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Abstract
We study average Hewitt–Stromberg measures of typical compact metric spaces belonging
to the Gromov–Hausdorff space (of all compact metric spaces) equipped with the Gromov–
Hausdorff metric.
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1 Introduction

Recall that a subset E of a metric space M is called co-meagre if its complement is meagre;
also recall that if P is a property that the elements of M may have, then we say that a typical
element x in M has property P if the set E = {x ∈ M | x has property P} is co-meagre,
see Oxtoby [16] for more details. The purpose of this paper is to investigate the average
Hewitt–Stromberg measures of a typical compact metric space belonging to the Gromov–
Hausdorff space KGH of all compact metric spaces; the precise definitions of the average
Hewitt–Stromberg measures and the Gromov–Hausdorff space KGH will be given below.

Recall that a dimension function is an increasing and right continuous function h :
(0,∞) → (0,∞) with h(r) → 0 as r → 0. The two most important and commonly
used fractal measure of a metric space X are the h-dimensional Hausdorff measure Hh(X)

and the h-dimensional packing measure Ph(X) associated with the dimension function h;
the precise definitions of Hh(X) and Ph(X) will be given in Sect. 2.2. It is well-known that
these measures satisfy the following inequality,

Hh(X) ≤ Ph(X).

However, there are two further and (perhaps) equally important but less well-known fractal
measures of a metric space X , namely, the lower and upper Hewitt–Stromberg measures
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associated with the dimension function h; the lower and upper Hewitt–Stromberg measures
of X associated with the dimension function h will be denoted by Uh(X) and Vh(X), respec-
tively. The Hausdorff measure, the packing measure and the Hewitt–Stromberg measures
satisfy the following string of inequalities

Hh(X) ≤ Uh(X) ≤ Vh(X) ≤ Ph(X); (1.1)

in particular, the Hewitt–Stromberg measures form a natural interpolation between the Haus-
dorff measure and the packing measure. Hewitt–Stromberg measures were introduced by
Hewitt and Stromberg in an intriguing exercise in their classical textbook from 1965 [10,
(10.51)], and have subsequently been investigated further, see, for example [7,8,22], high-
lighting their importance in the study of local properties of fractals and products of fractals.
In particular, Edgar’s textbook [2, pp. 32–36] provides an excellent and systematic introduc-
tion to Hewitt–Stromberg measures, and the measures also appear explicitly in, for example,
Pesin’s monograph [17, 5.3] and implicitly in Mattila’s text [13].

We now return to the main question: what are the fractal measures of a typical compact
metric space? We are, of course, not the first to ask this question. Indeed, many different
aspects of this problem have been studied by several authors during the past 20 years, includ-
ing [1,4,6,12] and the references therein, and the question also appears implicitly in [5].
While (almost) all previous work, including, for example, [1,4–6], study fractal measures
of typical compact subsets of a given complete metric space, this paper adopts a new and
different viewpoint introduced very recently by Rouyer [20] and investigated further in [12],
namely, we investigate typical compact metric spaces belonging to the Gromov–Hausdorff
space KGH of all compact metric spaces. For example, in [12] the authors prove the follow-
ing result about the fractal measures of a typical compact metric spaces belonging to the
Gromov–Hausdorff space KGH.

Theorem A [12] Let h be a continuous dimension function. A typical compact metric space
X ∈ KGH satisfies

Hh(X) = Uh(X) = 0, Vh(X) = Ph(X) = ∞.

We immediately note that the result in Theorem A is qualitatively similar to the behaviour of
the Hausdorff measure of a typical compact subset of a fixed complete metric space. Indeed,
it follows from [1, Remark 4.3] that if h is a right-continuous dimension function and X is a
given fixed completemetric space, then a typical compact subset K of X satisfiesHh(K ) = 0.
We also note that Theorem A shows that the lower Hewitt–Stromberg measure (and hence
the Hausdorff measure and the Hausdorff dimension) of a typical compact metric space is
as small as possible and that the upper Hewitt–Stromberg measure (and hence the packing
measure and the packing dimension) of a typical compact metric space is as big as possible.
Other studies of typical compact sets, see [5,15,20], show the same dichotomy. For example,
[20] proves that a typical compact metric space has lower box dimension equal to 0 and upper
box dimension equal to ∞, and Gruber [5] and Myjak and Rudnicki [15] prove that if X is
a metric space, then the lower box dimension of a typical compact subset of X is as small as
possible and that the upper box dimension of a typical compact subset of X is (in many cases)
as big as possible. The purpose of this paper is to analyse this intriguing dichotomy, and, in
particular, the dichotomy in Theorem A, in more detail. We will prove that the behaviour of
a typical compact metric space is spectacularly more irregular than suggested by Theorem A
and the results in [5,15,20]. Namely, there are standard techniques, known as averaging
systems, that (at least in some cases) can assign limiting values to divergent functions; the
precise definition of an averaging system will be given in Sect. 2.5 below. This technique can
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On average Hewitt–Stromberg measures of typical compact metric spaces 1203

be applied to the definition of theHewitt–Strombergmeasures as follows. Namely, for E ⊆ X
and r > 0, let Mr (E) denote the largest number of pairwise disjoint closed balls in X with
centres in E and radii equal to r , and for a dimension function h, define the h-dimensional
box counting function Fh

E (r) of E by

Fh
E (r) = Mr (E) h(2r).

