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Abstract
Let (X , L X ) be an n-dimensional polarizedmanifold. Let D be a smooth hypersurface defined
by a holomorphic section of L X . We prove that if D has a constant positive scalar curvature
Kähler metric, X\D admits a complete scalar-flat Kähler metric, under the following three
conditions: (i) n ≥ 6 and there is no nonzero holomorphic vector field on X vanishing
on D, (ii) the average of a scalar curvature on D denoted by ŜD satisfies the inequality
0 < 3ŜD < n(n − 1), (iii) there are positive integers l(> n), m such that the line bundle
K −l

X ⊗ Lm
X is very ample and the ratio m/l is sufficiently small.
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1 Introduction

The existence of constant scalar curvature Kähler (cscK) metrics on complex manifolds is a
fundamental problem in Kähler geometry. If a complex manifold is noncompact, there are
many positive results in this problem. In 1979, Calabi [5] showed that if a Fanomanifold has a
Kähler Einstein metric, then there is a complete Ricci-flat Kähler metric on the total space of
the canonical line bundle. In addition, there exist following generalizations. In 1990, Bando–
Kobayashi [3] showed that if a Fano manifold admits an anti-canonical smooth divisor which
has a Ricci-positive Kähler Einstein metric, then there exists a complete Ricci-flat Kähler
metric on the complement (see also [19]). Tian–Yau [18] showed that if a Fano manifold
admits an anti-canonical smooth divisor which has a Ricci-flat Kähler metric, then there is
a complete Ricci-flat Kähler metric on the complement. In 2002, on the other hand, as a
scalar curvature version of Calabi’s result [5], Hwang–Singer [12] showed that if a polarized
manifold has a nonnegative cscK metric, then the total space of the dual line bundle admits a
complete scalar-flat Kähler metric. However, a similar generalization of Hwang–Singer [12]
like Bando–Kobayashi [3] and Tian–Yau [18] is unknown since it is hard to solve a forth
order nonlinear partial differential equation.

In this article, assuming the existence of a smooth hypersurface which admits a constant
positive scalar curvature Kähler metric, we will prove the existence of a complete scalar-flat
Kähler metric on the complement of this hypersurface. Our proof goes roughly as follows.
Step 1.We show that if the smooth hypersurface has a cscKmetric, there is a complete Kähler
metric whose scalar curvature decays at a higher order.
Step 2. We show that the existence of a complete Kähler metric whose scalar curvature is
sufficiently small implies the existence of a complete scalar-flat Kähler metric.
Step 3.We construct a completeKählermetric on the complement of the smooth hypersurface,
whose scalar curvature is arbitrarily small.
Step 4. Finally, we show the existence of a complete scalar-flat Kähler metric by solving the
forth order nonlinear partial differential equation.

Now we describe our strategy more precisely. Let (X , L X ) be a polarized manifold of
dimension n, i.e., X is an n-dimensional compact complex manifold and L X is an ample line
bundle over X . Assume that there is a smooth hypersurface D ⊂ X with

D ∈ |L X |.
Set an ample line bundle L D := O(D)|D = L X |D over D. Since L X is ample, there exists a
Hermitian metric h X on L X which defines a Kähler metric θX on X , i.e., the curvature form
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Complete scalar-flat Kähler metrics on affine algebraic manifolds 301

of h X multiplied by
√−1 is positive definite. Then, the restriction of h X to L D defines also

a Kähler metric θD on D. Let ŜD be the average of the scalar curvature S(θD) of θD defined
by

ŜD :=

∫
D

S(θD)θn−1
D∫

D
θn−1

D

= (n − 1)c1(K −1
D ) ∪ c1(L D)n−2

c1(L D)n−1 ,

where K −1
D is the anti-canonical line bundle of D. Note that ŜD is a topological invariant in

the sense that it is representable in terms of Chern classes of the line bundles K −1
D and L D .

In this article, we treat the following case:

ŜD > 0. (1)

Let σD ∈ H0(X , L X ) be a defining section of D and set t := log ||σD||−2
h X

. Following [3],
we can define a complete Kähler metric ω0 by

ω0 := n(n − 1)

ŜD

√−1∂∂ exp

(
ŜD

n(n − 1)
t

)

on the noncompact complexmanifold X\D. In addition, since (X\D, ω0) is of asymptotically
conical geometry (see [3] or Sect. 4 of this article), we can define the weighted Banach space
Ck,α

δ = Ck,α
δ (X\D) for k ∈ Z≥0, α ∈ (0, 1) and with a weight δ ∈ R with respect to

the distance function r defined by ω0 from some fixed point in X\D. It follows from the
construction of ω0 that S(ω0) = O(r−2) near D.

Step 1. The cscK condition implies the following stronger decay property.

Theorem 1 If θD is a constant positive scalar curvature Kähler metric on D, i.e., S(θD) =
ŜD > 0, we have

S(ω0) = O(r−2−2n(n−1)/ŜD )

as r → ∞.

Thus, the cscK condition implies that S(ω0) ∈ Ck,α
δ for some δ > 2 and any k, α.

Step 2. In order to construct a complete scalar-flat Kähler metric on X\D, the linearization
of the scalar curvature operator plays an important role:

Lω0 = −D∗
ω0
Dω0 + (∇1,0∗,∇0,1S(ω0))ω0 .

Here,Dω0 = ∂ ◦∇1,0. We will show that if 4 < δ < 2n and there is no nonzero holomorphic
vector field on X which vanishes on D, then D∗

ω0
Dω0 : C4,α

δ−4 → C0,α
δ is isomorphic. For

such operators, we consider the following:

Condition 1 Assume that n ≥ 3 and there is no nonzero holomorphic vector field on X which
vanishes on D. For 4 < δ < 2n, the operator

Lω0 : C4,α
δ−4 → C0,α

δ

is isomorphic, i.e., we can find a constant K̂ > 0 such that

||Lω0φ||C0,α
δ

≥ K̂ ||φ||C4,α
δ−4

for any φ ∈ C4,α
δ−4.
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302 T. Aoi

In addition, we consider

Condition 2

||S(ω0)||C0,α
δ

< c0 K̂/2.

Here, the constant c0 will be defined in Lemma15 later. Under these conditions, Theorem1
implies the following result:

Theorem 2 Assume that n ≥ 3 and there is no nonzero holomorphic vector field on X which
vanishes on D. Assume that θD is a constant scalar curvature Kähler metric satisfying

0 < ŜD < n(n − 1).

Assume moreover that Condition 1 and Condition 2 hold, then X\D admits a complete
scalar-flat Kähler metric.

In fact, we can show the existence of a complete scalar-flat Kähler metric on X\D under
the following assumptions: (i) n ≥ 3 and there is no nonzero holomorphic vector field
on X which vanishes on D, (ii) there exists a complete Kähler metric on X\D which is of
asymptotically conical geometry, such that its scalar curvature is sufficiently small and decays
at a higher order. So, if there exists a complete Kähler metric on X\D which is sufficiently
close to ω0 at infinity, satisfying Conditions 1 and 2, we can show the existence of a complete
scalar-flat Kähler metric on X\D. Theorem 2 is proved by the fixed point theorem on the
weighted Banach space C4,α

δ−4(X\D) by following Arezzo–Pacard [1], [2] (see also [17]). In

general, constants c0, K̂ which arise in Conditions 1 and 2 depend on the background Kähler
metric ω0. In addition, to construct such a Kähler metric, we have to find a complete Kähler
metric X\D whose scalar curvature is arbitrarily small.

Step 3. We consider a degenerate (meromorphic) complex Monge–Ampère equation.
Take positive integers l > n and m such that the line bundle K −l

X ⊗ Lm
X is very ample.

Let F ∈ |K −l
X ⊗ Lm

X | be a smooth hypersurface defined by a holomorphic section σF ∈
H0(X , K −l

X ⊗ Lm
X ) such that the divisor D + F is simple normal crossing. For a defining

section σD ∈ H0(X , L X ) of D, set

ξ := σF ⊗ σ−m
D .

From the result due to Yau [20, Theorem 7], we can solve the following degenerate complex
Monge–Ampère equation:

(θX + √−1∂∂ϕ)n = ξ−1/l ∧ ξ
−1/l

.

Moreover, it follows from a priori estimate due to Kołodziej [13] that the solution ϕ is
bounded on X . Thus, we can glue plurisubharmonic functions by using the regularized
maximum function. To compute the scalar curvature of the glued Kähler metric, we need to
study behaviors of higher order derivatives of the solution ϕ. So, we give explicit estimates
of them near the intersection D ∩ F :

Theorem 3 Let (zi )n
i=1 = (z1, z2, . . . , zn−2, wF , wD) be local holomorphic coordinates

such that {wF = 0} = F and {wD = 0} = D. Then, there exists a positive integer a(n)

depending only on the dimension n such that
∣∣∣∣ ∂2

∂zi∂z j
∂αϕ

∣∣∣∣ = O
(
|wD|−2a(n)m/l |wF |−2a(n)/l

)
,
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Complete scalar-flat Kähler metrics on affine algebraic manifolds 303

∣∣∣∣∣
∂4

∂w2
F∂w2

F

ϕ

∣∣∣∣∣ = O
(
|wD|−2a(n)m/l |wF |−2−2a(n)/l

)
,

∣∣∣∣∣
∂4

∂w2
D∂w2

D

ϕ

∣∣∣∣∣ = O
(
|wD|−2−2a(n)m/l |wF |−2a(n)/l

)
,

as |wF |, |wD| → 0, for any 1 ≤ i, j ≤ n − 2 and multi-index α = (α1, . . . , αn) with
0 ≤ ∑

i αi ≤ 2.

By applying Theorem 3 and gluing plurisubharmonic functions, we have the following
result:

Theorem 4 Assume that there exist positive integers l > n and m such that

a(n)m

2l
<

ŜD

n(n − 1)
(2)

and the line bundle K −l
X ⊗ Lm

X is very ample. Here, a(n) is the positive integer in Theorem 3.
Take a smooth hypersurface F ∈ |K −l

X ⊗ Lm
X | such that D + F is simple normal crossing.

Then, for any relatively compact domain Y � X\(D ∪ F), there exists a complete Kähler
metric ωF on X\D whose scalar curvature S(ωF ) = 0 on Y and is arbitrarily small on the
complement of Y . In addition, ωF = ω0 on some neighborhood of D\(D ∩ F).

For example, if the anti-canonical line bundle K −1
X of the compact complex manifold X is

nef (in particular, X is Fano), the assumption (2) in Theorem 4 holds, i.e., we can always find
such integers l, m. In this article, we treat the case that K −1

X has positivity in the senses of (1)
and (2). From Theorem 2, if there exists a complete Kähler metric which is of asymptotically
conical geometry and satisfies Conditions 1 and 2, X\D admits a complete scalar-flat Kähler
metric. In fact, Theorem 4 gives a Kähler metric whose scalar curvature is under control.
However, the Kähler metricωF in Theorem 4 is not of asymptotically conical geometry (near
the intersection of D and F). So, when we replace the complete Kähler metric ω0 with ωF

obtained in Theorem 4, we can not apply Theorem 2 to a construction of a complete scalar-flat
Kähler metric.

To solve this problem, we consider an average on some closed subset in |K −l
X ⊗ Lm+β

X |.
Then, the asymptotically conicalness is recovered and we obtain the following result:

Theorem 5 Assume that there are positive integers l > n and m such that the line bundle
K −l

X ⊗ Lm
X is very ample and

a(n)m

2l
<

ŜD

n(n − 1)
.

Then, there exists a complete Kähler metric ω on X\D satisfies following properties:

– ω is equivalent to ω0, i.e., there is a constant C > 0 such that

C−1ω0 < ω < Cω0.

Moreover, the Kähler metric ω is of asymptotically conical geometry.
– Assume that n ≥ 4. If θD is cscK and 0 < ŜD < n(n − 1), the Ck,α-norm of the scalar

curvature S(ω) of weight δ ∈ (4,min{2n, 2 + 2n(n − 1)/ŜD}) can be made arbitrarily
small.
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304 T. Aoi

Thus, we obtain the Kähler metric ω which is of asymptotically conical geometry. In
addition, the scalar curvature of ω is arbitrarily small in the sense of the weight norm.

Step 4. Finally, by applying the similar argument in the proof of Theorem 2 to the Kähler
metric ω obtained in Theorem 5, we obtain our main result in this article:

Theorem 6 Assume following conditions:

– n ≥ 6 and there is no nonzero holomorphic vector field on X which vanishes on D.
– The following inequality holds:

0 < 3ŜD < n(n − 1).

– There are positive integers l > n and m such that the line bundle K −l
X ⊗ Lm

X is very
ample and

a(n)m

2l
<

ŜD

n(n − 1)
.

Then, if D admits a cscK metric θD, X\D admits a complete scalar-flat Kähler metric.

In other word, we can solve the following forth order nonlinear partial differential equation:

S(ω + √−1∂∂φ) = 0, ω + √−1∂∂φ > 0, φ ∈ C4,α
δ−4

for a weight 8 < δ < min{2n, 2+2n(n −1)/ŜD}. The reason why we assume that n ≥ 6 and
0 < 3ŜD < n(n − 1) in Theorem 6 is that we need the isomorphic Laplacian Δω between
higher order weighted Banach spaces.

This article is organized as follows. In Sect. 2, recalling the result due to Hwang–Singer
[12], we give the volume growth of a geodesic ball with respect to the Kähler metric obtained
in [12]. This case is a toy-model of our problem. In Sect. 3, we prove Theorem 1. To prove
this, we use fundamental results inmatrix analysis. In Sect. 4, wewill introduce the asymptot-
ically conicalness of open Riemannian manifolds and weighted Banach spaces by following
Bando–Kobayashi [3]. In Sect. 5, we study the linearization of the scalar curvature opera-
tor between some weighted Banach spaces. In Sect. 6, we prove Theorem 2 by following
Arezzo–Pacard [1], [2] (see also [17]). In Sect. 7, we construct Kähler potentials, i.e., strictly
plurisubharmonic functions, whose scalar curvature is under control. In addition, we glue
these plurisubharmonic functions by using the regularized maximum function. In Sect. 8, we
prove Theorem 3. To show this, we recall the C2,ε-estimate of a solution of the degenerate
complex Monge–Ampère equation. In Sect. 9, we prove Theorem 4. In Sect. 10, we will
prove Theorem 5. Namely, we recover the asymptotically conicalness by constructing an
average metric. In Sect. 11, we prove Theorem 6, i.e., we show the existence of a complete
scalar-flat Kähler metric.

2 The case of line bundles

Before considering the general case,we consider the existence of a complete scalar-flatKähler
metrics on line bundles and compute the volume growth. Let (X , L) be an n-dimensional
polarized manifold and θ ∈ 2πc1(L) be a cscK metric. In this case, the value of the scalar
curvature is equal to the following average value given by

ŜX := nc1(X) ∪ c1(L)n−1

c1(L)n
, (3)
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Complete scalar-flat Kähler metrics on affine algebraic manifolds 305

where (2π)nc1(L)n = ∫
X θn and (2π)nc1(X) ∪ c1(L)n−1 = ∫

X Ric(θ) ∧ θn−1. Note that

ŜX is a topological invariant. In 2002, Hwang–Singer [12] showed the following:

Theorem 7 Let (X , L) be an n-dimensional polarized manifold. Suppose that there exists a
constant scalar curvature Kähler metric θ ∈ 2πc1(L) and the value of the scalar curvature
of θ is nonnegative:

ŜX ≥ 0. (4)

Then, there exists a complete scalar-flat Kähler metric ω on the total space of the dual line
bundle L−1.

Remark 1 In [12], they treat more general cases which contain the existence of a complete
scalar-flat Kähler metric on the disc bundle in L−1. In this article, it is enough for us to
consider Theorem 7.

To compute the volume growth of the Kähler metric ω above, we need to recall the proof of
Theorem 7 by following [12] (see also [17]).

2.1 LeBrun–Simancametrics

In this subsection, we construct the LeBrun–Simanca metric for an ample line bundle. This
metric for the dual of the tautological line bundle over CPn−1 was found by LeBrun and
Simanca [14,16] (see also [17]).

Fix an n-dimensional polarized manifold (X , L). Consider a Hermitian metric h on L
which defines the Kähler metric θ ∈ 2πc1(L). Let p : L−1 → X be the projection map and
(L−1)∗ be the complement of the zero section of L−1. Define a smooth function s by

s : (L−1)∗ → R, ξ �→ log h−1(ξ, ξ), (5)

where h−1 is a Hermitian metric on L−1 induced by h.

Definition 1 The LeBrun–Simanca metric ω on (L−1)∗ is defined by

ω := √−1∂∂ f (s), (6)

where f is a smooth, increasing and strictly convex function on R.

To extend ω to the whole space L−1, we start to compute ω in local coordinates. Fix a
point z0 in the base space X . Then we can find a local holomorphic coordinate chartU around
z0 with a local holomorphic trivialization of L−1 around z0:

(L−1)|U ∼= U × C, ξ �→ (z, w), (7)

where w is a fiber coordinate. Then, in these local coordinates, we can write as

s(z, w) = log |w|2 − log h(z), (8)

where h(z) is a positive function defined by some local non-vanishing holomorphic section
of L on U . For any point z0 ∈ X , we can choose the above trivialization so that:

d log h(z0) = 0. (9)

Let us compute at a point (z0, w) with w �= 0;

√−1∂∂ f (s) = f̈ (s)
√−1

dw ∧ dw

|w|2 + ḟ (s)p∗θ, (10)
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306 T. Aoi

where the symbol ḟ denotes the differential of f with respect to the variable s.
To simplify the construction of a scalar-flat Kähler metric on L−1, following [17], we

introduce Legendre transforms and momentum profiles and recall fundamental facts of them.
By using them, we can give a condition on the extension of ω to the whole space L−1 and
compute the scalar curvature not as a nonlinear PDE in forth order but as an ODE in second
order by following [12].

Definition 2 Let f be a strictly convex and smooth function on R. Set τ := ḟ (s) and I be
an image of τ . The Legendre transform F on I of f with variable τ is defined by

sτ = f (s) + F(τ ).

Note that there are following relations:

F ′(τ ) = s, F ′′(τ ) = 1

f̈ (s)
,

where we use the symbol F ′(τ ) as the differential of F with respect to the variable τ .

