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1 Introduction

This paper considers two related problems connected to sieving values of polynomials by
primes lying in certain arithmetic progressions. The first problem was raised by Calegari
[1], who asked in a blog post whether one can show that there are infinitely many » such that
n? + 1 is not divisible by any prime p = 1 mod 2 where m is some fixed large integer. One
expects that the polynomial (4n 4 2)> + 1 = 16n2 + 16n + 5 takes prime values infinitely
often, so that there should be infinitely many values of n with n> 4 1 divisible by no prime
= 1 mod 8. In Theorem 4 we shall give a resolution of Calegari’s question for irreducible
quadratic polynomials.

The other problem, referenced in the title of the paper, was raised by Venkataramana [8,9].
Let f € Z[x] be a primitive polynomial of degree k (that is, the coefficients of f have gcd
equal to 1), and consider

G(f) = ged{p(f(n)) : n € N}. ()]

Venkataramana [8,9] asked whether G(f) is bounded by a number depending only on the
degree k of the polynomial f. If this is the case, then we denote by Gy the lowest common
multiple of G(f) as f varies over primitive polynomials of degree k. If Venkataramana’s
question has an affirmative answer for a particular degree &, then informally we shall say that
Gy 1s finite.

Venkatarama handled the case of linear polynomials and found that G(f) | 4 holds for all
f(n) = an + b with (a,b) = 1. The polynomials n, 2n 4+ 1 and 16n + 5 show that G(f)
takes all three admissible values 1, 2 and 4. In particular, we have G| = 4. Results of this type
have been applied to the congruence subgroup problem, and as Venkataramana points out,
in this context Serre [5] had obtained inter alia that G; is a divisor of 8. If all values of the
polynomial f are divisible by some prime p = 1 mod %, then ¢ (f(n)) will always have h
as a divisor. Thus we see that Venkataramana’s question is also related to sifting polynomial
sequences by an arithmetic progression of primes.
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In this paper we are concerned with bounding G( f) for polynomials of higher degree. In
brief, we are able to establish the finiteness of G,, and we also give a bound for G( f) when
the polynomial f splits completely into linear factors. The methods used in establishing that
G» is finite also resolve Calegari’s question on sieving quadratic polynomials (see Theorem
4). Assuming the Schinzel conjectures on prime values taken by polynomials we are able to
describe the factorisation of G(f) quite precisely, for all polynomials, and thereby establish
the finiteness of G;. Examples will demonstrate that the conditional results are optimal in some
cases. We now describe our results more precisely. Let us recall first Schinzel’s hypothesis.

Schinzel’s Hypothesis H  Let Fy, ..., F, be irreducible polynomials with integer coeffi-
cients, and positive leading coefficients. Suppose that the product Fj - - - F; is not divisible
by any fixed prime. Then there are infinitely many natural numbers n such that F; (n) is prime
foreach1 < j <r.

Theorem 1 Assume Schinzel’s hypothesis. Let [ = fla1 - £5 be a primitive polynomial
with integer coefficients, with the f; being distinct irreducibles of degree k;. Let r; be the
maximal integer such that K y; (a field obtained by adjoining a root of [ to Q) contains the
rj-th roots of unity. Then ¢ (r )|k, and G(f) divides q’)(k!)rl2 . 'rsz.

In the case of a linear polynomial f the proof of Theorem 1 will call upon Schinzel’s
hypothesis only for linear polynomials, whence that case depends on Dirichlet’s theorem,
and we recover Venkataramana’s result unconditionally.

Example 1 Suppose f(n) = ]_[/;= 1 (ajn+b;) is the product of k primitive linear polynomials.
Here Theorem 1 gives G(f) | 4k¢(k!). When k = 2, the polynomial f(n) = (16n+5)(16n+
13) has G(f) = 16, matching the bound of Theorem 1. More generally, if we consider
f(n)=m+1)---(n+k), then k! divides f(n) for all n and so ¢ (k!) divides G(f). So the
result in Theorem 1 is tight except perhaps for the power of 2 dividing G( f).

Since quadratic fields have 2, 4, or 6 roots of unity, if f is a primitive irreducible poly-
nomial of degree 2 then by Theorem 1 the possible values of G( f) must be divisors of 36
or 16 (assuming Schinzel’s hypothesis). We now give examples to show that this cannot be
sharpened, thereby showing that Schinzel’s hypothesis implies G, = 144.

Example 2 Consider the polynomial f (1) = 16n? + 1, which takes values = 1 mod 16. The
prime divisors of f(n) are congruent to 1 mod 4. Hence, if f(n) has at least two distinct
prime factors p1, pa, say, then 16|(p; — 1)(p2 — 1), and therefore, 16 | ¢ (f(n)). It remains
to consider the case where f(n) is a power of a prime p. Since f(n) = (4n)> + 1 can
never be a perfect square for n > 1, we may restrict attention to f(n) = p® with £ odd. But
then p must be 1 mod 16, and once again 16 divides ¢ ( f (n)). This proves that G(f) = 16,
with the convention that the natural numbers start at 1. If the natural numbers start at O,
simply consider f(n + 1). More generally, by shifting a polynomial by a large integer, we
may discard any finite set of undesired values in understanding G. The reader may wish to
construct irreducible quadratic polynomials where G(f) is a given proper divisor of 16.