The Hewitt–Stromberg measures Uh(E) and Vh(E) of a subset E of X are defined in terms
of the lower and upper limits of the box counting function Fh

E (r) of E , namely,

Uh(E) = inf
E⊆∪∞

i=1Ei

∞∑

i=1

lim inf
r↘0

Fh
Ei

(r),

Vh(E) = inf
E⊆∪∞

i=1Ei

∞∑

i=1

lim sup
r↘0

Fh
Ei

(r); (1.2)

i.e. the measures Uh and Vh are obtained by applying Munroe’s Method I to the set functions
E 	→ lim infr↘0 Fh

E (r) and E 	→ lim supr↘0 F
h
E (r), see [14]. Fixing an averaging system,

� say, and replacing the lower and upper limits of Fh
Ei

(r) in (1.2) by the lower and upper �-

averages of Fh
Ei

(r) yields the lower and upper average Hewitt–Stromberg measures Uh
�(X)

and Vh
�(X); see Sect. 2.5 for precise definitions of this. The average Hewitt–Stromberg

measures form an interpolation between the Hausdoff measure and the packing measure
that is finer than the interpolation (1.1) provided by the Hewitt–Stromberg measures; more
precisely, we have

Hh(X) ≤ Uh(X) ≤ Uh
�(X) ≤ Vh

�(X) ≤ Vh(X) ≤ Ph(X). (1.3)

The purpose of this paper is to show the following (surprising?) result: not only is the box
counting function Fh

X (r) of a typical compact metric space X so divergent that Uh(X) = 0
and Vh(X) = ∞, but it is so irregular that it remains spectacularly divergent even after being
“averaged” or “smoothened out” by very general averaging systems � (satisfying the mild
closure-stability condition in Sect. 2.6). Specifically, if � is an averaging system, then the
associated average Hewitt–Stromberg measures satisfy Uh

�(X) = 0 and Vh
�(X) = ∞ for a

typical compact metric space X ; more precisely, we prove the following theorem.

Theorem 1.1 (Special case of Theorem 2.5) Let h be a continuous dimension function and let
� be an averaging system satisfying the h-closure stability condition in Sect. 2.6. A typical
compact metric space X ∈ KGH satisfies

Hh(X) = Uh(X) = Uh
�(X) = 0, Vh

�(X) = Vh(X) = Ph(X) = ∞.

We present several applications of this result. For example, as an application of Theorem 1.1
we show that a typical compact metric space X is so irregular that the lower (upper) average
Hewitt–Stromberg measures associated with all higher order Hölder averages of the box
counting function Fh

X (r) equal 0 (∞); below we state a precise version of this and refer the
reader to Theorem 3.1 for a more general version of the result.

Theorem 1.2 (Special case of Theorem 3.1) Let h be a continuous dimension function and
n ∈ N ∪ {0}. We define the n’th order Hölder averages, denoted by Fh

E,n(t), of the box

counting function Fh
E (r) of a subset E of a metric space X inductively by

Fh
E,0(t) = Fh

E (e−t ), Fh
E,n(t) = 1

t

∫ t

1
Fh
E,n−1(s) ds,
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and we define the lower and upper n’th order Hölder average Hewitt–Stromberg measures
of X by

UH,h
n (X) = inf

X=∪∞
i=1Ei

∞∑

i=1

lim inf
t→∞ Fh

Ei ,n(t),

VH,h
n (X) = inf

X=∪∞
i=1Ei

∞∑

i=1

lim sup
t→∞

Fh
Ei ,n(t).

The higher order Hölder average Hewitt–Stromberg measures form a double infinite hierar-
chy between the Hausdorff measure and the packing measure in (at least) countably infinite
many levels, namely,

Hh(X) ≤ Uh(X) = UH,h
0 (X) ≤ UH,h

1 (X) ≤ · · · ≤ VH,h
1 (X) ≤ VH,h

0 (X) = Vh(X) ≤ Ph(X),

and a typical compact metric space X ∈ KGH satisfies

UH,h
n (X) = 0, VH,h

n (X) = ∞,

for all n ∈ N ∪ {0}.
We emphasise that Theorems 1.1 and 1.2 are special cases of more general results presented
in Sect. 2.

