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Abstract
Let F be a number field unramified at an odd prime p and F∞ be theZp-cyclotomic extension
of F . Generalizing Kobayashi plus/minus Selmer groups for elliptic curves, Büyükboduk
and Lei have defined modified Selmer groups, called signed Selmer groups, for certain
non-ordinary Gal(F/F)-representations. In particular, their construction applies to abelian
varieties defined over F with good supersingular reduction at primes of F dividing p. Assum-
ing that these Selmer groups are cotorsion Zp[[Gal(F∞/F)]]-modules, we show that they
have no proper sub-Zp[[Gal(F∞/F)]]-module of finite index. We deduce from this a num-
ber of arithmetic applications. On studying the Euler–Poincaré characteristic of these Selmer
groups, we obtain an explicit formula on the size of the Bloch–Kato Selmer group attached to
these representations. Furthermore, for two such representations that are isomorphic modulo
p, we compare the Iwasawa-invariants of their signed Selmer groups.
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Introduction

Let F be a number field and E be an elliptic curve defined over F . Let p be an odd prime
and F∞ the Zp-cyclotomic extension of F (see Sect. 1.1). On the algebraic side of the
Iwasawa theory for E developed by Mazur [22] is the p-Selmer group associated to E over
F∞, denoted by Selp(E/F∞), which is naturally a discrete Zp[[Gal(F∞/F)]]-module. The
Selmer group contains arithmetic information of the curve, e.g. it fits in the exact sequence
of groups

0 → E(F∞) ⊗ Qp/Zp → Selp(E/F∞) → Xp(E/F∞) → 0,

where E(F∞) is the group of F∞-rational points andXp(E/F∞) the p-primary component
of the Tate–Shafarevich group of E over F∞. One goal of Iwasawa theory is to understand
the structure of Selp(E/F∞) as Zp[[Gal(F∞/F)]]-module.

When E has good ordinary reduction at primes of F dividing p, a conjecture of Mazur
(proved by Kato [14] when F = Q) states that the Pontryagin dual of Selp(E/F∞) is a
torsion Zp[[Gal(F∞/F)]]-module. Furthemore, assuming Mazur’s conjecture and that the
E(F) has no p-torsion, Greenberg [10, Proposition 4.14] showed that Selp(E/F∞) has no
proper sub-Zp[[Gal(F∞/F)]]-module of finite index.

When E has good supersingular reduction at some prime above p, the Selmer group over
F∞ is no longer a cotorsion Zp[[Gal(F∞/F)]]-module. In the case F = Q and ap = 0
(holds whenever p � 5), Kobayashi [19] has defined the so called plus and minus (or signed)
Selmer groups, and proves that the Pontryagin duals of these Selmer groups are torsion
Zp[[Gal(Q∞/Q)]]-modules. Kim [16] has then extended the definition of these Selmer
groups to number fields F where p is unramified and generalized Greenberg’s result and
showed that if the signed Selmer groups of E over F∞ are cotorsion Zp[[Gal(F∞/F)]]-
modules, then they have no proper submodule of finite index (for one of the signed Selmer
group, namely the plus one, he requires the additional assumption that p splits completely
in F and is totally ramified in F∞). This assumption has recently been removed by Kitajima
and Otsuki, see [18].

Kobayashi’s construction of signed Selmer groups has been generalized tomany situations
[5,12,17,20]. In [5], using p-adicHodge theorymachinery, Büyükboduk andLei have defined
signed Selmer groups for certain non-ordinary Galois representations of Gal(F/F) (see,
Sects. 1.2 and 1.3 for hypotheses). In particular, their construction applies to abelian varieties
defined over F with good supersingular reduction at primes of F dividing p. The definition
of the signed Selmer groups depends on a choice of a basis for the Dieudonné module
associated to the representation. For such a basis, we may attach to each of its subset I of
some prescribed cardinality a signed Selmer group, which we denote in this introduction
by SelI (T /F∞), where T is a Galois representation (a free Zp-module of finite rank with
a continuous action of the absolute Galois group of F) to which the construction of op. cit.
applies. They conjectured these signed Selmer groups to be cotorsion Zp[[Gal(F∞/F)]]-
modules. Let T ∗ be the Tate dual of T . The Dieudonné module associated to T ∗ is the dual
of the Dieudonné module of T and we denote by I c the “subbasis” dual to I . We prove:

123



On the structure of signed Selmer groups 1637

Theorem (Theorem 2.1) Assume that the Pontryagin dual of both SelI (T /F∞) and
SelI c (T ∗/F∞) are torsion Zp[[Gal(F∞/F)]]-modules, then SelI (T /F∞) has no proper
sub-Zp[[Gal(F∞/F)]]-module of finite index.

For a good choice of basis of the Dieudonné module, one can relate the signed Selmer
groups to Bloch–Kato’s Selmer groups. For such a basis, assuming that the Bloch–Kato
Selmer group of T over F is finite, our theorem above allows us to employ Greenberg’s
strategy in [10, Theorem 4.1] to compute the Euler–Poincaré characteristic of the signed
Selmer groups. We may relate the leading term of the characteristic series of these Selmer
groups to a product of Tamagawa numbers associated to the represenatation and the cardinal
of the Bloch–Kato’s Selmer group (see Corollary 2.10).

In the final part of the article, we study congruences of signed Selmer groups. If E
and E ′ are elliptic curves defined over Q with good ordinary reduction at p and such that
E[p] � E ′[p] as Galois modules, Greenberg and Vatsal [11] have studied the consequences
of such a congruences in Iwasawa theory. In particular, assuming Mazur’s conjecture, they
proved that the μ-invariant of Selp(E/Q∞) vanishes if and only if that of Selp(E ′/Q∞)

vanishes, and that when these μ-invariants do vanish, the λ-invariants of some non-primitive
Selmer groups associated to E and E ′ over Q∞ are equal. Kim [15] generalized this result
to the plus and minus Selmer groups in the supersingular case. We prove a version of this
result in the setting of [5].

Theorem (Theorem 3.13) Let T and T ′ be Galois representations to which the construction
of [5] applies. Assume that T /pT � T ′/pT ′ as Galois modules and that the Pontryagin dual
of the signed Selmer groups associated to T , T ∗, T ′ and T ′,∗ are torsion Zp[[Gal(F∞/F)]]-
modules. Then the μ-invariant of SelI (T /F∞) vanishes if and only if that of SelI (T ′/F∞)

vanishes. Furthemore, when these μ-invariants do vanish, the λ-invariants of the I -signed
non-primitive Selmer groups associated to T and T ′ over F∞ are equal.

The main ingredient is a result of Berger [2] who showed that the congruence T /pT �
T ′/pT ′ of Galois module induces a congruence modulo p on the Wach module associated
to T and T ′. This allows to keep track of the congruence through Büyükboduk and Lei’s
construction.

1 Colemanmaps and signed Selmer groups

In this section, we fix notations and recall results from [5] that we shall need.

1.1 Cyclotomic extension and Iwasawa algebra

Choose once and for all an odd prime p. Let F be a number field unramified at p. We fix F
an algebraic closure of F and denote by GF = Gal(F/F) the absolute Galois group of F .
If v is a prime of F , we denote by Fv the completion of F at v, OFv its ring of integers and
GFv the decomposition subgroup of v in GF . Let μpn be the group of pn th roots of unity
for every n � 1 and μp∞ = ∪n�1μpn . We set F(μp∞) = ∪n�1F(μpn ) the p∞-cyclotomic
extension of F inside F . For every n � 1, we choose a generator ε(n) of μpn with the
compatibilities (ε(n+1))p = ε(n), so that lim←−n

ε(n) is a generator of lim←−n
μpn � Zp(1). The

cyclotomic character χ : GF → Z∗
p is defined by the relations g(ε(n)) = (ε(n))χ(g) and it

induces a isomorphismχ : Gal(F(μp∞)/F) � Z∗
p . In particular, the groupGal(F(μp∞)/F)
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1638 G. Ponsinet

decomposes as � × � with � � Zp and � � Z/(p − 1)Z. For every n � 0, we denote by

�n the unique subgroup of � of index pn . We set F∞ = F(μp∞)� and Fn = F�n∞ for every
n � 0.