Example 3 Start with fo(n) = n? 4+ n + 1, and consider f(n) = fo(72n). The values of
f are all = 1 mod 72, and any prime factor of f(n) must be = 1mod 6. Thus if f(n) is
divisible by two distinct primes then ¢ ( f (n)) will be a multiple of 36. If f(n) is prime, then
¢ (f(n)) will be a multiple of 72. It remains to consider the case f(n) = p¢ for £ > 2. If
31 ¢and 41 ¢ then p¢ = 1mod 72 implies that p = 1 mod 36, and once again 36 divides
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¢ (f(n)). The last remaining possibilities entail that f(n) is either a cube or a fourth power.
Since these correspond to integer points on two curves of positive genus, there are only
finitely many such n (which we could certainly determine in this example). By translating
the polynomial f if necessary, we can avoid these finitely many examples, and arrive at a
quadratic polynomial f with 36|g(f). Similar examples can be constructed starting with
other cyclotomic polynomials; for instance starting with n* + n® + n% +n + 1 we can find
a quartic polynomial f with 25|G(f).

In the above examples, we were led to consider when a polynomial with integer coefficients
and degree at least 2 takes pure power values. We note, in passing, the work of Schinzel and
Tijdeman [6] which ensures that if the polynomial has at least three simple zeros then there
are only finitely many such pure power values.

Suppose now that f splits completely into linear factors. Then, as noted above, our con-
ditional Theorem 1 tells us that G( f) is a divisor of 4k ¢ (k!). In this situation, we can give an
unconditional bound for the possible values of G(f).

Theorem 2 Suppose f is a primitive polynomial of degree k splitting completely into linear
factors. Then G( f) is not divisible by any prime larger than 2k + 1. Moreover, for every prime
£ not exceeding 2k + 1 there exists a constant C (k, £) such that the power of £ dividing G(f)
is at most C(k, £).

We are also able to show unconditionally that G, is finite. In view of the preceding theorem,
it is enough to consider primitive irreducible quadratic polynomials.

Theorem 3 There is a number G with the property that for all primitive and irreducible
quadratic polynomials f with positive leading coefficient one has G(f) < G.

The proofs of the unconditional results depend on the fundamental lemma in sieve theory,
and the switching principle. When discussing irreducible quadratic polynomials we will have
to rely also on quantitative estimates concerning the equidistribution of the roots of quadratic
polynomials, a subject initiated by Hooley [4]. We require bounds for averages of Weyl sums
associated with these roots, twisted with an additive character. The works of Hooley [4],
Duke et al. [2] and Toth [7] enable us to handle such sums. While the important works of
Duke et al. [2] and Toth [7] permit very uniform such results, we only need a modest level
of distribution which would already be accessible from Hooley’s work.

As mentioned earlier, the techniques developed for proving Theorem 3 also allow us to
provide an affirmative answer to a question of Calegari [1].

Theorem 4 Let f be an irreducible quadratic polynomial with no fixed prime factor. There
exist absolute constants § and ho with the following property. If h > hq then there are infinitely
many n such that f(n) is divisible by no prime below n®, and by no prime p = 1 mod h.

2 Preliminary reductions

We begin with a simple lemma discussing what happens when a primitive polynomial is
restricted to the integers in an arithmetic progression.

Lemma1 Let f € Z[x] be a primitive polynomial, and let a mod g be an arithmetic progres-
sion. The greatest common divisor of the coefficients of the polynomial F(x) = f(a + gx)
is composed only of primes dividing q, and must also be a divisor of f(a). In particular, if
(f(a),q) = 1 then F is a primitive polynomial.
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Proof Let p be a prime with p f g. When reduced mod p, the polynomials f and F both
have the same degree. Since f is primitive, it is non-zero mod p, and therefore so is F'. Thus
the gcd of the coefficients of F' is composed only of primes dividing ¢. It is clear that this
gcd must divide F(0) = f(a), and so the lemma holds. ]

Although the coefficients of f have no common factor, it may still be that the values f(n)
for n € N have a common factor. Our first lemma allows us to get rid of this common factor,
and restrict attentions to polynomials for which the values have no non-trivial common factor.

Lemma?2 Let f € Z[x] be a primitive polynomial, and let d denote the greatest common
factor of f(n) foralln € N. Then d is a divisor of k!. Moreover, with D = d Hpgk p we may
find a number a € 7Z such that F(x) = f(a + Dx)/d is a primitive polynomial with integer
coefficients and with F (n) being coprime to k! for all n. In particular, the values F (n) have
no common factor. Finally, G(f) is a divisor of ¢ (d)G(F).

Proof Write the polynomial f in the basis of binomial coefficients: f(x) = bo(5) +b1(]) +
..+ b (z) with b; € Z. By considering the values x = 0, 1, ..., kK we see that the greatest
common factor of all the f(n) (which we denote by d) is the greatest common factor of
these coefficients by, .. ., bi. Since the denominators appearing in the binomial coefficients
all divide k!, note that d/(d, k!) divides every coefficient of f. Since f is primitive, we
conclude that the common factor d must be a divisor of k!.