The paper is structured as follows.We first recall the definitions of the Gromov–Hausdorff
space and the Gromov–Hausdorff metric in Sect. 2.1. In Sects. 2.2–2.3 we recall the defini-
tions of the various fractalmeasures investigated in the paper. The definitions of theHausdorff
and packing measures are recalled in Sect. 2.2 and the definitions of the Hewitt–Stromberg
measures are recalled in Sect. 2.3; while the definitions of the Hausdorff and packing mea-
sures are well-known, we have, nevertheless, decided to include these – there are two main
reasons for this: firstly, to make it easier for the reader to compare and contrast the Hausdorff
and packing measurers with the less well-known Hewitt–Stromberg measures, and secondly,
to provide a motivation for the Hewitt–Strombergmeasures. Section 2.4 recalls earlier results
on the values of the Hausdorff measure, the packingmeasure and the Hewitt–Strombergmea-
sures of typical compact metric spaces; this discussion is included in order to motivate our
main results presented Sects. 2.5–2.6. In Sect. 2.5 we define average Hewitt–Stromberg mea-
sures, and in Sect. 2.6 we compute the exact values of average Hewitt–Stromberg measures
of typical compact metric spaces. In Sect. 3 we apply the main results from Sects. 2.5–2.6 to
the detailed study of average Hewitt–Stromberg measures associated with two of the most
important types of averages, namely, higher order Hölder averages and higher order Cesaro
averages. Finally, the proofs are given in Sects. 4–6.

2 Statements of results

2.1 The Gromov–Hausdorff space KGH and the Gromov–Hausdorff metric dGH

We define the pre-Gromov–Hausdorff space KGH by

KGH =
{
X

∣∣∣ X is a compact and non-empty metric space
}

.

Next, we define the equivalence relation∼ inKGH as follows, namely, for X , Y ∈ KGH, write

X ∼ Y ⇔ there is a bijective isometry f : X → Y .

123



On average Hewitt–Stromberg measures of typical compact metric spaces 1205

It is clear that ∼ is an equivalence relation in KGH, and the Gromov–Hausdorff space KGH is
now defined as the space of equivalence classes, i.e.

KGH = KGH
/
∼.

While elements of KGH are equivalence classes of compact metric spaces, we will use the
standard convention and identify an equivalence class with it representative, i.e. we will
regard the elements of KGH as compact metric spaces and not as equivalence classes of
compact metric spaces. Next, we define the Gromov–Hausdorff metric dGH on KGH. If Z is a
metric space, and A and B are compact subsets of Z , then the Hausdorff distance dH(A, B)

between A and B is defined by

dH(A, B) = max

(
sup
x∈A

dist(x, B), sup
y∈B

dist(y, A)

)
,

where dist(z, E) = infx∈E d(z, x) for z ∈ Z and E ⊆ Z . The Gromov–Hausdorff metric
dGH on KGH is now define by

dGH(X , Y ) = inf
{
dH( f (X), g(Y ))

∣∣∣ Z is a complete metric space

and f : X → Z and g : Y → Z are isometries } .

for X , Y ∈ KGH. The reader is referred to [18, Chapter 10] for a detailed discussion of the
Gromov–Hausdorff space and the Gromov–Hausdorff metric. In particular, we note that it
follows from [18] that the Gromov–Hausdorff space (KGH, dGH) is complete (and, hence, not
meagre) and the classification of subsets of KGH usingBaire category is thereforemeaningful.

2.2 Hausdorff measure and packingmeasure

While the definitions of the Hausdorff and packing measures (and the Hausdorff and packing
dimensions) are well-known, we have, nevertheless, decided to briefly recall the definitions
below. There are several reasons for this: firstly, since we are working in general (compact)
metric spaces, the different definitions that appear in the literature may not all agree and
for this reason it is useful to state precisely the definitions that we are using; secondly, and
perhaps more importantly, the less well-known Hewitt–Stromberg measures (which will be
defined below in Sect. 2.3) play an important part in this paper and to make it easier for the
reader to compare and contrast the definitions of the Hewitt–Stromberg measures and the
definitions of the Hausdorff and packing measures it is useful to recall the definitions of the
latter measures; thirdly, in order to provide a motivation for the Hewitt–Stromberg measures.
We start by recalling the definition of a dimension function.

Definition (Dimension function) A function h : (0,∞) → (0,∞) is called a dimension
function if h is increasing, right continuous and limr↘0 h(r) = 0.

The Hausdorff measure associated with a dimension function h is defined as follows. Let
X be a metric space and E ⊆ X . For δ > 0, we write

Hh
δ (E) = inf

{
∑

i

h(diam(Ei ))

∣∣∣∣ E ⊆
∞⋃

i=1

Ei , diam(Ei ) < δ

}
.