Definition 3 Let I ⊂ R be an image of τ . The momentum profile ϕ of the metric ω =√−1∂∂ f (s) is defined by the following:

ϕ : I → R, ϕ(τ ) = 1

F ′′(τ )
, (11)

where F is the Legendre transform of f defined above.

Clearly, there are following relations:

ϕ(τ) = f̈ (s),
dτ

ds
= ϕ(τ). (12)

The following proposition is the converse of the above construction:

Proposition 1 Let I ⊂ R be any interval and ϕ be a smooth positive function defined on I .
Then we can find a smooth and strictly convex function f on some interval J of R such that

τ = ḟ (s), ϕ(τ) = f̈ (s). (13)

Proof Let G = G(τ ) be a function on I with G ′(τ ) = 1/ϕ(τ). Since G is strictly monotone
increasing, we have τ = G−1(s). Set J := G(I ). Proposition 1 is proved by setting

f (s) :=
∫ s

c
G−1(t)dt

for some c ∈ J . ��

2.2 The extension to the total space

In this subsection, we give a condition such that the LeBrun–Simanca metric ω can be
extended to the whole space L−1 as a Kähler metric by following [12] (see also [17]). By
using the momentum profile ϕ, ω can be rewritten as follows:

ω = ϕ(τ)
√−1

dw ∧ dw

|w|2 + τ p∗θ. (14)
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Complete scalar-flat Kähler metrics on affine algebraic manifolds 307

First, we set a momentum profile ϕ defined on I := (1, N ) for some N ∈ (1,∞] so
that a function f is defined on J = R in the way in the proof of Proposition 1. Then, the
formula (14) implies that the LeBrun–Simanca metric ω is positive in the base direction at
any point in the zero section. Following [12], to obtain the positivity in the fiber direction
and the smoothness of ω on the whole space L−1, we pose the boundary condition on ϕ:

Proposition 2 Suppose that ϕ satisfies the following boundary condition:

ϕ(1) = 0, ϕ′(1) = 1, (15)

and can be extended smoothly in a neighborhood of 1. Then ω can be extended to L−1 as a
Kähler metric.

For simplicity, we will denote the extended metric on L−1 by the same symbol ω.

2.3 The Ricci form and the scalar curvature

In this subsection,we compute theRicci formand the scalar curvature of theLeBrun–Simanca
metric ω (see [12,17]).

Proposition 3 The Ricci form Ric(ω) and the scalar curvature S(ω) of ω are given by

Ric(ω) = −ϕ
(
ϕ′ + n

ϕ

τ

)′ √−1dw ∧ dw

|w|2 −
(
ϕ′ + n

ϕ

τ

)
p∗θ + p∗ Ric(θ),

S(ω) = p∗S(θ)

τ
− 1

τ n

d2

dτ 2
(τ nϕ(τ)),

where Ric(ω) is a pointwise formula.

Proof First, the Ricci form Ric(ω) is locally given by the following:

Ric(ω) = −√−1∂∂ logωn+1.

By the direct computation at a point z0, we have

ωn+1 = f̈ (s) ḟ (s)
n

p∗θn ∧ √−1dw ∧ dw

|w|2

= ϕ(τ)τ n p∗θn ∧ √−1dw ∧ dw

|w|2 .

If we choose another trivialization (z, ŵ) of L−1, there exists a holomorphic transform
function g such that ŵ = g(z)w. The differential of g(z) does not affect the above formula
because p∗θn is the top wedge product in the base direction. Therefore, ωn+1 is invariant
under the choice of the local coordinates (z, w) and we can use the formula above globally.

Let us compute Ric(ω) at a point (z0, w0):

Ric(ω) = −√−1∂∂ logϕ(τ(s)) − n
√−1∂∂ log τ(s) + p∗ Ric(θ)

= −ϕ
(
ϕ′ + n

ϕ

τ

)′ √−1dw ∧ dw

|w|2 −
(
ϕ′ + n

ϕ

τ

)
p∗θ + p∗ Ric(θ).

Note that the equation of Ric(ω) is completely divided into the base direction and fiber
direction. Taking a trace of theRicci formby themetricω = ϕ(τ)

√−1dw∧dw/|w|2+τ p∗θ ,
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we have the following:

S(ω) = −
(
ϕ′ + n

ϕ

τ

)′ − n

τ

(
ϕ′ + n

ϕ

τ

)
+ p∗S(θ)

τ

= − 1

τ n

d2

dτ 2
(τ nϕ(τ)) + p∗S(θ)

τ
.

Thus, the proof of Proposition 3 is finished. ��

2.4 ODE

In this subsection, we prove Theorem 7 by using Proposition 3. The key of the proof is that
we can consider the scalar-flat condition as the case of ordinary differential equations (ODE)
in second order on the assumption that ω is cscK.

Proof of Theorem 7 If the Kähler metric θ has a constant scalar curvature, the value of the
scalar curvature S(θ) is equal to the average of the scalar curvature:

ŜX = nc1(X) ∪ c1(L)n−1

c1(L)n
. (16)

By the formula in Proposition 3, to make ω scalar-flat, it is enough to solve the following
ODE with the boundary condition:

d2

dτ 2
(τ nϕ(τ)) = ŜX τ n−1, ϕ(1) = 0, ϕ′(1) = 1.

In fact, a solution of this is easily given by

ϕ(τ) = ŜX

n(n + 1)
τ −

(
ŜX

n
− 1

)
τ 1−n +

(
ŜX

n + 1
− 1

)
τ−n . (17)

If N = ∞, ϕ = O(τ ) as τ → ∞. If N < ∞, ϕ vanishes like a polynomial. Recall that
s = ∫

ϕ−1dτ . In both cases, applying Proposition 1 for these ϕ, we can obtain an increasing,
strictly convex and smooth function f defined onR by setting an interval I := {τ ∈ R | ϕ(τ)

is positive }. Then, we have finished the proof of Theorem 7. ��

2.5 Volume growth

In this subsection, we compute the volume growth of the Kähler metric ω.

Proposition 4 Fix a point ξ ∈ L−1. Suppose that ω be the LeBrun–Simanca metric as above.
Let B(ξ, r) be a geodesic ball with respect to ω in L−1 of radius r centered at ξ .

(1) If ŜX > 0, we have∫
B(ξ,r)

ωn+1 = O(r2(n+1)) as r → ∞. (18)

(2) If ŜX = 0, we have∫
B(ξ,r)

ωn+1 = O(r2) as r → ∞. (19)
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For a point y ∈ X , a symbol ξy denotes an element of the fiber L−1
y . In particular, a symbol

0y denotes the zero element of the fiber L−1
y . In this section, we use the LeBrun–Simanca

metric ω given by the solution (17) in the both cases of ŜX > 0 and ŜX = 0. First, we
compute a relation between the geodesic distance for the metric ω and the Hermitian norm
for h−1. For simplicity, |ξy | denotes a square root of the Hermitian norm h−1(ξy, ξy).

Lemma 1 (a) If ŜX > 0, we have

d(0y, ξy) = O(|ξy |
ŜX

n(n+1) ) as |ξy | → ∞ (20)

and

τ = O(d(0y, ξy)
2) as |ξy | → ∞. (21)

(b) If ŜX = 0, we have

d(0y, ξy) = O((log |ξy |) n+1
2n ) as |ξy | → ∞ (22)

and

τ = O(d(0y, ξy)
2

n+1 ) as |ξy | → ∞. (23)

Proof First, we prove the statement (a). By the completeness of ω, there exists a length
minimizing geodesic connecting any pair of two points in L−1. Fix the length minimizing
geodesic γ (t), t ∈ [0, 1] from 0y to ξy . Clearly, for fixed y ∈ X , the image of the geodesic
γ (t) is in the fiber L−1

y . For simplicity, we assume that h−1(ξy, ξy) = |w|2 in the trivialization
(7). Set v = |w|.

(1) Recall that the positive function ϕ(τ) in the case (a) is written as

ϕ(τ) = ŜX

n(n + 1)
τ −

(
ŜX

n
− 1

)
τ 1−n +

(
ŜX

n + 1
− 1

)
τ−n .

Since τ → ∞ as v → ∞, the second and third terms above are very small as v → ∞. Then,

dτ

dv
= ϕ(τ)

2

v

= 2Ŝ

n(n + 1)

τ

v
+ l.o.t. (24)

Here the symbol l.o.t. denotes lower order terms as v → ∞. We have

1

τ

dτ

dv
= 2Ŝ

n(n + 1)

1

v
+ l.o.t.

Thus, we have

τ = O

(
|ξy |

2ŜX
n(n+1)

)
, (25)

as |ξy | → ∞.
Denote γ (t) = (y, wt ). Since the LeBrun–Simancametricω is S1-invariant, we can write

wt = θtw1,
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where θt is some real nonnegative function such that θ0 = 0 and θ1 = 1. Since it is enough
to compute for sufficiently large |ξy |, we have

d(0y, ξy) =
∫ 1

0

√
ω( ˙γ (t), ˙γ (t))dt

=
∫ 1

0

√
|ẇt |2
|wt |2 ϕ(τ)dt

=
∫ 1

0

θ̇t

θt

√
ϕ(τ)dt

=
∫ 1

c
|w1|

Ŝ
n(n+1) θ̇tθ

Ŝ
n(n+1) −1

t dt + l.o.t.

= O

(
|ξy |

Ŝ
n(n+1)

)
(26)

as |ξy | → ∞, where c ∈ (0, 1) is some fixed constant. Thus, the statement (a) follows.
(b) Recall that the positive function ϕ(τ) in the case (b) is written as

ϕ(τ) = τ 1−n − τ−n .

Similarly, we have

dτ

dv
= 2τ 1−n

v
+ l.o.t.

Then,

τ n = O(log |ξy |),
as |ξy | → ∞.

Denote γ (t) = (y, wt ). Similarly, we have

d(0y, ξy) =
∫ 1

0

√
ω(ξ̇ t

y, ξ̇
t
y)dt

=
∫ 1

c

θ̇t

θt
τ

1−n
2 dt + l.o.t.

= A
∫ 1

c

θ̇t

θt
(log |w1| + log θt )

1−n
2n dt + l.o.t.

= O
(
(log |ξy |) n+1

2n

)
(27)

as |ξy | → ∞, where c ∈ (0, 1) and A > 0 are some fixed constants. Thus, the statement (b)

follows. ��
Using Lemma 1, we prove Proposition 4.

Proof of Proposition 4 It is enough to compute the volume growth of a geodesic ball in L−1

of radius r centered at 0x . Since the restriction of ω to the zero section is θ , we have

d(0x , ξy) = d(0x , 0y) + d(0y, ξy)

≤ diam(X , θ) + d(0y, ξy).
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Thus,

− diam(X , θ) + d(0y, ξy) ≤ d(0x , ξy) ≤ diam(X , θ) + d(0y, ξy). (28)

By Stokes’ theorem, we have∫
B(0x ,r)

ωn+1 =
∫

B(0x ,r)

τ nϕ(τ)
√−1∂s ∧ ∂s ∧ p∗θn

= 1

n + 1

∫
B(0x ,r)

√−1∂s ∧ ∂(τ n+1) ∧ p∗θn

= − 1

n + 1

(∫
∂ B(0x ,r)

τ n+1
√−1∂s ∧ p∗θn + (2π)n+1c1(L)n

)

= −C1

∫
∂ B(0x ,r)

τ n+1
√−1

dw

w
∧ p∗θn − C2, (29)

where C1 and C2 are positive constants depending only on n and L .
In the case (1), previous computations (21) and (28) imply

τ n+1 = O(r2(n+1)). (30)

For r > diam(X , θ), the residue theorem holds for each y ∈ X . Thus, we have

−
∫

∂ B(0x ,r)

√−1
dw

w
∧ p∗θn = (2π)n+1c1(L)n . (31)

The formula (29) implies the first statement in Proposition 4.
In the case (2), previous computations (23) and (28) imply

τ n+1 = O(r2). (32)

Similarly, (31) and the formula (29) imply the second statement in Proposition 4. ��

3 The higher order decay

In this section, we prove Theorem 1. Let (X , L X ) be an n-dimensional polarized manifold.
Let h X be a Hermitian metric on the line bundle L X which defines a Kähler metric θX on X .
Then, the restriction h D of h X to a line bundle L D := L X |D over D defines a Kähler metric
θD on D. Let σD ∈ H0(X , L X ) be a defining section of D. Set t := log ||σD||−2, where
||σD||2 = h X (σD, σD). From the construction of the complete Kähler metrics in Theorem 7
and [3], we can define a complete Kähler metric ω0 on X\D by

ω0 := n(n − 1)

ŜD

√−1∂∂ exp

(
ŜD

n(n − 1)
t

)

= exp

(
ŜD

n(n − 1)
t

)(
θX + ŜD

n(n − 1)

√−1∂t ∧ ∂t

)
,

where ŜD > 0 is the average value of the scalar curvature S(θD):

ŜD :=

∫
D

S(θD)θn−1
D∫

D
θn−1

D

= (n − 1)c1(K −1
D ) ∪ c1(L D)n−2

c1(L D)n−1 .
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By similar ways in Sect. 2, we have the followings

Lemma 2 Let r be a distance function defined by ω0 from a fixed point x0 ∈ X\D. Then,

r(x) = O(||σD||− ŜD
n(n−1) (x))

as x → D.

Lemma 3 The volume growth of ω0 is given by

Volω0(B(x0, r)) = O(r2n)

as r → ∞.

Thus, Lemma 2 implies that it is enough to show that

S(ω0) = O(||σD||2+2ŜD/n(n−1))

as σD → 0.
To show Theorem 1, we have to compute Ric(θX ) and Ric(ω0). Unfortunately, we can’t

compute the scalar curvature of ω0 in the same way in the proof of Proposition 3. So, we
study the determinant of θX and the inverse matrix of ω0. First, we recall fundamental results
in matrix analysis (see [22]).

3.1 Matrix analysis

To compute Ricci forms of Kähler metrics θX , ω0, we need the following lemma:

Lemma 4 Consider the following matrix

T =
[

A B
C D

]
,

where A is an invertible matrix. Then, the determinant of T is given by

det T = det A det(D − C A−1B).

The block D − C A−1B is called the Schur complement of the block D of the matrix T
(see [22, p. 23]). For the reader’s convenience, we give a proof of this lemma.

Proof The result immediately follows from the following formula:
[

A B
C D

]
=
[

I O
C A−1 İ

] [
A O
O D − C A−1B

] [
I A−1B
O İ

]

where I and İ denote suitable identity matrices. ��
To take a trace with respect to the Kähler metric ω0, we need the following inverse matrix

formula (see [22, p. 24]):

Lemma 5 Consider the following matrix

T =
[

A B
C D

]
.
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Assume that A and S := D − C A−1B are invertible. Then, T is invertible and the inverse
matrix of T can be written as

T −1 =
[

A−1 + A−1BS−1C A−1 −A−1BS−1

−S−1C A−1 S−1

]
.

Similarly, we give a proof of this lemma for the reader’s convenience.

Proof From the proof of the previous lemma, we have

[
A B
C D

]−1

=
[

I A−1B
O İ

]−1 [
A O
O S

]−1 [ I O
C A−1 İ

]−1

=
[

I −A−1B
O İ

] [
A−1 O
O S−1

] [
I O

−C A−1 İ

]

=
[

A−1 + A−1BS−1C A−1 −A−1BS−1

−S−1C A−1 S−1

]
.

��

3.2 Local trivialization and normal coordinates

Before studying the scalar curvature S(ω0) near D, we choose a local trivialization and
normal coordinates around a point of D.

First, fix a point p ∈ D. Since D is the smooth hypersurface of X , there exist local
holomorphic coordinates (z1, z2, . . . , zn−1, w) centered at p where D is defined by {w = 0}
locally and (z1, z2, . . . , zn−1) are local holomorphic coordinates of D. Then, there exists a
local trivialization of L X such that we can write as ||σD||2 = |w|2e−ϕ for a smooth function
ϕ near p satisfying

dϕ(0) = 0.

We may assume that if (z1, z2, . . . , zn−1, w) = (0, 0, . . . , 0, w), we have

ϕ = O(|w|2). (33)

Second, we consider the existence of normal coordinates with respect to the Kähler metric
θX around p preserving the condition (33). Since θX = √−1∂∂t = √−1∂∂ log ||σD||−2 is
the Kähler metric on X , in coordinates above, we can write locally as

θX =√−1
⎛
⎝ n−1∑

i, j=1

gi, j dzi ∧ dz j +
n−1∑
a=1

(
ga,wdza ∧ dw+gw,adw ∧ dza)+gw,wdw ∧ dw

⎞
⎠ .

For simplicity, write (z1, . . . , zn−1, w) = (z;w). Consider another holomorphic coordinate
chart (ẑ1, . . . , ẑn−1, w) = (ẑ;w) around p ∈ D. Directly, we have

∂

∂w

(
g

î, ĵ

)
= ∂

∂w

(
∂zk

∂ ẑi

∂zl

∂ ẑ
j
gk,l

)

= ∂

∂w

∂zk

∂ ẑi

(
∂zl

∂ ẑ
j
gk,l

)
+ ∂zk

∂ ẑi

∂zl

∂ ẑ
j

∂gk,l

∂w
.
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Set the condition

∂zk

∂ ẑi
(0; 0) = δk,i .

So, we have

∂

∂w

(
g

î, ĵ

)
(0; 0) = ∂

∂w

∂zk

∂ ẑi
gk, j (0; 0) + ∂gi, j

∂w
(0; 0).

Considering the equation ∂g
î, ĵ

/∂w(0; 0) = 0, we have

∂

∂w

∂zk

∂ ẑi
(0; 0) = −

∑
j

gk, j (0; 0) ∂gi, j

∂w
(0; 0).

Thus, we have

Lemma 6 By the change of holomorphic coordinates (ẑ;w) around p ∈ D defined by

zα =
n−1∑
i=1

ẑi

⎛
⎝δi,α − w

n−1∑
j=1

gα, j (0; 0) ∂gi, j

∂w
(0; 0)

⎞
⎠ (α = 1, 2, . . . , n − 1),

we have

∂g
î, ĵ

∂w
(0; 0) = 0. (34)

In particular, at (ẑ;w) = (0;w), we have

g
î, ĵ

(0;w) = g
î, ĵ

(0; 0) + O(|w|2). (35)

Consequently, we obtain

Proposition 5 We can find a local trivialization of L X and local holomorphic coordinates so
that

ϕ = O(|w|2), g
î, ĵ

(0;w) = g
î, ĵ

(0; 0) + O(|w|2).

at (ẑ1, . . . , ẑn−1, w) = (0, . . . , 0, w).