Suppose p < k and p*|d. Then there must exist a residue class a, mod pt! with
p¥Il f(n) for all n = a, mod p®*1. Thus by the chinese remainder theorem we may find a
progression a + Dn with F(x) = f(a+ Dx)/d being a polynomial with integer coefficients
and with k! being coprime to all values of F. By Lemma 1, the polynomial F is primitive,
and since k! is coprime to the values F(n), we know further that the values of F' have no
common prime factor. This establishes our second assertion fully. The third assertion that
G(f) divides ¢ (d)G(F) follows at once. ]

Lemma3 Let f € Z[x] be irreducible, and let K r be a field obtained by adjoining some
root of f to Q. Given a natural number m, the following two conditions are equivalent:

(i) Ky contains the m-th roots of unity.
(1) All but finitely many of the primes p that divide the values of f satisfy p = 1 mod m.

Proof 1If a large prime p divides a value of f, then there must be an ideal of norm p in K ;. If
K ¢ contains the m-th roots of unity, then an ideal of norm p in K y must lie above a prime of
norm p in Q(e>/™). Since the primes that split completely in Q(e2™/™) are = 1 mod m,
we conclude that (i) implies (ii).

That (ii) implies (i) follows upon applying the Chebotarev density theorem to the extension
Ky (e*™i/my of K f» obtained by adjoining (if necessary) the m-th roots of unity to K y. The
assumption (ii) means that if there is a prime of norm p in K, then p = 1 (mod m), but
then the Frobenius at any such prime in K acts trivially on the m-th roots of unity. Thus
for almost all primes of degree 1 in Ky the Frobenius action on K ¢ (eZ71/m) is the identity,
implying that the degree [K s (e2i/my, K r] must be 1. m}

Lemma4 Assume Schinzel’s Hypothesis. Let f € Z|[x] be a primitive irreducible polynomial
of degree k, and suppose that k! is coprime to the values of f. Let £ be a prime, and suppose
that K y contains the £*-th roots of unity, but not the 0t _th roots. Then the largest power
of € that divides G(f) is at most 2a.
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Proof By Lemma 2 we know that f has no common prime factor, so that we may find a natural
number a such that £ 1 f(a) and f(a) # 1. Let B > 0 be the largest power of ¢ dividing
f(a) — 1. Consider the irreducible polynomial F(x) = f (a +£#*+!x), which by Lemma 1 is
primitive, and by Lemma 2 has no common prime factor. By Schinzel’s hypothesis, we may
find arbitrarily large n with F (n) prime. Then ¢ (F(n)) = F(n) — 1 = f(a) — 1 mod ¢f+1,
so that the largest power of £ dividing G(F) is at most 8. Since G(f) divides G(F), this
establishes the lemma provided 8 < 2«.

Suppose now that 8 > 2o+ 1 > o+ 1. By Lemma 3 we know that all but finitely many of
the primes dividing F'(n) are 1 mod £% and also that there are infinitely many primes dividing
F(n) that are % 1 mod £**!. Let ¢ be such a prime, and select ¢ to be large enough so that
g does not divide the discriminant of F. Since ¢ does not divide the discriminant of F, we
may pick a natural number a such that ¢|F (a), but ¢> t F(a). Now consider the irreducible
polynomial F»(x) = F(a + gx)/q, which by Lemma 1 is primitive, and by Lemma 2 has
no common prime factor (since the values of f are coprime to k!). By Schinzel’s hypothesis
F>(n) takes prime values infinitely often. Let p be one such prime value. Since the values
of F are 1 mod ¢£**! (by our assumption that 8 > 2« + 1) and g # 1 mod £**! we know
that p also is not 1 mod ¢%*!. Therefore the largest power of ¢ dividing G(f) is at most the
power of ¢ dividing (p — 1)(¢g — 1), which is 2«. This completes our proof. O

Corollary 1 Assume Schinzel’s Hypothesis. Let f be a primitive irreducible polynomial of
degree k, and such that k! is coprime to all the values f(n). Let r be the maximal integer
such that K y contains the r-th roots of unity. Then ¢ (r) divides k, and G(f) divides r2.

Now we want to proceed to the general case of a polynomial of degree k, not necessarily
irreducible. We begin with a simple observation.

Lemma5 If f and g are two coprime polynomials in Z[x] then for all large primes q at most
one of f(n) or g(n) can be divisible by q.

Proof By the Euclidean algorithm we may find polynomials # and v with integer coefficients
and a non-zero integer ¢ such that f (x)u(x) 4+ g(x)v(x) = c¢. Thusif g 1 ¢, then g can divide
at most one of f(n) or g(n). ]

Now we are ready for the general form of Lemma 4; indeed the argument follows closely
our earlier argument, but we have kept the special case of Lemma 4 for the sake of clarity.