For n � 1, we set �n = Zp[Gal(F(μpn/F)]. Let � = Zp[[Gal(F(μp∞)/F)]] =
lim←−n

�n be the Iwasawa algebra of Gal(F(μp∞)/F) over Zp . The above decomposition
of Gal(F(μp∞)/F) implies that � = Zp[�][[�]]. Furthermore, we have an isomorphism
Zp[[�]] � Zp[[X ]] induced by γ 
→ X + 1 where γ is a topological generator of �. For
n � 1, let ωn(X) = (X + 1)p − 1, then this isomorphism induces �n � Zp[�][X ]/(ωn).

For a Dirichlet character η on � and a �-module R, let Rη be the isotypic component
of R, which is given by eη · R where eη = 1

|�|
∑

δ∈� η−1(δ)δ. Note that Rη is naturally a
Zp[[�]]-module. We will say that a �-module R has rank r if Rη has rank r over Zp[[�]]
for all characters η on �.

Given a finitely generated torsion Zp[[�]]-module R, there exists a pseudo-isomorphism
(i.e. a morphism of Zp[[�]]-modules with finite kernel and cokernel)

R →
n⊕

i=1

Zp[[�]]/(pli ) ⊕
m⊕

j=1

Zp[[�]]/( f k jj )

where f j ∈ Zp[X ] are distinguished irreducible polynomials (identifying Zp[[�]] and

Zp[[X ]]). Furthermore, the ideals (pl j ) and ( f
k j
j ) are uniquely determined by R up to

ordering. The characteristic ideal of R is then defined by
∏

i, j (p
li ) · ( f

k j
j ) ⊂ Zp[[�]].

The μ-invariant of R is defined by
∑n

i=1 li and the λ-invariant of R by
∑m

j=1 k j · deg f j .

1.2 Motives

Let M be a motive defined over F with coefficients in Q in the sense of [8]. We denote
by Mp its p-adic realization and we fix T a GF -stable Zp-lattice inside Mp . Let g =
dimQp (Ind

Q
F Mp) and g+ = dimQp (Ind

Q
F Mp)

+ the dimension of the+1-eigenspace under

the action of a fixed complex conjugation on IndQF Mp . We set g− = g − g+. For every
prime v of F dividing p, let gv = dimQp (Ind

Qp
Fv

Mp). We have g = ∑
v|p gv .

We will assume that, for every prime v of F dividing p,

(H.-T.) the Hodge–Tate weights of Mp , as a GFv -representation, are in [0, 1],
(Cryst.) the GFv -representation Mp is crystalline,
(Tors.) the Galois cohomology groups H0(Fv, T /pT ) and H2(Fv, T /pT ) are trivial.

We denote by T ∗ = Hom(T ,Zp(1)) the Tate dual of T and we set

M = T ⊗ Qp/Zp, and, M∗ = T ∗ ⊗ Qp/Zp.

We remark that the dual ofM, which we denote byM∗, satisfies the hypothesis (Cryst.) and
(H.-T.), and T ∗, which is a GF -stable Zp-lattice inside its p-adic realization M∗

p , satisfies
(Tors.).

We also fix� a finite set of primes of F containing the primes dividing p, the archimedean
primes and the primes of ramification of M∗. Let F� be the maximal extension of F unram-
ified outside �, so that M∗ is a Gal(F�/F)-module. We remark that F(μp∞) ⊆ F� since
only primes above p and∞ can be ramified in F(μp∞). If F ′ is an extension of F in F(μp∞),
we will say by abuse that a prime of F ′ lies in � if it divides a prime of F which is in �.
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On the structure of signed Selmer groups 1639

1.3 Dieudonnémodules

If v is a prime of F dividing p, let Dcris,v(T ) be the Dieudonné module associated to T
considered as a GFv -representation [2, Définition V.1.1]. Then Dcris,v(T ) is a free OFv -
module of rank dimQp Mp equipped with a filtration of OFv -modules (Fili Dcris,v(T ))i∈Z
such that

Fili Dcris,v(T ) =
{
0 for i � 1,
Dcris,v(T ) for i � −1.

Furthermore, Dcris,v(Mp) := Dcris,v(T ) ⊗ Qp is the usual Fontaine’s filtered φ-module
associated to Mp .

We will assume that

(Fil.)
∑

v|p dimQp Fil
0 Dcris,v(T ) ⊗ Qp = g−,

(Slopes) the slopes of φ are in ] − 1, 0[.
We may choose {u1, . . . , ugv } a Zp-basis of Dcris,v(T ) such that {u1, . . . , udv } is a basis

for Fil0 Dcris,v(T ) for some dv . We call such a basis a Hodge-compatible basis and fix one
for the rest of the paper. Then, from our hypotheses, the matrix of the crystalline Frobenius
φ with respect to this basis is of the form

Cφ,v = Cv

⎛

⎝
Idv 0

0 1
p Igv−dv

⎞

⎠ (1)

where Cv ∈ GLgv (Zp) and In is the identity matrix of size n.
Let Dcris,v(T ∗) be the Dieudonné module associated to T ∗. There is a natural pairing

Dcris,v(T ) × Dcris,v(T
∗) → Dcris,v(Zp(1)) � Zp, (2)

with respect to which Fili Dcris,v(T ∗) is the orthogonal complement of Fil−i Dcris,v(T ) and
φ−1 is the dual of pφ. In particular, Dcris,v(T ∗) also satisfies the hypotheses (Fil.) and
(Slopes).

Example 1.1 Let A be an abelian variety defined over F with good supersingular reduction
at every prime dividing p. Let Tp(A) = lim←−n

A[pn] be the p-adic Tate module of A and
let Vp(A) = Tp(A) ⊗Zp Qp . Then Vp(A) is a GF -representation and Tp(A) a GF -stable
Zp-lattice of Vp(A) which satisfy all the hypotheses (Crys.), (H.-T.), (Tors.), (Fil.) and
(Slopes).

1.4 Decomposition of Perrin–Riou’s big logarithmmap

Let v be a prime of F dividing p. For i � 0, the projective limit of the Galois cohomology
groups Hi (Fv(μpn ), T ) relative to the corestriction maps is denoted by Hi

Iw(Fv, T ). Recall
that H1

Iw(Fv, T ) is a �-module of rank gv [26, Proposition A.2.3 ii)].
We set H = Qp[�] ⊗Qp H(�) where H(�) is the set of elements f (γ − 1) with γ ∈ �

and f (X) ∈ Qp[[X ]] is convergent on the p-adic open unit disk. Perrin–Riou’s big logarithm
map is a �-homomorphism [25]

LT ,v : H1
Iw(Fv, T ) → H ⊗Zp Dcris,v(T )

which interpolates Kato’s dual exponential maps [13, II Sect. 1.2]

exp∗
n : H1(Fv(μpn ), T ) → Fv(μpn ) ⊗Zp Dcris,v(T ).
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1640 G. Ponsinet

As in [5], we may define for n � 1,

Cv,n =
(
Idv 0
0 �pn (1 + X)Igv−dv

)

C−1
v and Mv,n = (Cφ,v)

n+1Cv,n · · ·C1, (3)

where �pn is the pn th cyclotomic polynomial. By Proposition 2.5 in op. cit., the sequence
(Mv,n)n�1 converges to some gv × gv logarithmic matrix over H, which we denote by Mv .
This allows to decompose LT ,v into

LT ,v = (u1, . . . , ugv ) · Mv ·
⎛

⎜
⎝

ColT ,v,1
...

ColT ,v,gv

⎞

⎟
⎠ (4)

where ColT ,v,i , i ∈ {1, . . . , gv} are �-homomorphisms from H1
Iw(Fv, T ) to �. More details

on the decomposition (4) are given in Sect. 3.2.

1.5 Signed Colemanmaps

Let Iv be a subset of {1, . . . , gv}. We set

ColT ,Iv : H1
Iw(Fv, T ) →

|Iv |⊕

i=1

�, z 
→ (ColT ,v,i (z))i∈Iv .

These maps are called signed Coleman maps. We recall results about them that we shall need.

Lemma 1.2 ([5, Proposition 2.20, Lemma 3.22])

1. For any character η on �, the η-isotypic component of the image of the signed Coleman
map Im ColηT ,Iv

is a Zp[[�]]-module of rank |Iv| contained in a free Zp[[�]]-module
with finite index.

2. The �-module Ker ColT ,Iv is free of rank gv − |Iv|.
Let

〈·, ·〉n : H1(Fv(μpn ), T ) × H1(Fv(μpn ), T
∗) → H2(Fv(μpn ),Zp(1)) � Zp,

be Tate’s local pairing. If x = (xn)n and y = (yn)n are elements of H1
Iw(Fv, T ) and

H1
Iw(Fv, T ∗) then the elements

∑

σ∈Gal(Fv(μpn )/Fv)

〈xn, σ (yn)〉σ ∈ Zp[Gal(Fv(μpn )/Fv)],

are compatible under the natural projection maps

Zp[Gal(Fv(μpn+1)/Fv)] → Zp[Gal(Fv(μpn )/Fv)],
thus, they define an element in �. This defines Perrin–Riou’s pairing

H1
Iw(Fv, T ) × H1

Iw(Fv, T
∗) → �. (5)

Since all our hypotheses (Crys.), (H.-T.), (Tors.), (Fil.) and (Slopes) are satisfied byM∗
and T ∗, we carry out all of the constructions of paragraph 1.4 for T ∗ with respect to the dual
basis of our fixed basis {u1, . . . , ugv } for the pairing (2) and similarly define signed Coleman
maps for T ∗.

Then, we have the following relation.

123



On the structure of signed Selmer groups 1641

Lemma 1.3 ([21, Lemma 3.2]) Let Iv be a subset of {1, . . . , gv} and I cv its complement.
Then Ker ColT ,Iv is the orthogonal complement of Ker ColT ∗,I cv relative to Perrin–Riou’s
pairing (5).

Remark 1.4 In [21], there is an additional hypothesis that g+ = g− and F is abelian over Q
with degree prime to p. However, the proof of Lemma 3.2 in op. cit. applies in the setting
considered in the present article in verbatim.

1.6 Signed Selmer groups

Let I = (Iv)v|p be a tuple of sets indexed by the primes v of F dividing p and where each
Iv is a subset of {1, . . . , gv}.

Tate’s local pairing

H1(Fv(μpn ), M
∗) × H1(Fv(μpn ), T ) → H2(Fv(μpn ), μp∞) � Qp/Zp

passes to the limit relative to restriction and corestriction and defines a pairing

H1(Fv(μp∞), M∗) × H1
Iw(Fv, T ) → Qp/Zp. (6)

Definition 1.5 We define H1
Iv

(Fv(μp∞), M∗) ⊆ H1(Fv(μp∞), M∗) as the orthogonal com-
plement of Ker ColT ,Iv under the pairing (6).

The assumption H2(Fv, T /pT ) = 0 (Tors.) implies by Tate’s duality that H0(Fv, M∗) =
0, thus H0(Fv,∞, M∗) = 0 since Gal(Fv,∞/Fv) � Zp is a pro-p-group. In particular, by the
inflation-restriction exact sequence, we have

H1(Fv,∞, M∗) � H1(Fv(μp∞), M∗)�

since the order of � is p − 1 and H0(Fv(μp∞), M∗) is finite of order a power of p, and for
n � 0, we have

H1(Fv,n, M
∗) � H1(Fv,∞, M∗)�n .

We set

H1
Iv (Fv,∞, M∗) = H1

Iv (Fv(μp∞), M∗)� and H1
Iv (Fv,n, M

∗) = H1
Iv (Fv,∞, M∗)�n .

We also have signed Coleman maps for T ∗. For n � 0, let (Ker ColT ∗,I cv )n be the image
of Ker ColT ∗,I cv under the natural map H1

Iw(Fv, T ∗) → H1(Fv,n, T ∗). Again by (Tors.), we
have the exact sequence

0 → H1(Fv,n, T
∗) in−→ H1(Fv,n,M∗

p)
πn−→ H1(Fv,n, M

∗) → 0. (7)

The image of (Ker ColT ∗,I cv )n under in generates a Qp-vector space in H1(Fv,n,M∗
p), and

we denote by (Ker ColT ∗,I cv )n the image of thisQp-vector space in H1(Fv,n, M∗) under πn .

Lemma 1.6 For any n � 0, (Ker ColT ∗,I cv )n is the orthogonal complement of (Ker ColT ,Iv )n
under Tate’s local pairing

H1(Fv,n, M
∗) × H1(Fv,n, T ) → H2(Fv,n, μp∞) � Qp/Zp.

Moreover, (Ker ColT ∗,I cv )n = H1
Iv

(Fv,n, M∗). In particular, H1
Iv

(Fv,n, M∗) is a divisible
group.
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1642 G. Ponsinet

Proof By Lemma 1.3 and bilinearity of Tate’s pairing, the orthogonal complement of
(Ker ColT ,Iv )n under Tate’s pairing contains (Ker ColT ∗,I cv )n . The reverse inclusion fol-
lows from the exactness of the sequence (7). As already remarked, by (Tors.), one has
H1(Fv,n, M∗) = H1(Fv(μp∞), M∗)�n×� and by duality H1

Iw(Fv, T )�n×� = H1(Fv,n, T ).
It follows that (Ker ColT ∗,I cv )n = H1

Iv
(Fv,n, M∗). ��

Let w be a prime of F not dividing p and let K be a finite extension of Fw. Define

H1
unr(K ,M∗

p) = Ker(H1(K ,M∗
p) → H1(Kunr,M∗

p))

where Kunr the maximal unramified extension of K . Let H1
unr(K , M∗) be the image of

H1
unr(K ,M∗

p) under the natural map

H1(K ,M∗
p) → H1(K , M∗)

and H1
unr(K , T ∗) the inverse image of H1

unr(K ,M∗
p) under

H1(K , T ∗) → H1(K ,M∗
p).

We remark that H1
unr(K , M∗) is divisible by definition and recall that it is the orthogonal

complement of H1
unr(K , T ) under Tate’s local pairing (see [3, Proposition 3.8]). If K ′ is an

infinite algebraic extension of Fw , we define the subgroup

H1
unr(K

′, M∗) = lim−→
K

H1
unr(K , M∗) ⊂ H1(K ′, M∗)

where the limit runs through the finite extensions K of Fw contained in K ′ and is taken with
respect to the restriction maps.

Let F ′ be one of F(μp∞), F∞ or Fn for some n � 0. We set

P�,I (M
∗/F ′) =

∏

w∈�,w�p

H1(F ′
w, M∗)

H1
unr(F

′
w, M∗)

×
∏

w|p

H1(F ′
w, M∗)

H1
Iv

(F ′
w, M∗)

.

Definition 1.7 Let F ′ be F(μp∞), F∞, or Fn for some n � 0. The I -Selmer group of M∗
over F ′ is defined by

SelI (M
∗/F ′) = Ker(H1(F�/F ′, M∗) → P�,I (M

∗/F ′))

where the map is the composition of localization at each w ∈ � followed by the projection
in the appropriate quotient.

Let Ip be the set of tuples I = (Iv)v|p indexed by the primes v of F dividing p and where
each Iv is a subset of {1, . . . , gv} and such that

∑
v|p |Iv| = g−. From observations about

the expected �-corank of the Selmer group of a supersingular abelian variety, Büyükboduk
and Lei have made the following conjecture [5, Remark 3.27].

Conjecture 1.8 Forany I ∈ Ip andany evenDirichlet characterη on�,SelI (M∗/F(μp∞))η

is a cotorsion Zp[[�]]-module (i.e. its Pontryagin dual is a torsion Zp[[�]]-module).
Remark 1.9 When F = Q and M is the Tate module of a supersingular elliptic curve with
ap = 0, for a good choice of basis of the Dieudonné module, the signed Selmer groups with
I ∈ Ip coincide with Kobayashi plus and minus Selmer groups [19] (see [5, Appendix 4]).
Conjecture 1.8 is known in that case op. cit.. Furthermore, Sprung [6] as well as Lei, Loeffler
and Zerbes [20] have proved that this conjecture holds in cases of p-supersingular elliptic
curves with ap �= 0 and p-non-ordinary eigenforms, respectively.
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Remark 1.10 The definition of the signed Selmer groups does not depend on the choice of�.
If η is the trivial character on�, then SelI (M∗/F(μp∞))η � SelI (M∗/F∞). It follows from
the definition that, for any I , the Pontryagin dual of SelI (M∗/F∞) is a finitely generated
Zp[[�]]-module since H1(F�/F∞, M∗) is [9, Proposition 3]. In the remainder of this article,
we study these Selmer groups.