Proof In new local coordinates above, we have

∂ϕ

∂ ẑi
= ∂ϕ

∂z j

∂z j

∂ ẑi
+ ∂ϕ

∂w

∂w

∂ ẑi
,

and

∂z j

∂ ẑi
(0; 0) = δi, j ,

∂ϕ

∂zi
(0; 0) = ∂ϕ

∂w
(0; 0) = 0.

Thus, the proposition follows. ��

For simplicity, we write new local coordinates (ẑ1, . . . , ẑn−1, w) by the same symbol
(z1, . . . , zn−1, w).
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3.3 Proof of Theorem 1

Recall that ω0 is written as

ω0 = exp

(
ŜD

n(n − 1)
t

)(
θX + ŜD

n(n − 1)

√−1∂t ∧ ∂t

)

and it is enough to show that

S(ω0) = O(||σD||2+2ŜD/n(n−1))

as σD → 0. First, we show

Lemma 7 The Ricci form of ω0 is given by

Ric(ω0) = Ric(θX ) − ŜD

n − 1
θX − √−1∂∂ log

(
1 + ŜD

n(n − 1)
||∂t ||2θX

)
.

Proof To prove this lemma, it is enough to see the volume form of ω0. From the definition
of ω0, we have

ω0 = exp

(
ŜD

n(n − 1)
t

)(
θX + ŜD

n(n − 1)

√−1∂t ∧ ∂t

)
.

So, the following identity

√−1∂t ∧ ∂t ∧ θn−1
X = 1

n
||∂t ||2θX

θn
X

implies that the volume form of ω0 is given by

ωn
0 = exp

(
ŜD

n − 1
t

)(
1 + ŜD

n(n − 1)
||∂t ||2θX

)
θn

X .

Recall that theRicci form is given byRic(ω0) = −√−1∂∂ logωn
0 . Thus, the lemma follows.��

Thus, we easily have S(ω0) = O(||σD||2ŜD/n(n−1)) as σD → 0.
Firstly, we show the following proposition to prove Theorem 1.

Proposition 6 If θD is a cscK metric, we have

S(ω0) = O(||σD||1+2ŜD/n(n−1))

as σD → 0.

Proof To prove this, we compute the Ricci form of θX . Write

θX =

⎡
⎢⎢⎢⎣

g1,1 · · · g1,n−1 g1,w
...

. . .
...

...

gn−1,1 · · · gn−1,n−1 gn−1,w

gw,1 · · · gw,n−1 gw,w

⎤
⎥⎥⎥⎦ =

[
B R

R
t

W

]

in the previous local holomorphic coordinates. Since Lemma 4 implies that det θX =
det B det(W − R

t
B−1R), we have

Ric(θX ) = −√−1∂∂ log det B − √−1∂∂ log(W − R
t
B−1R).
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Recall the notation (z1, . . . , zn−1, w) = (z;w). Consider the expansion at w = 0 ;

det B(z;w) = det B(z; 0) + w
∂ det B

∂w
+ w

∂ det B

∂w
+ O(|w|2). (36)

Recall that

Ric(θD) = −√−1
n−1∑

i, j=1

∂2 log det B(z; 0)
∂zi∂z j

dzi ∧ dz j ,

and S(θD) = trθDRic(θD) = ŜD . By (36),

Ric(θX ) = Ric(θD) + O(|w|)dz ∧ dz − √−1∂∂ log(W − R
t
B−1R)

+O(1)dw ∧ dz + O(1)dz ∧ dw + O(1)dw ∧ dw

at (0;w). Here dz denote differential 1-forms in directions of D. To prove Proposition 6, it
is clearly enough to take the trace with respect to the metric

θX + ŜD

n(n − 1)

√−1∂t ∧ ∂t .

For simplicity, set a := ŜD/n(n−1) > 0. Since ∂t = ∂ϕ−dw/w, themetric θX +a
√−1∂t∧

∂t can be written as
⎡
⎢⎢⎢⎢⎣

g1,1 + aϕ1ϕ1 · · · g1,n−1 + aϕ1ϕn−1 g1,w + aϕ1(ϕw − 1/w)

.

.

.
. . .

.

.

.
.
.
.

gn−1,1 + aϕn−1ϕ1 · · · gn−1,n−1 + aϕn−1ϕn−1 gn−1,w + aϕn−1(ϕw − 1/w)

g
w,1 + a(ϕw − 1/w)ϕ1 · · · g

w,n−1 + a(ϕw − 1/w)ϕn−1 gw,w + a(ϕw − 1/w)(ϕw − 1/w)

⎤
⎥⎥⎥⎥⎦ ,

where ϕi denotes ∂ϕ/∂zi . For simplicity, write the matrix above as

θX + a
√−1∂t ∧ ∂t =

[
E F
G H

]
.

In order to take the trace of Ric(ω0)with respect to themetric θX +a
√−1∂t ∧∂t , we compute

the inverse matrix of this. Since we only consider S(ω0) near D, H = O(|w|−2) as w → 0.
By Lemma 5, we have

[
E−1 + E−1F S−1G E−1 −E−1F S−1

−S−1G E−1 S−1

]
,

where S := H − G E−1F . Since S = O(|w|−2) as w → 0, we get

E−1F S−1G E−1, E−1F S−1, S−1G E−1, S−1 = O(|w|2).
Thus, to compute the scalar curvature S(ω0), it is enough to study the block E−1 +
E−1F S−1G E−1. In this case, by considering the expansion at w = 0, we can write

E = B(0; 0) + J ,

where J = O(|w|2). So we have

E−1 = (B(0; 0) + J )−1

= B(0; 0)−1(I + J B(0; 0)−1)−1
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= B(0; 0)−1(I +
∑
i>0

(−J B(0; 0)−1)i )

= B(0; 0)−1 + O(|w|2).
Consider the term

−√−1∂∂ log

(
1 + ŜD

n(n − 1)
||∂t ||2θX

)
,

where

||∂t ||2θX
=

n−1∑
i, j

gi, jϕiϕ j +
n−1∑
a=1

(
ga,wϕa(ϕw − 1/w) + gw,a(ϕw − 1/w)ϕa

)

+gw,w(ϕw − 1/w)(ϕw − 1/w).

Note that gw,w = (W − R
t
B−1R)−1. Thus, we have

−√−1∂∂ log(W − R
t
B−1R) − √−1∂∂ log

(
1 + ŜD

n(n − 1)
||∂t ||2θX

)

= −√−1∂∂ log(1 + O(|w|2)).
Thus,

||σD||−2a S(ω0) = trθX +a
√−1∂t∧∂tRic(ω0)

= trθX +a
√−1∂t∧∂t

(
Ric(θD) − ŜD

(n − 1)
θD

)
+ O(|w|)

as w → 0. Therefore, Proposition 6 is proved. ��
Remark 2 Roughly, we have proved that

S(ω0) = C ||σD|| 2ŜD
n(n−1) (S(θD) − ŜD + O(||σD||))

near D. Thus, in fact, θD is cscK if and only if S(ω0) has a zero along D of order 1 +
2ŜD/n(n − 1) in our construction.

Secondly, we prove Theorem 1 by altering the Hermitian metric h X . By following Bando–
Kobayashi [3], we take a smooth function a ∈ C∞(X ,R) such that a|D ≡ 0. Define a
Hermitian metric on L X by

h X ,a := e−ah X .

Note that this modification does not change the Hermitian metric h D on L D . For this Her-
mitian metric h X ,a , we write

||σD||2a := ||σD||2h X ,a
= e−a ||σD||2h X

, ta = log ||σD||−2
a .

In addition, we define the Kähler metrics by

θX ,a := √−1∂∂ta, ωa := n(n − 1)

ŜD

√−1∂∂ exp

(
ŜD

n(n − 1)
ta

)
.
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We consider the following function:

||σD||−2ŜD/n(n−1)
a S(ωa).

Take a point p ∈ D and a local holomorphic coordinate chart centered at p in the previous
subsection. Recall that D = {w = 0} locally. In order to prove Theorem 1, it is enough to
show the following proposition:

Proposition 7 We can find a smooth function a on X such that a|D ≡ 0 and

∂

∂w

(
||σD||−2ŜD/n(n−1)

a S(ωa)

)
= 0

at any point p.

Proof By using Proposition 6, we obtain S(ω0) = O(||σD||1+2ŜD/n(n−1)) and S(ωa) =
O(||σD||1+2ŜD/n(n−1)). Recall the relation ||σD||2ŜD/n(n−1) = O(r−2) as r → ∞. By fol-
lowing [3] (see also Lemma 11 in this paper), we can find functions F0 and Fa on X\D such
that

Δω0 F0 = S(ω0), Δωa Fa = S(ωa).

Note that Proposition 6 implies that F0 = O(||σD||) and Fa = O(||σD||) as σD → 0.

Since ||σD||−2ŜD/n(n−1)S(ω0) and ||σD||−2ŜD/n(n−1)
a S(ωa) are smooth functions on X , so

the interior Schauder estimate implies that these functions F0 and Fa can be extended to
smooth functions on the whole space X . For simplicity, we denote these extended functions
by the same symbols F0 and Fa . Clearly, these functions satisfy that F0|D ≡ Fa |D ≡ 0. For
these functions F0, Fa , we can write as follows:

Δωa Fa = S(ωa)

= trωaRic(ωa)

= trωa (Ric(ωa) − Ric(ω0)) + (trωa − trω0)Ric(ω0) + Δω0 F0

= −trωa

√−1∂∂ log

(
ωn

a

ωn
0

)
+ (trωa − trω0)Ric(ω0) + Δω0 F0. (37)

To compute the first term in (37), we recall that

ωn
a = exp

(
ŜD

n − 1
(t + a)

)(
ŜD

n − 1
θn−1

X ,a ∧ ∂(t + a) ∧ ∂(t + a) + θn
X ,a

)

= ŜD

n − 1
(θX + √−1∂∂a)n−1 ∧ ∂(t + a) ∧ ∂(t + a)(1 + O(|w|2))

near p ∈ D. Since we can write ∂t = ∂ log ||σD||−2 = −dw/w + O(1) near p, it suffices
to see the term including |w|−2dw ∧ dw. So, we can compute as follows:

log

(
ωn

a

ωn
0

)
− SD

n − 1
a

= log
(θX + √−1∂∂a)n−1 ∧ ∂(t + a) ∧ ∂(t + a)(1 + O(|w|2))

θn−1
X ∧ ∂t ∧ ∂t(1 + O(|w|2))

= log
θn−1

X (1 + ΔθD a + O(|w|2)) ∧ (1 − w ∂a
∂w

)dw ∧ (1 − w ∂a
∂w

)dw(1 + O(|w|2))
θn−1

X ∧ dw ∧ dw(1 + O(|w|2))

123



Complete scalar-flat Kähler metrics on affine algebraic manifolds 319

Thus, at p, we have

∂

∂w

(
log

(
ωn

a

ωn
0

))

= ∂

∂w
log

((
1 + ΔθD a + O(|w|2))

(
1 − w

∂a

∂w

)(
1 − w

∂a

∂w
)

))
+ SD

n − 1

∂a

∂w

= ΔθD

∂a

∂w
+
(

SD

n − 1
− 1

)
∂a

∂w
. (38)

Let us compute the second term in (37). Lemma 7 implies that the Ricci form of ω0 is
given by

Ric(ω0) = Ric(θX ) − ŜD

n − 1
θX − √−1∂∂ log

(
1 + ŜD

n(n − 1)
||∂t ||2θX

)
.

Since the formula g−1
1 −g−1

2 = g−1
1 (g2−g1)g

−1
2 holds for any two invertible matrices g1 and

g2, we can compute the term trωa − trω0 . In particular, θ
−1
X ,a − θ−1

X = −θ−1
X (

√−1∂∂a)θ−1
X ,a .

By applying the computation in the proof of Proposition 6 to trωa − trω0 , we obtain

∂

∂w

(
||σD||−2ŜD/n(n−1)

a (trωa − trω0)Ric(ω0)

)

= −
(√−1∂∂

∂a

∂w
,Ric(θD) − ŜD

n − 1
θD

)

θD

(39)

at p ∈ D. Here, we have used the fact that a ≡ 0 on D and the term ||σD||−2ŜD/n(n−1)
a (trωa −

trω0) must be vanished on D.
Therefore, by using (38) and (39), we can compute the differential of (37) multiplied by

||σD||−2ŜD/n(n−1)
a with respect to w as follows:

ΔθD

∂ Fa

∂w
= ∂

∂w

(
||σD||−2ŜD/n(n−1)

a S(ωa)

)

= −Δ2
θD

∂a

∂w
−
(

ŜD

n − 1
− 1

)
ΔθD

∂a

∂w

−
(√−1∂∂

∂a

∂w
, RicθD − ŜD

n − 1
θD

)

θD

+ ΔθD

∂ F0

∂w

= −Δ2
θD

∂a

∂w
−
(√−1∂∂

∂a

∂w
, RicθD

)
θD

+ ΔθD

∂a

∂w
+ ΔθD

∂ F0

∂w

Here, we have used the fact that (
√−1∂∂(∂a/∂w), θD)θD = ΔθD (∂a/∂w). Recall that the

linearization of the scalar curvature operator satisfies

LθD ϕ = −Δ2
θD

ϕ −
(√−1∂∂ϕ, RicθD

)
θD

= −D∗
θD
DθD ϕ + (∇1,0ϕ,∇0,1S(θD))θD

for ϕ ∈ C∞(D) (see [17]). So, we have
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∂

∂w

(
||σD||−2ŜD/n(n−1)

a S(ωa)

)
= LθD

∂a

∂w
+ ΔθD

∂a

∂w
+ ΔθD

∂ F0

∂w

= −D∗
θD
DθD

∂a

∂w
+ ΔθD

∂a

∂w
+ ΔθD

∂ F0

∂w
.

Here, we have used the fact that the Kähler metric θD is a cscK metric on D. Note that
∂ F0/∂w defines a smooth global section of the line bundle L−1

D (equivalently, the conormal
bundle N−1

D on D) and ΔθD is the Laplacian with respect to the Kähler metric θD and the
corresponding Hermitian metric on L−1

D defined by h X |L D . For this Laplacian, we have
ΔθD ≤ −(n − 1). Thus, we can solve the following differential equation:

− D∗
θD
DθD

∂a

∂w
+ ΔθD

∂a

∂w
+ ΔθD

∂ F0

∂w
= ΔθD

∂ Fa

∂w
= 0, (40)

since the operator −D∗
θD
DθD + ΔθD is negative and self-adjoint. By the same way in [3,

p. 176], we can show the existence of a smooth function a ∈ C∞(X ,R) such that a|D ≡ 0
and θX ,a = θX + √−1∂∂a > 0 on X . ��
Remark 3 In [3, p. 176], if θD is a Ricci-positive Kähler–Einstein metric, the background
Kähler metric ω0 can be chosen so that the Ricci potential of ω0 decays at a higher order by
altering the Hermitian metric h X on K −1/α

X . In order to find the Hermitian metric above, they
solved the following differential equation:

ΔθD

∂a

∂w
+ (α − 2)

∂a

∂w
+ ∂ F0

∂w
= 0. (41)

Here, we have used the notations in this article. In the case of Bando–Kobayashi [3], the
Kähler metric θD is a Kähler Einstein metric, i.e., Ric(θD) = (α − 1)θD , so this Eq. (41) is
equivalent to the Eq. (40) by considering the image of the operator −ΔθD of (41). Therefore,
our modification of the Hermitian metric h X can be considered as a generalization of the
modification in Bando–Kobayashi [3].

From now on, let us write the modified Hermitian metric h X ,a as h X for simplic-
ity. So, we use the simple symbols t, θX , ω0 from now on. Thus, we have S(ω0) =
O(||σD||2+2ŜD/n(n−1)) on the assumption that θD is cscK.

4 Asymptotically conical geometry

Recall that the Kähler metric defined by

ω0 = n(n − 1)

ŜD

√−1∂∂ exp

(
ŜD

n(n − 1)
t

)

= exp

(
ŜD

n(n − 1)
t

)(
θX + ŜD

n(n − 1)

√−1∂t ∧ ∂t

)

is complete on X\D. Set r(x) := d(x, x0), where d is the distance function from some fixed
point x0 ∈ X\D defined by ω0. Following [3], the Riemannian manifold (X\D, ω0) is of
asymptotically conical geometry which is the analytic framework in this article.

Definition 4 A complete Riemannian metric g on an open manifold M of dimension m is
said to be of Ck,α-asymptotically conical geometry if for each point p ∈ M with distance r
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from a fixed point o ∈ M , there exists a harmonic coordinate system x = (x1, x2, · · ·, xm)

centered at p which satisfies the following conditions:

– The coordinate x runs over a unit ball Bm
p ⊂ R

m .

– If we write g = ∑
gi, j (x)dxi dx j , then the matrix (r2 + 1)−1gi, j (x) is bounded from

below by a constant positive matrix independent of p.
– The Ck,α-norms of (r2 + 1)−1gi, j (x) are uniformly bounded.

In particular, we simply say that (M, g) is of asymptotically conical geometry if (M, g) is
of Ck,α-asymptotically conical geometry for any k ∈ Z≥0 and α ∈ (0, 1).

Definition 5 Assume that a Riemannian manifold (M, g) is of asymptotically conical geom-
etry. The Ck,α-norm of a function u of weight δ ∈ R is defined by

||u||Ck,α
δ

:= sup
p∈M

(r(p)2 + 1)δ/2||u||Ck,α(Bp).

The Banach space Ck,α
δ is defined by the set of functions u such that ||u||Ck,α

δ
< ∞. In the

above definition, we use the coordinates x ∈ Bm
p centered at p with d(o, p) = r in the

definition of the asymptotically conicalness.

5 Forth order elliptic linear operators

To prove Theorem 2, we study the linearization of the scalar curvature operator. For a smooth

function ϕ on X\D, set ωt := ω0 + t
√−1∂∂ϕ. Recall that S(ωt ) = gi, j

t Rt,i, j . Thus, the
linearization of the scalar curvature operator is defined by

Lω0(φ) := d

dt

∣∣∣∣
t=0

S(ωt )

= −Δ2
ω0

ϕ − gi,qϕp,q g p, j R j,i

= −Δ2
ω0

ϕ − Ri, jϕi, j .

Set M := X\D. The following operator plays an important role in this article.

Definition 6 The operator Dω0 is defined by

Dω0 : Ck,α
δ (M,C) → Ck−2,α

δ+2 (M,Ω0,1M ⊗ T 1,0M)

ϕ �→ ∂(∇1,0ϕ)

Here ∂ is the (0,1)-part of the Levi-Civita connection and ∇1,0 is the (1,0)-gradient with
respect to ω0. We call D∗

ω0
Dω0 the Lichnerowicz operator and we have

Lemma 8 The Lichnerowicz operator D∗
ω0
Dω0 satisfies

D∗
ω0
Dω0ϕ = Δ2

ω0
ϕ + Ri, jϕi, j + (∇1,0ϕ,∇0,1S(ω0))ω0 . (42)

Thus, we have

Lω0 = −D∗
ω0
Dω0 + (∇1,0∗,∇0,1S(ω0))ω0 .
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The idea of proving Theorem 2 follows from Arezzo–Pacard [1] and [2] (see also [17]).
Consider the following expansion:

S(ω0 + √−1∂∂φ) = S(ω0) + Lω0(φ) + Qω0(φ).

To solve the following equation;

S(ω0 + √−1∂∂φ) = 0,

we will find a following fixed point:

φ = −L−1
ω0

(S(ω0) + Qω0(φ)).

When we prove Theorem 2, we assume that Lω0 is invertible. Therefore we need to prove
that the operator

N (φ) := −L−1
ω0

(S(ω0) + Qω0(φ)) (43)

is a contraction on some Banach space.
In particular, we mainly use the weighted Banach spaces C4,α

δ−4(X\D) and C0,α
δ (X\D).

From the definition of the weighted Banach space and local formulae of these operators, we
easily have

Lemma 9 Following three operators

Lω0 , D∗
ω0
Dω0 , Δ2

ω0
: C4,α

δ−4(X\D) → C0,α
δ (X\D)

are bounded.

First, we study the square of the Laplacian operator Δ2
ω0
. Define a barrier function ρ on

X\D by

ρ := exp

(
ŜD

2n(n − 1)
t

)
= ||σD||−ŜD/n(n−1).

Note that for δ > 0, ρ satisfies

Δω0ρ
−δ

= trω0

√−1∂∂ exp

(
−δ ŜD

2n(n − 1)
t

)

= −δ ŜD

2n(n − 1)
trω0

(
exp

(
−δ ŜD

2n(n − 1)
t

)(√−1∂∂t + −δ ŜD

2n(n − 1)

√−1∂t ∧ ∂t

))

= −δ ŜD

2n(n − 1)
ρ−δ−2trω0

(
exp

(
ŜD

n(n − 1)
t

)(√−1∂∂t + −δ ŜD

2n(n − 1)

√−1∂t ∧ ∂t

))

= −δ ŜD

2n(n − 1)
ρ−δ−2trω0

(
ω0 + −(δ + 2)ŜD

2n(n − 1)
exp

(
ŜD

n(n − 1)
t

)√−1∂t ∧ ∂t

)

= −δ ŜD

2n(n − 1)
ρ−δ−2

(
n + trω0

(
−(δ + 2)ŜD

2n(n − 1)
exp

(
ŜD

n(n − 1)
t

)√−1∂t ∧ ∂t

))

≤ −δ ŜD

2n(n − 1)
ρ−δ−2

(
n − δ + 2

2

)
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Here we have used the following inequality:

ω0 ≥ ŜD

n(n − 1)
exp

(
ŜD

n(n − 1)
t

)√−1∂t ∧ ∂t .

From Lemma 3, we have known that the volume growth of ω0 is given by

Volω0(B(x0, r)) = O(r2n).

In addition, we have known that ||Ric(ω0)||ω0 = O(r−2) as r → ∞. From [11, Theorem
1.2], we have

Lemma 10 Set γ := n/(n −1). Then the following Sobolev inequality holds, i.e., there exists
a constant C > 0 such that

(∫
X\D

|v|2γ ωn
0

)1/γ

≤ C
∫

X\D
|∂v|2ωn

0

for any compactly supported smooth function v on X\D.

Then, we can apply the Moser’s iteration to obtain the C0
δ -estimate. Following [3, p. 178],

we have

Lemma 11 If 2 < δ < 2n, the Laplacian Δω0 : Ck,α
δ−2(X\D) → Ck−2,α

δ (X\D) is isomor-
phic.

Recall that the standard theorem on Banach spaces (see [21, p. 77]).

Theorem 8 Let X and Y be Banach spaces. Assume that L : X → Y is a bounded and
isomorphic linear operator. Then, the inverse L−1 is also bounded.

Thus, the inverse of the Laplacian Δ−1
ω0

is bounded. In addition, recall the definition of
Fredholm operators (see [9, Chapter 1, §1.4]):

Definition 7 We say that a bounded linear operator L : X → Y between Banach spaces
X and Y is a Fredholm operator if the dim(KerL) and dim(CokerL) are finite and ImL is
a closed linear subspace of Y . For such an operator L , we define an index of L by

ind(L) := dim(KerL) − dim(CokerL).

Thus, immediately we obtain

Lemma 12 If 2 < δ < 2n, the Laplacian Δω0 : Ck,α
δ−2(X\D) → Ck−2,α

δ (X\D) is a Fredholm
operator whose index ind(Δω0) is zero. Moreover, there exists a bounded inverse Δ−1

ω0
which

is also a Fredholm operator whose index is zero.

Next, we study the Lichnerowicz operator D∗
ω0
Dω0 .

Lemma 13 Assume that δ > 4 and there is no nonzero holomorphic vector field on X which
vanishes on D. Then, the Lichnerowicz operator

D∗
ω0
Dω0 : C4,α

δ−4(X\D) → C0,α
δ (X\D)

is injective.
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Proof Assume that φ ∈ C4,α
δ−4(X\D) satisfies D∗

ω0
Dω0φ = 0. Integrating by parts, we have

0 =
∫

X\D
φD∗

ω0
Dω0φωn

0 =
∫

X\D
|Dω0φ|2ωn

0 .

Since ∂∇1,0φ = Dω0φ = 0, ∇1,0φ is a holomorphic vector field on X\D. By writing locally
ω0 = √−1gi, j dzi ∧ dz j , the (1,0)-gradient of φ can be written as

∇1,0φ = gi, j ∂φ

∂z j

∂

∂zi
.

So, all coefficients gi, j∂φ/∂z j are holomorphic.Moreover, the definition ofφ and the asymp-
totically conicalness imply differentials of φ and factors gi, j decay near D. Thus, ∇1,0φ can
be extended holomorphically to X and vanishes on D. The hypothesis implies that φ is
constant. Since φ decays near D, we have φ = 0 and conclude that D∗

ω0
Dω0 is injective. ��

Recall the following fundamental fact (see [9, Chapter 1, §1.4]).

Theorem 9 Let L : X → Y be a bounded linear operator between Banach spaces X and
Y . Then, L is Fredholm if and only if there exists a bounded linear operator H : Y → X
such that operators IX − H ◦ L and IY − L ◦ H are compact. Moreover, H is also Fredholm
and satisfies

ind(L) = −ind(H).

Then, we can show the following.

Lemma 14 If 4 < δ < 2n, the Lichnerowicz operator D∗
ω0
Dω0 : Ck,α

δ−4(X\D) →
Ck−4,α

δ (X\D) is a Fredholm operator whose index ind(D∗
ω0
Dω0) is zero.

Proof Recall the equation

D∗
ω0
Dω0φ = Δ2

ω0
φ + R j,iφi, j + (∇1,0φ,∇0,1S(ω0))ω0 .

Since (Δ2
ω0

)−1 : Ck−4,α
δ (X\D) → Ck,α

δ−4(X\D) is bounded, it is continuous. Consider the
linear operator

ICk,α
δ−4(X\D)

− (Δ2
ω0

)−1 ◦ D∗
ω0
Dω0 .

From the equation above, we obtain(
ICk,α

δ−4(X\D)
− (Δ2

ω0
)−1 ◦ D∗

ω0
Dω0

)
φ = (Δ2

ω0
)−1(R j,iφi, j + (∇1,0φ,∇0,1S(ω0))ω0)

for any φ ∈ Ck,α
δ−4. Since φ ∈ Ck,α

δ−4(X\D), the Arzela–Ascoli theorem implies that the
operator

φ → R j,iφi, j + (∇1,0φ,∇0,1S(ω0))ω0

is compact. The fact that (Δ2
ω0

)−1 is continuous implies that ICk,α
δ−4(X\D)

− (Δ2
ω0

)−1 ◦D∗
ω0
Dω0

is also compact. Similarly, we obtain the compactness of the operator

ICk−4,α
δ (X\D)

− D∗
ω0
Dω0 ◦ (Δ2

ω0
)−1.

From Theorem 9, we have finished the proof. ��
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Then, Lemmas 13 and 14 imply that

Proposition 8 If 4 < δ < 2n and there is no nonzero holomorphic vector field on X which
vanishes on D, the Lichnerowicz operator D∗

ω0
Dω0 : Ck,α

δ−4(X\D) → Ck−4,α
δ (X\D) is

isomorphic and has a bounded inverse.

Thus, there exists K > 0 such that

||(D∗
ω0
Dω0)

−1||C0,α
δ →C4,α

δ−4
< K −1.

In the next section, we study the operator Lω0 = −D∗
ω0
Dω0 + (∇1,0∗,∇0,1S(ω0))ω0 .

Remark 4 We can show that if the C1,α
2 -norm of S(ω0) is sufficiently small, there exists the

bounded inverse of Lω0 satisfying

||L−1
ω0

||C0,α
δ →C4,α

δ−4
< K̂ −1

for some K̂ > 0 (Condition 1).

6 Proof of Theorem 2

This section also follows from Arezzo–Pacard [1,2] (see also [17]). Since we assume that

0 < ŜD < n(n − 1),

we can choose a weight δ so that

δ ∈ (4,min{2n, 2 + 2n(n − 1)/ŜD}) (44)

Note that if θD is cscK, Theorem 1 implies that S(ω0) = O(r−δ). In addition, fromLemma 2,
we can choose δ sufficiently close to min{2n, 2 + 2n(n − 1)/ŜD} so that a function

φD∗
ω0
Dω0φ (45)

is integrable for φ ∈ C4,α
δ−4 with respect to the volume form ωn

0 . Hereafter, we fix a weight δ
satisfying (44) and (45).

Remark 5 If (D, L D) = (Pn−1,O(1)), the equality above holds, i.e., ŜD = n(n − 1).

We will show that the operator N : C4,α
δ−4(X\D) → C4,α

δ−4(X\D) defined in (43) has a
fixed point under Conditions 1 and 2. First, we have

Lemma 15 There exists c0 > 0 depending only on ω0 such that if ||φ||C4,α
−2 (X\D)

≤ c0, we

have

||Lωφ − Lω0 ||C4,α
δ−4→C0,α

δ
≤ K̂/2

and ωφ = ω0 + √−1∂∂φ is positive.

Proof Note that

g−1
φ − g−1 = g−1

φ (g − gφ)g−1 (46)

for φ such that ωφ = ω0 + √−1∂∂φ is positive.
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Locally, we can write as

Lωφ ψ = −Δ2
ωφ

ψ − Ri, j
ωφ

ψi, j . (47)

For instance, we have
∣∣∣
∣∣∣(r2 + 1)δ/2

(
gi, j
φ gk,l

φ − gi, j gk,l
)

ψi, j,k,l

∣∣∣
∣∣∣
C0,α

≤
∣∣∣
∣∣∣(r2 + 1)4/2

(
gi, j
φ gk,l

φ − gi, j gk,l
)∣∣∣
∣∣∣
C0,α

||ψ ||C4,α
δ−4(X\D)

=
∣∣∣
∣∣∣(r2 + 1)4/2

(
gi, j
φ

(
gk,l
φ − gk,l

)
+
(

gi, j
φ − gi, j

)
gk,l

)∣∣∣
∣∣∣
C0,α

||ψ ||C4,α
δ−4(X\D)

.

Note that gi, j
φ = O(r−2) as r → ∞, if c0 is sufficiently small. Thus, if c0 is sufficiently

small, the Eq. (46) implies that the term above can be made small arbitrarily. Applying the
same argument to remainders in (47), we can use the asymptotically conicalness to obtain
the desired result. ��

To show that the operator N : C4,α
δ−4 → C4,α

δ−4 is a contraction, we need the following
lemma:

Lemma 16 Assume that

||φ||C4,α
δ−4

, ||ψ ||C4,α
δ−4

≤ c0.

Then, we have

||N (φ) − N (ψ)||C4,α
δ−4

≤ 1

2
||φ − ψ ||C4,α

δ−4
.

Proof Since the operator N is defined by N (φ) := −L−1
ω0

(S(ω0) + Qω0(φ)), we have

N (φ) − N (ψ) = −L−1
ω0

(Qω0(φ) − Qω0(ψ)).

The mean value theorem implies that there exists χ = tφ + (1− t)ψ for t ∈ [0, 1] such that
DQω0,χ (φ − ψ) = Qω0(φ) − Qω0(ψ),

and the direct computation implies that

DQω0,χ = Lωχ − Lω0 .

We know that ||φ||C4,α
−2

≤ ||φ||C4,α
δ−4

≤ c0. Using Lemma 15, we finish the proof. ��

The following Proposition implies that the existence of a complete scalar-flat Kähler
metric.

Proposition 9 Set

U :=
{
φ ∈ C4,α

δ−4 : ||φ||C4,α
δ−4

≤ c0
}

.

If Conditions 1 and 2 hold, the operator N is a contraction on U and N (U ) ⊂ U .
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Proof By the condition ||φ||C4,α
δ−4

≤ c0, Lemmas 15 and 16 obviously imply that ||φ||C4,α
−2

≤
c0, N is a contraction on U . Immediately, we have

||N (φ)||C4,α
δ−4

≤ ||N (φ) − N (0)||C4,α
δ−4

+ ||N (0)||C4,α
δ−4

.

From the previous lemma, we obtain:

||N (φ) − N (0)||C4,α
δ−4

≤ 1

2
c0.

The hypothesis in this proposition implies that

||N (0)||C4,α
δ−4

≤ K̂ −1||S(ω0)||C0,α
δ

≤ 1

2
c0.

Thus, N (φ) ∈ U . ��
Proof of Theorem 2 If Conditions 1 and 2 hold, Proposition 9 implies that there is a unique
φ∞ := limi→∞ N i (φ) for any φ ∈ U ⊂ C4,α

δ−4 satisfying φ∞ = N (φ∞). Therefore,
ω0 + √−1∂∂φ∞ is a complete scalar-flat Kähler metric on X\D. ��

7 Plurisubharmonic functions with small scalar curvature

To prove Theorem 4, we prepare Kähler potentials, i.e., strictly plurisubharmonic functions,
whose scalar curvature is under control.

7.1 Kähler potential near D

In this subsection, we consider a Kähler potential near D and study the scalar curvature of
it. Recall that

t = log ||σD||−2 (48)

and θX = √−1∂∂t = √−1∂∂ log ||σD||−2 on X\D. Set

Θ(t) = n(n − 1)

ŜD
exp

(
ŜD

n(n − 1)
t

)
. (49)

Following [3], we can define a complete Kähler metric by

ω0 := √−1∂∂Θ(t) = n(n − 1)

ŜD

√−1∂∂ exp

(
ŜD

n(n − 1)
t

)

on X\D. Recall the asymptotic behavior of the scalar curvature of ω0.

Lemma 17 The scalar curvature S(ω0) can be estimated as follows:

S(ω0) = O
(
||σD||2ŜD/n(n−1)

)

as σD → 0.

Remark 6 Moreover, from Theorem 1, if θD is cscK, we have the following strong result:

S(ω0) = O
(
||σD||2+2ŜD/n(n−1)

)

as σD → 0.
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7.2 Kähler potential near F

In this subsection, we construct a Kähler metric on X whose scalar curvature is small near the
smoothhypersurface F ∈ |K −l

X ⊗Lm
X |.Here, l, m are positive integers such that the line bundle

K −l
X ⊗ Lm

X is very ample. For a fixed Hermitian metric on K −l
X ⊗ Lm

X , set b := log ||σF ||−2.
Since the holomorphic line bundle K −l

X ⊗ Lm
X is very ample, we may assume that

√−1∂∂b
is a Kähler metric on X . For parameters v > 0 and β ∈ Z>0, define a function by

Gβ
v (b) :=

∫ b

b0

(
1

e−y + v

)1/β

dy (50)

for some fixed b0 ∈ R. Note that Gβ
v (b) is defined smoothly outside F and limb→∞ Gβ

v (b) =
+∞ for any v > 0.

Lemma 18 For Z � β ≥ 1, γ
β
v := √−1∂∂Gβ

v (βb) defines a Kähler metric on X.

Proof In fact,

√−1∂∂Gβ
v (βb) = β

√−1∂

[(
1

e−βb + v

)1/β

∂b

]

=
(

1

e−βb + v

)1/β (
β
√−1∂∂b + e−βb

e−βb + v

√−1∂b ∧ ∂b

)
.

Note that the last term

e−βb

e−βb + v

√−1∂b ∧ ∂b

is defined smoothly on X from the assumption that Z � β ≥ 1. Since
√−1∂∂b is a Kähler

metric on X , we finish the proof. ��

Next, the scalar curvature of γ
β
v is given by

Lemma 19 For β ≥ 3, we obtain

S(γ β
v ) = S(

√−1∂∂Gβ
v (βb)) = O((||σF ||2β + v)1/β)

as ||σF || → 0.

Proof This lemma follows from the similar way in the computation of the scalar curvature
of ω0. In fact, since

((
√−1∂∂Gβ

v (βb))n = βn
(

1

e−βb + v

)n/β (
1 + e−βb

β(e−βb + v)
||∂b||2

)
(
√−1∂∂b)n,

we have

Ric(
√−1∂∂Gβ

v (βb))

= Ric(
√−1∂∂b) − √−1∂∂ log

(
1 + e−βb

β(e−βb + v)
||∂b||2

)

+ n

β

(
1

e−βb + v

√−1∂∂e−βb + β

(e−βb + v)2

√−1∂e−βb ∧ ∂e−βb
)

.
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Note that second and last terms above are zero on F . Thus, when we consider the scalar
curvature S(γ

β
v ), it is enough to see the term 1/(e−βb + v)1/β

√−1∂∂b and the Ricci form
Ric(

√−1∂∂b). Therefore the desired result is obtained. ��
Remark 7 If the value of the function e−βb = ||σF ||2β is compatiblewith v, i.e., ||σF ||2β ≈ v,
we have the following estimate of S(

√−1∂∂Gβ
v (βb)):

S(
√−1∂∂Gβ

v (βb)) = O(1).

However, we will consider the case that ||σF ||2β ≈ vk for sufficiently large k ∈ N which
will be specified later. Namely, it suffices to consider a sufficiently small neighborhood of F
defined by the inequality ||σF ||2β ≤ vk and Lemma 19 holds on this region.

7.3 Ricci-flat Kähler metric away from D ∪ F

In this subsection, we study an incomplete Ricci-flat Kähler metric away from the support
of the divisor D + F . Recall the setting in Theorem 4. Let l > n and m be positive integers
such that there exists a holomorphic section σF ∈ H0(K −l

X ⊗ Lm
X ) which defines a smooth

hypersurface F ⊂ X , i.e., (σF )0 = F . It follows from the hypothesis of the average value
ŜD of the scalar curvature that divisors D and F intersect to each other. Set

ξ := σF ⊗ σ−m
D .

Note that ξ is a meromorphic section of K −l
X . Then, define a singular and degenerate volume

form V by

V := ξ−1/l ∧ ξ−1/l .

From the construction above, V has finite volume on X and its curvature form, i.e., the Ricci
form, is zero on the complement of D ∪ F . For the Kähler metric θX on X , write

V = f θn
X

for some non-negative function f on X with the normalized condition∫
X

V =
∫

X
f θn

X =
∫

X
θn

X .

We know that f is smooth away from D ∪ F . From the result due to Yau [20, Theorem 7],
recall the solvability of a meromorphic complex Monge–Ampère equation:

Theorem 10 Let L1 and L2 be holomorphic line bundles over a compact Kähler manifold
(X , θX ). Let s1 and s2 be nonzero holomorphic sections of L1 and L2, respectively. Let F be
a smooth function on X such that

∫
X |s1|2k1 |s2|−2k2 exp(F)θn

X = Vol(X), where k1 ≥ 0 and
k2 ≥ 0. Suppose that

∫
X |s2|−2nk2 < ∞ for n = dim X. Then, we can solve the following

equation

(θX + √−1∂∂ϕ)n = |s1|2k1 |s2|−2k2 exp(F)θn
X

so that ϕ is smooth outside divisors of s1 and s2 with supX ϕ < +∞.

Then, we can solve the following complex Monge–Ampère equation

(θX + √−1∂∂ϕ)n = f θn
X = ξ−1/l ∧ ξ−1/l . (51)
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with ϕ ∈ C∞(X\D ∪ F). Thus, we obtain a Ricci-flat Kähler metric θX + √−1∂∂ϕ on the
complement of D ∪ F . For this solution ϕ, we obtain the following a priori estimate due to
Kołodziej [13] (see also [10]):

Theorem 11 If f is in L p(θn
X ) for some p > 1, we have

OscXϕ ≤ C

for some C > 0 depending only on θX and || f ||L p .

7.4 Gluing plurisubharmonic functions

In this subsection, following [6, Chapter I], we consider gluing Kähler potentials, i.e.,
plurisubharmonic functions, obtained in previous subsections. Let ρ ∈ C∞(R,R) be a
nonnegative function with support in [−1, 1] such that ∫

R
ρ(h)dh = 1 and

∫
R

hρ(h)dh = 0.

Lemma 20 (the regularized maximum) For arbitrary η = (η1, . . . , ηp) ∈ (0,+∞)p, the
function

Mη(t1, . . . , tp) =
∫
Rp

max{t1 + h1, . . . , tp + h p}
∏

1≤ j≤p

η−1
j ρ(h j/η j )dh1 . . . dh p

called the regularized maximum possesses the following properties :
(a) Mη(t1, . . . , tp) is non decreasing in all variables, smooth and convex on R

p ;
(b) max{t1, . . . , tp} ≤ Mη(t1, . . . , tp) ≤ max{t1 + η1, . . . , tp + ηp} ;
(c) Mη(t1, . . . , tp) = M(η1,...,η̂ j ,...,ηp)(t1, . . . , t̂ j , . . . , tp) if t j + η j ≤ maxk �= j {tk − ηk};
(d) Mη(t1 + a, . . . , tp + a) = Mη(t1, . . . , tp) + a;
(e) if u1, . . . , u p are plurisubharmonic and satisfy H(u j )z(ξ) ≥ γz(ξ) where z �→ γz is

a continuous hermitian form on T M, then u = Mη(u1, . . . , u p) is a plurisubharmonic
and satisfies Huz(ξ) ≥ γz(ξ).

Remark 8 Lemma 20 is a key in the proof of Richberg theorem (see [6, p. 43]). In our case, we
have already prepared three plurisubharmonic functions and must compute the Ricci form of
the glued Kähler metric later. Therefore, we need the explicit formula of the glued function.

In addition, we obtain

Lemma 21 There exists a constant C > 0 such that∣∣∣∣∂
|α|Mη

∂tα
(t)

∣∣∣∣ ≤ C min{η j |α j �= 0}
∏
αi �=0

η
−αi
i

for any multi index α = (αi )i with 1 ≤ |α| ≤ 4.

Recall that the Kähler potential of ω0 is given by

Θ(t) = n(n − 1)

ŜD
exp

(
ŜD

n(n − 1)
t

)
.

For κ ∈ (0, 1), set

G̃β
v (b) := Gβ

v (βb) + κΘ(t). (52)

This constant κ will be specified later. For this Kähler potential, we have
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Lemma 22 For the complete Kähler metric
√−1∂∂G̃β

v (b) on X\D, we have

S(
√−1∂∂(G̃β

v (b))) =
{

O(||σD||2ŜD/n(n−1)) near D,

O((||σF ||2β + v)1/β) near F .
(53)

Proof First, we study the behavior of the scalar curvature near D. Since

||σD||2+2Ŝ/(n−1)
(√−1∂∂(G̃β

v (b))
)n

is a smooth volume form on X , the Ricci form of
√−1∂∂(G̃β

v (b)) given by

Ric(
√−1∂∂(G̃β

v (b))

= −
(

Ŝ

n − 1
+ 1

)
θX − √−1∂∂ log ||σD||2+2Ŝ/(n−1)

(√−1∂∂(G̃β
v (b))

)n

is defined smoothly on X. Recall that
√−1∂∂(G̃β

v (b)) = κω0 + γ β
v .

As ω0 is of asymptotically conical geometry, we have the desired result near D. Similarly,
the volume form

(||σF ||2β + v)n/β
(√−1∂∂(G̃β

v (b))
)n

is smooth near F\(D ∩ F). Then, the following identity

Ric(
√−1∂∂(G̃β

v (b)) = n

β

(
1

e−βb + v

√−1∂∂e−βb + β

(e−βb + v)2

√−1∂e−βb ∧ ∂e−βb
)

−√−1∂∂ log(||σF ||2β + v)n/β
(√−1∂∂(G̃β

v (b))
)n

implies the desired result near F . ��
In summary, we have prepared the three strictly plurisubharmonic functions Θ(t) =

(n(n − 1)/ŜD) exp((ŜD/n(n − 1))t), G̃β
v (b) = Gβ

v (βb) + κΘ(t), t + ϕ = log ||σD||−2 + ϕ

whose scalar curvature is under control. From Lemma 20, we immediately have

Proposition 10 For parameters c, v, η and κ ∈ (0, 1), a function defined by

Mc,v,η := Mη

(
Θ(t), G̃β

v (b), t + ϕ + c
)

is a strictly plurisubharmonic function on X\(D ∪ F). Here, the functions above are defined
in (48), (49), (50), (51) and (52).

Remark 9 From a priori estimate due to Kołodziej [13], the solution ϕ is bounded on X . Thus,
by taking c > 0 sufficiently large, ϕ can be ignored when we consider the value of Mc,v,η.

By taking a sufficiently large c > 0, we have

Mc,v,η =
⎧⎨
⎩

Θ(t) nearD and away from F,

G̃β
v (b) near F and away from D,

t + ϕ + c away from Fand D.

(54)

Set

ωc,v,η := √−1∂∂ M
(
Θ(t), G̃β

v (b), t + ϕ + c
)

.
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The reason why we consider the second Kähler potential which contains the term κΘ(t) is
that we want to makeωc,v,η complete on X\D. The function Mc,v,η is defined on X\(D∪ F).
On the other hand, Lemma 18 implies that ωc,v,η is defined on X\D since the Kähler metric

γ
β
v is a smooth Kähler metric on X . From (54), we know that the scalar curvature of ωc,v,η is

small on three regions above (in particular, away from D and F , S(ωc,v,η) = 0 since t +ϕ+c
is a Kähler potential whose Ricci form is zero).

The explicit formula of ωc,v,η is written as

ωc,v,η = ∂ Mc,v,η

∂t1
ω0 + ∂ Mc,v,η

∂t2
(γ β

v + κω0) + ∂ Mc,v,η

∂t3

√−1∂∂(t + ϕ)

+
[
∂Θ(t) ∂G̃β

v (b) ∂(t + ϕ)

] [
∂2Mc,v,η

∂ti ∂t j

] [
∂Θ(t) ∂G̃β

v (b) ∂(t + ϕ)

]t
.

Thus, when we compute the scalar curvature of ωc,v,η, higher order derivatives of ϕ arise in
the components of the Ricci tensor of ωc,v,η. So, we must study the behavior of higher order
derivatives of ϕ near D ∪ F .

8 Proof of Theorem 3

In this section, we prove Theorem 3. Firstly, we use theC2-estimate due to Pǎun [15] (see also
[7], [10, p. 366, Theorem 14.3]) for the solution φ of the complex Monge–Ampère equation
(51) in the previous section to obtain the estimate of the ellipticity. i.e., the maximal ratio
of the maximal eigenvalue to the minimal eigenvalue, of the Kähler metric θX + √−1∂∂ϕ.
Secondly, we study how the C2,ε-estimate of ϕ depends on the ellipticity of θX + √−1∂∂ϕ

on a fixed relatively compact domain in X\(D ∪ F). Finally, we estimate the higher order
derivatives of ϕ by using the Schauder estimate.

8.1 The C2-estimate

To study the behavior of the higher order derivatives of ϕ, the elliptic operator defined
by the Kähler metric θX + √−1∂∂ϕ plays an important role. To obtain the ellipticity of
θX + √−1∂∂ϕ, we use the C2-estimate due to Pǎun [15] (see also [7], [10, p. 366, Theorem
14.3]).

Theorem 12 Let dV be a smooth volume form. Assume that ϕ ∈ PSH(X , θX ) satisfies

(θX + √−1∂∂ϕ)n = eψ+−ψ−dV

with
∫

X
ϕθn

X = 0. Here, ψ+, ψ− are quasi-plurisubharmonic functions on X. Assume that

we are given C > 0 and p > 1 such that

(i)
√−1∂∂ψ+ ≥ −CθX and supX ψ+ ≤ C.

(ii)
√−1∂∂ψ− ≥ −CθX and ||e−ψ−||L p ≤ C.

Then there exists A > 0 depending only on θX , p and C such that

0 ≤ θX + √−1∂∂ϕ ≤ Ae−ψ−θX .

Set ψ+ := log ||σD||2m/l and ψ− := log ||σF ||2/l . Then, Theorem 12 implies the follow-
ing inequality

0 ≤ θX + √−1∂∂ϕ ≤ A||σF ||−2/lθX . (55)
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Recall that the singular and degenerate volume form

(θX + √−1∂∂ϕ)n = ξ−1/l ∧ ξ−1/l , ξ = σF ⊗ σ−m
D (56)

vanishes along D with order 2m/l and has a pole along F of order 2/l. So, we obtain the
behavior of the product of the eigenvalues of the Kähler metric θX +√−1∂∂ϕ. From (55) and
(56), we can estimate the eigenvalues of θX +√−1∂∂ϕ. Namely, the maximal eigenvalue Λ

and the minimal eigenvalue λ of the Kähler metric θX + √−1∂∂ϕ are estimated as follows:

Λ = O(||σF ||−2/l), λ−1 = O(||σD||−2m/l).

In the next subsection, to consider the third and the forth order derivatives, we recall the
C2,ε-estimate of ϕ.

8.2 The C2,"-estimate

This subsection follows from [10, Chapter 14]. In this subsection, we study the relation
between the ellipticity of θX + √−1∂∂ϕ and the C2,ε-estimate of ϕ. This subsection is the
core of the proof of Theorem 3 because the estimate of the higher order derivatives of the
solution ϕ are obtained by the C2,ε-estimate and the Schauder estimate.

Let H be the set of n × n Hermitian matrices. The set of positive matrices is defined by
H+ := {A ∈ H |A > 0}. In addition, for 0 < λ < Λ < ∞, let S(λ,Λ) be the subset ofH+
whose eigenvalues lie in the interval [λ,Λ]. First, we recall the following result from linear
algebra (see [8, p. 454, Lemma 17.13], [10, p. 372, Lemma 14.10]):

Lemma 23 We can find unit vectors ζ1, . . . , ζN ∈ C
n and 0 < λ∗ < Λ∗ < ∞, depending

only on n, λ and Λ, such that every A ∈ S(λ,Λ) can be written as

A =
N∑

k=1

βkζk ⊗ ζk, i.e., ai, j =
∑

k

βkζkiζ k j ,

where βk ∈ [λ∗,Λ∗]. The vectors ζ1, . . . , ζN ∈ C
n can be chosen so that they contain a

given orthonormal basis of Cn.

Remark 10 In the proof of Lemma 23, they use the following covering

U (ζ1, . . . , ζn2) =
{∑

k

βkζk ⊗ ζ k | 0 < βk < 2Λ

}

of the compact subset S(λ/2,Λ) (see [8, p. 454, Lemma 17.13], [10, p. 372, Lemma 14.10]).
Here, ζ1, . . . , ζn2 ∈ C

n are unit vectors such that the matrices ζk ⊗ ζ k spanH overR. Thus,
it follows from the form of the covering U (ζ1, . . . , ζn2) that the number N in Lemma 23
is depending only on the dimension n. In particular, N is independent of the ellipticity of
θX + √−1∂∂ϕ.

Take local holomorphic coordinates (zi )n
i=1 = (z1, z2, . . . , zn−2, wF , wD) such that

{wF = 0} = F and {wD = 0} = D. On this coordinate chart, we can write t =
a + log |wD|−2 for some smooth plurisubharmonic function a. Since θX + √−1∂∂ϕ =√−1∂∂(a + ϕ) on this coordinate chart, it is enough to consider the following complex
Monge–Ampère equation

det(ui, j ) = f
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on an open subset Ω � C
n\(D ∪ F) by setting

u = a + ϕ. (57)

It follows from our construction that we may assume that the function f is a form of

f = |wF |−2/l |wD|2m/l .

Fix an unit vector ζ ∈ C
n . Differentiating the equation log det(ui, j ) = log f , we have

ui, j uζ,ζ ,i, j = (log f )ζ,ζ + ui,luk, j uζ,i, j uζ ,k,l ≥ (log f )ζ,ζ = 0.

Here we have used the standard Einstein convention and the notation (ui, j ) = ((ui, j )
t )−1.

Set

ai, j = f ui, j .

Then, for any i , we can compute as follows:

(ai, j ) j = f j u
i, j − f ui,luk, j u j,k,l = f uk,lu j,k,lu

i, j − f ui,luk, j u j,k,l = 0.

Thus, we obtain

(ai, j uζ,ζ ,i ) j = (ai, j ) j uζ,ζ ,i + ai, j uζ,ζ ,i, j ≥ f (log f )ζ,ζ = 0.

Note that uζ,ζ is a subsolution of the equation Lv = 0, where Lv := ∑
i, j (a

i, jvi ) j and our
construction implies that the operator L is uniformly elliptic in the real sense. Then, we have
the following estimate (see [8, Theorem 8.18]).

Lemma 24 The weak Harnack inequality

r−2n
∫

Br

(sup
B4r

uζ,ζ − uζ,ζ ) ≤ CH (sup
B4r

uζ,ζ − sup
Br

uζ,ζ ),

holds. Here, B4r := B(z0, 4r) ⊂ Ω with d(z0, ∂Ω) > 4r . Moreover, in our case, we have
the following estimate of the constant CH in Harnack inequality:

CH = O(Λ/λ).

Proof It suffices to show the estimate of the constant CH . In our case, we will only consider
the behavior of ϕ in the neighborhood of D ∪ F and the C2-estimate of ϕ implies that

uζ,ζ = O(||σF ||−2/l) = O(Λ)

u−1
ζ,ζ

= O(||σD||−2m/l) = O(λ−1)

as ||σF || → 0 and ||σD|| → 0. Thus, the weak Harnack inequality implies that the lemma
follows. ��
Remark 11 From the proof of [8, Theorem 8.18], we know that the optimal Harnack constant
CH is estimated by

CH = C
√

Λ/λ
n ,

where Cn depends only on n.
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For any x, y ∈ B4r , we obtain

ai, j (y)ui, j (x) = f (y)ui, j (y)ui, j (x) = f (y)tr(U (y)−1U (x)).

Here, we set U := (ui, j ). Clearly, ai, j (y)ui, j (y) = n f (y). Since det( f (y)1/nU (y)−1) = 1,
we have

ai, j (y)ui, j (x) = f (y)1−1/n tr( f (y)1/nU (y)−1U (x))

≥ n f (y)1−1/n det(U (x))1/n

= n f (y)1−1/n f (x)1/n .

Here, we have used the following lemma (see [10, Lemma 5.8]):

Lemma 25 For any A ∈ H+, we have

(det A)1/n = 1

n
inf{tr(AB)|B ∈ H+, det B = 1}.

Therefore, for any x, y ∈ B4r and ε ∈ (0, 1), we have

ai, j (y)(ui, j (y) − ui, j (x)) ≤ n f (y) − n f (y)1−1/n f (x)1/n

= n f (y)1−1/n( f (y)1/n − f (x)1/n)

≤ C(ε)4|x − y|ε,
where

C(ε)4 := n sup
Ω

( f 1−1/n)Hölε,Ω( f 1/n)

and Hölε,Ω denotes an ε-Hölder constant. In this case, the following estimates

Hölε,Ω( f 1/n) = O(||σF ||−2/nl−ε||σD||2m/nl−ε) (58)

sup
Ω

( f 1−1/n) = O(||σF ||−2(n−1)/nl ||σD||2m(n−1)/nl) (59)

implies that we have

C(ε)4 = O(||σF ||−2/l−ε||σD||2m/l−ε). (60)

Remark 12 In [10, p. 375], they used the Lipscitz constant of f . But in our case, it is enough
to use the Hölder constant of f for sufficiently small ε.

Setλ,Λ > 0 so that the eigenvalues of (ai, j (y)) lie in the interval [λ,Λ]. Then, Lemma 23
implies that we can find unit vectors ζ1, . . . , ζN ∈ C

n such that for any x, y ∈ Ω ,

ai, j (y)(ui, j (y) − ui, j (x)) =
N∑

k=1

βk(y)(uζk ,ζ k
(y) − uζk ,ζ k

(x)),

where βk(y) ∈ [λ∗,Λ∗] and λ∗,Λ∗ > 0.
Thus, we have

N∑
k=1

βk(y)(uζk ,ζ k
(y) − uζk ,ζ k

(x)) ≤ C(ε)4|x − y|ε.

123



336 T. Aoi

Set

Mk,r := sup
Br

uζk ,ζ k
, mk,r := inf

Br
uζk ,ζ k

,

and

η(r) :=
N∑

k=1

(Mk,r − mk,r ).

To obtain the Hölder condition

η(r) ≤ Cr ε̃

for some 0 < ε̃ < 1, we need the following lemma from [8, p. 201, Lemma 8.23]:

Lemma 26 Let η and σ be non-decreasing functions defined on the interval (0, R0] such that
there exist τ, α ∈ (0, 1) satisfying

η(τr) ≤ αη(r) + σ(r)

for all r ∈ (0, R0]. Then, for any μ ∈ (0, 1), we have

η(R) <
1

α

(
R

R0

)(1−μ)(logα/ log τ)

+ σ(R1−μ
0 Rμ)

1 − α
.

So, it suffices to show that

η(r) ≤ δη(4r) + Crε, 0 < r < r0,

where δ, ε ∈ (0, 1) and r0 > 0.
For fixed k, Harnack inequality before implies that

r−2n
∫

Br

∑
l �=k

(Ml,4r − uζl ,ζ l
) =

∑
l �=k

r−2n
∫

Br

(Ml,4r − uζl ,ζ l
)

≤
∑
l �=k

CH (Ml,4r − Ml,r )

≤
∑
l �=k

CH (η(4r) − η(r))

= (N − 1)CH (η(4r) − η(r)).

For x ∈ B4r and y ∈ Br , we have

βk(y)(uζk ,ζ k
(y) − uζk ,ζ k

(x)) ≤ C(ε)4|x − y|ε +
∑
l �=k

βl(y)(uζl ,ζ l
(x) − uζl ,ζ l

(y))

≤ 5C(ε)4rε + Λ∗
∑
l �=k

(Ml,4r − uζl ,ζ l
(y)).

Thus, for all y ∈ Br , we have

uζk ,ζ k
(y) − mk,4r ≤ 1

λ∗

⎛
⎝5C(ε)4rε + Λ∗

∑
l �=k

(Ml,4r − uζl ,ζ l
(y))

⎞
⎠ .
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Therefore,

r−2n
∫

Br

(uζk ,ζ k
(y) − mk,4r ) ≤ r−2n

∫
Br

1

λ∗

⎛
⎝5C(ε)4rε + Λ∗

∑
l �=k

(Ml,4r − uζl ,ζ l
(y))

⎞
⎠

≤ 5C(ε)4

λ∗
rε + Λ∗

λ∗
r−2n

∫
Br

∑
l �=k

(Ml,4r − uζl ,ζ l
)

≤ 5C(ε)4

λ∗
rε + Λ∗

λ∗
(N − 1)CH (η(4r) − η(r)).

Using Harnack inequality again, we have

Mk,4r − mk,4r = r−2n
∫

Br

(sup
B4r

uζk ,ζ k
− uζk ,ζ k

) + r−2n
∫

Br

(uζk ,ζ k
(y) − mk,4r )

≤ CH (Mk,4r − Mk,r ) + 5C(ε)4

λ∗
rε + Λ∗

λ∗
(N − 1)CH (η(4r) − η(r))

≤
(

CH + Λ∗
λ∗

(N − 1)CH

)
η(4r)

−
(

CH + Λ∗
λ∗

(N − 1)CH

)
η(r) + 5C(ε)4

λ∗
rε.

Summing over k, we have

η(4r) ≤ N

(
CH + Λ∗

λ∗
(N − 1)CH

)
η(4r)

−N

(
CH + Λ∗

λ∗
(N − 1)CH

)
η(r) + N

5C(ε)4

λ∗
rε.

Thus, we obtain

η(r) ≤
N
(

CH + Λ∗
λ∗ (N − 1)CH

)
− 1

N
(

CH + Λ∗
λ∗ (N − 1)CH

) η(4r) +
5C(ε)4

λ∗
CH + Λ∗

λ∗ (N − 1)CH
rε. (61)

Since we can take arbitrary λ∗N < λ and Λ∗ > Λ, we may assume that λ∗N = λ and
Λ∗ = Λ. Thus, we have

Lemma 27 By taking ε ≤ 2/l, there exists 0 < ε̃ < ε with

||u||C2,ε̃ = O

((
Λ

λ

)
CH

)
.

Proof In order to show this lemma, we apply Lemma 26 to the inequality (61). Set

α := N
(
CH + Λ

λ
(N − 1)CH

)− 1

N
(
CH + Λ

λ
(N − 1)CH

) ,

where this is the coefficient of η(4r) in (61). Then, we have the following estimates:

1

α
= O(1),

1

1 − α
= O((Λ/λ)CH ).
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Here, we have used the fact that the number N depends only on the dimension n (Remark 10).
Define a non-decreasing function σ by

σ(r) :=
5C(ε)4

λ

CH + Λ
λ
(N − 1)CH

rε.

Here, this is the second term in the right hand side of the inequality (61). Recall the estimate
(60)

C(ε)4 = O(||σF ||−2/l−ε||σD||2m/l−ε)

and Lemma 24. The assumption that ε ≤ 2/l implies that we have the following

5C(ε)4
λ

CH + Λ
λ
(N − 1)CH

= O(1).

Lemma 26 implies that we have

η(r) <
1

α

(
r

r0

)(1−μ)(logα/ log(1/4))

+ σ(r1−μ
0 rμ)

1 − α
,

for any μ ∈ (0, 1). Take μ ∈ (0, 1) so that

(1 − μ)(logα/ log(1/4)) > με.

Thus, we have

η(r) < O((Λ/λ)CH )σ (r1−μ
0 rμ)

Set ε̃ := εμ < ε. From the interior Hölder estimate for solutions of Poisson’s equation [8,
Theorem 4.6], we finish the proof. ��

Recall the relation (57) between u and ϕ. Lemma 24 implies

Proposition 11 For the domain Ω � X\(D ∪ F), we have

||ϕ||C2,ε̃ (Ω) = O

((
||σD||−2m/l ||σF ||−2/l

)2)

as σD, σF → 0.

8.3 The third and the forth order estimates

In this subsection, we prove Theorem 3. This subsection also follows from [10, Chapter 14].
To consider higher order estimates, we recall the Schauder estimate with respect to the elliptic
linear operator defined by the Kähler metric θX + √−1∂∂ϕ. Note that the complex Monge–
Ampère operator defined by F(D2u) = det(ui, j ) is elliptic if the 2n × 2n real symmetric

matrix A := (∂ F/∂u p,q) is positive. Here, u p,q is the element of the real Hessian D2u. We
can show that this real symmetric matrix A is given by d

dt F(D2u + t B)|t=0 = tr(At B).
From [4] (see also [10, Exercise 14.8]), we have

Lemma 28 One has

λmin(∂ F/∂u p,q) = det(ui, j )

4λmax(ui, j )
, λmax(∂ F/∂u p,q) = det(ui, j )

4λmin(ui, j )
,
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where λmin(∂ F/∂u p,q) and λmax(∂ F/∂u p,q) denote minimal and maximal eigenvalue of the
matrix (∂ F/∂u p,q))p.q respectively.

Then, we can estimate the ellipticity in the real sense. We can apply the standard elliptic
theory to the following equation

F(D2u) = f = |wF |−2/l |wD|2m/l .

For a fixed vector ζ ∈ C
n and sufficiently small h > 0, we define functions by

uh(x) := u(x + hζ ) − u(x)

h

and

a p,q
h (x) :=

∫ 1

0

∂ F

∂u p,q
(t D2u(x + hζ ) + (1 − t)D2u(x))dt .

Thus, we have the following:

a p,q
h (x)uh

p,q(x) = 1

h

∫ 1

0

d

dt
F(t D2u(x + hζ ) + (1 − t)D2u(x))dt = f h(x).

From the definition of a p,q
h , we obtain

||a p,q
h ||C0,ε̃ ≤ C ||u||n−1

C2,ε̃ = O((Λ/λ)2(n−1))

for sufficiently small h > 0.
The Schauder estimate implies

Proposition 12 There exists CS > 0 such that

||uh ||C2,ε̃ ≤ CS(|| f h ||C0,ε̃ + ||uh ||C0)

for any h > 0.

Therefore, we can obtain the estimate of derivatives of the solution ϕ in the desired
direction by taking a suitable vector ζ and h → 0. The constant CS in Proposition 12 also
depends on the maximal ratio of the eigenvalues Λ/λ and the dimension n. By examining
the proof of [8, Lemma 6.1 and Theorem 6.2], there is a positive constant s(n) depending
only on the dimension n such that

CS = O((Λ/λ)s(n)).

As h → 0, we have the following third order estimates of ϕ:

Proposition 13 For any multi-index α = (α1, . . . , αn) satisfying
∑

i αi = 2, we have∣∣∣∣ ∂

∂zi
∂αϕ

∣∣∣∣ = O
(

CS |wD|−4m/l |wF |−4/l
)

,

∣∣∣∣ ∂

∂wF
∂αϕ

∣∣∣∣ = O
(

CS |wD|−4m/l |wF |−1−4/l
)

,

∣∣∣∣ ∂

∂wD
∂αϕ

∣∣∣∣ = O
(

CS |wD|−1−4m/l |wF |−4/l
)

,

as |wD|, |wF | → 0.

From the discussion above, we can prove Theorem 3.
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Proof of Theorem 3 Let ȧ p,q
h be a differential of a p,q

h in some direction. From the definition
of a p,q

h , we know that

||ȧ p,q
h ||C0,ε̃ ≤ C ||u̇||C2,ε̃ ||u||n−2

C2,ε̃ .

Thus, by differentiating the equation a p,q
h (x)uh

p,q(x) = f h(x), Schauder estimate implies
again the following inequality:

||u̇h ||C2,ε̃ ≤ CS(|| ḟ h − ȧ p,q
h uh

p,q ||C0,ε̃ + ||u̇h ||C0).

Thus, we finish the proof pf Theorem 3 by taking a suitable vector ζ and h → 0. ��
Remark 13 By examining the proof of [8, Lemma 6.1 and Theorem 6.2] and the discussion
above, we can find that

a = a(n) = O(n2).

9 Proof of Theorem 4

In this section, we prove Theorem 4. To compute the scalar curvature of the Kähler metric
ωc,v,η, we have to consider the inverse matrix (Lemma 5). Since we assume that the divisor
D + F is simple normal crossing, we can choose block matrices in suitable directions in
local holomorphic coordinates defining hypersurfaces D and F . To prove Theorem 4, we
consider the case that the parameter η = (η1, η2, η3) depends on c > 0. More precisely, we
set ηi := ai c for i = 1, 2 for ai ∈ (0, 1) and η3 a fixed positive real number. We use many
parameters, i.e., c, v, β, κ, η, ai . When we want to make the scalar curvature S(ωc,v,η) small,
we take sufficiently large c and sufficiently small v. On the other hand, we don’t make other
parameters β, κ, ai close to ∞, 0 or 1. Namely, the parameters β, κ, ai are bounded in this
sense. Settings of these bounded parameters will be given later.

Proof of Theorem 4 Take a relatively compact domain Y � X\(D ∪ F). Recall that the
function Gβ

v (βb) is defined by

Gβ
v (βb) :=

∫ βb

b0

(
1

e−y + v

)1/β

dy.

Immediately, we have Gβ
v (βb) < βeb and Gβ

v (βb) → βeb as v → 0. So, we can find a
sufficiently large number c0 = c0(Y ) > 0 so that

Y �
{

t + ϕ + c0 > max{Θ(t), G̃β
v (b)}

}
� X\(D ∪ F)

for any v > 0. Here, G̃β
v (b) = Gβ

v (βb)+κΘ(t). For simplicity, we write ϕ + c0 by the same
symbol ϕ.

Recall that the property d) of the regularized maximum in Lemma 20. If the following
inequality

max
j �=k

{t j + η j } < tk − ηk

holds for some k, we have Mη(t) = tk . For instance, in our case, if we consider the region
defined by the following inequality

max{G̃β
v (βb) + η2, t + ϕ + c + η3} < Θ(t) − η1,
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wehave Mc,v,η = Θ(t). Note that this region is contained in a sufficiently small neighborhood
of D. In this case, we don’t have to estimate the scalar curvature S(ωc,v,η) since S(ωc,v,η) =
S(ω0) on this region and the estimate of S(ω0) have been obtained in Lemma 50 before.
Similarly, if the value of Mc,v,η corresponds to one of the other variables G̃β

v (b), t + ϕ + c,
Lemma 22 and the Ricci-flatness of the Kähler metric

√−1∂∂(t + ϕ) implies that S(ωc,v,η)

is under control on such regions. Thus, it suffices for us to study the S(ωc,v,η) on the other
regions defined by the inequalities

tk + ηk < max
j �=k

{t j − η j },
|ti − t j | < ηi + η j ,

for i, j �= k and

|t1 − t2| < η1 + η2,

|t2 − t3| < η2 + η3,

|t1 − t3| < η1 + η3.

So we have to study S(ωc,v,η) on four regions defined by the inequalities above.
Directly, we have

ωc,v,η = √−1gi, j dzi ∧ dz j

= ∂ Mc,v,η

∂t1
ω0 + ∂ Mc,v,η

∂t2
(γ β

v + κω0) + ∂ Mc,v,η

∂t3

√−1∂∂(t + ϕ)

+
[
∂Θ(t) ∂G̃β

v (b) ∂(t + ϕ)

] [
∂2Mc,v,η

∂ti ∂t j

] [
∂Θ(t) ∂G̃β

v (b) ∂(t + ϕ)

]t
.

It follows from the convexity of Mη that the last term is semi-positive. When we com-
pute the scalar curvature of ωc,v,η, the difficulty comes from terms ∂Θ(t) ∧ ∂Θ(t) and

∂G̃β
v (b)∧∂G̃β

v (b). For these terms, since functions t and b are defined by Hermitian norms of
holomorphic sections, it suffices to focus on derivatives in normal directions of smooth hyper-
surfaces D and F by taking suitable local trivializations of line bundles L X and K −l

X ⊗ Lm
X

respectively. The reasonwhy scalar curvatures of twoKählermetricsω0, γ
β
v are under control

near these hypersurfaces D, F is that Ricci curvatures are bounded and Kähler metrics grow
asymptotically near these hypersurfaces. Thus, it suffices for us to focus on derivatives of ϕ

and Mη arising in Ricci tensors. The higher order derivatives of ϕ are estimated in the previ-
ous section (Theorem 3). In addition, the definition of a parameter η = (ηi ) = (a1c, a2c, η3)
and Lemma 21 imply that the higher order derivatives in the first or the second variable of
Mη are estimated by some negative power of c > 0. To estimate S(ωc,v,η) on each region,
we divide the proof of Theorem 4 into the following four claims.

Claim On the region defined by

(t + ϕ + c) + η3 < max{Θ(t) − η1, G̃β
v (b) − η2},

|Θ(t) − G̃β
v (b)| < η1 + η2,

we can make the scalar curvature S(ωc,v) small arbitrarily by taking a sufficiently large c.

Proof On this region, we can write as

ωc,v,η = ∂ Mc,v,η

∂t1
ω0 + ∂ Mc,v,η

∂t2
(γ β

v + κω0)
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+
[
∂Θ(t) ∂G̃β

v (b)

] [
∂2Mc,v,η

∂ti ∂t j

] [
∂Θ(t) ∂G̃β

v (b)

]t
.

To prove this claim, we need the following lemma.

Lemma 29 Take a point p ∈ D ∩ F and local holomorphic coordinates (z1, . . . , zn−2, wF ,

wD) centered at p satisfying D = {wD = 0} and F = {wF = 0}. By taking suitable
local trivializations of L X and K −l

X ⊗ Lm
X , we may assume that if (z1, . . . , zn−2, wF , wD) =

(0, . . . , 0, wF , wD), we have

∂Θ(t) ∧ ∂Θ(t) = O(|wF |2|wD|−4ŜD/n(n−1))dwF ∧ dwF

+O(|wF ||wD|−1−4ŜD/n(n−1))(dwD ∧ dwF + dwF ∧ dwD)

+O(|wD|−2−4ŜD/n(n−1))dwD ∧ dwD,

∂Gβ
v (βb) ∧ ∂Gβ

v (βb) = O((|wF |2β + v)−2/β |wF |−2)dwF ∧ dwF

+O(|wF |−1|wD|(|wF |2β + v)−2/β)(dwD ∧ dwF + dwF ∧ dwD)

+O((|wF |2β + v)−2/β |wD|2)dwD ∧ dwD .

From the definition of this region, we obtain

ωc,v,η =

⎡
⎢⎢⎢⎢⎢⎢⎣

g1,1 · · · g1,n−2 g1,n−1 g1,n
.
.
.

. . .
.
.
.

.

.

.
.
.
.

gn−2,1 · · · gn−2,n−2 gn−2,n−1 gn−2,n

gn−1,1 · · · gn−1,n−2 (|wF |2β + v)−2/β |wF |−2 |wF |−1|wD |(|wF |2β + v)−2/β

gn,1 · · · gn,n−2 |wF |−1|wD |(|wF |2β + v)−2/β |wD |−2−4ŜD/n(n−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

as wD, wF → 0.
In particular, coefficients gi, j for 1 ≤ i, j ≤ n − 2 come from Kähler metrics ω0 and γ

β
v .

Thus,
⎡
⎢⎣

g1,1 · · · g1,n−2
...

. . .
...

gn−2,1 · · · gn−2,n−2

⎤
⎥⎦ = O(|wD|−2ŜD/n(n−1) + (|wF |2β + v)−1/β).

For other blocks, we similarly have
⎡
⎢⎣

g1,n−1 g1,n
...

...

gn−2,n−1 gn−2,n

⎤
⎥⎦ = O(|wD|−2ŜD/n(n−1) + (|wF |2β + v)−1/β).

From Lemma 5, we have

gi, j =

⎡
⎢⎢⎢⎢⎢⎢⎣

g1,1 · · · g1,n−2 g1,n−1 g1,n

...
. . .

...
...

...

gn−2,1 · · · gn−2,n−2 gn−2,n−1 gn−2,n

gn−1,1 · · · gn−1,n−2 c(|wF |2β + v)2/β |wF |2 c|wD|3+4ŜD/n(n−1)|wF |
gn,1 · · · gn,n−2 c|wD|3+4ŜD/n(n−1)|wF | c|wD|2+4ŜD/n(n−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

as wD, wF → 0. Since metric tensors gi, j with i, j �= n − 1, n come from Kähler metrics
ω0 and γ

β
v whose scalar curvature have been already known. Thus, it is enough to study the
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case that i = n − 1, n and j = n − 1, n. Recall that the components of the Ricci tensor are
defined by Ri, j := −g p,q∂2gp,q/∂zi∂z j + gk,q g p,l(∂gk,l/∂zi )(∂gp,q/∂z j ). So, the Ricci
form Ric(ωc,v,η) is written as
⎡
⎢⎢⎢⎢⎢⎢⎣

R1,1 · · · R1,n−2 R1,n−1 R1,n

.

.

.
. . .

.

.

.
.
.
.

.

.

.

Rn−2,1 · · · Rn−2,n−2 Rn−2,n−1 Rn−2,n

Rn−1,1 · · · Rn−1,n−2 c−3(|wF |2β + v)−2/β |wF |−2 c−3|wF |−1|wD |(|wF |2β + v)−2/β

Rn,1 · · · Rn,n−2 c−3|wF |−1|wD |(|wF |2β + v)−2/β c−3|wD |−2−4ŜD/n(n−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

as wD, wF → 0 and the other components of the Ricci tensor Ri, j for 1 ≤ i ≤ n − 2 are
under control.

By taking the trace, we obtain the following:

S(ωc,v,η) = O(c−2).

��
Remark 14 On the region in the previous claim, there are the terms ∂Θ(t) ∧ ∂Θ(t) and
∂Gβ

v (βb) ∧ ∂Gβ
v (βb) in the complete Kähler metric ωc,v,η. Thus, (X\D, ωc,v,η) is not of

asymptotically conical geometry and we can’t use the analysis in Sect. 5 with respect to this
Kähler metric ωc,v,η. This problem will be solved in the next section.

We proceed to the estimate of S(ωc,v,η) on another region.

Claim Consider the region defined by

G̃β
v (b) + η2 < max{Θ(t) − η1, (t + ϕ + c) − η3},

|Θ(t) − (t + ϕ + c)| < η1 + η3.

Take parameters η, κ so that

(1 − κ)c + κη1 − η2 = (1 − κ + κa1 − a2)c = 0 (62)

for any c > 0. Then, we can make the scalar curvature S(ωc,v) small arbitrarily by taking a
sufficiently large c.

Proof On this region, since

Mc,v,η = Mη (Θ(t), t + ϕ + c)

from Lemma 20, we have

ωc,v,η = ∂ Mc,v,η

∂t1
ω0 + ∂ Mc,v,η

∂t3

√−1∂∂(t + ϕ)

+ [
∂Θ(t) ∂(t + ϕ)

] [ ∂2Mc,v,η

∂ti ∂t j

] [
∂Θ(t) ∂(t + ϕ)

]t
.

From the hypothesis of this claim, we have

Gβ
v (βb) < (t + ϕ + c) + η3 − κΘ(t) − η2

< (1 − κ)(t + ϕ + c) + κ(η1 + η3) + η3 − η2

= (1 − κ)(t + ϕ) + (1 + κ)η3.
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By taking a small v > 0 and a suitable b0 in the definition of the function Gβ
v (βb), we may

assume that

βb < Gβ
v (βb).

From a priori estimate due to Kołodziej [13] again, ϕ is bounded on X . So, on this region,
we have the following inequality:

||σF ||−2β/(1−κ) < C ||σD||−2

for some constant C > 0 depending only on the C0-norm of ϕ. By taking κ close to 1 which
depends on m, l and a = a(n) in Theorem 3, we may assume that

||σF ||−2−2a/l < C ||σD||−2am/l .

Thus, on this region, the growth of derivatives of ϕ can be controlled by the Kähler metricω0.
Take a point in D\(D ∩ F) and local holomorphic coordinates (zi )n

i=1 = (z1, . . . , zn−1, wD)

satisfying D = {wD = 0}. Then, we have∣∣∣∣ ∂2

∂zi∂z j
∂αϕ

∣∣∣∣ = O
(
|wD|−2am/l

)
,

if 1 ≤ i, j ≤ n − 1 and ∣∣∣∣ ∂2

∂wD∂wD
∂αϕ

∣∣∣∣ = O
(
|wD|−2−2am/l

)
.

Similarly, we have

Lemma 30 By taking a suitable local holomorphic trivialization of L X , we may assume that
if (z1, . . . , zn−1, wD) = (0, . . . , 0, wD), we have

∂Θ(t) ∧ ∂Θ(t) = O(|wD|−2−4ŜD/n(n−1))dwD ∧ dwD .

Recall the hypothesis

am

2l
<

ŜD

n(n − 1)
.

So, Theorem 3 implies that the growth of the Kähler metric ωc,v,η is greater then the growth
of the higher order derivatives of ϕ. Thus, Lemma 5 show that higher order derivatives
including ∂4ϕ/∂w2∂w2 are controlled by taking the trace with respect to ωc,v,η. Therefore,
we can ignore derivatives of ϕ arising in the components of the Ricci tensor and we have

S(ωc,v,η) = O(c−2).

��
We proceed to the estimate of S(ωc,v,η) the following region.

Claim Consider the region defined by

Θ(t) + η1 < max{G̃β
v (b) − η2, (t + ϕ + c) − η3},

|G̃β
v (b) − (t + ϕ + c)| < η2 + η3.

By choosing sufficiently small number v > 0 so that

(||σF ||2β + v)2/β < ||σF ||4am/l

holds on this region, we can make the scalar curvature S(ωc,v) small arbitrarily by taking a
sufficiently large c.
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Proof The reason why we can find a sufficiently small number v > 0 satisfying the statement
in this claim is that min{||σF ||} on this region increase as v → 0 and 4am/l < 4. In order to
prove this Claim, we need the following lemma.

Lemma 31 By taking a suitable local trivialization of K −l
X ⊗ Lm

X , we may assume that if
(z1, . . . , zn−2, wF , zn) = (0, . . . , 0, wF , 0), we have

∂Gβ
v (βb) ∧ ∂Gβ

v (βb) = O((|wF |2β + v)−2/β |wF |−2)dwF ∧ dwF .

Thus, we can prove this claim by using the same way in the previous claim. ��
The remained case is the following claim.

Claim On the region defined by

|Θ(t) − G̃β
v (b)| < η1 + η2,

|G̃β
v (b) − (t + ϕ + c)| < η2 + η3,

|Θ(t) − (t + ϕ + c)| < η1 + η3,

we can make the scalar curvature S(ωc,v,η) small arbitrarily by taking a sufficiently large c.

Proof On this region, we can show that S(ωc,v,η) = O(c−2) similarly. Thus, we have finished
proving Theorem 4. ��

10 Proof of Theorem 5

In this section, we prove Theorem 5. We construct the complete Kähler metric ωF = ωc,v,η

whose scalar curvature is arbitrarily small on X\D in previous sections. For β ∈ Z>0, take a
holomorphic section σ0 ∈ H0(K −l

X ⊗ Lm+β
X ). We may assume that D + F0 is simple normal

crossing, where F0 is a smooth hypersurface defined by σ0. Let (σi )i ⊂ H0(K −l
X ⊗ Lm+β

X ) be
an orthonormal basis with respect to the L2 inner product. Take a sufficiently small number
τ ∈ R. Write h(l, m, β) := dim H0(K −l

X ⊗ Lm+β
X ). For s = (si )i ∈ D

h(l,m,β) := {z =
(zi ) ∈ C

h(l,m,β)||zi | ≤ 1}, define a meromorphic section of the line bundle K −l
X ⊗ Lm

X by

σs := (σ0 + τ

h(l,m,β)∑
i=1

siσi ) ⊗ σ
−β
D .

Note that by taking a sufficiently small τ , we may assume that σs �= 0 for any s ∈ D
h(l,m,β).

In addition,σs → σ0⊗σ
−β
D for any s ∈ D

h(l,m,β) as τ → 0. Let Fs be a smooth hypersurface
defined by divσs = Fs − β D. Since σ0 contained in σs is not multiplied by τ , the variation
of τ affects the choice of Fs if τ �= 0.

By applying Theorem 4, we obtain a complete Kähler metric ωFs with small scalar curva-
ture for ameromorphic section σs ⊗σ−m

D of K −l
X . In fact, for a smooth function on X\(D∪Fs)

defined by bs := log ||σs ||−2, we can obtain a Kähler metric
√−1∂∂Gβ

v (βbs) on X . Directly,
we have

√−1∂∂Gβ
v (βbs) =

(
1

e−βbs + v

)1/β (
β
√−1∂∂bs + e−βbs

e−βbs + v

√−1∂bs ∧ ∂bs

)
.

This metric does not grow near D. When we glued plurisubharmonic functions in
previous sections, we considered the Kähler potential κΘ(t) + Gβ

v (βbs). In addition,
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limbs→−∞
√−1∂∂Gβ

v (βbs) > −∞. So, we can construct a complete Kähler metric ωFs

with small scalar curvature by using the regularized maximum Mη in Lemma 20 to glue

three plurisubharmonic functions Θ(t), G̃β
v (b), t + ϕ + c.

As has been pointed out previously in Remark 14, (X\D, ωFs ) is not of asymptotically
conical geometry for any s ∈ D

h(l,m,β). To solve this problem, consider an average metric ω

defined by

ω = ω(c, v, η, τ ) :=
∫
Dh(l,m,β)

ωFs dμ(s).

Here, μ is the Lebesgue probability measure on D
h(l,m,β) and c, v, η are parameters in the

definition of ωF in Theorem 4. Recall that η = (η1, η2, η3) and η1, η2 = O(c), η3 = O(1).
To prove that (X\D, ω) is of asymptotically conical geometry, it is enough to prove the
following lemma:

Lemma 32 For the Kähler metric ω defined above, we have

ω − ω0 = O(||σD||2β)

as σD → 0.

Proof The region where (X\D, ωFs ) is not of asymptotically conical geometry is defined by

|Θ(t) − G̃β
v (bs)| < η1 + η2 (63)

(cf. Remark 14). For sufficiently large bs > 0, we have v−1/ββbs ≈ Gβ
v (βbs). Here, bs :=

log ||σs ||−2. From the following inequality

v−1/ββbs ≈ Gβ
v (βbs) > (1 − κ)Θ(t) − η1 − η2

obtained by (63), we have

||σs ||2 < exp
(
−(v1/β/β)((1 − κ)||σD||−2ŜD/n(n−1) − η1 − η2)

)
.

Take a point p ∈ X\D near D. Assume that σs̃(p) = 0 for s̃ ∈ D
h(l,m,β). Then, an element

s ∈ D
h(l,m,β) satisfying the inequality above has to satisfy

∣∣∣∣∣∣

∣∣∣∣∣∣τ
h(l,m,β)∑

i=1

(si − s̃i )σi (p) ⊗ σD(p)−β

∣∣∣∣∣∣

∣∣∣∣∣∣
2

< exp
(
−(v1/β/β)((1 − κ)||σD||−2ŜD/n(n−1) − η1 − η2)

)
. (64)

By considering a suitable unitary transformation u = (ui, j ) ∈ U (h(l, m, β)), we can

write as
∑h(l,m,β)

i=1 (si − s̃i )σi (p) = (
∑h(l,m,β)

i, j=1 ui, j (si − s̃i ))σ̃ (p) for some holomorphic

section σ̃ ∈ H0(K −l
X ⊗ Lm+β

X ) such that σ̃ (p) �= 0 and have
∣∣∣∣∣∣
h(l,m,β)∑

i, j=1

ui, j (si − s̃i )

∣∣∣∣∣∣
2

<
exp

(
−(v1/β/β)((1 − κ)||σD||−2ŜD/n(n−1) − η1 − η2)

)

τ 2||σ̃ ⊗ σ
−β
D (p)||2

. (65)

Then, we have the following estimate∫
∂Θ(t) ∧ ∂Θ(t)dμ(s) = exp

(
O
(
−||σD||−2ŜD/n(n−1)

))
.
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Next, we consider the term ∫
∂Gβ

v (βbs) ∧ ∂Gβ
v (βbs)dμ(s)

which appears in ω. From the inequality (63), we have

v−1/ββbs ≈ Gβ
v (βbs) < (1 − κ)Θ(t) + η1 + η2.

Thus, the following inequality

||σs ||−2 < exp
(
(v1/β/β)((1 − κ)||σD||−2ŜD/n(n−1) + η1 + η2)

)

holds. Thus, we can estimate as follows∫
∂Gβ

v (βbs) ∧ ∂Gβ
v (βbs)dμ(s)

≤ exp
(
2v1/β(η1 + η2)/β

)
/τ 2||σ̃ ⊗ σ

−β
D ||2. (66)

By the definition of ω, we obtain

ω ≈
(
1 − exp

(
−||σD||−2ŜD/n(n−1)

))
ω0 + O(||σD||2β)

near D. ��
Proof of Theorem 5 Lemma 32 implies that the complete Kähler manifold (X\D, ω) is of
asymptotically conical geometry. Thus, we will prove that the scalar curvature can be made
small arbitrarily. To show this, we take parameters c, v, τ and an integer β so that

v1/βc = k log c, τ 2 = v, β > δ (67)

for a sufficiently large k ∈ N specified later.
Firstly, from the construction of ω, weight norms of S(ω) away from D ∪ F0 can be

made small arbitrarily by taking sufficiently small τ . To show this, we study a function
f : τ → ωn/ωn

F0
. Note that this function is smooth and f (0) = 1 and ωF0 is Ricci-flat away

from D ∪ F0. So, we have S(ω) = O(τ ) away from D ∪ F0.
Secondly, we study S(ω) near F0 and away from D. We can write as

ω =
∫ (√−1∂∂Mc,v,η

)
dμ,

where

Mc,v,η = ∂ Mc,v,η

∂t2
(γ β

v + κω0) + ∂ Mc,v,η

∂t3

√−1∂∂(t + ϕ)

+
[
∂G̃β

v (bs) ∂(t + ϕ)

] [
∂2Mc,v,η

∂ti ∂t j

] [
∂G̃β

v (bs) ∂(t + ϕ)

]t
.

On this region, we consider a sufficiently small neighborhood of F0 by taking a sufficiently
large parameter c. So, it is enough to consider the region defined by the following inequality

Gβ
v (bs) + κΘ(t) − η2 > max{Θ(t) + η1, t + ϕ + c + η3}.

In addition, since we are considering the region away from D, by taking a sufficiently large
parameter c, the inequality above can be rewritten as follows:

Gβ
v (bs) + κΘ(t) − (t + ϕ + c) > η2 + η3. (68)
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So, we have
∣∣∣∣∣∣
h(l,m,β)∑

i

si

∣∣∣∣∣∣
2

< exp
(−(v1/β/β)(t + ϕ + c − κΘ(t) + η2 + η3)

)
/τ 2 = O(cβ−1).

Recall Remark 7 and the relation of the parameters c, v:

cv1/β = k log c.

So, the inequality above (68) implies that

||σFs ||2 ≤ vk/β .

Thus, we don’t have to consider the case that S(ωF ) = O(1) and we have

ω =
∫

γ β
v dμ(s) + κω0 ≈ v−1/β

√−1∂∂b + κω0. (69)

by taking a sufficiently large c. Since theRicci formof
√−1∂∂(Gβ

v (βb0)+κΘ(t)) is bounded
near F0 and away from D, we can conclude that S(ω) = O(v1/β).

Thirdly, we study S(ω) near D. Write

ω = ω0 + √−1∂∂ψ.

By taking the trace with respect to the background metric ω0, we have

Δω0ψ = trω0ω − n.

To estimate

S(ω) = S(ω0 + √−1∂∂ψ),

we study the right hand side in the equation above. Recall the construction of the complete
Kähler metric ωFs . The bounded region where plurisubharmonic functions Θ(t), t + ϕ + c
are glued is defined by following inequalities:

G̃β
v (bs) + η2 < max{Θ(t) − η1, (t + ϕ + c) − η3},

|Θ(t) − (t + ϕ + c)| < η1 + η3.

In addition, ωFs is written as

ωF0 = ∂ Mc,v,η

∂t1
ω0 + ∂ Mc,v,η

∂t3

√−1∂∂(t + ϕ)

+ [
∂Θ(t) ∂(t + ϕ)

] [ ∂2Mc,v,η

∂ti ∂t j

] [
∂Θ(t) ∂(t + ϕ)

]t
.

Recall that η1 + η3 = O(c). So, the inequality

|Θ(t) − (t + ϕ + c)| < η1 + η3

and Lemma 21 imply the following equivalence between complete Kähler metrics:

∂ Mc,v,η

∂t1
ω0 < ωFs < 2ω0

on the region above. Next, we consider the region contained in the other region defined by

v−1/ββbs ≈ Gβ
v (βbs) > (1 − κ)Θ(t) − η1 − η2.
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In order to estimate trω0ω − n, it is enough to estimate the following terms

c−1
∫

∂Θ(t) ∧ ∂Θ(t)dμ(s), c−1
∫

∂Gβ
v (βbs) ∧ ∂Gβ

v (βbs)dμ(s).

Since c ≤ Θ(t) on this region, the first term can be estimated as follows

c−1||σD||−4ŜD/n(n−1) exp
(
−v1/β(1 − κ)||σD||−2ŜD/n(n−1)/β

)
/τ 2||σ̃ ⊗ σ

−β
D ||2

= O(c1−(1−κ)k/β−n(n−1)β/ŜD+β(log c)β)

for parameters τ 2 = v, cv1/β = k log c. From the estimate (66), the second term can be
estimated as follows

c−1
∫

∂Gβ
v (βbs) ∧ ∂Gβ

v (βbs)dμ(s)

≤ exp
(
2v1/β(η1 + η2)/β

)
/τ 2||σ̃ ⊗ σ

−β
D ||2

≤ O(c−1+2(a1+a2)k/β+β−n(n−1)β/ŜD ).

Recall the relation between parameters (62):

1 − κ + κa1 − a2 = 0.

Since the choice of ai ∈ (0, 1) is independent of β, k, we can choose sufficiently small ai

and κ which is sufficiently close to 1. Thus, we can make the following terms:

1 − (1 − κ)k/β − n(n − 1)β/ŜD + β

−1 + 2(a1 + a2)k/β + β − n(n − 1)β/ŜD

negative by taking sufficiently large β and k. Thus, we can estimate Δω0ψ = trω0ω − n near
D. From the equivalence (69), we obtain the following estimate near F0 and away from D:

trω0ω − n = O(v−1/β).

For any weight ε ∈ (4, 2n), we have the following inequality

Δω0 C̃ρ−ε+2 < −Cρ−ε < Δω0v
1/βψ < Cρ−ε < −Δω0 C̃ρ−ε+2

on X\D for some constantsC, C̃ > 0 depending only on ε and n. Here ρ = ||σD||−ŜD/n(n−1)

is the barrier function defined before (see [3]). Thus, themaximum principle tells us that there
is the following C0

ε−4-estimate of ψ :

||ψ ||C0
ε−4

≤ Cv−1/β . (70)

Recall the linearization of the scalar curvature operator

S(ω) = S(ω0) + Lω0(ψ) + Qω0(ψ). (71)

In addition, the term Qω0(ψ) can be written as

Qω0(ψ) = (Lω0+s
√−1∂∂ψ − Lω0)(ψ)

for some s ∈ [0, 1] (see [17] or the proof of Lemma 16 in this article). Choose

ε > δ + 2.

In this case, we can consider that c ≤ Θ(t) ≈ r2.
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Recall the interior Schauder estimate:

||ψ ||C4,α
ε−4

≤ C(ω0)(||trω0ω − n||C2,α
ε−2

+ ||ψ ||C0
ε−4

).

Here, C(ω0) is a positive constant depending only on ω0. The previous estimate (70) implies
that ||ψ ||C4,α

ε−4
= O(v−1/β). Then, the equality (71) implies that the norm of scalar curvature

of weight δ is estimated from above by c(δ−ε)/2+1(log c)−1. In these settings of parameters,
we show finally that the scalar curvature on the region defined by

t + ϕ + c − η3 > max{Θ(t) + η1, G̃β
v (bs) + η2}

can be estimated in the sense of weighted norms. It follows from the first discussion that
S(ω) = O(τ ) on the region above. Then, we have

S(ω) = O (τ ) = O
(
c−β/2(k log c)β/2) .

Recall that Θ(t) ≈ r2 ≈ c on this region. So, we can estimate the Ck,α-norm of the function
S(ω)(r2 + 1)δ/2 ≈ S(ω)cδ/2 in the definition of the weighted norm (Definition 5) on this
region. More precisely, the choice of β:

β > δ

implies that we can estimate the δ-weighted norm of the scalar curvature S(ω) on the region
above. Therefore, from the discussion above, we can conclude that the weight norm of
S(ωc,v,η) canbemade small arbitrarily by taking a sufficiently large parameter c (equivalently,
sufficiently small parameters v, τ ). In addition, from the linearization of scalar curvatures,
the scalar curvature S(ω) decays just like S(ω0). Thus, we finish the proof of Theorem 5. ��
Remark 15 If θD is cscK, Theorem 1 implies that we have

S(ω) = O(||σD||2+2ŜD/n(n−1)) = O(r−2−2n(n−1)/ŜD )

near D.

Remark 16 Recall thatwe choose a parameter v > 0 so that the inequality (||σF ||2β+v)2/β <

||σF ||4am/l holds on the region defined by

Θ(t) + η1 < max{G̃β
v (b) − η2, (t + ϕ + c) − η3},

|G̃β
v (b) − (t + ϕ + c)| < η2 + η3.

Note that Gβ
v (βb) ≈ βv−1/βb for sufficiently large b > 0. The choice of parameters cv1/β =

k log c in the previous theorem implies thatwehave ||σF ||−2β ≈ vk . Therefore,we can choose
a suitable parameter v > 0 so that (||σF ||2β + v)2/β < ||σF ||4am/l without contradiction.

11 Proof of Theorem 6

After this, all weighted Banach spaces Ck,α
δ = Ck,α

δ (X\D) are defined by the fixed Kähler
metric ω0. In Theorem 6, we assume that

0 < 3ŜD < n(n − 1),

we choose a weight δ so that

8 < δ < min{2n, 2 + 2n(n − 1)/ŜD} (72)
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and a function

φD∗
ωDωφ

is integrable for φ ∈ C4,α
δ−4 with respect to the volume form ωn . In addition, we may assume

that the integer a(n) in Theorem 4 satisfies

12/a(n) < δ − 8 < min{2n − 8, 2n(n − 1)/ŜD − 6}.

11.1 Condition 1 and Condition 2

In this subsection, we show that Condition 1 and Condition 2 in Introduction of this article
hold with respect to the complete Kähler metric ω obtained in the previous section.

In order to find the constant K̂ in Condition 1, we use the resonance theorem (see [21,
p. 69]).

Theorem 13 (the resonance theorem) Let {Ta | a ∈ A} be a family of bounded linear
operators defined on a Banach spaceX into a normed linear spaceY . Then, the boundedness
of {||Ta x || | a ∈ A} for each x ∈ X implies the boundedness of {||Ta || | a ∈ A}.

Then, we obtain the following theorem which is the core of this article:

Theorem 14 Take parameters c, v, τ so that v1/βc = k log c, τ 2 = v. Assume that there is
no nonzero holomorphic vector field on X which vanishes on D. Then, there exists an uniform
constant K > 0 such that

||D∗
ωDωφ||C0,α

δ
≥ K ||φ||C4,α

δ−4

for any c, v, η, τ and φ ∈ C4,α
δ−4.

Proof We prove this theorem by using Theorem 13. So, for a fixed function φ ∈ C4,α
δ−4, it is

enough to show that the quantity

||φ||C4,α
δ−4

||D∗
ωDωφ||C0,α

δ

has an upper bound depending only on φ. We prove this by contradiction. Assume that there
exists a sequence (τ, v, c) → (0, 0,∞) such that ||D∗

ωDωφ||C0,α
δ

→ 0 for some φ ∈ C4,α
δ−4

with ||φ||C4,α
δ−4

= 1. By integration by parts, we have

∫
X\D

φD∗
ωDωφωn =

∫
X\D

|Dωφ|2ωn .

Recall that Dω → D√−1∂∂(t+ϕ) as (τ, v, c) → (0, 0.∞). We show that
∫

X\D
φD∗

ωDωφωn → 0

as (τ, v, c) → (0, 0,∞). To see this, we study the volume of the subset ∪s∈Dh(l,m+1) Fs . For
p ∈ X\D close to F0, we can find s ∈ D

h(l,m+1) such that σs(p) = 0. So, we have

||σ0(p)|| ≤ ||σi (p)|| + τ ||
∑

i

siσi (p)|| ≤ Cτ.
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On the other hand, ω < v−1/β
√−1∂∂b0 near F0. Thus, we have∫

∪s∈Dh(l,m,β) Fs

ωn < O(τ 2v−n/β) = O(v1−n/β).

It follows from the choice of v > 0 in this theorem that the desired convergence above holds
as (τ, v, c) → (0, 0,∞) by taking sufficiently large β. Then, we obtain a holomorphic vector
field

∇1,0φ = gi, j ∂φ

∂z j

∂

∂zi

on X\(D ∪ F0). Here, we write
√−1∂∂(t + ϕ) = √−1gi, j dzi ∧ dz j . It follows from the

definitions of φ and the C2-estimate of gi, j (Theorem 12) that ∇1,0φ can be extended to
X . The decay condition of φ and the assumption of holomorphic vector fields on X imply
that φ = 0. This is contradiction and the resonance theorem (Theorem 13) implies that the
inverse operator D∗

ωD
−1
ω has an uniform bound. ��

Recall the following relation

Lω = −D∗
ωDω + (∇1,0∗,∇0,1S(ω))ω.

Thus, Theorems 5 and 14 imply that Condition 1 holds with respect to ω.

Theorem 15 Take parameters so that v1/βc = k log c and τ 2 = v. Assume that θD is cscK
and D∗

ωDω : C4,α
δ−4 → C0,α

δ is isomorphic. Then, we can make the norm of the linear

operator (∇1,0∗,∇0,1S(ω))ω = Lω + D∗
ωDω small arbitrarily so that Lω : C4,α

δ−4 → C0,α
δ

is isomorphic. Moreover, we can find a constant K̂ > 0 such that

||Lωφ||C0,α
δ

≥ K̂ ||φ||C4,α
δ−4

for any c, v, τ, φ ∈ C4,α
δ−4.

We need the following modified lemma:

Lemma 33 Assume that n ≥ 5 and

3ŜD < n(n − 1).

Then, for δ > 8, there exists c0 > 0 independent of ω such that if ||φ||C4,α
δ−4(X\D)

≤ c0, we

have

||Lωφ − Lω||C4,α
δ−4→C0,α

δ
≤ K̂/2

and ωφ = ω + √−1∂∂φ is positive.

Proof The proof of this lemma is similar to the proof of Lemma 15. For ψ ∈ C4,α
δ−4, the

following inequality holds:∣∣∣
∣∣∣(r2 + 1)δ/2

(
gi, j
φ gk,l

φ − gi, j gk,l
)

ψi, j,k,l

∣∣∣
∣∣∣
C0,α

≤
∣∣∣
∣∣∣(r2 + 1)4/2

(
gi, j
φ gk,l

φ − gi, j gk,l
)∣∣∣
∣∣∣
C0,α

||ψ ||C4,α
δ−4(X\D)

=
∣∣∣
∣∣∣(r2 + 1)4/2

(
gi, j
φ (gk,l

φ − gk,l) + (gi, j
φ − gi, j )gk,l

)∣∣∣
∣∣∣
C0,α

||ψ ||C4,α
δ−4(X\D)

.
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In addition, we have the following equation:

g−1
φ − g−1 = g−1

φ (g − gφ)g−1 (73)

for φ ∈ C4,α
δ−4 such that ωφ = ω + √−1∂∂φ is positive.

It is enough to study the region where Mc,v,η = t + ϕ + c. The C2-estimate of the
degenerate complex Monge–Ampère equation (Theorem 12) tells us that

gi, j = O(||σD||−2m/l) = O(r2m/l×n(n−1)/ŜD ). (74)

Since we have already known the explicit C2,ε-estimate of the solution of the degenerate
complex Monge–Ampère equation from Proposition 11, we can estimate the C0,α-norm of

coefficients gi, j , gi, j
φ . The hypothesis

a(n)m

2l
<

ŜD

n(n − 1)

implies that 4+ 3× 2m/l × n(n − 1)/ŜD − (δ − 4) < 8+ 12/a(n)− δ < 0. So, the Eq. (73)
and the estimate (74) implies that the term∣∣∣

∣∣∣(r2 + 1)4/2
(

gi, j
φ

(
gk,l
φ − gk,l

)
+
(

gi, j
φ − gi, j

)
gk,l

)∣∣∣
∣∣∣
C0,α

is estimated form above by 2c0. By taking a sufficiently small c0, we can make the operator
norm of Lωφ − Lω small arbitrarily. Thus, we have the desired result. ��
Remark 17 The reason why we replace the hypothesis for weights of Banach spaces in the
above lemma comes from theC2-estimate of the solution of the degenerate complexMonge–
Ampère equation due to Pǎun [15] (see Theorem 12 in this article). From this, the positivity
of ωφ holds. On the other hand, we need to assume that δ − 4 > 4 to control the factor
(r2 + 1)4/2. So, the choice of a weight δ implies that we need to assume that the dimension
n is greater than 4 and ŜD/n(n − 1) is smaller than 1/3. In addition, since we need to choose
ε > δ + 2 in the proof of Theorem 5, we need to assume that n > 5.

Constants K̂ and c0 which appear in Theorem 15 and Lemma 33 respectively, are uniform
for parameters c, v, τ . Therefore, Theorem 5 implies that Condition 2 holds with respect to
ω.

Theorem 16 For the complete Kähler metric ω above, the inequality

||S(ω)||C0,α
δ

≤ c0 K̂/2

holds by taking suitable parameters v, c, τ .

11.2 The fixed point theorem

Finally, we show that the existence of a complete scalar-flat Kähler metric on X\D. Recall
that for the expansion of the scalar curvature

S(ω + √−1∂∂φ) = S(ω) + Lω(φ) + Qω(φ),

we consider the following operator

N (φ) := −L−1
ω (S(ω) + Qω(φ)) ∈ C4,α

δ−4
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for φ ∈ C4,α
δ−4 by following Arezzo–Pacard [1,2] (see also [17]). Lemma 33 implies that N

is the contraction map on the neighborhood of the origin of C4,α
δ−4 for a suitable weight δ. In

Proposition 9, we assume that Conditions 1 and 2 hold. Namely, we assume that there exists
a complete Kähler metric ω0 whose scalar curvature is sufficiently small so that the operator
Lω0 has the uniformly bounded inverse. As we have seen, by constructing the Kähler metric
ω, Theorem 15 and Theorem 16 imply that we don’t have to assume that Conditions 1 and 2
hold. The following Proposition implies the existence of a complete scalar-flat Kähler metric.

Proposition 14 Set

U :=
{
φ ∈ C4,α

δ−4 : ||φ||C4,α
δ−4

≤ c0
}

.

If the assumption in Theorem 6 holds, the operatorN is a contraction onU andN (U ) ⊂ U
by taking suitable parameters c, v, τ .

Proof Immediately, we have

||N (φ)||C4,α
δ−4

≤ ||N (φ) − N (0)||C4,α
δ−4

+ ||N (0)||C4,α
δ−4

.

From Lemma 33 and the condition ||φ||C4,α
δ−4

≤ c0, the same argument in the proof of

Lemma 16 implies that we obtain the following estimate:

||N (φ) − N (0)||C4,α
δ−4

≤ || − L−1
ω (Qω(φ))||C4,α

δ−4

≤ K̂ −1||Lω+s
√−1∂∂φ − Lω||C4,α

δ−4→C0,α
δ

||φ||C4,α
δ−4

for some s ∈ [0, 1]. Lemma 33 implies that we have

||N (φ) − N (0)||C4,α
δ−4

≤ 1

2
c0.

Theorems 15 and 16 implies that we have

||N (0)||C4,α
δ−4

= ||L−1
ω (S(ω))||C4,α

δ−4
≤ K̂ −1||S(ω)||C0,α

δ
≤ 1

2
c0.

Thus, N (φ) ∈ U . ��

Proof of Theorem 6 From the discussion above, there exists a unique φ∞ := limi→∞ N i (φ)

for any φ ∈ U ⊂ C4,α
δ−4 satisfying φ∞ = N (φ∞) under the hypothesis in Theorem 6.

Therefore, ω + √−1∂∂φ∞ is a complete scalar-flat Kähler metric on X\D. ��
Acknowledgements The author would like to thank Professor Ryoichi Kobayashi who first brought the
problem in this article to his attention, for many helpful comments. In particular, the author learned the idea
of using the complex Monge–Ampère equation to scalar curvatures from him.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


Complete scalar-flat Kähler metrics on affine algebraic manifolds 355

References

1. Arezzo, C., Pacard, F.: Blowing up and desingularizing constant scalar curvature Kähler manifolds. Acta
Math. 196(2), 179–228 (2006)

2. Arezzo, C., Pacard, F.: Blowing up Kähler manifolds with constant scalar curvature II. Ann. Math. (2)
170(2), 685–738 (2009)

3. Bando, S., Kobayashi, R.: Ricci-flat Kähler metrics on affine algebraic manifolds. II. Math. Ann. 287,
175–180 (1990)

4. Błocki, Z.: On the regularity of the complex Monge–Ampère operator, Complex Geometric Analysis n
Pohang (1997). Contemp. Math., vol. 222, Amer. Math. Soc., Providence, pp. 181–189 (1999)

5. Calabi, E.:Métriques Kähleriennes et fibrés holomorphes. Ann. Sci. École Norm. Sup. (4) 12(2), 269–294
(1979)

6. Demailly, J.-P.: Complex analytic and differential geometry, online book available at http://www-fourier.
ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf

7. DiNezza, E., Lu,H.C.: ComplexMonge–Ampère equations on quasi-projective varieties. J. ReineAngew.
Math. (2014). https://doi.org/10.1515/crelle-2014-0090

8. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn.,
Grundlehren Math. Wiss., vol. 224. Springer, Berlin (1983)

9. Gilkey, P.B.: Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, 2nd edn. CRC
Press, Boca Raton (1995)

10. Guedj, V., Zeriahi, A.: Degenerate Complex Monge–Ampère Equations, EMS Tracts Math (2017)
11. Hein, H.-J.: Weighted Sobolev inequalities under lower Ricci curvature bounds. Proc. Am. Math. Soc.

139(8), 2943–2955 (2011)
12. Hwang, A.D., Singer, M.A.: A momentum construction for circle-invariant Kähler metrics. Trans. Am.

Math. Soc. 354(6), 2285–2325 (2002)
13. Kołodziej, S.: The complex Monge–Ampère equation. Acta Math. 180, 69–117 (1998)
14. LeBrun,C.:Counter-examples to the generalizedpositive action conjecture.Commun.Math. Phys.118(4),

591–596 (1988)
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