Lemma 6 Assume Schinzel’s Hypothesis. Let f € Z[x] be a primitive polynomial of degree
k and such that k! is coprime to all the values f(n). Suppose f factors as fla1 <o 55 where
the f; € Z[x] are pairwise coprime irreducible polynomials and aj > 1. Let £ be a prime,
and suppose £%/ is the largest power of € such that K y; contains the £*I-th roots of unity.

Then the largest power of £ dividing G(f) is at most 2(a1 + . .. + ag).

Proof Since the polynomials f; are all primitive, we may find a natural number a such that
I fj(a) for all j, and with f;(a) # 1 for all j. Then P I ]_[j(fj(a) — 1) for some non-
negative integer 8. Below we shall restrict ourselves to the progression n = a mod £/,
On the progression @ mod €6 we must have €77 ||(f;(a + nef*!) — 1) for all n, where B;
is a non-negative integer. We now define inductively further residue classes a; mod g; as
follows.

Suppose a; and g ; have been defined for j < J, and we now seek to define a; and g;. If
Bs < oy then take a; = g5 = 1. Suppose now that 8; > «a; + 1. By Lemma 3 there are
infinitely many primes ¢ with ¢ # 1 mod €871 and ¢ dividing some value of f;(n). Take
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gy to be one such prime, and choose it to be larger than ¢; for all j < J, and also to be
larger than the discriminant of f; and the resolvents of f; and f; (for all j # J) so that by
Lemma 5 if ;| f; (n) then it can divide no other f;(n). With this choice of g, take a; such
that g, fs(ay).

Now consider n = amod ¢! and n = a; mod ¢; for all j < s. Call this progression
A +nQ say, with Q = ¢+1g, ... ¢, and put Fi(n) = fj(A+nQ)/q;. At the prime ¢,
note that £ { f;(a); at the prime ¢ (ignore if ¢; = 1) we have ¢/|| fj(a;) and so g; { F;(n);
and if » # j then the prime g, (again ignore if g, = 1) cannot divide F;(n) since g, divides
fr(n). Thus by Lemma 1 the polynomials F; are primitive. Since their values are coprime
to k! we further have by Lemma 2 that Fj - - - F; is a primitive polynomial with no common
prime factor.

Thus we may apply Schinzel’s hypothesis to the polynomials F; and find arbitrarily large
n with all F;(n) being prime. What is the power of £ dividing d)(]_[j fi(A+nQ)%)? By
construction this is the power of £ dividing ]_[j ¢(gj)(Fj(n) —1).

Ifg; = 1thenB; < j and 12 [|(Fj(n)—1), so that the power of £ dividing ¢ (g ) (F; (n) —
1)isatmost ;. If g; > 1 then B; > «; + 1 and both ¢; and F;(n) = f;(A +nQ)/q; are
primes that are not 1 mod 2%+ (because fi(A+nQ) = lmod 2% %1 here), and therefore
¢ (q;)(Fj(n) — 1) is divisible at most by 029

‘We conclude that the power of ¢ dividing ¢(]_[j fi(A+nQ)%)isatmost2(ay +. .. +ay),
which completes our proof. O

3 Proof of Theorem 1

With the results from Sect. 2 in hand, we can finish the proof of Theorem 1 in a few sentences.
Given a primitive polynomial f = f;"' --- >, by passing to a progression (as in Lemma 2)
we may find a polynomial F = Fla1 ... F{% with F(n) coprime to k! and with G(f) being a
divisor of ¢ (k!)G(F'). Further, the fields obtained by adjoining a root of f; to QQ are the same
as the fields obtained by adjoining a root of F; to Q. Thus, appealing to Lemma 6, we find
that G(F) is a divisor of rlz e rsz. This completes our proof.

4 Polynomials that split completely: Proof of Theorem 2

We turn to the proof of Theorem 2. If f is primitive and splits completely into linear factors,
then

foy=]]temn+dp“

j=1

with the ¢; non-zero, (c;, d;) = 1forall j, and the rationals d; /c; distinct. We may suppose
that f has positive leading coefficient, and then we can arrange matters such that the c; are
all positive. We require the “square-free kernel” of f, given by

gm) = [J(cjn+d)).

j=1

Further we suppose that f is not divisible by primes at most 2k + 1, with k the degree of f.
Lemma 2 allows us to do this for the primes p < k, and for each prime k+ 1 < p <2k + 1
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we may find a residue class a, mod p such that cja, + d; # Omod p for all j and then
restrict n to the progression a, mod p.

First let us show that no prime ¢ > 2k + 1 divides G(f). By passing to a progression
mod £ we may suppose that £ { f (n) for all n. Now £ can divide ¢ (f(n)) if and only if f (n)
is divisible by some prime p = 1 mod £. Consider the sifting problem of finding n such that
for all primes p = 1 mod £ one has c;n # —d; mod p for all j. This is a sieve of dimension
s/(€ — 1) < 1/2, and the sequence to be sifted, with n < x, has level of distribution x1—e,
for any € > 0. Sieve theory in dimension below half therefore shows that there are (many)
values of n with the desired property (see, for example, [3, Theorem 11.21]).

Now consider a prime £ < 2k + 1, where we wish to show that the power of ¢ dividing
G(f) is bounded. Let A be a large natural number. Let z be a large parameter, which is
considered large in comparison to all the other parameters c;, d;, A. Let P(z) denote the
product of all primes below z. We seek a lower bound for

S,y = Y -y > )

n=x z<p=x j
(8(m), P(2)=1 p=Imod ¢ plejn+d;

The quantity summed in S(x, z) equals 1 when 7 is such that g(n) is divisible by no prime
below z and by no prime = 1 mod ¢4, and is non-positive for other n. Thus a lower bound
for S(x, z) with x being a fixed power of z and A a fixed natural number, would produce n
for which g(n) has a bounded number of prime factors none of which are 1 mod ¢4, which
will give our desired conclusion.

We begin our investigation of S(x, z) by estimating the first (positive) term in the definition
(2). Let o(p) denote the number of incongruent solutions to g(n) = 0 mod p. For large
primes p we then have o(p) = s, and hence the product

O\ (1)
s=T1(1-“2)(1-+) @
. P P

converges to a non-zero number. We may now apply the fundamental lemma of sieve theory
in dimension s. This tells us that there is a positive real number C such that for all x > 7%,

one has

Yoz
(log 2)°

n=<x
(g(m), P(2))=1

see for example [3, Theorem 11.22]. Note here that & depends on g but C does not.

Now we turn to the contribution of the negative terms in the sum defining S. By reasons
of symmetry it is enough to think of the case p|cin + di, say.

Consider first the terms with z < p < x/z%. In this case, we apply an upper bound sieve,
for example again [3, Theorem 11.22]. Then, with & as above, we find that contribution is
bounded above by

ces Y ol

z<p<x/7® pllogz)’

p=Imod ¢4

@ Springer



534 J. Briidern, K. Soundararajan

where again C’ is a suitable positive constant that does not depend on g. We choose x = 230,
Then, since z is large, the above does not exceed

206 x 1 og log x /7% _a0et 10g(21s)_
(log z)® €4 logz (logz)s €A

Now consider the contribution of larger values of p. Here we employ the switching
principle: write ¢{n + d; = rp, and then sum over r instead. We must have r < z°° with r
composed only of prime factors above z, and moreover we must have # in a particular residue
class mod r£4 (since r|(c1n +d;) and we must have (c1n +d;)/r = 1 mod £4). Once more
we apply the upper bound sieve, replacing the condition that (cin + d;)/r being prime by
just the weaker restriction that it is coprime to P(z). Thus the desired contribution is

<06 Z X 'S x  log(10s)
B ¢ (reM)(logz)* (logz)* ¢4
r<z®
(r,P(2))=1

where now C” is a suitable constant with C” > C’.

Combining the two upper bounds with the lower bound, we infer that (recall x = z30%)

30, X 3slog(21s)
3% 7)) > 6(logz)f (C - C”T 7

We choose A so large that

1 X
S 30s’ > 66—
@Dz (og )

Thus we have produced many n < z3% for which g(n) has no prime factor below z, and no
prime factor = 1 mod £4. Since g(n) « x* = 13052, it follows that g(n) has at most 31s2
prime factors, and none of these prime factors can be 1 mod ¢4. Thus the power of £ dividing
¢ (g(n)) (which is also the power of ¢ dividing ¢ ( f (n))) is at most 31s2(A — 1), so that the

exponent of ¢ dividing G(f) may be bounded in terms of A and k, as claimed.

5 Irreducible quadratic polynomials

Now familiar arguments show that Theorem 3 follows from Theorem 4. Thus it remains to
establish the latter, and this is our main task in this section. The basic strategy is similar to
that applied in the previous section.

Let f(x) = ax? 4+ bx +c¢ € Z[x] be a primitive irreducible quadratic polynomial with
positive leading coefficient and no fixed prime divisor. Whenever the natural number 7 is
large and the real number § is small enough, we need to show that there are infintely many n
with f (n) coprime to the primes below rn°, and to all the primes in the progression 1 mod 4.

Let D = b%>—4ac denote the discriminant of f, and put H = 2a|D|h. We fix a progression
vmod H such that (f(v), H) = 1, and assume that 1 < v < H. Let x be large, and put
z = x° for a suitably small § > 0; we shall assume that § < 1/100. Put PT = Hpiz,pTH p-
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We wish to bound from below

s= > - > 1. 4

x<n<2x p=1mod h
n=vmod H z<p=f(2x)
(f (), PH=1 plfm)

The quantity summed in S equals 1 when n is such that f(n) has no prime factor below
z = x® and no prime factor = 1 mod A, and is non-positive for other n. Thus a lower bound
for S will guarantee the existence of such 7, as needed for Theorem 4. Sieve methods will
allow us to obtain such a lower bound provided § is small enough, and # is large enough.
To aid the reader, we comment on the sizes of the various parameters. The quantity § is an
absolute constant, which must be chosen small in order to make a lower bound sieve work.
The parameter 2 must be chosen large in terms of § in order for the negative terms in (4) to
be smaller than the positive contribution; in our argument we want 2 > C3!/% for a positive
constant C, but with more effort one only needs 4 > C/8%. The parameter x (and therefore
z = x%) is taken to be sufficiently large in terms of /2, 8, and the coefficients of the polynomial
f.
We start with the positive term in S. An application of the fundamental lemma from sieve
theory, for example in the form of [3, Thm. 6.12], shows that

X eIl

= p<z P
n=vmod H H
(f(m).PH=1 o

where, for a general modulus » we denote by o(r) the number of solutions to the congruence
f(x) = Omod r. Note that o(r) is a multiplicative function, and for a prime p { H (and
so in particular p { 2aD), it is easy to verify that o(p") = 1 + (%) for all v > 1 (where

(2) denotes the Kronecker-Legendre symbol, which is a Dirichlet character mod |D]). On
average o(p) = 1, and so for large z we have

Q(p)> e’ H ( Q(p))< 1)1
1— ~ -2 (== .
H( p logz ¢ (H) H P p

P=z pP=z
ptH ptH

Thus, with & = ]_[pJ(H(l —o(p)/p)(1 = 1/p)~! > 0 the positive term in S exceeds

S
4¢(H) logz’

It remains to estimate the contributions from negative terms to (4), which we split into
three parts depending on the size of p. Divide the primes z < p < f(2x) into the three
ranges z < p < x/z°, x/z0 < p < xz° and xz° < p < f(2x). Corresponding to these
ranges, define

s- Y Y on

x<n<2x p=lmodh
n=vmod H ,— <xz™0

S PH=1 50
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536 J. Briidern, K. Soundararajan

similarly define S, and S3. Thus

1 & X
§>-
4logz ¢(H)

-8 =8 - Ss. 5)

The range z < p < x/z° can be handled by a simple sieve argument (as in the previous
section), while the third range xz? < p < f(2x) can be handled similarly after a “switching
argument” writing f(n) = pr (so that r is small). The middle range x/ 2 <p<xis
the most difficult part of the argument, and involves the work of Hooley and others on Weyl
sums attached to roots of quadratic congruences.

The sum S; may be upper bounded as in the previous section. In the current context an
upper bound sieve produces

G} X S x log((1/8) —9)
S — ;
'S ) pzlzmodh plogz < g(H)logz o)
z<psxz’

so that when 7 is large enough compared to 1/6 we may conclude that

1 6 X
S1 < —— .
20¢(H) logz

The sum S3 also accepts treatment following the pattern laid out in the preceding section. If
plf(m)and p > xz°, weput f(n) = prsothatr < f(2x)/p <« xz~° withr = f(v) mod .
Given such a small value of r, the problem then amounts to requiring f(n) to be a multiple of
r (which means that n lies in one of o(r) residue classes mod r), and also lying in the residue
class vmod H. We separate the case r = 1 (which can only occur if f(v) = 1 mod h); the
other terms satisfy r > z since » must be coprime to all primes below z. If r = 1, then f(n)
must be prime and by the upper bound sieve

Z 1 < i X
¢(H) logx~

x<n<2x
f(n) prime
n=vmod H

For the terms z < r < xz~2, the upper bound sieve gives

Z |« S pr) «x

x<n<2x ¢(H) r Ing
rlf(n)
n=vmod H
(f(m),PH=1
Therefore
S x G x o(r)
A RS + -—.
> 9H) logx ' ¢(H) logz Z,g r
Z<r&Lxz
r=f(v)mod h
(r,PTH)=1

Since r < xz~? and all prime factors of r are larger than z = x°, it follows that r has at
most 1/8 prime factors and so p(r) < 21/%. It follows that

S<<6 x+6 X 21/‘3<<6 x+6 x 23
’ ¢(H)logx  ¢(H)logz o T ¢(H)logx = ¢(H)logz 8p(h)’
Z<r<xz
r=f(v)mod h
(r,PTH)=1
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By choosing § sufficiently small, and £ sufficiently large in terms of § (for example, making
h > C3'3 for some constant C ) we conclude that

1 & X
S3 < ——r .
20 ¢(H) logz

Finally we turn to the sum S,. As before, we write n = pr with p = 1 mod h and
xz7 < p < xz° so that the complementary variable r satisfies » = f(v)mod /& and
x/z° <« r < xz°. We sum over r instead of p and exchange the order of summation to see

that
H<K Y oL (©)

xz70<r<xz10 x=<n<2x
r=f(v)mod h n=vmod H
(r,HP=1 ’|f(’;)
(f(n),PH=1
Anticipating an application of Poisson summation, it is convenient to smooth the sum over
n above. For concreteness, let @ : R — R be the smooth function defined by ®(0) = 1 and

for t # 0 by

Since @ is always non-negative, and ®(¢) > 1 for 1 <t < 2, we may bound S, by K Sé

where
$s= Y 3 q>(§). )

xz 0<r<xz10  n€Z

=f =vmod H
=g =
(f(n),P")=1

We treat the sieving condition ( f (n), Pt) = 1 by Selberg’s upper bound sieve. Put 6 = 1
and let 6, be real numbers with 8; = 0 unless d < z is square-free with d| PT. Write

i = Z 04,04, , ®)

[dy,d2]=d

so that A4 is non-zero only for d that are square-free divisors of P with d < z2. With this
notation

2
n
s5< Y > oe(H)| X | =Y wT@. ©)
xz 0<p<xz!0  nez * d|(P*, f(n)) d|PT
rEf(;) ﬁodh n=vmod H
(lr,H)zl r|f(Vl)

where

Tdy= Y 3 ‘I’(g)- (10)

xz7 0<r<xz!0  neZ

= =vmod H
=L o

Lemma 7 With notations as above, uniformly for d < z* with d|P" we have

X o(ld, r]) 63/64_15
Td) =— -———+0 .
@@=y IUZ o ld.r] O

Xz USr=xz

r=f(v)modh

(r.H)=1
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Here the implied constant in the error term may depend upon the polynomial f, and on h
and H.

We postpone the proof of this lemma to the next section, and proceed to complete the
estimation of S».
The next lemma provides an asymptotic formula for the sum over r appearing in Lemma 7.

Lemma 8 Let Dy be the fundamental discriminant corresponding to D, so that D /Dy is a
perfect square. If d < 7% is a divisor of P then

o(ld. r1) g(d) ¢ (H) D\ 1 0
= (20logz) — —— 1+ — ) ——{0+8(Dglh)) + O
xz—10<r<xz10 [d’ r] ( ) H 3;[‘1( ¢(h)( ( Ol )) (x SZ )
r=f(v)mod h
(r,H)=1

where §(Dolh) equals 1 if Dg divides h, and equals 0 otherwise, and g is a multiplicative
function given by

2
g(d)-g(d)]‘[(( —

The implied constant in the error term may depend on the polynomial f, and on h and H.

Lemma 8 will be proved in the final section of this paper. Here we continue with the
estimation of Sé. Using Lemmas 7 and 8 in (9) we obtain

$y< ) Ml =TM) ) xd& +0 | x89 3 gl

d| Pt d|Pt d<z?

d=<z? d=<z?
We follow the familiar procedure of Selberg’s sieve to minimize the main term above, which
is a quadratic form in the 6,4, subject to the linear constraint #; = 1. As is well known,
the optimal 6 satisfy [64] < 1 (see [3, (7.9)]) so that ; < d€ and the error term above
may be bounded as O (x°%/19) provided § is small enough. As for the main term, note that
g(p) =0if (%) =—land g(p) =4+ 0(/p)if (%) = 1, so that the problem corresponds
to a sieve of dimension 2. Carrying out the Selberg sieve in this context (see Theorem 7.1
and Proposition 7.3 of [3]) we conclude that (recall x is taken to be sufficiently large when
compared to &, 1/8, or the coefficients of f)

$; < T[] (1—%).

p=<z
ptH
After a small calculation, it follows that
$H K8 K —— . S—
¢(H) ¢(h)logz
If & is large enough, we may conclude that
1 6 «x

R —
2= 204 (H)logz
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Theorem 4 is now available: we take § > 0 small and % suitably large in terms of 1/§,
so that the estimates of Sy, S and S3 hold. Then for all sufficiently large z (here large may
depend on f) one has

3 86 «x
Si+S+853< —— e,
20 (H) logz

and we conclude from (5) that S > Gx (¢ (H) log z)~ !, as desired.

6 An auxiliary estimate: Proof of Lemma 7

In the definition of 7' (d), we group terms according to (r, d) which we denote by u. Thus

n
=% 3 3 cp(;). (1)
uld gz O<r<ed _nel
— N=V MOt
rELO Ry f o)

(r.H)=1

We now focus on the inner sum over n above. Temporarily, we put f,(n) = f(v +nH)
so that the inner sum over n in (11) may be written as

v+nH v+nH
(O] = O] . 12
> oot X X e(MM).
nez 1<&<r(d/u) nez
r(d/uw)l fy(n) f»(&)=0mod rd/un=&mod rd/u

Here we parametrize the inner sum by n = & + r(d /u)m and apply the Poisson summation
formula to the sum over m. The Fourier transform of ® is

a(t) = / O (a)e(—at)da = max(0, 1 — |¢]),
and we find that
Z q)(v—i—iiH): X Zg(m(v—}-Hé))a( xm >
. nedZ . X Hr(d/u) = Hr(d/u) Hr(d/u)

Inserting this into (12) brings in the sum

q
(V)(q ) = Z e <m7$> ,
61 q
Sfv(E)=0mod ¢q
which has been studied by Hooley [4], Duke, Friedlander and Iwaniec [2] and Toth [7], and
we find that

) xm
ro=yry X Z <H rd/u )) Ud/””’(Hr(d/u))' -

M|d xz_10<r<leo
r=f(v) mod h
(r,d)=u
(r.H)=1
Consider first the term m = 0 in (13). Note that (r, H) = 1 so that (r, h) = 1, and since
d|P" we also have (d, h) = 1. It follows that oy (rd /u) = o(rd/u) = o([d, r]), and so the

contribution of the m = 0 term matches the main term of Lemma 7.
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This leaves us with the terms where m # 0. Since 6(1‘) = O for |t| > 1, only terms
with x|m| < Hr(d/u) make a non-zero contribution. For such values of m, note that
Imv/(Hrd/u)| < |v|/x < H/x so that e(mv/(hrd/u)) = 1 + O(H /x). Using the triv-
ial estimate Q(U) (¢) < g€ when considering the contribution arising from the O (k/x), we
readily find that the terms with m # 0 yield