The h-dimensional Hausdorff measure Hh(E) of E is now defined by

Hh(E) = sup
δ>0

Hh
δ (E).
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1206 L. Olsen

The reader is referred to Rogers classical text for [19] for an excellent and systematic dis-
cussion the Hausdorff measures Hh .

The packing measure associated with a dimension function h is defined as follows. For
x ∈ X and r > 0, let C(x, r) denote the closed ball in X with centre at x and radius equal to
r , and for δ > 0, write

Ph
δ (E) = sup

{ ∞∑

i=1

h(2ri )

∣∣∣∣ (C(xi , ri ))
∞
i=1 is a family of pairwise disjoint closed balls in X

with ri < δ and centres in E

}
.

The h-dimensional prepacking measure Ph
(E) of E is now defined by

Ph
(E) = inf

δ>0
Ph

δ (E),

and the h-dimensional packing measure P t (E) of E is defined as follows

Ph(E) = inf
E⊆∪∞

i=1Ei

∞∑

i=1

Ph
(Ei ).

2.3 Hewitt–Strombergmeasures

Hewitt–Stromberg measures were introduced by Hewitt and Stromberg in their classical
textbook [10, (10.51)]. While Hausdorff and packing measures are defined using coverings
and packings by families of sets with diameters less than a given positive number, δ say, the
Hewitt–Stromberg measures are defined using packings of balls with the same diameter δ.

We will now recall the definition the Hewitt–Stromberg measures. Let X be a metric space
and E ⊆ X . We first recall the definition of the packing number of E . For r > 0, the packing
number Mr (E) of E is defined by

Mr (X) = sup
{
|B|

∣∣∣B is a family of pairwise disjoint closed balls in X

with radii equal to r and centres in E
}

. (2.1)

Next, we recall the definition of the Hewitt–Stromberg measures associated with a dimension
function h. For a metric space X and E ⊆ X , we define the lower and upper h-dimensional

Hewitt–Stromberg pre-measures, denote by Uh
and Vh

, respectively, by

Uh
(E) = lim inf

r↘0
Mr (E)h(2r).

Vh
(E) = lim sup

r↘0
Mr (E)h(2r).
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On average Hewitt–Stromberg measures of typical compact metric spaces 1207

Finally, we define the lower and upper h-dimensional Hewitt–Stromberg measures, denote
by Uh and Vh , respectively, by

Uh(E) = inf
E⊆∪∞

i=1Ei

∞∑

i=1

Uh
(Ei ),

Vh(E) = inf
E⊆∪∞

i=1Ei

∞∑

i=1

Vh
(Ei ).

Thenext result summarises the basic inequalities satisfiedby theHewitt–Strombergmeasures,
the Hausdorff measure and the packing measure.

Proposition 2.1 Let h be a dimension function. Then we have

Uh
(E) ≤ Vh

(E) ≤ Ph
(E)

∨l ∨l ∨l

Hh(E) ≤ Uh(E) ≤ Vh(E) ≤ Ph(E)

for all metric spaces X and all E ⊆ X.

Proof This follows immediately from the definitions; see also [2, pp. 32–36]. �

2.4 Hausdorff measures, packingmeasures and Hewitt–Strombergmeasures of
typical compact spaces

Jurina et al [12] have recently computed the Hausdorff measures, the packing measures and
the Hewitt–Stromberg measures of typical compact spaces; this is the content of Theorem B
below.

Theorem B [12] Hausdorff measures, packing measures and Hewitt–Stromberg measures of
typical compact spaces. Let h be a continuous dimension function.

(1) A typical compact metric space X ∈ KGH satisfies

Hh(X) = Uh(X) = Uh
(X) = 0.

(2) A typical compact metric space X ∈ KGH satisfies

Vh(U ) = Vh
(U ) = Ph(U ) = ∞

for all non-empty open subsets U of X. In particular, a typical compact metric space
X ∈ KGH satisfies

Vh(X) = Vh
(X) = Ph(X) = ∞.

Theorem B shows that the lower Hewitt–Stromberg pre-measure and the lower Hewitt–
Stromberg measure of a typical compact metric space are as small as possible and that the
upper Hewitt–Stromberg pre-measure and the upper Hewitt–Stromberg measure of a typical
compact metric space are as big as possible. We will analyse this intriguing dichotomy in
more details by forming different types of averages. In order to do so, we introduce the
following notation. Namely, for a dimensions function h and a subset E of a metric space X ,
we define the h-dimensional box counting function f hE : (0,∞) → [0,∞] of E by

f hE (t) = Me−t (E) h(2e−t ) (2.2)
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(hence, the h-dimensional box counting function f hE (t) = Me−t (E) h(2e−t ) in (2.2) is
obtained from the h-dimensional box counting function Fh

E (r) = