hierarchy of finite-dimensional function spaces
with accuracy levels determined by the solvers {�� : L p(�,V) × � → L p(�,V�)}.
Let v�

n and v̂�
n respectively represent prediction and updated ensemble state at time n of

a particle on resolution level �, i.e., with dynamics governed by ��. For an ensemble-
size sequence {M�}L�=0 ⊂ N \ {1} that is further described in (18), the initial setup for
MLEnKF consists of a hierarchy of ensembles {v̂00,i }M0

i=1 and {(v̂�−1
0,i , v̂�

0,i )
M�

i=1}L�=1. For

� = 0, {v̂00,i }M0
i=1 is a sequence of i.i.d. random variables with v̂00,i ∼ P�0u0 , and for � ≥

1, {(v̂�
0,i , v̂

�−1
0,i )}M�

i=1 is a sequence of i.i.d. random variable 2-tuples with v̂�
0,i ∼ P��u0

and pairwise coupling through v̂�−1
0,i = ��−1v̂

�
0,i . MLEnKF approximates the initial

reference distribution Pu0|Y0 (recalling the convention Y0 = ∅, so that u0|Y0 = u0) by
the multilevel-Monte-Carlo-based and signed empirical measure

μ̂ML
0 = 1

M0

M0∑

i=1

δv̂00,i
+

L∑

�=1

1

M�

M�∑

i=1

(δv̂�
0,i

− δ
v̂�−1
0,i

).

Similar to EnKF, the mapping

{(v̂0n,i )
M0
i=1, {(v̂�−1

n,i , v̂�
n,i )

M�

i=1}L�=1} �→ {(v̂0n+1,i )
M0
i=1, {(v̂�−1

n+1,i , v̂
�
n+1,i )

M�

i=1}L�=1}
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represents the transition of the MLEnKF hierarchy of ensembles over one prediction-
update step and

μ̂ML
0 = 1

M0

M0∑

i=1

δv̂0n,i
+

L∑

�=1

1

M�

M�∑

i=1

(δv̂�
n,i

− δ
v̂�−1
n,i

)

represents the empirical distribution of the updated MLEnKF at time n. The
MLEnKF prediction step consists of simulating all particle paths on all resolution
one observation-time forward:

v0n+1,i = �0(v̂0n,i , ω0,i ),

for � = 0 and i = 1, 2, . . . , M0, and the pairwise coupling

v�−1
n+1,i = ��−1(v̂�−1

n,i , ω�,i ),

v�
n+1,i = ��(v̂�

n,i , ω�,i ),
(11)

for � = 1, . . . , L and i = 1, 2, . . . , M�. Note here that the driving noise in the
second argument of the dynamics ��−1 and �� is pairwise coupled, and otherwise
independent. For the update step, the MLEnKF prediction covariance matrix is given
by the following multilevel sample-covariance estimator

CML
n+1 =

L∑

�=0

CovM�
[v�

n+1] − CovM�
[v�−1

n+1], (12)

and the multilevel Kalman gain is defined by

KML
n+1 = CML

n+1H
∗(SML

n+1)
−1, where SML

n+1 := (HCML
n+1H

∗)+ + �, (13)

where

(HCML
n+1H

∗)+ :=
m∑

i=1
λi≥0

λi qi q
T
i , (14)

with (λ j , q j )
m
j=1 denoting the eigenpairs of HCML

n+1H
∗ ∈ R

m×m . The new observa-
tion yn+1 is assimilated into the hierarchy of ensembles by the following multilevel
extension of EnKF at the zeroth level:

ỹ0n+1,i = yn+1 + η0n+1,i

v̂0n+1,i = (I − �0K
ML
n+1H)v0n+1,i + �0K

ML
n+1 ỹ

0
n+1,i ,
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for i = 1, 2, . . . , M0 with {η0n+1,i }M0
i=1 , and for each of the higher levels, � = 1, . . . , L ,

the pairwise coupling of perturbed observations

ỹ�
n+1,i = yn+1 + η�

n+1,i

v̂�−1
n+1,i = (I − ��−1K

ML
n+1H)v�−1

n+1,i + ��−1K
ML
n+1 ỹ

�
n+1,i ,

v̂�
n+1,i = (I − ��K

ML
n+1H)v�

n+1,i + ��K
ML
n+1 ỹ

�
n+1,i ,

(15)

for i = 1, . . . , M�, with the sequence {η�
n+1,i }i,� being independent and identically

N (0, �)−distributed. It is precisely the multiplication with the Kalman gain in the
update step that correlates all theMLEnKFparticles. In comparison to standardMLMC
where all samples except the pairwise coupled ones are independent, this global corre-
lation in MLEnKF substantially complicates the convergence analysis of the method.

Remark 3 Although unlikely, the multilevel sample prediction covariance CML
n+1 may

have negative eigenvalues and, worst case, this could lead to SML
n+1 = HCML

n+1H
∗ + �

becoming a singular matrix. The impetus for replacing the matrix (HCML
n+1H

∗) with
its positive semidefinite “counterpart” (HCML

n+1H
∗)+ in the Kalman gain formula (13)

is to ensure that SML
n+1 is invertible and to obtain the bound |(SML

n+1)
−1| ≤ |�−1|.

The following notation denotes the (signed) empirical measure of the multilevel
ensemble {(v̂�−1

n,i , v̂�
n,i )

M�

i=1}L�=0:

μ̂ML
n = 1

M0

M0∑

i=1

δv̂0n,i
+

L∑

�=1

1

M�

M�∑

i=1

(δv̂�
n,i

− δ
v̂�−1
n,i

), (16)

and for any QoI ϕ : V → R, let

μ̂ML
n [ϕ] :=

∫
ϕdμ̂ML

n =
L∑

�=0

1

M�

M�∑

i=1

(
ϕ(v̂�

n,i ) − ϕ(v̂�−1
n,i )

)
.

We conclude this section with an estimate that relates to the computational cost of
one MLEnKF update step.

Proposition 3 Given an MLEnKF hierarchy of prediction ensembles

{(v0n+1,i )
M0
i=1, {(v�−1

n+1,i , v
�
n+1,i )

M�

i=1}L�=1},

the cost of constructing the multilevel Kalman gain KML
n+1 is proportional to

∑L
�=0 mN�M�. And if Assumption 2(iii) holds, then the cost of updating the �th level

ensemble

(v�−1
n+1,i , v

�
n+1,i )

M�

i=1 �→ (v�−1
n+1,i , v̂

�
n+1,i )

M�

i=1
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by (15) is proportional to mN�M�.

Proof Notice that it is not required to compute the full multilevel prediction covariance
CML
n+1 in order to build the MLEnKF Kalman gain, but rather only

RML
n+1 := CML

n+1H
∗ =

L∑

�=0

(
CovM�

[v�
n+1, Hv�

n+1] − CovM�
[v�−1

n+1, Hv�−1
n+1]

)
. (17)

(The advantage of storing RML
n+1 ∈ R

NL×m rather than CML
n+1 ∈ R

NL×NL is the dimen-
sional reduction obtained for large L , since then NL � m.)

For the Kalman gain, the cost of computing CovM�
[v�

n+1, Hv�
n+1] ∈ R

N�×m is
proportional tomN�M�. There are also the insignificant one-time costs of constructing
and inverting SML

n+1, and the matrix multiplication RML
n+1(S

ML
n+1)

−1. In total, these costs
are proportional to NLm2.

The cost of updating the �th level ensemble by (15) contains the one-time cost
of the matrix multiplications ��KML

n+1 which by Assumption 2(iii) is proportional to
mN�. For each particle, the cost of computing Hv�

n+1,i is proportional to N�, since

v�
n+1,i ∈ V�, and the cost of computing (��KML

n+1)(Hv�
n+1,i ) and (��KML

n+1)ỹ
�
n+1,i are

both proportional to mN�. ��

3.3 MLEnKF algorithms

A subtlety with computing (17) efficiently is that the summands will be elements of
different sized tensor spaces since

CovM�
[v�−1

n , Hv�−1
n ] ∈ R

N�−1×m while CovM�
[v�

n, Hv�
n] ∈ R

N�×m

for � = 1, 2, . . . , L . The algorithm presented below efficiently computes (17) through
performing all arithmetic operations in the tensor space of lowest possible dimension
available at the current stage of computations. When Proposition 3 applies, the com-
putational cost of the algorithm isO(m

∑L
�=0 M�N�). For ease of exposition, we will

in the sequel employ the convention v−1
n,i = v̂−1

n,i = 0 for all n, i .
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Algorithm 1 Computing the auxiliary variable RML
n

Input: Observation operator H ∈ L(V, R
m ) and prediction ensemble {(v�−1

n,i , v�
n,i )

M�
i=1}L�=0.

Output: RML
n .

Initialize RML
n = 0 ∈ R

NL×m .
for � = 0 to L − 1 do

Update the submatrix RML
n (1 : N�, :) ∈ R

N�×m consisting of the N� first rows and all columns of
RML
n as follows:

RML
n (1 : N�, :) = RML

n (1 : N�, :) + CovM�
[v�
n , Hv�

n ] − CovM�+1 [v�
n , Hv�

n ].

end for
Lastly, add finest level sample covariance:

RML
n = RML

n + CovML [vLn , HvLn ].

return RML
n .

In Algorithm 2, we summarize the main steps for one predict-update iteration of
the MLEnKF method.

Algorithm 2MLEnKF predict-update iteration
Input:Hierarchy of projection operators {�� : V → V�}, observation H ∈ L(V, R

m), observation noise

covariance matrix �, and multilevel update ensemble {(v̂�−1
n,i , v̂�

n,i )
M�
i=1}L�=0.

Output: multilevel update ensemble {(v̂�−1
n+1,i , v̂

�
n+1,i )

M�
i=1}L�=0.

Predict:
for � = 0 to L do

for i = 0 to M� do
Compute particle pair paths (v�−1

n+1,i , v
�
n+1,i ) according to (11).

end for
end for
Update:
Compute RML

n+1 by Algorithm 1, and KML
n+1 by (13) (using that RML

n+1 = CML
n+1H

∗).
for � = 0 to L do

for i = 0 to M� do
Generate the perturbed observation ỹ�

n+1,i and update the particle pair (v̂�−1
n+1,i , v̂

�
n+1,i ) by (15).

end for
end for
return {(v̂�−1

n+1,i , v̂
�
n+1,i )

M�
i=1}L�=0.

4 Theoretical results

In this section we derive theoretical results on the approximation error and computa-
tional cost of weakly approximating the MFEnKF filtering distribution by MLEnKF.
We begin by stating the main theorem of this paper. It gives an upper bound for
the computational cost of achieving a sought accuracy in L p(�)-norm when using
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the MLEnKF method to approximate the expectation of a QoI. The theorem may be
considered an extension to spatially extended models of the earlier work [23].

Theorem 1 (MLEnKF accuracy vs. cost) Consider a Lipschitz continuous QoI ϕ :
V → R and suppose Assumption 2 holds. For a given ε > 0, let L and {M�}L�=0 be
defined under the constraints L = �2d logκ(ε−1)/β� and

M� �

⎧
⎪⎨

⎪⎩

h(β+dγx+γt )/2
� h−β

L , if β > dγx + γt ,

h(β+dγx+γt )/2
� L2h−β

L , if β = dγx + γt ,

h(β+dγx+γt )/2
� h−(β+dγx+γt )/2

L , if β < dγx + γt .

(18)

Then, for any p ≥ 2 and n ∈ N,

‖μ̂ML
n [ϕ] − ˆ̄μn[ϕ]‖L p(�) � | log(ε)|nε, (19)

where we recall that μ̂ML
n denotes the MLEnKF empirical measure (16), and ˆ̄μn

denotes the mean-field EnKF distribution at time n (meaning ˆ̄vn ∼ ˆ̄μn).
The computational cost of the MLEnKF estimator

Cost
(
μ̂ML
n [ϕ]

)
:=

L∑

�=0

M�Cost
(
��
)

satisfies

Cost
(
μ̂ML
n [ϕ]

)
�

⎧
⎪⎨

⎪⎩

ε−2, if β > dγx + γt ,

ε−2 |log(ε)|3 , if β = dγx + γt ,

ε−2(dγx+γt )/β, if β < dγx + γt .

The proof of this theorem is presented at the end of this section, and it depends upon
the intermediary results presented prior to the proof.

Remark 4 The constraint dγx + γt ≥ d in Assumption 2(iii) was imposed to ensure
that the computational cost of the forward simulation, Cost(��) � h−(dγx+γt )

� , is
either linear or superlinear in N�. In view of Proposition 3, the share of the total cost
of a single predict and update step assigned to level � is proportional to M�Cost(��).
This cost estimate is used as input in the standard-MLMC-constrained-optimization
approach to determining M�, cf. (18). However, it is important to observe that in
settings with high dimensional observations, m ≥ N0, the input in said optimization
problem needs to be modified accordingly, as then the cost on the lower levels will be
dominated by m rather than Cost(��).

The first result we present is a collection of direct consequences of Assumption 2:

Proposition 4 If Assumption 2 holds, then for all u, v ∈ ∩p≥2L p(�, V ), and globally
Lipschitz QoI ϕ : V → R,

(i) ‖��(v) − ��−1(v)‖L p(�,V) � (1 + ‖v‖L p(�,V ))h
β/2
� , for all p ≥ 2,
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(ii)
∣∣E
[
ϕ(��(u)) − ϕ(�(v))

]∣∣ � ‖u − v‖L p(�,V) + (1 + ‖u‖L p(�,V ))h
β/2
� , for all

p ≥ 2,
(iii) and for all n ≥ 1, the MFEnKF prediction covariance (9) satisfies

‖(I − ��)C̄n‖V⊗V � ‖�( ˆ̄vn−1)‖L2(�,V )h
β/2
� .

Proof Property (i) follows from Assumption 2(i) and the triangle inequality. Property
(ii) follows from the Lipschitz continuity of ϕ followed by the triangle inequality,
Assumption 1(i), and Assumption 2(i). For property (iii), Proposition 2, Jensen’s
inequality, definition (3), and Hölder’s inequality implies that

‖(I − ��)C̄n‖V⊗V = ‖E[(I − ��)(v̄n − E[v̄n]) ⊗ (v̄n − E[v̄n])] ‖V⊗V
≤ ‖(I − ��)(v̄n − E[v̄n])‖L2(�,V)‖v̄n − E[v̄n] ‖L2(�,V)

≤ ‖(I − ��)v̄n‖L2(�,V)‖v̄n‖L2(�,V).

Since (I − P�)v̄n = (I − P�)�( ˆ̄vn−1), Assumption 2(ii) implies that

‖(I − ��)�( ˆ̄vn−1)‖L2(�,V) ≤ ‖(I − P�)�( ˆ̄vn−1)‖L2(�,V)

+ ‖(�� − P�)�( ˆ̄vn−1)‖L2(�,V)

≤ 2‖�( ˆ̄vn−1)‖L2(�,V )h
β/2
� .

��

Similar to the analysis in [23,36,37,41], we next introduce an auxiliary mean-
field multilevel ensemble {(v̄�−1

n,i , v̄�
n,i )

M�

i=1}L�=0, where every particle pair (v̄�−1
n,i , v̄�

n,i )

evolves by the respective forwardmappings��−1 and�� using the same driving noise
realization as the correspondingMLEnKF particle pair (v�−1

n,i , v�
n,i ). Note however that

in the update of themean-fieldmultilevel ensemble, the limiting formMFEnKFcovari-
ance C̄n andKalman gain K̄n fromEqs. (9) and (10) are used rather than corresponding
ones based on sample moments of the multilevel ensemble itself. That is, the initial
condition for each coupled particle pair is identical to that of MLEnKF

( ˆ̄v�−1
0,i , ˆ̄v�

0,i ) = (v̂�−1
0,i , v̂�

0,i ) (20)

and one prediction-update iteration is given by

Prediction

{
v̄�−1
n+1,i = ��−1( ˆ̄v�−1

n,i , ω�,i ),

v̄�
n+1,i = ��( ˆ̄v�

n,i , ω�,i ),
(21)

Update

⎧
⎪⎨

⎪⎩

ỹ�
n+1,i = yn+1 + η�

n+1,i ,ˆ̄v�−1
n+1,i = (I − ��−1 K̄n+1H)v̄�−1

n+1,i + ��−1 K̄n+1 ỹ�
n+1,i ,ˆ̄v�

n+1,i = (I − �� K̄n+1H)v̄�
n+1,i + �� K̄n+1 ỹ�

n+1,i ,

(22)
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for � = 0, 1, . . . , L and i = 1, 2, . . . , M� (similar to before, we employ the convention
v̄−1 = ˆ̄v−1 := 0). By similar reasoning as in Proposition 2, it can be shown that also
v̄�
n , ˆ̄v�

n ∈ ∩p≥2L p(�, V ) for any �, n ∈ N ∪ {0}. One may think of the auxiliary
mean-field multilevel ensemble as “shadowing” the MLEnKF ensemble.

Before bounding the difference between the multilevel and mean-field Kalman
gains by the two next lemmas, let us recall that they respectively are given by

KML
n = CML

n H∗((HCML
n H∗)+ + �)−1 and K̄n = C̄nH

∗(HC̄nH
∗ + �)−1.

Lemma 1 For the matrix (HCML
n H∗)+ : R

m×m defined by (14) with the spectral
decomposition eigenpairs (λ j , q j )

m
j=1 it holds that

|(HCML
n H∗)+ − HCML

n H∗| ≤ ‖H‖2L(V,Rm )

∥∥∥CML
n − C̄n

∥∥∥V⊗V . (23)

Proof Since (HCML
n H∗)+ − HC̄nH∗ is self-adjoint and positive semi-definite,

|(HCML
n H∗)+ − HCML

n H∗| = max‖q‖Rm=1
q∗{(HCML

n H∗)+ − HCML
n H∗}q

= max{− min
j;λ j<0

λ j , 0}.

It remains to verify the lemma when { j | λ j < 0} �= ∅. Let the normalized
eigenvector associated to the eigenvalue min{ j;λ j<0} λ j be denoted qmax. Then, since
(HRML

n )+qmax = 0 and the mean-field covariance C̄n is self-adjoint and positive
semi-definite,

|(HCML
n H∗)+ − HCML

n H∗| = −q∗
maxHCML

n H∗qmax

≤ q∗
maxHC̄nH

∗qmax − qmaxHCML
n H∗qmax

≤ |H(C̄n − CML
n )H∗|

≤ ‖H‖2L(V,Rm )

∥∥∥C̄n − CML
n

∥∥∥
L(V,V)

≤ ‖H‖2L(V,Rm )

∥∥∥C̄n − CML
n

∥∥∥V⊗V .

��
The next step is to bound the Kalman gain error in terms of the covariance error.

Lemma 2 There exists a positive constant c̃n < ∞, depending on ‖H‖L(V,Rm ), |�−1|,
and

∥∥K̄n
∥∥
L(Rm ,V)

, such that

∥∥∥KML
n − K̄n

∥∥∥
L(Rm ,V)

≤ c̃n
∥∥∥CML

n − C̄n

∥∥∥V⊗V .

Proof The proof of this lemma as is similar to that of [23, Lemma 3.4]. For complete-
ness, we have included a proof in “Appendix C”. ��
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The next lemma bounds the distance between the prediction covariance matrices of
MLEnKF and MFEnKF. For that purpose, let us first recall that the dynamics for the
mean-fieldmultilevel ensemble {(v̄�−1

n,i , v̄�
n,i )

M�

i=1}L�=0 is described in Eqs. (21) and (22),
and introduce the auxiliary matrix

C̄ML
n :=

L∑

�=0

CovM�
[v̄�

n] − CovM�
[v̄�−1

n ]. (24)

Lemma 3 Forany ε > 0, let L and {M�}L�=0 bedefinedas inTheorem1. If Assumption2
holds, then for any p ≥ 2 and n ∈ N,

‖CML
n − C̄n‖L p(�,V⊗V) � ε + ‖CML

n − C̄ML
n ‖L p(�,V⊗V). (25)

Proof Introducing the auxiliary covariance matrix

C̄ L
n := Cov[v̄L

n ]

and using the triangle inequality,

‖CML
n − C̄n‖p ≤ ‖C̄ L

n − C̄n‖p + ‖C̄ML
n − C̄ L

n ‖p + ‖CML
n − C̄ML

n ‖p.

The result follows by Lemmas 4 and 5. ��

Lemma 4 For any ε > 0, let L be defined as in Theorem 1. If Assumption 2 holds,
then for any n ∈ N and p ≥ 2,

max
{
‖v̄�

n − v̄n‖L p(�,V), ‖ ˆ̄v�
n − ˆ̄vn‖L p(�,V)

}
� hβ/2

� , (26)

max
{
‖v̄�

n − v̄�−1
n ‖L p(�,V), ‖ ˆ̄v�

n − ˆ̄v�−1
n ‖L p(�,V)

}
� hβ/2

� , ∀� ∈ N, (27)

‖C̄ L
n − C̄n‖V⊗V � ε. (28)

Proof Recall that initial data of the limit mean-field methods is given by ˆ̄v0 ∼ μ̂0 and
that ˆ̄v�

0 = ��
ˆ̄v0, so that by Assumption 2(ii),

‖ ˆ̄v0 − ˆ̄v�
0‖L p(�,V) � ‖ ˆ̄v0‖L p(�,V )h

β/2
� .

By Assumptions 1(i) and 2(i),

‖v̄n − v̄�
n‖L p(�,V) � ‖ ˆ̄vn−1 − ˆ̄v�

n−1‖L p(�,V) + (1 + ‖ ˆ̄vn−1‖L p(�,V ))h
β/2
� ,
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and by Proposition 4(iii),

‖ ˆ̄vn − ˆ̄v�
n‖L p(�,V) ≤ ∥∥I − K̄nH

∥∥
L(V,V)

‖v̄�
n − v̄n‖L p(�,V)

+ ‖(I − ��)K̄n(H v̄�
n + ỹn)‖L p(�,V)

≤ c
(
‖v̄�

n − v̄n‖L p(�,V) + ‖(I − ��)C̄n‖V×V
)

� ‖v̄�
n − v̄n‖L p(�,V) + ‖�( ˆ̄vn−1)‖L2(�,V )h

β/2
� .

Inequality (26) consequently holds by induction, and thus also (27) by the triangle
inequality. To prove inequality (28),

‖C̄ L
n − C̄n‖V⊗V

=
∥∥∥E
[
(v̄L

n − E

[
v̄L
n

]
) ⊗ (v̄L

n − E

[
v̄L
n

]
) − (v̄n − E[v̄n]) ⊗ (v̄n − E[v̄n])

]∥∥∥V⊗V
=
∥∥∥E
[
(v̄L

n − E

[
v̄L
n

]
) ⊗ (v̄L

n − E[v̄n]) − (v̄n − E

[
v̄L
n

]
) ⊗ (v̄n − E[v̄n])

]∥∥∥V⊗V
≤
∥∥
∥(v̄L

n − E

[
v̄L
n

]
) ⊗ (v̄L

n − E[v̄n]) − (v̄n − E

[
v̄L
n

]
) ⊗ (v̄n − E[v̄n])

∥∥
∥
L1(�,V⊗V)

≤ (‖v̄L
n − E

[
v̄L
n

]
‖2 + ‖(v̄n − E[v̄n])‖2)‖v̄L

n − v̄n‖2
� ε.

��

We complete the proof of Lemma 3 by deriving the following bound for ‖C̄ML
n −

C̄ L
n ‖p :

Lemma 5 (Multilevel i.i.d. sample covariance error)For any ε > 0, let L and {M�}L�=0
be defined as in Theorem 1. If Assumption 2 holds, then for any p ≥ 2 and n ∈ N,

‖C̄ML
n − C̄ L

n ‖L p(�,V⊗V) � ε,

where we recall that C̄ L
n := Cov[v̄L

n ].

Proof Since the sample covariances in (24) are unbiased,

E

[
C̄ML
n

]
= Cov[v̄L

n ] =
L∑

�=0

Cov[v̄�
n] − Cov[v̄�−1

n ],

and therefore
‖C̄ML

n − C̄ L
n ‖p = ‖C̄ML

n − E

[
C̄ML
n

]
‖p.
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Next, introduce the linear centering operator ϒ : L1(�,V ⊗ V) → L1(�,V ⊗ V),
defined by ϒ (Y ) = Y − E[Y ]. Then, by Eq. (24),

‖C̄ML
n −E

[
C̄ML
n

]
‖p =

∥∥∥∥

L∑

�=0

ϒ
(
CovM�

[v̄�
n] − CovM�

[v̄�−1
n ]

) ∥∥∥∥
p

≤
L∑

�=0

∥
∥ϒ

(
CovM�

[v̄�
n] − CovM�

[v̄�−1
n ]

) ∥
∥
p

≤
L∑

�=0

(∥∥ϒ
(
CovM�

[v̄�
n,��v̄n]

) ∥∥
p + ∥∥ϒ

(
CovM�

[��v̄n, v̄
�−1
n ]

) ∥∥
p

)
,

where ��v̄n := v̄�
n − v̄�−1

n with the convention v̄−1
n = 0, and

ϒ
(
CovM�

[v̄�
n,��v̄n]

)
= CovM�

[v̄�
n,��v̄n] − Cov[v̄�

n,��v̄n],
ϒ
(
CovM�

[��v̄n, v̄
�−1
n ]

)
= CovM�

[��v̄n, v̄
�−1
n ] − Cov[��v̄n, v̄

�−1
n ].

By Lemmas 4 and 10 (the latter lemma is located in “Appendix A)”,

‖C̄ML
n − E

[
C̄ML
n

]
‖p ≤ 2

L∑

�=0

c√
M�

(‖v̄�
n‖2p + ‖v̄�−1

n ‖2p)‖��v̄n‖2p

�
L∑

�=0

1√
M�

‖��v̄n‖2p �
L∑

�=0

M−1/2
� hβ/2

� � ε.

��
We now turn to bounding the last term of the right-hand side of inequality (25).

Lemma 6 Forany ε > 0, let L and {M�}L�=0 bedefinedas inTheorem1. If Assumption2
holds, then for any p ≥ 2 and n ∈ N,

‖CML
n − C̄ML

n ‖L p(�,V⊗V) ≤8
L∑

l=0

‖v�
n − v̄�

n‖L2p(�,V)(‖v�
n‖L2p(�,V) + ‖v̄�

n‖L2p(�,V)).

(29)

Proof From the definitions of the sample covariance (7) and multilevel sample covari-
ance (12), one obtains the bounds

‖CML
n − C̄ML

n ‖p ≤
L∑

�=0

(
‖CovM�

[v�
n] − CovM�

[v̄�
n]‖p

+ ‖CovM�
[v�−1

n ] − CovM�
[v̄�−1

n ]‖p

)
,
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and

∥
∥∥CovM�

[v�
n] − CovM�

[v̄�
n]
∥
∥∥
p

≤ M�

M� − 1

∥
∥∥EM�

[v�
n ⊗ v�

n] − EM�
[v̄�

n ⊗ v̄�
n]
∥
∥∥
p

+ M�

M� − 1

∥∥
∥EM�

[v�
n] ⊗ EM�

[v�
n] − EM�

[v̄�
n] ⊗ EM�

[v̄�
n]
∥∥
∥
p

=: I1 + I2.

The bilinearity of the sample covariance yields that

I1 ≤ 2
∥∥∥EM�

[(v�
n − v̄�

n) ⊗ v�
n]
∥∥∥
p

+ 2
∥∥∥EM�

[v̄�
n ⊗ (v�

n − v̄�
n)]
∥∥∥
p

(30)

and

I2 ≤ 2
∥∥∥EM�

[(v�
n − v̄�

n)] ⊗ EM�
[v�

n]
∥∥∥
p

+ 2
∥∥∥EM�

[v̄�
n] ⊗ EM�

[(v�
n − v̄�

n)]
∥∥∥
p
.

For bounding I1 we use Jensen’s and Hölder’s inequalities:

∥
∥∥EM�

[(v�
n − v̄�

n) ⊗ v�
n]
∥
∥∥
p

p
= E

[∥
∥∥EM�

[(v�
n − v̄�

n) ⊗ v�
n]
∥
∥∥
p

V⊗V

]

≤ E

[
EM�

[ ∥∥∥v�
n − v̄�

n

∥∥∥
p

V

∥∥∥v�
n

∥∥∥
p

V

]]

= E

[∥∥∥v�
n − v̄�

n

∥
∥∥
p

V

∥
∥∥v�

n

∥
∥∥
p

V

]

≤
∥∥∥v�

n − v̄�
n

∥∥∥
p

2p

∥∥∥v�
n

∥∥∥
p

2p
.

The second summand of inequality (30) is bounded similarly, and we obtain

I1 ≤ 2
∥∥∥v�

n − v̄�
n

∥∥∥
2p

(∥∥∥v�
n

∥∥∥
2p

+
∥∥∥v̄�

n

∥∥∥
2p

)
.

The I2 term can also be bounded with similar steps as in the preceding argument so
that also

I2 ≤ 2
∥
∥∥v�

n − v̄�
n

∥
∥∥
2p

(∥
∥∥v�

n

∥
∥∥
2p

+
∥
∥∥v̄�

n

∥
∥∥
2p

)
.

The proof is finished by summing the contributions of I1 and I2 over all levels. ��
The propagation of error in update steps of MLEnKF is governed by the magnitude

‖C̄n −CML
n ‖p, i.e., the distance between the MFEnKF prediction covariance and the

MLEnKF prediction covariance. The next lemma makes use of Lemma 6 to bound
the distance between the mean-field multilevel ensemble {( ˆ̄v�−1

n,i , ˆ̄v�
n,i )

M�

i=1}L�=0 and the

MLEnKF ensemble {(v̂�−1
n,i , v̂�

n,i )
M�

i=1}L�=0.
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Lemma 7 (Distance between ensembles) For any ε > 0, let L and {M�}L�=0 be defined
as in Theorem 1. If Assumption 2 holds, then for any p ≥ 2 and n ∈ N,

L∑

�=0

‖v̂�
n − ˆ̄v�

n‖L p(�,V) � | log(ε)|nε. (31)

Proof The proof is similar to that of [23, Lemma 3.10]. For completeness, a proof is
given in “Appendix C”. ��

With the bound between MLEnKF and its multilevel MFEnKF shadow, that con-
veniently for analysis consists of independent particles, we are finally ready to prove
the main result.

Proof of Theorem 1 By the triangle inequality,

‖μ̂ML
n [ϕ] − ˆ̄μn[ϕ]‖p ≤ ‖μ̂ML

n [ϕ] − ˆ̄μML
n [ϕ]‖p + ‖ ˆ̄μML

n [ϕ] − ˆ̄μL
n [ϕ]‖p

+ ‖ ˆ̄μL
n [ϕ] − ˆ̄μn[ϕ]‖p, (32)

where ˆ̄μML
n denotes the empirical measure associated to the mean-field multilevel

ensemble {( ˆ̄v�−1
n,i , ˆ̄v�

n,i ))
M�

i=1}L�=0, and ˆ̄μL
n denotes the probability measure associated to

ˆ̄vL . The two first summands on the right-hand side above relate to the statistical error,
whereas the last relates to the bias.

By theLipschitz continuity of theQoIϕ, the triangle inequality, Lemma7, and using
the conventions ϕ(v̂−1

n ) = 0 and ϕ( ˆ̄v−1
n ) = 0, the first term satisfies the following

bound

∥∥∥μ̂ML
n [ϕ] − ˆ̄μML

n [ϕ]
∥∥∥
p

=
∥∥∥∥∥

L∑

�=0

EM�

[
ϕ(v̂�

n) − ϕ(v̂�−1
n ) − (ϕ( ˆ̄v�

n) − ϕ( ˆ̄v�−1
n ))

]
∥∥∥∥∥
p

≤
L∑

�=0

(∥∥
∥ϕ(v̂�

n) − ϕ( ˆ̄v�
n)

∥∥
∥
p

+
∥∥
∥ϕ(v̂�−1

n ) − ϕ( ˆ̄v�−1
n )

∥∥
∥
p

)

≤ cϕ

L∑

�=0

(∥∥∥v̂�
n − ˆ̄v�

n

∥∥∥
p

+
∥∥∥v̂�−1

n − ˆ̄v�−1
n

∥∥∥
p

)

� | log(ε)|nε.

For the second summand of (32), we employ the telescoping property

ˆ̄μL
n [ϕ] =

L∑

�=0

E

[
ϕ( ˆ̄μ�

n) − ϕ( ˆ̄μ�−1
n )

]
,
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and Lemmas 4 and 9 to obtain

∥∥∥ ˆ̄μML
n [ϕ] − ˆ̄μL

n [ϕ]
∥∥∥
p

≤
L∑

�=0

∥∥∥EM�

[
ϕ( ˆ̄v�

n) − ϕ( ˆ̄v�−1
n ) − E

[
ϕ( ˆ̄v�

n) − ϕ( ˆ̄v�−1
n )

] ]∥∥∥
p

≤ c
L∑

�=0

M−1/2
�

∥∥∥ϕ( ˆ̄v�
n) − ϕ( ˆ̄v�−1

n )

∥∥∥
p

≤ c̃
L∑

�=0

M−1/2
� ‖ ˆ̄v�

n − ˆ̄v�−1
n ‖p

�
L∑

�=0

M−1/2
� hβ/2

� � ε.

Finally, the bias term in (32) satisfies

‖ ˆ̄μL
n [ϕ] − ˆ̄μn[ϕ]‖p = | ˆ̄μL

n [ϕ] − ˆ̄μn[ϕ]| =
∣∣
∣E
[
ϕ( ˆ̄vL

n ) − ϕ( ˆ̄vn)
]∣∣
∣ � ε, (33)

where the last step follows from the Lipschitz continuity of the QoI and Lemma 4. ��
Remark 5 Theorem 1 shows the cost-to-accuracy performance of MLEnKF with a
disconcerting logarithmic penalty factor in (19) that grows geometrically in n. The
same penalty appears in the work [23], yet the numerical experiments there indicate a
rate of convergence that is uniform in n. The discrepancy between theory and practice
may be an artifact of conservative bounds used in the proof of said theorem. By
imposing further regularity constraints on the dynamics and the QoI, we were able to
obtain an error bound without said logarithmic penalty factor for an alternative finite-
dimensional-state-space MLEnKF method with local-level Kalman gains [24]. As an
alternative to imposing further regularity constraints, we also suspect that ergodicity of
the MFEnKF process may be used to avoid the geometrically growing the logarithmic
penalty factor. Recently, there has beenmuchwork on the stability of EnKF [12,13,46].

We conclude this sectionwith a result on the cost-to-accuracy performance ofEnKF.
It shows that MLEnKF generally outperforms EnKF.

Theorem 2 (EnKF accuracy vs. cost) Consider a Lipschitz continuous QoI ϕ : V →
R, and suppose Assumption 2 holds. For a given ε > 0, let L and M be defined under
the respective constraints L = �2d logκ(ε−1)/β� and M � ε−2. Then, for any n ∈ N

and p ≥ 2,
‖μ̂MC

n [ϕ] − ˆ̄μn[ϕ]‖L p(�,V) � ε,

where μ̂MC
n denotes the EnKF empirical measure, cf. Eq. (8), with particle evolution

given by the EnKF predict and update formulae at resolution level L (i.e., using the
numerical approximation �L in the prediction and the projection operator �L in the
update).
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The computational cost of the EnKF estimator

Cost
(
μ̂MC
n [ϕ]

)
:= MCost

(
�L

)

satisfies

Cost
(
μ̂MC
n [ϕ]

)
� ε−2(1+(dγx+γt )/β).

Sketch of proof By the triangle inequality,

‖ ˆ̄μn[ϕ] − μ̂MC
n [ϕ]‖L p(�) ≤

∥
∥∥ ˆ̄μn[ϕ] − ˆ̄μL

n [ϕ]
∥
∥∥
L p(�)

+
∥
∥∥ ˆ̄μL [ϕ] − ˆ̄μMC

n [ϕ]
∥
∥∥
L p(�)

+
∥∥
∥ ˆ̄μMC

n [ϕ] − μ̂MC
n [ϕ]

∥∥
∥
L p(�)

=: I + I I + I I I ,

where ˆ̄μMC
n denotes the empirical measure associated to the EnKF ensemble { ˆ̄vL

n,i }Mi=1

and ˆ̄μL
n denotes the empirical measure associated to ˆ̄vL

n . It follows by inequality (33)
that I � ε.

For the second term, the Lipschitz continuity of the QoI ϕ implies there exists a
positive scalar cϕ such that |ϕ(x)| ≤ cϕ(1 + ‖x‖V ). Since ˆ̄vL

n ∈ L p(�, V ) for any
n ∈ N and p ≥ 2, it follows by Lemma 9 (on the Hilbert space R) that

I I ≤
∥∥∥EM [ϕ( ˆ̄vL

n )] − E

[
ϕ( ˆ̄vL

n )
]∥∥∥

L p(�)
≤ M−1/2cϕ

∥∥∥ ˆ̄vL
n

∥∥∥
L p(�,V)

� ε.

For the last term, let us first assume that for any p ≥ 2 and n ∈ N,

∥∥
∥v̂L

n − ˆ̄vL
n

∥∥
∥
L p(�,V)

� ε, (34)

for the single particle dynamics v̂L
n,1 and ˆ̄vL

n,1 respectively associated to the EnKF

ensemble {v̂L
n,i }Mi=1 and the mean-field EnKF ensemble { ˆ̄vL

n,i }Mi=1. Then the Lipschitz

continuity of ϕ, the fact that v̂L
n,1,

ˆ̄vL
n,1 ∈ L p(�, V ) for any n ∈ N and p ≥ 2 holds

(when assuming (34)), and the triangle inequality yield that

I I I =
∥∥
∥EM [ϕ(v̂L

n ) − ϕ( ˆ̄vL
n )]
∥∥
∥
L p(�)

≤ cϕ

∥∥
∥v̂L

n − ˆ̄vL
n

∥∥
∥
L p(�,V)

� ε.

All that remains is to verify (34), but we omit this as it can be done by similar steps
as for the proof of inequality (31). ��

5 MLEnKF-adapted numerical methods for a class of stochastic partial
differential equations

In this section we develop an MLEnKF-adapted version of the exponential Euler
method, for the purpose of solving a family of stochastic reaction–diffusion equations.
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For a relatively large class of problems, we derive an L p(�,V)-convergence rate β

for pairwise coupled numerical solutions, cf. Assumption 2, which will needed when
implementing MLEnKF.

5.1 The stochastic reaction–diffusion equation

We consider the following stochastic partial differential equation (SPDE)

du = (�u + f (u))dt + BdW , (t, x) ∈ (0, T ] × (0, 1),

u(0, ·) = u0,

u(t, 0) = u(t, 1) = 0, t ∈ (0, T ],
(35)

where T > 0, and the reaction f , the cylindrical Wiener process W and the linear
smoothing operator B will be described below. Our base-space is K = L2(0, 1), we
denote by A : D(A) = H2(0, 1) ∩ H1

0 (0, 1) → K the Laplace operator � with
homogeneous Dirichlet boundary conditions and Hk(0, 1) denotes the Sobolev space
of order k ∈ N. A spectral decomposition of −A yields the sequence of eigenpairs
{(λ j , φ j )} j∈N where −Aφ j = λ jφ j with φ j := √

2 sin( jπx) and λ j = π2 j2. K =
span{φ j }, it follows that

Av =
∑

j∈N
−λ j 〈φ j , v〉Kφ j , ∀v ∈ D(A),

and eigenpairs of the spectral decomposition give rise to the following family ofHilbert
spaces parametrized over r ∈ R:

Kr := D((−A)r ) =
{
v : [0, 1] → R |v is B([0, 1])/B(R)-measurable

and
∑

j∈N
λ2rj

∣
∣〈φ j , v〉K

∣
∣2 < ∞

}
,

with norm ‖ · ‖Kr := ‖(−A)r (·)‖K. Associated with the probability space (�,F , P)

and normal filtration {Ft }t∈[0,T ], the IK-cylindrical Wiener process is defined by

W (t, ·) =
∑

j∈N
Wj (t)φ j ,

where {Wj : [0, T ] × � → R} j∈N is a sequence of independent Ft/B(R)-adapted
standard Wiener processes. The smoothing operator is defined by

B :=
∑

j∈N
λ−b
j φ j ⊗ φ j , (36)

with the smoothing paramter b ≥ 0. It may be shown that BKr = Kr+b, and this
implies that B becomes progressively more smoothing the higher the value of b.
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In the remaining part of this section, we assume the following conditions on the
nested Hilbert spaces V ⊂ V and regularity conditions on the initial data u0 and the
reaction term f hold:

Assumption 3 The Hilbert spaces V ⊂ V are of the form V = Kr1 and V = Kr2 for
a pair of parameters r1, r2 ∈ R satisfying

max{0, b − 1/4} ≤ r1 < r2 < b + 1/4,

the initial data u0 is F0/B(V )-measurable and u0 ∈ ∩p≥2L p(�, V ), and the reaction
satisfies

f ∈ Lip(Kr1) :=
{

g ∈ C(Kr1 ,Kr1)

∣
∣∣ sup
u,v∈Kr1 ,u �=v

‖g(u) − g(v)‖Kr1

‖u − v‖Kr1

< ∞
}

.

Under Assumption 3 there exists an up to modifications unique (�,F , P,

{Ft }t∈[0,T ])-mild solution of (35), which in this setting corresponds to a mapping
u : [0, T ] × [0, 1] × � → R that is an Ft/B(Kr2)-predictable stochastic process
satisfying

u(t) = eAtu(0) +
∫ t

0
eA(t−s) f (u(s))ds +

∫ t

0
eA(t−s)BdWs (37)

P-almost surely for all t ∈ [0, T ]. Moreover, for any p ≥ 2 and r ∈ [r1, r2], it holds
that

‖u(T , ·)‖L p(�,Kr ) ≤ C(1 + ‖u0‖L p(�,Kr )), (38)

where C > 0 depends on p, r , and T , cf. [28].

Remark 6 TheDirichlet homogeneous boundary conditions imposed in (35) onlymake
pointwise sense provided u(t, ·) ∈ K1/2+δ for some δ > 0 and all t ∈ (0, T ], P-
almost surely. In lower-reglarity settings, e.g., when u(t, ·) /∈ C(0, 1), said boundary
condition should be interpreted in mild rather than pointwise sense.

5.2 The filtering problem

We consider a discrete-time filtering problem of the form (1) and (2) with the above
SPDE as underlying model with �(un) denoting the mild solution of (35) at T > 0
given the initial data un ∈ ∩p≥2L p(�, V ). The underlying dynamics at observation
times 0, T , 2T , . . . is thus described by the dynamics

un+1 = �(un),

and the finite-dimensional partial observation of un at time nT is given by

yn = Hun + ηn, ηn ∼ N (0, �) i.i.d. ⊥ un, (39)
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where Hu = [H1(u), . . . , Hm(u)]T ∈ R
m with Hi ∈ V∗ for i = 1, 2, . . . ,m. Note

further that Assumption 3 implies that V ⊂ K0 = K, so we may represent the mild
solution in the basis {φ j } at any observation time nT :

un =
∑

j∈N
u( j)
n φ j , where u( j)

n := 〈un+1, φ j 〉K.

5.3 Spatial truncation

Before introducing a fully discrete MLEnKF approximation method for the filtering
problem, let us warm up by having a quick look at an exact-in-time-truncated-in-
space approximation method. It consists of the hierarchy of subspaces V� = P�V =
span({φk}N�

k=1), �� = P� and

��(un) := P�un+1 =
N�∑

j=1

u( j)
n+1φ j , for any un ∈ V.

To verify that this approximation method can be used in the MLEnKF framework,
it remains to verify Assumptions 1 and 2(i)–(ii), and to determine the rate parameter
β > 0. The Eq. (37), the regularity f ∈ Lip(Kr1), the inequality

sup
v∈Kr \{0}

‖eAtv‖Kr

‖v‖Kr

≤ 1, for all r ∈ R and t ≥ 0, (40)

and Jensen’s inequality imply that for any p ≥ 2, there exists a C > 0 such that

‖��(u0) − ��(v0)‖L p(�,V) ≤ ‖�(u0) − �(v0)‖L p(�,V)

≤ ‖u0 − v0‖L p(�,V) +
∥
∥∥∥

∫ T

0
eA(t−s)( f (u(s)) − f (v(s)))ds

∥
∥∥∥
L p(�,V)

≤ ‖u0 − v0‖L p(�,V) +
∫ T

0
‖ f (u(s)) − f (v(s))‖L p(�,V)ds

= ‖u0 − v0‖L p(�,V) + C
∫ T

0
‖u(s) − v(s)‖L p(�,V)ds.

Hence by Gronwall’s inequality,

‖��(u0) − ��(v0)‖L p(�,V) ≤ C‖u0 − v0‖L p(�,V),

which verifies Assumption 1(i). Assumption 1(ii) follows from (38). To verify that
Assumption 2(i) holds with rate β = 4(r2 − r1), observe that for any p ≥ 2,
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‖��(u0) − �(u0)‖L p(�,V) = ‖
∑

j>N�

λ
r1
j u

( j)
1 φ j‖L p(�,K)

≤ λ
−(r2−r1)
N�

‖
∑

j>N�

λ
r2
j u

( j)
1 φ j‖L p(�,K)

� N−2(r2−r1)
� ‖u1‖L p(�,V )

� (1 + ‖u0‖L p(�,V ))h
2(r2−r1)
� ,

(41)

where the last inequality follows from (38) and h� � N−1
� . Assumption 2(ii) follows

by a similar shift-space argument. (Relating toAssumption 2(iii), we leave the question
of the computational cost of this method open for the time being, but see Sect. 6.2 for
treatment in one example.)

5.4 A fully-discrete approximationmethod

The fully-discrete approximation method consists of Galerkin approximation in space
and numerical integration in time by the exponential Euler scheme, cf. [29,30]. Given
a timestep �t� = T /J�, let {U�,k}J�k=0 ⊂ V� with U�,0 = P�u0 denote the numerical
approximation SPDE (35) on level �. It is given by the scheme

U�,k+1 = eA��t�U�,k + A−1
�

(
eA��t� − I

)
f�(U�,k)

+ P�

∫ (k+1)�t�

k�t�
eA((k+1)�t�−s)BdW (s)

︸ ︷︷ ︸
=:R�,k

,

where A� := P�A and f� := P� f . The j th mode of the scheme U ( j)
�,k := 〈U�,k, φ j 〉K

for j = 1, 2, . . . , N�, is given by

U ( j)
�,k+1 = e−λ j�t�U ( j)

�,k + 1 − e−λ j�t�

λ j

(
f�(U�,k)

)( j) + R( j)
�,k , (42)

for k = 0, 1, . . . , J� − 1 with i.i.d.

R( j)
�,k ∼ N

(

0,
1 − e−2λ j�t�

2λ1+2b
j

)

, (43)

for j ∈ {1, 2, . . . , N�}, k ∈ {0, 1, . . . , J� − 1} and � = 0, 1, . . . In view of the
mode-wise numerical solution, the �th level solution operator for the fully-discrete
approximation method is defined by

�̃�(u0) :=
N�∑

j=1

U ( j)
�,J�

φ j .
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5.4.1 Coupling of levels

For a hierarchy of temporal resolutions {�t� = T /J�} with J� = 2� J0, pairwise
correlated solutions (�̃�−1(u0), �̃�(u0)) are obtained through first generating the fine-
level driving noise {R�,k}k and the solution �̃�(u0) by (42) and thereafter computing
the coarse level solution conditioned on {R�,k}k . Since J� = 2J�−1, it follows that

P�−1

∫ (k+1)�t�−1

k�t�−1

eA((k+1)�t�−1−s)BdW (s)

= eA�−1�t�P�−1

∫ (2k+1)�t�

2k�t�
eA((2k+1)�t�−s)BdW (s)

+ P�−1

∫ 2(k+1)�t�

(2k+1)�t�
eA((k+1)�t�−1−s)BdW (s).

Consequently

R�−1,k

∣
∣∣(R�,2k, R�,2k+1) = eA�−1�t�P�−1R�,2k + P�−1R�,2k+1,

and the conditional coarse-level solution �̃�−1(u0)|{R�,k}k is of the form

U�−1,k+1 = eA�−1�t�−1U�−1,k + A−1
�−1

(
eA�−1�t�−1 − I

)
f�−1(U�−1,k)

+ eA�−1�t�P�−1R�,2k + P�−1R�,2k+1

for k = 0, 1, . . . , J�−1 − 1, and with the initial condition U�−1,0 = P�−1u0. In other
words, the scheme for the j th mode of the coarse level solution is given by

U ( j)
�−1,k+1 = e−λ j�t�−1U ( j)

�−1,k + 1 − e−λ j�t�−1

λ j

(
f�−1(U�−1,k)

)( j)

+ e−λ j�t� R( j)
�,2k + R( j)

�,2k+1,

(44)

for j = 1, 2, . . . , N�−1 and k = 0, 1, . . . , J�−1−1, and the coarse level solution takes
the form

�̃�−1(u0) =
N�−1∑

j=1

U ( j)
�−1,J�−1

φ j .

This coupling approach may be viewed as an extension of the multilevel coupling of
Ornstein–Uhlenbeck processes for stochastic differential equations [43].

5.4.2 Assumptions and convergence rates

To show that the fully-discrete numerical method may be used in MLEnKF, it remains
to verify that Assumptions 1 and 2(i)–(ii) hold.

123



102 A. Chernov et al.

Assumption 1(i): Let U�,k and Ū�,k denote solutions at time t = k�t� of the
scheme (42) with respective initial data U�,0 = P�u0 and Ū�,0 = P�v0 fpr some
u0, v0 ∈ L p(�,V). Then, by (40), and the properties: (a) for all � ≥ 0 and v ∈ V�

‖A−1
� (eA��t� − I )v‖V =

∥
∥∥∥

∫ �t�

0
eA�svds

∥
∥∥∥V

≤
∫ �t�

0
‖eAsv‖Vds ≤ ‖v‖V�t�,

and (b) f ∈ Lip(V,V); there exists a C > 0 such that

‖U�,J� − Ū�,J�‖L p(�,V) ≤ (1 + C�t�)‖U�,J�−1 − Ū�,J�−1‖L p(�,V)

≤ (1 + C�t�)
T /�t�‖P�(u0 − v0)‖L p(�,V)

≤ eCT ‖u0 − v0‖L p(�,V).

Consequently, for every p ≥ 2, there exists a c� > 0 such that

∥∥∥�̃�(u0) − �̃�(v0)

∥∥∥
p

≤ c� ‖u0 − v0‖p

holds for all � ≥ 0 and u0, v0 ∈ L p(�,V).
Assumption 1(ii): Under the regularity constraints imposed by Assumption 3, it

holds for all � ∈ N and U�,k = ∑N�

j=1U
( j)
�,k φk that

max
k∈{0,1,...,J�}

‖U�,k‖L p(�,Kr ) ≤ C(1 + ‖u0‖L p(�,Kr )), ∀p ≥ 2 and r ∈ [r1, r2),

where C > 0 depends on r and p, but not on �, cf. [28, Lemma 8.2.21].
Assumption 2(i): We begin by introducing the auxiliary �th level exact-in-time

Galerkin approximation

u�(t) := eA�t u0 +
∫ t

0
eA�(t−s) f�(u

�(s))ds +
∫ t

0
eA�(t−s)dWs, t ∈ [0, T ],

and the notation �̂�(u0) := u�(T ). Assumption 3 and [28, Corollary 8.1.12] imply
that for any p ≥ 2 and r ∈ [r1, r2]

sup
�≥0

∥
∥∥�̂�(u0)

∥
∥∥
L p(�,Kr )

� (1 + ‖u0‖L p(�,Kr )).

The triangle inequality and (41) yield that

∥
∥∥�(u0) − �̃�(u0)

∥
∥∥
L p(�,V)

≤
∥
∥∥�(u0) − �̂�(u0)

∥
∥∥
L p(�,V)

+
∥
∥∥�̂�(u0) − �̃�(u0)

∥
∥∥
L p(�,V)

,
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and by [28, Corollary 8.1.11-12 and Theorem 8.2.25],1 it respectively holds that for
any p ≥ 2

∥∥∥�(u0) − �̂�(u0)
∥∥∥
L p(�,V)

� (1 + ‖u0‖L p(�,V ))N
2(r1−r2)
� ,

and ∥∥∥�̂�(u0) − �̃�(u0)
∥∥∥
L p(�,V)

� (1 + ‖u0‖L p(�,V))J
r1−r2
� . (45)

This verifies Assumption 2(i) as it leads to the following bound: for any p ≥ 2,

‖�(u0) − �̃�(u0)‖L p(�,V) � (1 + ‖u0‖L p(�,V ))(N
2(r1−r2)
� + Jr1−r2

� ).

Assumption 2(ii) only depends on the projection operator, and thus follows from (41).

5.5 Linear forcing

For the remaining part of this section consider the linear case f (u) = u of the filtering
problem in Sect. 5.2.We derive explicit values for the rate exponents β, γx and γt when
applying MLEnKF with either the exact-in-time-truncated-in-space approximation
method in Sect. 5.3 or the fully-discrete approximation method in Sect. 5.4.

The exact solution of the j th mode for this linear case is

u( j)
n+1 = e(1−λ j )T u( j)

n + ξ
( j)
n , ξ

( j)
n ∼ N

[

0,
λ−2b
j

2(λ j − 1)
(1 − e2(1−λ j )T )

]

⊥ u( j)
n .

Although we see that the underlying dynamics can be solved exactly, the filtering
problem is still non-trivial since correlations between the modes {u( j)

n+1} j will arise
from the assimilation of observations (39), unless the observation operator is of the
special form H(·) = [H1(·), . . . , Hm(·)]T with all operator components of the form
Hi = φ∗

j for some j ∈ N.
Since the Galerkin and spatial approximationmethods coincide in the linear setting,

meaning �� = �̂�, it holds by (41) that for any p ≥ 2,

‖�(u0) − �̂�(u0)‖L p(�,V) � (1 + ‖u0‖L p(�,V ))N
2(r1−r2)
� . (46)

Let us next show that the time discretization convergence rate (45) is improved from
r1−r2 in the above nonlinear setting to 1 in the linear setting.We begin by studying the
properties of the sequence {P��̃

m(u0)}∞m=� for a fixed � ∈ N. The j th mode projected
difference of coupled solutions for m > � is given by

〈P�(�̃
m(u0) − �̃m−1(u0)), φ j 〉K =

{
U ( j)
m,Jm

−U ( j)
m−1,Jm−1

, if j ≤ N�,

0 otherwise,

1 In the notation of the lecture notes [28], the parameters γ , β and η, which describe different properties
than in this paper, take the values γ = r1, β = b − 1/4 and η = 2(γ − β).
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and the difference can be bounded as follows:

Lemma 8 Consider the SPDE (35) with f (u) = u, and other assumptions as stated
in Sect. 5.1. Then for any ū0 ∈ L2(�,V) and m ∈ N, the sequence

Im, j :=
〈
Pm−1

(
�̃m(ū0) − �̃m−1(ū0)

)
, φ j

〉

K , j = 1, 2, . . .

can be split into three parts

Im, j = Im, j,1 + Im, j,2 + Im, j,3,

where Im, j,1, Im, j,2, and Im, j,3 for every j = 1, 2, . . . is a triplet of mutually inde-
pendent random variables and Im, j,1 = Im, j,2 = Im, j,3 = 0 for all j > Nm−1.
Furthermore, there exists a constant c > 0 that depends on T > 0 and λ1 > 1 such
that for any m ∈ N and all j ≤ Nm−1,

|Im, j,1| ≤ c|ū( j)
0 |�tm,

and Im, j,2 and Im, j,3 are mean zero Gaussians with variance bounded by

max
(
E

[
I 2m, j,2

]
, E

[
I 2m, j,3

])
≤ c

�t2m
λ1+2b
j

. (47)

Proof See “Appendix B”. ��
By Lemma 8 and Assumption 3, there exists a C > 0 depending on p, T , λ1 and

b + 1/4 − r1 such that for any m > � and u0 ∈ ∩p≥2L(�, V ),

∥
∥P�

(
�̃m(u0) − �̃m−1(u0)

)∥∥2
L p(�,V)

≤ ∥
∥Pm−1

(
�̃m(u0) − �̃m−1(u0)

)∥∥2
L p(�,V)

≤
∥
∥∥
∥∥
∥

∞∑

j=1

(Im, j,1 + Im, j,2 + Im, j,3)φ j

∥
∥∥
∥∥
∥

2

L p(�,V)

≤ 3

∥
∥∥
∥∥
∥

∞∑

j=1

Im, j,1φ j

∥
∥∥
∥∥
∥

2

L p(�,V)

+ 3

∥
∥∥
∥∥
∥

∞∑

j=1

Im, j,2φ j

∥
∥∥
∥∥
∥

2

L p(�,V)

+ 3

∥
∥∥
∥∥
∥

∞∑

j=1

Im, j,3φ j

∥
∥∥
∥∥
∥

2

L p(�,V)

≤ 3c2�t2m ‖u0‖2L p(�,V) + 3

∥∥
∥∥
∥∥

∞∑

j=1

I 2m, j,2〈φ j , φ j 〉V
∥∥
∥∥
∥∥
L p/2(�)

+ 3

∥∥
∥∥
∥∥

∞∑

j=1

I 2m, j,3〈φ j , φ j 〉V
∥∥
∥∥
∥∥
L p/2(�)

≤ 3c2�t2m ‖u0‖2L p(�,V) + 3
∞∑

j=1

(∥
∥∥I 2m, j,2

∥
∥∥
L p/2(�)

+
∥
∥∥I 2m, j,2

∥
∥∥
L p/2(�)

)
λ
2r1
j

≤ 3c2�t2m

⎛

⎝‖u0‖2L p(�,V) + 2
∞∑

j=1

λ
2(r1−b)−1
j

⎞

⎠

≤ C
(
1 + ‖u0‖L p(�,V)

)2
�t2m . (48)
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Here, the sixth inequality follows from Im, j,2 and Im, j,3 being mean zero Gaussians
with variance bounded by (47), which implies that for any p ≥ 2, there exists a
constant C > 0 depending on p such that

max
r∈{2,3}

∥∥∥I 2m, j,r

∥∥∥
L p/2(�)

= max
r∈{2,3}

∥∥Im, j,r
∥∥2
L p(�)

≤ C
�t2m
λ1+2b
j

holds for all j ∈ N. And the last inequality follows from the assumption r1 < b+1/4,
which implies that 2(r1 − b) − 1 < −1/2 and hence

∞∑

j=1

λ
2(r1−b)−1
j <

∞∑

j=1

( j2)2(r1−b)−1 < ∞.

From inequality (48) we deduce that {P��̃
m(u0)}∞m=� is L

p(�,V)-Cauchy and that
there exists a constant C > 0 depending on p, T , λ1 and b + 1/4 − r1 such that

‖P��(u0) − �̃�(u0)‖L p(�,V) ≤
∞∑

m=�+1

‖P�(�̃
m(u0) − �̃m−1(u0))‖L p(�,V)

≤ C(1 + ‖u0‖L p(�,V))

∞∑

m=�+1

�tm

≤ C(1 + ‖u0‖L p(�,V))�t�

∞∑

k=1

2−k

= C(1 + ‖u0‖L p(�,V))J
−1
� .

(49)

In view of the preceding inequality and (46) we obtain the following L p-strong con-
vergence rate for the fully discrete scheme:

Theorem 3 Consider the SPDE (35) with f (u) = u and other assumptions as stated
in Sect. 5.1. Then for all p ≥ 2 and � ∈ N ∪ {0}, there exists a C > 0 such that

‖�(u0)−�̃�(u0)‖L p(�,V) ≤ C(1+‖u0‖L p(�,V ))(N
2(r1−r2)
� + J−1

� ), ∀� ≥ 0, (50)

where C depends on r1, r2 and p, but not on �.

Remark 7 To thebest of our knowledge, the L p-strong time-discretization convergence
rate (49) is an improvement of the literature in two ways. First, for p = 2, it is slightly
higher than O(log(�t−1)�t), which is the best rate in the literature, cf. [29]. And
second, this is the first proof of order 1 L p-strong time-discretization convergence
rate for any p ≥ 2.
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5.5.1 Error equilibration

The temporal and spatial discretization errors of (50) are equlibrated through deter-
mining the base κ > 1 that induces a sequence {N� = N0κ

�} such that N 2(r1−r2)
� �

J−1
� � 2−�. The solution is κ = 2(r2−r1)/2, which yields the following L p-strong

convergence rate in (50):

‖�(u0) − �̃�(u0)‖L p(�,V) � (1 + ‖u0‖L p(�,V ))h
2(r2−r1)
� .

In view of Assumption 2, MLEnKF with the fully-discrete approximation method
yields the convergence rate β = 4(r2 − r1) and the computational cost rates γx = 1
and γt = 2(r2 − r1) in the considered linear setting.

Remark 8 (MLEnKF time) Note that one could consider applying the SDE version
of [23] to a fixed finite approximation of the SPDE. However, in this case we would
be incurring a fixed baseline cost associated to that discretization. In comparison to
using a single level method, there would be a gain in efficiency, as a result of using
the multilevel identity with respect to the time discretization. But this would be still
substantially less efficient than accounting also for the spatial approximation in the
multilevel method, as we do in the method considered here.

6 Numerical examples

In this section we present numerical performance studies of EnKF and MLEnKF
applied to two different filtering problems with underlying dynamics given by the
SPDE (35). In the first example, the reaction term of the SPDE is linear, and in the
second example we consider a nonlinear, and thus more challenging, reaction term.

6.1 Discretization parameters and the relationship between computational cost
and accuracy

If we neglect the logarithmic factor in (19), as is motivated by Remark 5, then Theo-
rems 1 and 2 respectively imply the following relations between mean squared error
(MSE) and computational cost

Cost
(
μ̂ML
n [ϕ]

)min(1,β/(dγx+γt )) ‖μ̂ML
n [ϕ] − ˆ̄μn[ϕ]‖22 �

{
1 if β �= dγx + γt ,

L3 if β = dγx + γt ,

and

Cost
(
μ̂MC
n [ϕ]

)β/(β+dγx+γt ) ‖μ̂MC
n [ϕ] − ˆ̄μn[ϕ]‖22 � 1.
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In other words,

‖μ̂ML
n [ϕ] − ˆ̄μn[ϕ]‖22 �

⎧
⎪⎨

⎪⎩

Cost
(
μ̂ML
n [ϕ])−1

if β > dγx + γt ,

L3Cost
(
μ̂ML
n [ϕ])−1

if β = dγx + γt ,

Cost
(
μ̂ML
n [ϕ])−β/(dγx+γt ) if β < dγx + γt ,

(51)

and

‖μ̂MC
n [ϕ] − ˆ̄μn[ϕ]‖22 � Cost

(
μ̂MC
n [ϕ]

)−β/(β+dγx+γt )

. (52)

For all test problems, we use the observation-time interval T = 1/2, N = 40 obser-
vation times, N� = 2�+2, and, when relevant J� = 2�+2 (i.e., for the fully-discrete
numerical method). The approximation error, which we refer to as the mean squared
error (MSE), is defined as the sum of the squared QoI error over the observation times
and averaged over 100 realizations of the respective filtering methods. That is,

MSE(MLEnKF) := 1

100

100∑

i=1

N∑

n=0

∣∣∣μ̂ML
n,i [ϕ] − ˆ̄μn[ϕ]

∣∣∣
2 ≈

N∑

n=0

‖μ̂ML
n [ϕ] − ˆ̄μn[ϕ]‖22,

where {μ̂ML·,i [ϕ]}100i=1 is a sequence of i.i.d. QoI evaluations induced from i.i.d. realiza-
tions of the MLEnKF. And similarly,

MSE(EnKF) := 1

100

100∑

i=1

N∑

n=0

∣∣∣μ̂MC
n,i [ϕ] − ˆ̄μn[ϕ]

∣∣∣
2 ≈

N∑

n=0

‖μ̂MC
n [ϕ] − ˆ̄μn[ϕ]‖22.

In the examples below we numerically verify that the considered numerical methods
respectively fulfill (51) and (52), when the above computational cost expressions are
replaced/approximated by the wall-clock runtime of the computer implementations
of the respective methods. More precisely, we numerically verify that the following
approximate asymptotic inequalities hold:

MSE(MLEnKF) �

⎧
⎪⎨

⎪⎩

Runtime(MLEnKF)−1 if β > dγx + γt ,

L3Runtime(MLEnKF)−1 if β = dγx + γt ,

Runtime(MLEnKF)−β/(dγx+γt ) if β < dγx + γt ,

(53)

and
‖μ̂MC

n [ϕ] − ˆ̄μn[ϕ]‖22 � Runtime(EnKF)−β/(β+dγx+γt ). (54)

6.2 Linear filtering problems

We consider the filtering problem in Sect. 5.2 with the linear forcing f (u) = u in
the underlying dynamics (35), smoothing parameter b = 1/2, approximation space
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Fig. 1 Exact-in-time simulation of the SPDE in Sect. 6.2 over one observation-time interval with spatial
resolution N10 = 212

parameters r1 = 1/4 + υ and r2 = 3/4 − υ with υ = 10−4, observation functional

H = δ0.5 = √
2

∞∑

j=1

sin( jπ/2)φ∗
j ,

observation noise parameter � = 0.5, QoI

ϕ = 1∗ =
∑

j∈N

√
2(1 − cos( jπ))

jπ
φ∗
j , (55)

and initial data

u0(x) = 1 − 2

∣∣∣∣x − 1

2

∣∣∣∣ =
∑

j∈N
(−1) j−1 4

√
2

((2 j − 1)π)2
φ2 j−1(x).

We note that H , ϕ ∈ V∗ and u0 ∈ V . Figure 1 illustrates one exact-in-time simulation
of the SPDE.
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Fig. 2 Runtime-to-MSE
comparison for the filtering
problem in Sect. 6.2 using the
spatially-discrete method
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Fig. 3 Left: Runtime-to-MSE comparison for the filtering problem in Sect. 6.2 using the fully-discrete
numerical method. Right: Graph of (Runtime(MLEnKF), MSE(MLEnKF)×Runtime(MLEnKF)/L3) for
the fully-discrete numerical method. Note the y-axis here, and in future such plots, has linear scaling

By the approximation β = 2(r2 − r1) ≈ 2, application of the error equilibration
in Sect. 5.5.1 yields (dγx = 1,γt = 1) for the fully-discrete method and (dγx = 1,
γt = 0) for the spatially-discrete method. Figure 2 and the left subfigure of Fig. 3
display the runtime-to-MSE performance for the spatially-discrete and fully-discrete
methods, respectively.

The right subfigure of Fig. 3 displays the graph of

(Runtime(MLEnKF), MSE(MLEnKF) × Runtime(MLEnKF)/L3),

(where MSE(MLEnKF) in the second argument denotes the “MSE” obtained for a
given “Runtime”). The numerical observations are consistent with the approximate
theoretical predictions (53) and (54).

The reference-solution sequence { ˆ̄μn[ϕ]}Nn=1 that is needed to estimate the MSE
in the above figures, is approximated by Kalman filtering the subspace V12 ⊂ V ,
which is an N12 = 214-dimensional subspace. This yields an accurate approximation,
since when the underlying dynamics (35) is linear with Gaussian additive noise, the
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full-space Kalman filter distribution equals the reference MFEnKF distribution ˆ̄μ.
Furthermore, EnKF and MLEnKF solutions are computed with ensemble particles at
no higher spatial resolution than V9 in the cost-to-accuracy studies.

6.3 A nonlinear filtering problem

We seek the mild solution to the following nonlinear SPDE with periodic boundary
conditions

du = ((� − I )u + sin(πu)) dt + BdW , (t, x) ∈ (0, T ] × (0, 1),

u(0, x) = 4(x − 1/2)2

u(t, 0) = u(t, 1), t ∈ (0, T ],
(56)

where W and B are described below. Here, the operator −A = (I − �) is defined as
a mapping A : H2(0, 1) ∩ H1

per(0, 1) → K = L2(0, 1), where H1
per(0, 1) := { f ∈

H(0, 1) | ( f − f (0)) ∈ H1
0 (0, 1)}. The periodic boundary condition is different from

the zero-valued boundary condition in (35), and, in order to spectrally decompose−A,
we now express the base-spaceK = L2(0, 1) by the closure of the span of the Fourier
basis

φk(x) =

⎧
⎪⎨

⎪⎩

1, k = 1,√
2 cos(2kπx), k = 2, 4, 6 . . . ,√
2 sin(2(k − 1)πx), k = 3, 5, 7, . . .

(57)

The operator −A is spectrally decomposed by

−Aφk = λkφk

with

λk =

⎧
⎪⎨

⎪⎩

1, k = 1,

1 + (2kπ)2, k = 2, 4, 6, . . . ,

1 + (2(k − 1)π)2 k = 3, 5, 7, . . .

As in Sect. 5.1, we introduce the family of Hilbert spaces parametrized in r ∈ R

Kr := D((−A)r ) =
{
v : [0, 1] → R |v is B([0, 1])/B(R)-measurable

and
∑

j∈N
λ2rj

∣∣〈φ j , v〉K
∣∣2 < ∞

}
,

with norm ‖ · ‖Kr := ‖(−A)r (·)‖K. As smoothing operator B, we consider (36) with
parameter b = 1/4, where W denotes an IK-cylindrical Wiener process [both B and
W are of course expanded in the currently considered basis (57)]. We consider the
approximation spaces
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Fig. 4 Simulationof theSPDE(56) over oneobservation-time interval by thenumerical scheme inSect. 6.3.1
on resolutions N10 = J10 = 212

V = K0 and V = K(1−ν)/2,

where ν = 10−4, the QoI (55) and the observation operator

H = 1∗
x>0.5 = 1

2
φ∗
0 +

∞∑

k=1

√
2

πk
φ∗
2k+1.

The spectral representation of the initial data

u(0, ·) = 1

3
+
∑

k=1

2
√
2

(πk)2
φ2k(·)

implies that u(0, ·) ∈ K(1−ν)/2. Figure 4 illustrates one simulation of the SPDE by the
numerical scheme described below.

By the Lipschitz-continuity of the reaction term, it follows that Assumption 3 is
fulfilled. Moreover, the well-posedness theory for the zero-valued boundary condition
for the SPDE (35) extends to the current setting, and so does the theory for the fully-
discrete exponential Euler method in Sect. 5.4, cf. [28].
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6.3.1 Numerical scheme

We apply the coupled fully discrete approximation method described in Sect. 5.4, but,
due to the nonlinearity of the reaction term f (u) = sin(πu), the spectral represen-
tation in the coupled scheme (42) and (44) needs to be approximated. Namely, the
approximation of [( f�(U�,k))

(1), . . . , ( f�(U�,k))
(N�)] is obtained by application of the

fast Fourier transform (FFT) as follows:

1. Given the spectral representation [U (1)
�,k , . . . ,U

(N�)
�,k ] compute the physical-space-

on-uniform-mesh representation by the inverse FFT

[U�,k(0),U�,k(1/N�), . . . ,U�,k(1 − N−1
� )] = IFFT[U (1)

�,k , . . . ,U
(N�)
�,k ].

2. Evaluate the nonlinear reaction term in physical space and approximate the spec-
tral representation by FFT

[( f�(U�,k))
(1), . . . , ( f�(U�,k))

(N�)]
≈ FFT[ f (U�,k(0)), f (U�,k(1/N�)), . . . , f (U�,k(1 − N−1

� ))].

The spectral approximation of the coarse-level reaction term is obtained analogously.
Due to the FFT approximation error in step 2. above, we cannot directly obtain the rate
parameter β from the analysis in Sect. 5.4. To infer β, we instead perform numerical
studies of the L p(�,V)-convergence rate of the coupled-level difference of the FFT-
based fully-discrete method �̃�(u) − �̃�−1(u) towards 0, where the expectation is
estimated with the Monte Carlo method with M = 105 samples:

(
1

M

M∑

i=1

‖�̃�(u0;ωi ) − �̃�−1(u0;ωi )‖p
V

)1/p

≈ ‖�̃�(u) − �̃�−1(u)‖L p(�,V) .

(58)
Recalling that h−1

� � N� � J� = 22+� for the numerical solver �̃�, we infer from the
results of the numerical study (58), which is provided in Fig. 5, that

‖�̃�(u) − �(u)‖p � hβ/2
� , (59)

with β = 2. Further numerical studies, which we do not include here, indicate that
the right hand side of (59) may be decomposed into O(N−1

� + J−1
� ). On the basis

of these observations, the configuration of discretization parameters for this problem,
N� � J�, is in alignment with the efficiency-optimized error equilibration strategy in
Sect. 5.5.1.

The left subfigure in Fig. 6 displays the results of the runtime-to-MSE studies of
EnKF and MLEnKF.

As pseudo-reference solution, we use the approximation

1

200

200∑

i=1

μML
n,i [ϕ] ≈ ˆ̄μn[ϕ], n = 1, 2, . . . , 40,
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Fig. 5 Numerical estimates of the error ‖�̃�(u0)−�̃�−1(u0)‖p by theMonte Carlo method (58) for p = 2
(dash-dot), p = 4 (solid-circle), and p = 8 (dash-diamond). The solid line represents the reference function
f (�) = 2−(�+1)
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Fig. 6 Left: Runtime-to-MSE for the nonlinear filtering problem in Sect. 6.3.1 using the fully-discrete
method. Right: Graph of (Runtime(MLEnKF), MSE(MLEnKF) × Runtime(MLEnKF)/L3) for the fully-
discrete method

with theMLEnKF estimatorμML
n,i [ϕ] here being computed on a finer resolution than all

those considered in the runtime-to-MSE study. The right subfigure in Fig. 6 displays
the graph of

(Runtime(MLEnKF), MSE(MLEnKF) × Runtime(MLEnKF)/L3).

Once again, the numerical observations are consistentwith the theoretical asymptotical
behavior predicted by (53) and (54).

Remark 9 (MLEnKF versus Multilevel particle filters) To the best of our knowledge,
there does not exist a general multilevel particle filter for SPDE to this date. When
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the effective dimension on level � is N�, the general requirement for particle filters is
that the ensemble size on that level is bounded from below by ceN� particles, for some
constant c > 0. Effective dimension refers to the dimension of the space over which
importance sampling needs to be performed [1,3,10]. For example, in the case of full
observations, the effective dimension can be equal to the state-space dimension. For
MLEnKF, on the other hand, the level � ensemble size is always bounded from above
byO(L2N (β−dγx−γt )/(2d)

� ), even with full observations. The set of MLEnKF-tractable
problems is therefore substantially larger than the set of problems tractable by particle
filters.

7 Conclusion

We have presented the design and analysis of a multilevel EnKF method for infinite-
dimensional spatio-temporal processes depending on a hierarchical decomposition
of both the spatial and the temporal parameters. We have proved theoretically and
provided numerical evidence that under suitable assumptions, a similar asymptotic
cost-to-accuracy is obtained for MLEnKF as that one obtains for standard multilevel
Monte Carlo methods. This result has potential for broad impact across application
areas in which there has been a recent explosion of interest in EnKF, for example
weather prediction and subsurface exploration.
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Appendix A: Marcinkiewicz–Zygmund inequalities for separable
Hilbert spaces

In order to prove Lemma 5, we will need the following two lemmas for extending the
Marcinkiewicz–Zygmund inequality fromfinite-dimensional state-spaces to separable
Hilbert spaces.
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Lemma 9 [34, Theorem 5.2] Let 2 ≤ p < ∞ and Xi ∈ L p(�,V) be i.i.d. samples of
X ∈ L p(�,V). Then

‖EM [X ] − E[X ] ‖L p(�,V) ≤ cp√
M

‖X − E[X ] ‖L p(�,V) , (60)

where cp only depends on p.

Proof Let r1, r2, . . . denote a sequence of real-valued i.i.d. random variables with
P(ri = ±1) = 1/2. A Banach spaceK is said to be of R-type q if there exists a c > 0
such that for every n̄ ∈ N and for all (deterministic) x1, x2, . . . , xn̄ ∈ K,

E

[∥∥∥
n̄∑

i=1

ri xi
∥∥∥K

]

≤ c

(
n̄∑

i=1

‖xi‖qK
)1/q

.

It is clear that all Hilbert spaces (and for our interest V , in particular) are of R-
type 2, since their norms are induced by an inner product. Following the proofs of
[50, Proposition 2.1 and Corollary 2.1], let {X ′

i } denote an additional sequence of
i.i.d. samples of X ∈ L p(�,V) for which the collection of r.v. {Xi } ∪ {X ′

i } also is
i.i.d. Introducing the symmetrization X̃i := (Xi − X ′

i ), and noting that

E[Xi − E[X ]] = E
[
E
[
X̃i | Xi

]]
,

we derive by the conditional Jensen’s inequality that

E

⎡

⎣

∥∥∥
∥∥

n̄∑

i=1

Xi − E[X ]

∥∥∥
∥∥

p

V

⎤

⎦ ≤ E

⎡

⎣

∥∥∥
∥∥
E

[
n̄∑

i=1

X̃i

∣∣∣
∣{Xi }n̄i=1

]∥∥∥
∥∥

p

V

⎤

⎦

≤ E

⎡

⎣

∥∥∥∥
∥

n̄∑

i=1

X̃i

∥∥∥∥
∥

p

V

⎤

⎦ = E

⎡

⎣

∥∥∥∥
∥

n̄∑

i=1

ri X̃i

∥∥∥∥
∥

p

V

⎤

⎦ ≤ cE

⎡

⎣
(

n̄∑

i=1

∥∥X̃i
∥∥2V

)p/2⎤

⎦

≤ c2p E

⎡

⎣
(

n̄∑

i=1

‖Xi − E[X ]‖2V
)p/2⎤

⎦ .

And by another application of Hölder’s inequality,

E

⎡

⎣

∥∥
∥∥∥

M∑

i=1

Xi − E[X ]

M

∥∥
∥∥∥

p

V

⎤

⎦ ≤ ĉM−p
E

⎡

⎣

(
M∑

i=1

‖Xi − E[X ]‖2V
)p/2⎤

⎦

≤ ĉM−p/2
E
[‖X − E[X ]‖p

V
]
.

��
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Lemma 10 Let X ,Y ∈ L p(�,V), for some p ≥ 2. Then, for any 1 ≤ r , s ≤ ∞
satisfying 1/r + 1/s = 1, it holds that

‖CovM [X ,Y ] − Cov[X ,Y ]‖L p(�,V⊗V) ≤ c√
M

‖X‖L pr (�,V)‖Y‖L ps (�,V)

where the upper bound for the constant c = M

M − 1

(
2cp+ cpr cps + 1√

M

)
only depends

on r , s and p.

Proof Since Cov[X ,Y ] = Cov[X−E[X ] ,Y−E[Y ]] and CovM [X ,Y ] = CovM [X−
E[X ] ,Y − E[Y ]], cf. (7), we may without loss of generality assume that E[X ] =
E[Y ] = 0. Using the triangle inequality,

M − 1

M
‖CovM [X ,Y ] − Cov[X ,Y ]‖p

≤ ‖EM [X ⊗ Y ] − E[X ⊗ Y ] ‖p + ‖EM [X ] ⊗ EM [Y ]‖p + 1

M
‖E[X ⊗ Y ] ‖V⊗V .

Estimate (60) and Hölder’s inequality yield

‖EM [X ⊗ Y ] − E[X ⊗ Y ] ‖p ≤ cp√
M

‖X ⊗ Y − E[X ⊗ Y ] ‖p

≤ 2cp√
M

‖X ⊗ Y‖p ≤ 2cp√
M

‖X‖pr‖Y‖ps .

Similarly, since E[X ] = E[Y ] = 0 by assumption, we obtain by (60) and Hölder’s
inequality

‖EM [X ] ⊗ EM [Y ]‖p ≤ ‖EM [X ]‖pr‖EM [Y ]‖ps ≤ cpr cps
M

‖X‖pr‖Y‖ps .

And, finally, for the last term

1

M
‖E[X ⊗ Y ] ‖V⊗V ≤ 1

M
‖X ⊗ Y‖L1(�,V⊗V) ≤ 1

M
‖X‖L pr (�,V)‖Y‖L ps (�,V).

��

Appendix B: Proof of Lemma 8

Proof Introducing the function g : (1,∞) × (0,∞) → R defined by

g(λ, s) = e−λs + 1 − e−λs

λ
,
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consecutive iterations of the scheme (42) for j ≤ Nm yield

U ( j)
m,Jm

= g(λ j ,�tm)U ( j)
m,Jm−1 + Rm,Jm−1

= (
g(λ j ,�tm)

)2
U ( j)
m,Jm−2 + g(λ j ,�tm)R( j)

m,Jm−2 + R( j)
m,Jm−1

= . . .

= (
g(λ j ,�tm)

)Jm U ( j)
m,0 +

Jm−1∑

k=0

(
g(λ j ,�tm)

)Jm−(k+1)
R( j)
m,k,

where we recall that the initial data is given by Um,0 = Pmū0 with ū0 ∈ L2(�,V).
And since Jm = 2Jm−1, consecutive iterations of the coupled coarse scheme (44) for
j ≤ Nm−1 yield

U ( j)
m−1,Jm−1

= g(λ j ,�tm−1)U
( j)
m−1,Jm−1−1 + e−λ j�tm R( j)

m,Jm−2 + R( j)
m,Jm−1

= (
g(λ j ,�tm−1)

)2
U ( j)
m−1,Jm−1−2

+ g(λ j ,�tm−1)
(
e−λ j�tm R( j)

m,Jm−4 + R( j)
m,Jm−3

)

+ e−λ j�tm R( j)
m,Jm−2 + R( j)

m,Jm−1

= . . .

= (
g(λ j ,�tm−1)

)Jm−1 U ( j)
m−1,0

+
Jm−1−1∑

k=0

(
g(λ j ,�tm−1)

)Jm−1−(k+1)
(
e−λ j�tm R( j)

m,2k + R( j)
m,2k+1

)
.

The j th mode final time difference of the coupled solutions for j ≤ Nm−1 thus
becomes

U ( j)
m,Jm

−U ( j)
m−1,Jm−1

=
((
g(λ j ,�tm)

)2Jm−1 − (
g(λ j ,�tm−1)

)Jm−1
)
U ( j)

�,0

+
Jm−1−1∑

k=0

((
g(λ j ,�tm)

)2k − (
g(λ j ,�tm−1)

)k)
R( j)
m,Jm−2k+1

+
Jm−1−1∑

k=0

(
(
g(λ j ,�tm)

)2k
g(λ j ,�tm) − (

g(λ j ,�tm−1)
)k

e−λ j�tm

)
R( j)
m,Jm−2(k+1)

=: Im, j,1 + Im, j,2 + Im, j,3.

(61)
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For bounding these three terms, we need to estimate the difference between powers
of
(
g(λ j ,�tm)

)2 and g(λ j ,�tm−1). Note first that

(
g(λ j ,�tm)

)2 = e−2λ j�tm + 2e−λ j�tm 1 − e−λ j�tm

λ j
+
(
1 − e−λ j�tm

λ j

)2

= e−λ j�tm−1 + 1 − e−λ j�tm−1

λ j︸ ︷︷ ︸
=g(λ j ,�tm−1)

+(1 − λ j )

(
1 − e−λ j�tm

λ j

)2

.
(62)

Remark 10 Equations (61) and (62) show that to leading order, the additive noise
from two consecutive iterations of the fine scheme equals the additive noise from
one corresponding iteration of the coupled coarse scheme. The strong coupling of the
coarse and fine schemes is crucial for achieving the order 1 a priori time discretization
convergence rate.

Since inf j∈N λ j = λ1 > 1, it holds for all j ∈ N that

(
g(λ j ,�tm)

)2
< g(λ j ,�tm−1) < 1 (63)

and

∣
∣
∣
(
g(λ j ,�tm)

)2 − g(λ j , �tm−1)
∣
∣
∣ <

(
1 − e−λ j�tm

) 1 − e−λ j�tm

λ j
≤
(
1 − e−λ j�tm

)
�tm .

By the mean value theorem, it holds for any j, k ≥ 1 that

∣∣
∣
(
g(λ j ,�tm)

)2k − (
g(λ j ,�tm−1)

)k∣∣
∣ ≤ (

g(λ j ,�tm−1)
)k−1

k
(
1 − e−λ j�tm

)
�tm .

(64)
Furthermore,

sup
λ≥λ1

λe−λs ≤ e−1

s
, for any s > 0. (65)
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By (63), (64), (65), and the mean value theorem, and recalling that �tm−1 = 2�tm , it
holds for any 1 < k ≤ Jm−1 and j ≥ 1 and some θ jk ∈ [0, 1] that
∣∣∣
(
g(λ j ,�tm)

)2k − (
g(λ j ,�tm−1)

)k∣∣∣ ≤
(
e−λ j�tm−1 + 1 − e−λ j�tm−1

λ j

)k−1

kλ j�t2m

≤ e−λ j (k−1)�tm−1kλ j�t2m

+
(
e−λ j�tm−1 + θ jk

1 − e−λ j�tm−1

λ j

)k−2

(k − 1)k�tm−1�t2m

≤ e−1k

(k − 1)�tm−1
�t2m + T 2

2
�tm

≤ 1 + T 2

2
�tm .

(66)
From (66), we conclude that for j ≤ Nm−1,

∣∣Im, j,1
∣∣ ≤ 1 + T 2

2
|U ( j)

�,0 |�tm .

For bounding the terms Im, j,2 and Im, j,3, note by (61) that both terms are linear
combinations of i.i.d. Gaussians from the sequence

R( j)
m,k ∼ N

(

0,
1 − e−λ j�tm

2λ1+2b
j

)

, k = 0, 1, . . . , Jm − 1,

cf. (43), and hence, both terms mean zero Gaussians. Furthermore, Im, j,2 and Im, j,3
are mutually independent as any summand of the former term is independent of any
summand from the latter. Consequently, Im, j,2 + Im, j,3 is a mean zero Gaussian with
variance

E

[
(Im, j,2 + Im, j,3)

2
]

= E

[
I 2m, j,2

]
+ E

[
I 2m, j,3

]
.

By the mutual independence of all terms in Im, j,2, it holds for j ≤ Nm−1 that

E

[
I 2m, j,2

]
=

Jm−1−1∑

k=0

((
g(λ j ,�tm)

)2k − (
g(λ j ,�tm−1)

)k)2
E

[(
R( j)
m,Jm−2k+1

)2]

≤ 1 − e−λ j�tm

2λ1+2b
j

∞∑

k=0

((
g(λ j ,�tm)

)2k − (
g(λ j ,�tm−1)

)k)2

= 1 − e−λ j�tm

2λ1+2b
j

∞∑

k=0

[
(
g(λ j ,�tm)

)4k + (
g(λ j ,�tm−1)

)2k

− 2
((
g(λ j ,�tm)

)2
g(λ j ,�tm−1)

)k ]
. (67)
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By the strict inequality (63), we are dealing with three sums of geometric series:

∞∑

k=0

((
g(λ j ,�tm)

)2
g(λ j ,�tm−1)

)k = 1

1 − g(λ j ,�tm−1)
(
g(λ j ,�tm)

)2 , (68)

∞∑

k=0

(
g(λ j ,�tm)

)4k = 1

1 − (
g(λ j ,�tm)

)4 , (69)

and ∞∑

k=0

(
g(λ j ,�tm−1)

)2k = 1

1 − (
g(λ j ,�tm−1)

)2 .

By applying g(λ j ,�tm) < g(λ j ,�tm−1) < 1 and the mean value theorem,

∞∑

k=0

(
g(λ j , �tm)

)4k + (
g(λ j , �tm−1)

)2k = 2 − (
g(λ j ,�tm)

)4 − (
g(λ j , �tm−1)

)2
(
1 − (

g(λ j , �tm)
)4) (1 − (

g(λ j ,�tm−1)
)2)

=
2
(
1 − (

g(λ j , �tm)
)2 g(λ j ,�tm−1)

)
−
((
g(λ j ,�tm)

)2 − g(λ j , �tm−1)
)2

(
1 − (

g(λ j , �tm)
)2 g(λ j , �tm−1)

)2 −
((
g(λ j , �tm)

)2 − g(λ j ,�tm−1)
)2

≤ 2

1 − g(λ j , �tm−1)
(
g(λ j , �tm)

)2 + 2
(
1 − g(λ j , �tm)

)3

(
1 − e−λ j�tm

)4

λ2j

where the second summand in the last inequality follows from (62). By (67), we obtain
that for all j ≤ Nm−1,

E

[
I 2m, j,2

]
≤ 1
(
1 − g(λ j ,�tm)

)3

(
1 − e−λ j�tm

)5

λ3+2b
j

≤ λ3j

(λ j − 1)3
(
1 − e−λ j�tm

)3

(
1 − e−λ j�tm

)3

λ1+2b
j

�t2m

≤
(

λ1

λ1 − 1

)3
�t2m
λ1+2b
j

.
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The last term is bounded by a similar argument: For all j ≤ Nm−1,

E

[
I 2m, j,3

]
=

Jm−1−1∑

k=0

(
(
g(λ j ,�tm)

)2k
(
e−λ j�tm + 1 − e−λ j�tm

λ j

)

− (
g(λ j ,�tm−1)

)k
e−λ j�tm

)2

E

[(
R( j)
m,Jm−2(k+1)

)2]

≤ 1 − eλ j�tm

λ1+2b
j

∞∑

k=0

[ ((
g(λ j ,�tm)

)2k − (
g(λ j ,�tm−1)

)k)2

+ (
g(λ j ,�tm)

)2k
(
1 − eλ j�tm

λ j

)2 ]

≤ 3

(
λ1

λ1 − 1

)3
�t2m
λ1+2b
j

.

Here, the last inequality follows by observing that as for E

[
I 2m, j,2

]
,

1 − eλ j�tm

λ1+2b
j

∞∑

k=0

((
g(λ j ,�tm)

)2k − (
g(λ j ,�tm−1)

)k)2 ≤ 2

(
λ1

λ1 − 1

)3
�t2m
λ1+2b
j

,

and

(
1 − eλ j�tm

)3

λ3+2b
j

∞∑

k=0

(
g(λ j ,�tm)

)2k ≤ (1 − eλ j�tm )

λ1+2b
j

1

1 − g(λ j ,�tm)
�t2m

= (1 − eλ j�tm )

λ1+2b
j

λ j

(λ j − 1)(1 − eλ j�tm )
�t2m

≤ λ1

λ1 − 1

�t2m
λ1+2b
j

≤
(

λ1

λ1 − 1

)3
�t2m
λ1+2b
j

.

��

Appendix C: Additional proofs for completeness

Proof of Lemma 2 Recalling the notation RML
n = CML

n H∗ and introducing the auxil-
iary operator R̄n := C̄nH∗, we have

K̄n − KML
n = R̄n(H R̄n + �)−1 − RML

n ((HRML
n )+ + �)−1

= R̄n((H R̄n + �)−1 − ((HRML
n )+ + �)−1)

+ (C̄n − CML
n )H∗((HRML

n )+ + �)−1.
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Using the equality

(H R̄n + �)−1 − ((HRML
n )+ + �)−1 = (H R̄n + �)−1((HRML

n )+

−H R̄n)((HRML
n )+ + �)−1,

we further obtain

K̄n − KML
n = R̄n(H R̄n + �)−1((HRML

n )+ − H R̄n)((HRML
n )+ + �)−1

+ (C̄n − CML
n )H∗((HRML

n )+ + �)−1

= K̄n((HRML
n )+ − H R̄n)((HRML

n )+ + �)−1

+ (C̄n − CML
n )H∗((HRML

n )+ + �)−1.

Next, since (HRML
n )+ and � respectively are positive semi-definite and positive def-

inite,

|((HRML
n )+ + �)−1| ≤ |�−1| < ∞,

and it follows by inequality (23) and

|(HRML
n )+ − H R̄n| ≤ |(HRML

n )+ − HRML
n | + |H(RML

n − R̄n)|
= |(HRML

n )+ − HRML
n | + |H(CML

n − C̄n)H
∗|

that
∥
∥∥K̄n − KML

n

∥
∥∥
L(Rm ,V)

≤
(
1 + 2

∥
∥K̄n

∥
∥
L(Rm ,V)

‖H‖L(V,Rm )

)

×|�−1| ‖H‖L(V,Rm )

∥∥∥C̄n − CML
n

∥∥∥
L(V∗,V)︸ ︷︷ ︸

≤∥∥C̄n−CML
n

∥∥V⊗V

.

��
Proof of Lemma 7 We will use an induction argument to show that for arbitrary fixed
N ∈ N and p ≥ 2, it holds for all n ≤ N that

L∑

�=0

‖v̂�
n − ˆ̄v�

n‖L p′ (�,V)
� | log(ε)|nε, ∀p′ ≤ 4N−n p.

The result then follows by the arbitrariness of N and p.
By (20), we have that v̂�

0 = ˆ̄v�
0, so that for any p′ ≥ 2,

L∑

�=0

‖v̂�
0 − ˆ̄v�

0‖p′ = 0.
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Fix p ≥ 2 and N ∈ N, and assume that

L∑

�=0

∥∥∥v̂�
n−1 − ˆ̄v�

n−1

∥∥∥
p′ � | log(ε)|n−1ε, ∀p′ ≤ 4N+1−n p.

Then, by Assumption 1(i),

L∑

�=0

‖v�
n − v̄�

n‖p′ ≤
L∑

�=0

c�‖v̂�
n−1 − ˆ̄v�

n−1‖p′ � | log(ε)|n−1ε, ∀p′ ≤ 4N+1−n p.

(70)
Furthermore, by Lemma 2,

∥∥∥v̂�
n − ˆ̄v�

n

∥∥∥V ≤ ∥∥I − �� K̄nH
∥∥
L(V,V)

∥∥∥v�
n − v̄�

n

∥∥∥V
+ c̃n

∥∥∥CML
n − C̄n

∥∥∥V⊗V |ỹ�
n − Hv�

n|,

for all � = 0, . . . , L . Hölder’s inequality then implies

‖v̂�
n − ˆ̄v�

n‖p′ ≤ ∥∥I − �� K̄nH
∥∥
L(V,V)

‖v�
n − v̄�

n‖p′

+ c̃n‖CML
n − C̄n‖L2p′ (�,V⊗V)

(‖ỹ�
n‖2p′ + ‖H‖L(V,Rm ) ‖v�

n‖2p′).
(71)

Plugging (70) into the right-hand side of (29) and using Lemma 3, we obtain that for
all p′ ≤ 4N−n p

‖CML
n − C̄ML

n ‖2p′ � ε +
L∑

l=0

‖v�
n − v̄�

n‖4p′(‖v�
n‖4p′ + ‖v̄�

n‖4p′)

� | log(ε)|n−1ε.

Summing over the levels in (71), it holds for all p′ ≤ 4N−n p that

L∑

�=0

‖v̂�
n − ˆ̄v�

n‖p′ �
L∑

�=0

{
‖v�

n − v̄�
n‖p′ + | log(ε)|n−1ε(‖ỹ�

n‖2p′ + ‖H‖L(V,Rm ) ‖v�
n‖2p′)

}

� | log(ε)|n−1ε
(
1 +

L∑

�=0

(‖ỹ�
n‖2p′ + ‖H‖L(V,Rm ) ‖v�

n‖2p′)
)

� | log(ε)|nε.

��
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44. Pajonk, O., Rosić, B.V., Litvinenko, A., Matthies, H.G.: A deterministic filter for non-Gaussian
Bayesian estimation-applications to dynamical system estimation with noisy measurements. Phys.
D Nonlinear Phenom. 241, 775–788 (2012)

45. Rebeschini, P., Van Handel, R., et al.: Can local particle filters beat the curse of dimensionality? Ann.
Appl. Probab. 25, 2809–2866 (2015)

46. Tong, X.T., Majda, A.J., Kelly, D.: Nonlinear stability and ergodicity of ensemble based Kalman filters.
Nonlinearity 29, 657 (2016)

47. Urban, K.: Wavelets in numerical simulation: problem adapted construction and applications, vol. 22.
Springer, Berlin (2012)

48. van Leeuwen, P.: Nonlinear data assimilation in geosciences: an extremely efficient particle filter. Q.
J. R. Meteorol. Soc. 136, 1991–1999 (2010)

49. Weare, J.: Particle filtering with path sampling and an application to a bimodal ocean current model.
J. Comput. Phys. 228, 4312–4331 (2009)
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