(v)
X u om’ (rd/u) ~ xm 15
— — 0] (0] . 14
Hla 2 r Hrdjm) T2 (14
uld m#oxz_erszm
r=f(v)mod h
(r.d)=u
(r,H)=1

To bound the sum over r above, we invoke the work of Toth [7] (see also the closely
related Proposition 1 in [2]). His formula (16) with L = 8, provides the estimate

Z (")(Ar)e< ) « RO3/64 41732,
R<r<2R

Here the implied constant may depend upon the coefficients of f, #, and v, but is independent
of m in the range where |m| is less than a small power of R. By Mobius inversion we can
also impose a coprimality condition on r above, thus obtaining

Z Q(U)(Ar)e ( ) << R63/64(AB)1/32

R<r<2R
(r,B)=1

Using the orthogonality of additive characters, we may further restrict » to any given pro-
gression mod h:

Z (v)(Ar) Z e(_%) Z (”)(Ar)e( ><<R63/64(AB)1/32

R<r<2R ijd h R<r<2R
r.B)=1 r.B)=1
r=cmod h

Using this estimate and partial summation it is easy to see that the quantity in (14) is
< izﬁ Z (XZ—IO)—1/64(dH)1/32 4715 x03/6415,
uld "~ |m|<Hz'2

where the implied constant may depend on f and H (and so we have dropped the term
H1/32)_This completes our proof.

7 Quadratic congruences on average: Proof of Lemma 8

If (%) = —1 for any prime p|d, then o(p) = 0 and so o([d, r]) = O for all r. In this case
the lemma holds trivially, and henceforth we assume that (%) = 1 for all primes p|d.
Letd < z2bea square-free divisor of PT and let x be a Dirichlet character mod 4. Define

= o(d, r)x(r)
F(s:d, x) = T
; ld,rlr

(r.H)=1
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Note that ¢(g) is a multiplicative function of ¢, and for a prime p { H it is easy to see that
o(phH =1+ (%) forall £ > 1. Therefore the series defining F'(s; d, x) converges absolutely
in the region Re(s) > 0. Further, a small calculation with Euler products establishes that

_ 0@ LG+ 1 0LG 41, x(2)

F(s;d, x) 7 L5 12 22(0)2) Fi(s; x)F2(s5d, %), (15)

where

-1 x(p)(2)
Fisso =[] (1 - Xff?) (1 + Hf’) : (16)
ol P p
and
x(HE\ !
Fz(s;d,x)=]_[(1+X(f) - Xffl)) <1+S+]") . (17)
old P P p

These expressions furnish a meromorphic continuation of F(s; d, x) totheregion Re(s) >
—1/2, with simple poles at s = 0 only in the cases when  is the principal character mod #,
or when y (2) is principal (which can only happen if the fundamental discriminant dividing
D is also a divisor of &). Further, using the convexity bound for the Dirichlet L-functions
appearing above, in the region Re(s) > _}T (and away from the potential pole at s = 0) we
have

FGsid 0l < 2204 s, (18)

ds

With these facts in hand, we can proceed with a standard argument in analytic number
theory, using a quantitative form of Perron’s formula and shifting contours. We begin with
Perron’s formula

(XZIO)S _ (XZ—IO)S .

o(ld, r])
Yo g K=o F(sid, x)
xz10<p<x710 ld,r] Tl JRe(s)=1/logx N
(r,H)=1
After truncating the integral at Im(s) = /x, and shifting contours to the line Re(s) = —%

and using (18), we obtain that the above equals
(20log)ResF (s d, ) + 0(o(d)x5219). (19)
5=
It remains to calculate the residue of F(s; d, x) in cases where a pole occurs (namely,

when  is principal, or when x (£) is principal). When y is the principal character mod 7,
a small calculation gives

ey (Cp =D\ ¢(H) )
ResF(sid.x) == n((p+1)> H l_[<1+p ' (20)

pld ptH

When x(2) is the principal character (which is only possible if Dy, the fundamental dis-
criminant corresponding to D, divides /) then a similar calculation shows that the residue of
L(s; d, x) is exactly the same as the right side above.
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We now assemble the observations made above to complete the proof of the lemma. Using
the orthogonality of characters mod /2 we have

o(ld, r]) 1 _ o(ld, r])
= T x(f(v) — 5 x().
Z o, ld.r] ¢ (h) Z Z ld,r]

S (S x mod h xz 7 0<p<xz10
(r,H)=1 (r,H)=1

r=f(v)mod h

From (19) and (20) the above equals
D
g(d) ¢(H) )\ 1 ( ( D )) _1 1
(20logz)————= 1+ —— ) —(14+8Dglh) [ — ) ) +O0(x"38z").
8 TH i p ) ¢ f)

Lastly, note that since f(v) is coprime to D, and 4af(v) = (Qav + b)2 — D, one has
(%) = 1. The lemma follows.
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