In the next section, we shall need twisted signed Selmer groups. Let us explain now what
they are. For s ∈ Z, we set M∗

s = M∗ ⊗ χ s|� where χ|� : � � Zp . As a Gal(F/F∞)-

module, M∗
s = M∗, thus H1(F∞, M∗

s ) = H1(F∞, M∗) ⊗ χ s|� and for a prime v of F ,

H1(Fv,∞, M∗
s ) = H1(Fv,∞, M∗) ⊗ χ s|� and H0(Fv,∞, M∗

s ) = 0. At primes dividing p, we
set

H1
Iv (Fv,∞, M∗

s ) = H1
Iv (Fv,∞, M∗) ⊗ χ s|�.

Therefore, for F ′ being F∞ or Fn for some n � 0, we can define twisted I -Selmer groups
SelI (M∗

s /F ′) as above with local condition at p induced by H1
Iv

(Fv,∞, M∗
s ). We remark that

SelI (M∗
s /F∞) � SelI (M∗/F∞) ⊗ χ s|� as Zp[[�]]-modules.

Similarly, we can define signed Selmer groups for M using the signed Coleman maps
ColT ∗,Iv , as well as twisted signed Selmer groups for M as above. We remark that if I is an
element of Ip , then I c = (I cv )v|p satisfies

∑
v|p I cv = g − g− = g+ = dimQp (Ind

Q
F M∗

p)
−.

In particular, Conjecture 1.8 is expected to hold for the signed Selmer groups of M .

1.7 Bloch–Kato’s Selmer groups

Let n � 0 and w be a prime of Fn dividing p. We recall that Bloch and Kato [3] defined the
Qp-subspace of H1(Fn,w,M∗

p)

H1
f (Fn,w,M∗

p) = Ker(H1(Fn,w,M∗
p) → H1(Fn,w,Bcris ⊗ M∗

p))

where Bcris is Fontaine’s ring of crystalline periods [7]. Let H1
f (Fn,w, M∗) be the image of

H1
f (Fn,w,M∗

p) under the natural map

H1(Fn,w,M∗
p) → H1(Fn,w, M∗).

We set

P�, f (M
∗/Fn) =

∏

w∈�,w�p

H1(Fn,w, M∗)
H1
unr(Fn,w, M∗)

×
∏

w|p

H1(Fn,w, M∗)
H1

f (Fn,w, M∗)
.

Then, the Bloch–Kato’s Selmer group of M∗ over Fn is defined by

SelBK(M∗/Fn) = Ker(H1(F�/Fn, M
∗) → P�, f (M

∗/Fn))

and we set SelBK(M∗/F∞) = lim−→n
SelBK(M∗/Fn).

Recall that the definition of the signedColemanmaps and thus of the signed Selmer groups
depends on a choice of Hodge-compatible basis of ⊕v|pDcris,v(T ).

Lemma 1.11 ([4, Lemma 8.1]) There exists aHodge-compatible basis of⊕v|pDcris,v(T ) such
that for any I ∈ Ip

H1
f (Fv, M

∗) = H1
Iv (Fv, M

∗).
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1644 G. Ponsinet

In particular, for such a basis,

SelBK(M∗/F) = SelI (M
∗/F).

The basis of the lemma is a strongly admissible basis in the sense of [5, Definition 3.2].

2 Submodules of finite index

We keep the notation of the previous section. Let I = (Iv)v|p ∈ Ip and set I c = (I cv )v|p .
The main goal of this section is to prove the following theorem.

Theorem 2.1 Assume thatSelI (M∗/F∞) andSelI c (M/F∞) are cotorsionZp[[�]]-modules.
Then SelI (M∗/F∞) has no proper sub-Zp[[�]]-modules of finite index.
Remark 2.2 Under the additional hypothesis that F is abelian overQ with degree prime to p
and that g+ = g−, an algebraic functional equation relatingSelI (M∗/F∞) andSelI c (M/F∞)

has been proved in [21]. In this situation, if one of these Zp[[�]]-modules is a cotorsion
Zp[[�]]-module, then they both are.

2.1 The proof of Theorem 2.1

We begin with a “control theorem” for these signed Selmer groups.

Lemma 2.3 For all but finitely many s ∈ Z, the kernel and cokernel of the restriction map

SelI c (Ms/Fn) → SelI c (Ms/F∞)�n

are finite of bounded orders as n varies.

Proof The diagram

0 SelI c (Ms/Fn) H1(F�/Fn, Ms) P�,I c (Ms/Fn)

0 SelI c (Ms/F∞)�n H1(F�/F∞, Ms)
�n P�,I c (Ms/F∞)�n

(8)

is commutative.
By (Tors.), H0(Fv,∞, Ms) = 0 where v is any prime of F dividing p, thus the central

map is an isomorphism by the inflation-restriction exact sequence.
We now study the kernel of the rightmost vertical map. For a prime v of F dividing p, the

diagram

0 H1
Iv

(Fv,n, Ms) H1(Fv,n, Ms)
H1(Fv,n ,Ms )

H1
Iv

(Fv,n ,Ms )
0

0 H1
Iv

(Fv,∞, Ms)
�n H1(Fv,∞, Ms)

�n

(
H1(Fv,∞,Ms )

H1
Iv

(Fv,∞,Ms )

)�n

(9)

is commutative. The central vertical map is an isomorphism by the inflation-restriction exact
sequence and the left-most vertical one is an isomorphism by definition, thus it follows from
the snake lemma applied to the diagram (9) that the map
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On the structure of signed Selmer groups 1645

H1(Fv,n, Ms)

H1
Iv

(Fv,n, Ms)
→

(
H1(Fv,∞, Ms)

H1
Iv

(Fv,∞, Ms)

)�n

is an injection.
For a prime w of Fn not dividing p and a prime w′ of F∞ above w, the diagram

0 H1
unr(Fn,w, Ms) H1(Fn,w, Ms)

H1(Fn,w,Ms )

H1
unr(Fn,w,Ms )

0

0 H1
unr(F∞,w′ , Ms)

�n H1(F∞,w′ , Ms)
�n

(
H1(F∞,w′ ,Ms )

H1
unr(F∞,w′ ,Ms )

)�n

(10)
is commutative. If w is archimedean, since p is odd, then H1(F∞,w′ , Ms) is trivial, and if w

is non-archimedean, then H1
unr(F∞,w′ , Ms) is trivial [26, Sect. A.2.4].

We now look at the kernel of the central vertical map in diagram (10). From the inflation-

restriction exact sequence, it is H1(F∞,w′/Fn,w, M
GF∞,w′
s ). If w is archimedean, it splits

completely in F∞/Fn so this group is trivial. Ifw is non-archimedean, it finitely decomposes
in F∞/Fn , so that Gal(F∞,w′/Fn,w) � Zp and is topologically generated by an element γn .

Thus H1(F∞,w′/Fn,w, M
GF∞,w′
s ) is isomorphic to

M
GF∞,w′
s /(γn − 1)M

GF∞,w′
s .

One has the short exact sequence

0 M
GFn,w
s M

GF∞,w′
s M

GF∞,w′
s M

GF∞,w′
s /(γ − 1)M

GF∞,w′
s 0.

(γn−1)

For all but finitelymany s ∈ Z,M
GFn,w
s is finite for every n, henceM

GF∞,w′
s /(γ −1)M

GF∞,w′
s

is finite. So, (M
GF∞,w′
s )div the maximal divisible subgroup of M

GF∞,w′
s is contained in

(γn − 1)M
GF∞,w′
s and the order of M

GF∞,w′
s /(γn − 1)M

GF∞,w′
s is bounded by the one of

M
GF∞,w′
s /(M

GF∞,w′
s )div.

Thus, the snake lemma applied to the diagram (10) implies that the map

H1(Fn,w, Ms)

H1
unr(Fn,w, Ms)

→
(

H1(F∞,w′ , Ms)

H1
unr(F∞,w′ , Ms)

)�n

has finite kernel of bounded orders as n varies.
Finally, the result follows from the snake lemma applied to the diagram (8). ��

Proposition 2.4 Assume that SelI c (M/F∞) is a cotorsion Zp[[�]]-module. Then for all but
finitely many s ∈ Z, the map

H1(F�/F, M∗
s ) → P�,I (M

∗
s /F)

is surjective, and, for all s ∈ Z, the map

H1(F�/F∞, M∗
s ) → P�,I (M

∗
s /F∞)

is surjective.
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1646 G. Ponsinet

Proof If SelI c (M/F∞) is a cotorsion Zp[[�]]-module, then, for all but finitely many s ∈ Z,
(SelI c (M/F∞)⊗χ s)�n = (SelI c (Ms/F∞))�n is finite for every n. Thus, by Lemma 2.3 and
possibly avoiding another finite number of s ∈ Z, SelI c (Ms/Fn) is finite for every n. For
such an s and any n, the finiteness of SelI c (Ms/Fn) and Lemma 1.6 allow us to apply [10,
Proposition 4.13] which says that the cokernel of

fn,−s : H1(F�/Fn, M
∗−s) → P�,I (M

∗−s/Fn)

is the Pontryagin dual of H0(Fn, Ms). By (Tors.), H0(F, M) = 0, thus H0(F∞, M) = 0 as
Zp is a pro-p-group. FurthermoreMs � M asGal(F/F∞)-modules, henceH0(F∞, Ms) = 0
and finally H0(Fn, Ms) is trivial for any n. Therefore, the map fn,−s is surjective for any n.
Passing to direct limit relative to restriction maps, the surjection of the maps fn,−s implies
the surjection of

f∞,−s : H1(F�/F∞, M∗−s) → P�,I (M
∗−s/F∞).

Since the map f∞,−s is the map

f∞ : H1(F�/F∞, M∗) → P�,I (M
∗/F∞)

twisted by χ−s
|� , this concludes the proof of the proposition. ��

Lemma 2.5 For all s ∈ Z, the restriction map

P�,I (M
∗
s /F) → P�,I (M

∗
s /F∞)�

is surjective.

Proof We have

P�,I (M
∗
s /F∞) =

∏

w∈�,w�p

H1(F∞,w, M∗
s )

H1
unr(F∞,w, M∗

s )
×

∏

v|p

H1(Fv,∞, M∗
s )

H1
Iv

(Fv,∞, M∗
s )

.

Ifw is archimedean, since p is odd, H1(F∞,w, M∗
s ) is trivial. If v is a non-archimedean prime

of F not dividing p, the surjection

H1(Fv, M∗
s )

H1
unr(Fv, M∗

s )
→

⎛

⎝
∏

w|v

H1(F∞,w, M∗
s )

H1
unr(F∞,w, M∗

s )

⎞

⎠

�

follows from the fact that H1
unr(F∞,w, M∗

s ) is trivial and � has p-cohomological dimension
1. Finally, if v is a prime of F dividing p, then the Pontryagin dual of H1

Iv
(Fv,∞, M∗)

is contained in a free Zp[[�]]-module by Lemma 1.2, thus H1
Iv

(Fv,∞, M∗)� = 0. Hence,

H1
Iv

(Fv,∞, M∗
s )� = 0 and we have an exact sequence

0 → H1
Iv (Fv,∞, M∗

s )� → H1(Fv,∞, M∗
s )� →

(
H1(Fv,∞, M∗

s )

H1
Iv

(Fv,∞, M∗
s )

)�

→ 0. (11)

By (Tors.), we know that H1(Fv, M∗
s ) � H1(Fv,∞, M∗

s )� . Thus, by definition of
H1

Iv
(Fv, M∗

s ) and the exact sequence (11), the map

H1(Fv, M∗
s )

H1
Iv

(Fv, M∗
s )

→
(
H1(Fv,∞, M∗

s )

H1
Iv

(Fv,∞, M∗
s )

)�

is surjective. ��
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Lemma 2.6 For all s ∈ Z, the Zp[[�]]-corank of P�,I (M∗
s /F∞) is g+.

Proof Ifw is archimedean, since p is odd,H1(F∞,w, M∗
s ) is trivial. Ifw is a non-archimedean

prime not dividing p above a prime v of F , by [9, Proposition 2], H1(F∞,w, M∗
s ) is cotorsion.

Finally, by definition, the Pontryagin dual of H1(Fv,∞,M∗)
H1
Iv

(Fv,∞,M∗) is isomorphic to Ker ColT ,Iv which

is of rank gv − |Iv| by Lemma 1.2. Since

H1(Fv,∞, M∗
s )

H1
Iv

(Fv,∞, M∗
s )

= H1(Fv,∞, M∗) ⊗ χ s|�
H1

Iv
(Fv,∞, M∗) ⊗ χ s|�

,

the corank of H1(Fv,∞,M∗
s )

H1
Iv

(Fv,∞,M∗
s )

is also gv − |Iv|. Therefore, from our choice of I , the corank of

P�,I (M∗
s /F∞) is

∑

v|p
gv − |Iv| = g − g− = g+.

��

Proposition 2.4 and Lemma 2.6 enable to compute the corank of the Bloch-Kato Selmer
group.

Corollary 2.7 Assume thatSelI (M∗/F∞)andSelI c (M/F∞)are cotorsionZp[[�]]-modules.
Then the Zp[[�]]-corank of SelBK(M∗/F∞) is g+.

Proof By our hypotheses, the representation Mp does not contain a non-trivial sub-GF -
representation with stricly positive Hodge-Tate weights at each prime v of F dividing p and
(Mp)

GFv,∞ = 0. Hence, by [27, Corollaire 0.5], we have

H1
f (Fv,∞, M∗) = H1(Fv,∞, M∗). (12)

Thus, Eq. (12) combined with Proposition 2.4 gives the commutative diagram

0 SelI (M∗/F∞) H1(F�/F∞, M∗) P�,I (M∗/F∞) 0

0 SelBK(M∗/F∞) H1(F�/F∞, M∗)
∏

w∈�,w�p
H1(F∞,w,M∗)
H1
unr(F∞,w,M∗) ,

=

which induces, by the snake Lemma, the short exact sequence

0 → SelI (M
∗/F∞) → SelBK(M∗/F∞) →

∏

v|p

H1(Fv,∞, M∗)
H1

Iv
(Fv,∞, M∗)

→ 0.

The Corollary follows from the hypothesis that SelI (M∗/F∞) is cotorsion and (the proof of)
Lemma 2.6. ��

Proposition 2.8 Assume that SelI (M∗/F∞) and SelI c (M/F∞) are cotorsion Zp[[�]]-
modules. Then, for all s ∈ Z, H1(F�/F∞, M∗

s ) has no proper sub-Zp[[�]]-modules of
finite index.
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1648 G. Ponsinet

Proof Since H1(F�/F∞, M∗
s ) = H1(F�/F∞, M∗) ⊗ χ s|� , it is enough to prove the propo-

sition for H1(F�/F∞, M∗). By Proposition 2.4, we have the short exact sequence

0 → SelI (M
∗/F∞) → H1(F�/F∞, M∗) → P�,I (M

∗/F∞) → 0.

We assume that SelI (M∗/F∞) is a cotorsion Zp[[�]]-module. The above short exact
sequence then forces the Zp[[�]]-coranks of H1(F�/F∞, M∗) and P�,I (M∗/F∞) to be
equal. Thus, by Lemma 2.6, we have

corankZp[[�]] H1(F�/F∞, M∗) = g+.

On the other hand, from the global Euler–Poincaré characteristic formula [9, Proposition 3],
we have

corankZp[[�]] H1(F�/F∞, M∗) = corankZp[[�]] H2(F�/F∞, M∗) + δ(F,M∗
p),

with

δ(F,M∗
p) =

∑

v complex

dimQp M∗
p +

∑

v real

dimQp (M∗
p)

−

where v runs through archimedean primes of F and, for a real prime v, and dimQp (M∗
p)

−
is the dimension of the −1-eigenspace for a complex conjugation above v acting on Mp .
From [9, Eq. (34)], we have

δ(F,M∗
p) = dimQp (Ind

Q
F M∗

p)
− = g+.

Thus, H2(F�/F∞, M∗) is a cotorsion Zp[[�]]-module. But by [9, Proposition 4],
H2(F�/F∞, M∗) is a cofree Zp[[�]]-module, hence H2(F�/F∞, M∗) = 0 and the propo-
sition follows from [9, Proposition 5]. ��
Remark 2.9 The weak Leopoldt conjecture [26, Sect. 1.3 and Appendix B] would also imply
that H1(F�/F∞, M∗) has no proper sub-Zp[[�]]-modules of finite index. Indeed, by the
weak Leopoldt conjecture, H2(F�/F∞, M∗) is trivial and we can apply [9, Proposition 5].

Proof of Theorem 2.1 For any s ∈ Z, since � � Zp has p-cohomological dimension 1, the
restriction map

H1(F�/F, M∗
s ) → H1(F�/F∞, M∗

s )�

is surjective. Thus, combined with Proposition 2.4 and Lemma 2.5, for all but finitely many
s ∈ Z, we obtain the commutative diagram

H1(F�/F, M∗
s ) H1(F�/F∞, M∗

s )� 0

P�,I (M∗
s /F) P�,I (M∗

s /F∞)� 0

0

which implies that

H1(F�/F∞, M∗
s )� → P�,I (M

∗
s /F∞)�

is surjective.
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By Proposition 2.4, we have the short exact sequence

0 → SelI (M
∗
s /F∞) → H1(F�/F∞, M∗

s ) → P�,I (M
∗
s /F∞) → 0.

Taking �-invariants gives the long exact sequence

H1(F�/F∞, M∗
s )� → P�,I (M

∗
s /F∞)� → SelI (M

∗
s /F∞)� → H1(F�/F∞, M∗

s )�.

Since the first map is surjective, SelI (M∗
s /F∞)� → H1(F�/F∞, M∗

s )� is injective. Fur-
thermore, H1(F�/F∞, M∗

s )� is trivial by Proposition 2.8. Thus, SelI (M∗
s /F∞)� = 0 which

implies the result. ��

2.2 An application: computation of the Euler–Poincaré characteristic

We now choose a strongly admissible basis as in Lemma 1.11 and any I ∈ Ip .
For v a non-archimedean prime not dividing p, we recall the definition of the Tamagawa

number of T at v [8, I Sect. 4].
If N isQp-vector space of finite dimension d (respectively a freeZp-module of rank d), we

denote by N−1 its linear dual and we set detQp N = ∧d
Qp

N (respectively detZp N = ∧d
Zp

N ).
If N is now a finitely generated Zp-module, we define the determinant of N over Zp as

detZp N = (detZp N−1)
−1 ⊗ detZp N0,

where

0 → N−1 → N0 → N → 0

is a resolution of N by free Zp-modules of finite ranks N−1 and N0.
We recall that we denote byMp the p-adic realization of our fixedmotiveM. Let Frobv be

the geometric Frobenius in Gal(Fv,unr/Fv), we have an exact sequence ofQp-vector spaces

0 → H0(Fv,Mp) → H0(Fv,unr,Mp)
1−Frobv−−−−−→ H0(Fv,unr,Mp) → H1

unr(Fv,Mp) → 0

which induces an isomorphism of Qp-vector spaces

ιMp,v : detQp H
0(Fv,Mp) ⊗ (detQp H

1
unr(Fv,Mp))

−1 → Qp.

Then

detZp H
0(Fv, T ) ⊗ (detZp H

1
unr(Fv, T ))−1,

is a Zp-lattice inside detQp H
0(Fv,Mp) ⊗ (detQp H

1
unr(Fv,Mp))

−1 and the Tamagawa
number of T at v, denoted by Tamv(T ), is defined as the unique power of p such that

ιMp,v(detZp H
0(Fv, T ) ⊗ (detZp H

1
unr(Fv, T ))−1) = Zp · Tamv(T ).

We can now deduce the following corollary on the leading term of the algebraic p-adic
L-function, which is a generalization of Kim’s result on Kobayashi’s plus/minus Selmer
groups [16, Theorem 1.2].

Corollary 2.10 Assume that SelBK(M∗/F) is finite, and that SelI c (M/F∞) is a cotorsion
Zp[[�]]-module. Denote by ( f I ) ⊂ Zp[[X ]] the characteristic ideal of SelI (M∗/F∞). Then,
up to a unit,

f I (0) = |SelBK(M∗/F)| ·
∏

v�p

Tamv(T ). (13)
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Proof First, we remark that the hypothesis implies that SelI (M∗/F∞) is a cotorsionZp[[�]]-
module since, by Lemma 1.11, SelBK(M∗/F) = SelI (M∗/F), and we have a “control
theorem” (Lemma 2.3). Thus SelI (M∗/F∞)� is finite, which implies that SelI (M∗/F∞) is
cotorsion.

Up to a unit, we have

f I (0) = |SelI (M∗/F∞)�|/|SelI (M∗/F∞)�|
= |SelI (M∗/F∞)�|, (14)

where the first relation is [10, Lemma 4.2] and the second is Theorem 2.1.
It remains to relate the right hand side of the formula (13) to |SelI (M∗/F∞)�|. It is done

by studying the commutative diagram

0 SelBK(M∗/F) H1(F�/F, M∗) P�, f (M∗/F) 0

0 SelI (M∗/F∞)� H1(F�/F∞, M∗)� P�,I (M∗/F∞)� 0,

( fv)v

where the surjection at the end of the top row is Proposition 2.4 and the one at the bottom
row is due to Theorem 2.1. As we mentioned in the proof of Lemma 2.3, by (Tors.), the
central map is an isomorphism by the inflation–restriction exact sequence. Hence, by the
snake lemma, we have

|SelI (M∗/F∞)�| = |SelBK(M∗/F)|.
∏

v∈�

|Ker fv|. (15)

We now compute |Ker fv|. As we have already remarked, the archimedean part is trivial
since p is odd, and if v divides p, then fv is injective (see the proof of Lemma 2.3). Finally,
if v is a non-archimedean prime not dividing p, then Ker fv is the orthogonal complement
under Tate’s local pairing of the projection

Im(H1
Iw(Fv, T )

f ∗
v−→ H1

unr(Fv, T )).

By [24, Lemme 2.2.5], we have |Coker f ∗
v | = Tamv(T ). Thus, |Ker fv| = Tamv(T ). Since

Tamv(T ) = 1 at primes v where M∗ is unramified and all the ramified primes of M∗ are
contained in �, we can extend the product in (15) over all nonarchimedean primes not
dividing p. The corollary follows from (14) combined with (15). ��

3 Congruences

Let M′ be another motive and T ′ a GF -stable Zp-lattice inside M′
p the p-adic realization

of M′ satisfying all the hypotheses (H.-T.), (Cryst.), (Tors.), (Fil.) and (Slopes). We shall
simply add a superscript (·)′ to the various object associated to T to denote the similar object
associated to T ′ (e.g. M ′ = T ′ ⊗ Qp/Zp).

From now on, we assume that

T /pT � T ′/pT ′, (Cong.)

as GF -representations. The goal of this section is to compare the signed Selmer groups of
M∗ and M ′,∗ under the hypothesis (Cong.). We begin by studying the implication of this
congruence on the signed Coleman maps.
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3.1 Wachmodules

We succinctly recall what we need for our purpose and refer the reader to [1,2] for details. Let
v be a prime of F dividing p and let A+

Fv
be the ring OFv [[π]] equipped with the semilinear

action by the Frobenius φ which acts as the absolute Frobenius on OFv and on π by

φ(π) = (π + 1)p − 1,

and with an action of Gal(Fv(μp∞)/Fv) given by

g(π) = (π + 1)χ(g) − 1,∀g ∈ Gal(Fv(μp∞)/Fv).

There exists a Wach module Nv(T ) attached to T |GFv
(and similarly to T ′|GFv

), which is
a free A+

Fv
-module of rank dimQp (Mp) equipped with an action of Gal(Fv(μp∞)/Fv) and

a φ-linear endomorphism of Nv(T )[ 1
π
], which we still denote by φ, commuting with the

Galois action. We denote by φ∗Nv(T ) the A+
Fv
-module generated by φ(Nv(T )).

The Dieudonné module associated to T is defined via the Wach module by

Nv(T )/πNv(T ) = Dcris,v(T ), (16)

where the filtration on Nv(T ) inducing the one on Dcris,v(T ) is

Fili Nv(T ) = {x ∈ Nv(T ), φ(x) ∈ (φ(π)/π)iNv(T )},
One also recovers the first Iwasawa cohomology group from theWach module by an isomor-
phism of Zp[[Gal(Fv(μp∞)/Fv)]]-modules

h1T : H1
Iw(Fv, T )

∼−→ Nv(T )ψ=1, (17)

where ψ is a left inverse for φ.
We compare the Wach module of T and T ′ modulo p. Since the Hodge–Tate weights of

T and T ′ are in [0, 1], the following theorem is a special case of [2, Théorème IV.1.1].

Theorem 3.1 The isomorphism (Cong.) induces an isomorphism of A+
Fv
-modules

Nv(T )/pNv(T ) � Nv(T
′)/pNv(T

′),

which is compatible with the filtration, the Galois action and the action of φ.

3.2 Congruences of signed Colemanmaps

We now follow the construction of the signed Coleman maps as given in [5, Sect. 2] keeping
track of the congruences modulo p.

First, note that by (17) andTheorem3.1,we have aZp[[Gal(Fv(μp∞)/Fv)]]-isomorphism

H1
Iw(Fv, T )/p � H1

Iw(Fv, T
′)/p. (18)

Also, combining (16) and Theorem 3.1, the Dieudonné modules associated to T and T ′ are
isomorphic modulo p. We fix good bases for Dcris,v(T ) and Dcris,v(T ′) compatible with the
isomorphism given in Theorem 3.1 in the sense that they have the same image under (16).

Lemma 3.2 For n � 1, there exists a unique �-homomorphism

L(n)
T : H1

Iw(Fv, T ) → �n ⊗Zp Dcris,v(T )
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such that

φ−n−1 ◦ LT ≡ L(n)
T mod ωn .

Furthermore, the applications L(n)
T and L(n)

T ′ are congruent modulo p, i.e. the diagram

H1
Iw(Fv, T )/p �n ⊗Zp Dcris,v(T )/p

H1
Iw(Fv, T ′)/p �n ⊗Zp Dcris,v(T ′)/p

L(n)
T mod p

� �
L(n)

T ′ mod p

is commutative.

Proof The first statement is Proposition 2.9 of op. cit.. We follow its proof to prove the
second. Perrin-Riou’s big logarithm LT is given by

(M ⊗ 1)−1 ◦ (1 − φ) ◦ (hT )−1

whereM is the Mellin transform which maps elements ofH to overconvergent power series
in π , whose set we denote B+

rig,Fv
. The Mellin transform preserves integrality and the ideal

(ωn) corresponds to (φn+1(π)).
The first statement then follows from a study (Lemma 3.44 of op. cit.) of the map

φ−n−1 ◦ (1 − φ) : Nv(T )ψ=1 → (φ∗Nv(T ))ψ=0 ↪→ B+
rig,Fv

⊗Zp Dcris,v(T ) (19)

which shows that, for x ∈ Nv(T )ψ=1, the element φ−n−1 ◦ (1 − φ)(x) is congruent to
an element of (A+

Fv
)ψ=0 ⊗Zp Dcris,v(T ) modulo φn+1(π)B+

rig,Fv
⊗Zp Dcris,v(T ). But by

Theorem 3.1, the maps (19) for T and T ′ agree modulo p and we are done. ��
For i ∈ {1, . . . , gv}, we write L(n)

T ,i for the composition of L(n)
T with the projection on

the i-th component of the fixed basis of Dcris,v(T ). We set hn (respectively h′
n) the �n-

endomorphisms on ⊕gv

k=1�n given by the left multiplication by the product Cv,n · · ·Cv,1

(respectively C ′
v,n · · ·C ′

v,1).

Lemma 3.3 For n � 1, there exists a unique �-homomorphism

Col(n)
T : H1

Iw(Fv, T ) →
gv⊕

k=1

�n

such that
⎛

⎜
⎜
⎝

L(n)
T ,1
...

L(n)
T ,gv

⎞

⎟
⎟
⎠ ≡ Cv,n · · ·Cv,1 · Col(n)

T mod Ker hn .

Furthermore, we have

Col(n)
T ≡ Col(n)

T ′ mod p.

Proof The first part is Proposition 2.10 of op. cit.. Again by Theorem 3.1 and (16), the
matricesCv,n andC ′

v,n are congruent modulo p for all n. Thus, by the first part of the Lemma
and Lemma 3.2, we have

Cv,n · · ·Cv,1 · Col(n)
T ≡ Cv,n · · ·Cv,1 · Col(n)

T ′ mod (Ker hn, p).
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Since

Cv,n =
(
Idv 0
0 �pn (1 + X)Igv−dv

)

C−1
v ,

with Cv ∈ GLgv (Zp) and �pn (1 + X) and p are coprime, the second part follows. ��

By [5, Lemma 2.11 and Theorem 2.13], the maps (Col(n)
T )n�1 are compatible with the

natural projection ⊕gv

k=1�n+1/Ker hn+1 → ⊕gv

k=1�n/Ker hn and thus define a map to
lim←−n

⊕gv

k=1�n/Ker hn which naturally identifies with ⊕gv

k=1�. By definition, this map is
ColT . Thus, by Lemma 3.3 we have:

Proposition 3.4 The Coleman maps associated to T and T ′ are congruent modulo p. More
precisely, if z ∈ H1

Iw(Fv, T ) and z′ ∈ H1
Iw(Fv, T ′) have the same image under the isomor-

phism given in (18), then

ColT (z) ≡ ColT ′(z′) mod p ⊕gv

k=1 �.

3.3 Non-primitive signed Selmer groups

We now define and compare the non-primitive signed Selmer groups under the hypothesis
(Cong.) and deduce our main result.

The next lemma is well-known [23, Lemma 3.5.3].

Lemma 3.5 The exact sequence

0 → M∗[p] → M∗ p−→ M∗ → 0

of GF∞ -modules induces isomorphisms

H1(F�/F∞, M∗[p]) � H1(F�/F∞, M∗)[p],
and

H1(Fv,∞, M∗[p]) � H1(Fv,∞, M∗)[p],
for any prime v dividing p, and, for any non-archimedean prime v not dividing p or a prime
of ramification of M∗,

H1(Fv,unr, M
∗[p]) � H1(Fv,unr, M

∗)[p].

Proof We have the exact sequence

0 → H0(F∞, M∗)/p → H1(F�/F∞, M∗[p]) → H1(F�/F∞, M∗)[p] → 0.

Since H0(F∞, M∗) is trivial by our hypothesis (Tors.), we get the first isomorphism. The
same proof applies for the second isomorphism at v dividing p. Let v as in the third statement,
then v is not a prime of ramification for M∗, thus H0(Fv,unr, M∗) = M∗. Hence, we have
the exact sequence

0 → M∗/p → H1(Fv,unr, M
∗[p]) → H1(Fv,unr, M

∗)[p] → 0.

Since M∗ is divisible, we deduce the second isomorphism. ��
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Definition 3.6 Let �0 ⊂ � be a subset that contains all the primes of ramification of M∗
but none of the primes of F dividing p nor the archimedean primes. We define the �0-non-
primitive I -Selmer groups of M∗ over F∞ by

Sel�0
I (M∗/F∞) = Ker(H1(F�/F∞, M∗) → P�\�0,I (M

∗/F∞)).

If v is a prime dividing p, by Lemma 3.5 we have H1(Fv,∞, M∗[p]) � H1(Fv,∞, M∗)[p]
and we set

H1
Iv (Fv,∞, M∗[p]) = H1

Iv (Fv,∞, M∗)[p] ⊂ H1(Fv,∞, M∗[p]).
We set

P�\�0,I (M
∗[p]/F∞) =

∏

w∈�\�0,w�p

H1(Fw,unr, M
∗[p]) ×

∏

w|p

H1(Fw,∞, M∗[p])
H1

Iv
(Fw,∞, M∗[p]) .

We define the �0-non-primitive I -Selmer groups of M∗[p] over F∞ by

Sel�0
I (M∗[p]/F∞) = Ker(H1(F�/F∞, M∗[p]) → P�\�0,I (M

∗[p]/F∞)).

Remark 3.7 ByTate’s pairing (6), thePontryagindual ofH1
Iv

(Fv,∞, M∗[p]) is (Im ColT ,Iv )/p.

From now on, we write abusively the μ and λ-invariants of the various Selmer groups to
refer to the μ and λ-invariants of their Pontryagin duals.

Proposition 3.8 For any �0 ⊂ � as in Definition 3.6, we have an isomorphism of Zp[[�]]-
modules

Sel�0
I (M∗[p]/F∞) � Sel�0

I (M∗/F∞)[p].
Proof By Lemma 3.5, we have

H1(F�/F∞, M∗[p]) � H1(F�/F∞, M∗)[p].
Therefore, in order to prove the Proposition, it is enough to compare the local conditions
defining the two Selmer groups. At v ∈ �\�0 and v not dividing p, the second part of
Lemma 3.5 shows that the local conditions are equivalent. Since p is odd, the archimedean
part is trivial. At v dividing p, by definition the local conditions are the same. ��

We now relate the �0-non-primitive signed Selmer groups to the signed Selmer groups.

Proposition 3.9 Assume that SelI c (M/F∞) is a cotorsion Zp[[�]]-module. Then

Sel�0
I (M∗/F∞)/SelI (M

∗/F∞) �
∏

w∈�0

H1(F∞,w, M∗)
H1
unr(F∞,w, M∗)

.

Proof By Proposition 2.4, we have the commutative diagram

0 SelI (M∗/F∞) H1(F�/F∞, M∗) P�,I (M∗/F∞) 0

0 Sel�0
I (M∗/F∞) H1(F�/F∞, M∗) P�\�0,I (M

∗/F∞).

= h�0

(20)
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The Snake lemma applied to diagram (20) gives

Sel�0
I (M∗/F∞)/SelI (M

∗/F∞) � Ker(h�0) =
∏

w∈�0

H1(F∞,w, M∗)
H1
unr(F∞,w, M∗)

.

��
Corollary 3.10 Assume that SelI c (M/F∞) and SelI (M∗/F∞) are cotorsion Zp[[�]]-
modules. Then Sel�0

I (M∗/F∞) is a cotorsion Zp[[�]]-module. Furthermore, we have
μ(Sel�0

I (M∗/F∞)) = μ(SelI (M
∗/F∞)),

and

corankZp Sel
�0
I (M∗/F∞) = corankZp SelI (M

∗/F∞) +
∑

w∈�0

corankZp H
1(F∞,w, M∗).

Proof We have already noted that H1
unr(F∞,w, M∗) is trivial (by [26, Sect. A.2.4]) and that

H1(F∞,w, M∗) is a cotorsion Zp[[�]]-module for all w ∈ �0 (by [9, Proposition 2]). Fur-
thermore, the μ-invariant of the Pontryagin dual of H1(F∞,w, M∗) is zero [11, Proposition
2.4]. Thus the corollary follows from Proposition 3.9. ��

We have an analogue of Theorem 2.1 for �0-non-primitive signed Selmer groups.

Proposition 3.11 Assume that SelI (M∗/F∞) and SelI c (M/F∞) are cotorsion Zp[[�]]-
modules. Then Sel�0

I (M∗/F∞) has no proper sub-Zp[[�]]-modules of finite index.
Proof From the definition of the�0-non-primitive signed Selmer groups and Proposition 2.4,
we have an analogue of Proposition 2.4 for the�0-non-primitive signed Selmer groups. That
is, in diagram (20), the surjectivity of h�0 implies that the sequence

0 → Sel�0
I (M∗/F∞) → H1(F�/F∞, M∗) → P�\�0,I (M

∗/F∞) → 0 (21)

is exact. Similarly, by Proposition 2.4, we have

0 → Sel�0
I (M∗/F) → H1(F�/F, M∗) → P�\�0,I (M

∗/F) → 0.

The proof of the Proposition then follows precisely the one of Theorem 2.1, hence, we skip
it. ��
Corollary 3.12 Assume that SelI (M∗/F∞) and SelI c (M/F∞) are cotorsion Zp[[�]]-
modules. Furthemore, assume that the μ-invariant of SelI (M∗/F∞) is zero. Then the

λ-invariant of Sel�0
I (M∗/F∞) is equal to dimFp Sel

�0
I (M∗[p]/F∞).

Proof By Corollary 3.10, Sel�0
I (M∗/F∞) is a cotorsion Zp[[�]]-module and its μ-invariant

is zero. Thus, the Pontryagin dual of Sel�0
I (M∗/F∞) is a finitely generated Zp-module,

and, by Proposition 3.11, its Zp-torsion submodule is trivial. Thus, Sel�0
I (M∗/F∞) is Zp-

divisible with Zp-corank its λ-invariant (i.e. Sel�0
I (M∗/F∞) � (Qp/Zp)

λ). Therefore, by
Proposition 3.8, we have

λ = dimFp Sel
�0
I (M∗/F∞)[p] = dimFp Sel

�0
I (M∗[p]/F∞).

��
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We are now able to prove the main result of this section.

Theorem 3.13 Assume (Cong.) and choose compatible good bases for T and T ′ as in Sect.
3.2. Let I ∈ Ip and�0 a finite set of prime as inDefinition 3.6 containing the primes of ramifi-
cation of M∗ and M ′,∗. Further, assume that SelI (M∗/F∞), SelI c (M/F∞), SelI (M ′,∗/F∞)

and SelI c (M ′/F∞) are cotorsion Zp[[�]]-modules. Then the μ-invariant of SelI (M∗/F∞)

vanishes if and only if that ofSelI (M ′,∗/F∞) vanishes. Furthermore, when theseμ-invariants

do vanish, the λ-invariants of Sel�0
I (M∗/F∞) and Sel�0

I (M ′,∗/F∞) are equal.

Proof The hypothesis (Cong.) implies thatM∗[p] � M ′,∗[p] asGF -representations. Hence,
we have

H1(F�/F∞, M∗[p]) � H1(F�/F∞, M ′,∗[p]),
H1(Fv,unr, M

∗[p]) � H1(Fv,unr, M
′,∗[p]),

for v not dividing p. By Remark 3.7 and Proposition 3.4, for each v dividing p, we have

H1
Iv (Fv,∞, M∗[p]) � H1

Iv (Fv,∞, M ′,∗[p]).
It follows that

Sel�0
I (M∗[p]/F∞) � Sel�0

I (M ′,∗[p]/F∞).

Combined with Proposition 3.8, we have

Sel�0
I (M∗/F∞)[p] � Sel�0

I (M∗[p]/F∞) � Sel�0
I (M ′,∗[p]/F∞) � Sel�0

I (M ′,∗/F∞)[p].
Therefore, the first assertion follows from Corollary 3.10. The second claim follows from
Corollary 3.12. ��

As a direct consequence of Theorem 3.13 and Corollary 3.10, we get:

Corollary 3.14 Assume the same hypotheses as in Theorem 3.13 and also assume that

μ(SelI (M
∗/F∞)) = μ(SelI (M

′,∗/F∞)) = 0.

Then

λ −
∑

w∈�0

corankZp H
1(F∞,w, M∗) = λ′ −

∑

w∈�0

corankZp H
1(F∞,w, M ′,∗),

where λ (respectively λ′) denotes the λ-invariant of SelI (M∗/F∞) (respectively SelI (M ′,∗/
F∞)).

Remark 3.15 In Corollary 3.14, we can compute the Zp-coranks of H1(F∞,w, M∗) and
H1(F∞,w, M ′,∗) thanks to [11, Proposition 2.4]. Let v be the prime of F under w and �

be the rational prime (different from p) under v. We denote by (M∗
p)Fv,unr the maximal

quotient of M∗
p on which the group Gal(Fv/Fv,unr) acts trivially and we set Pv(X) =

det(1 − Frobv X |(M∗
p)Fv,unr ) ∈ Zp[X ]. Then the corank of H1(F∞,w, M∗) is equal to the

multiplicicy of �−[Fv :Qp] as root of Pv(X) in Fp[X ].
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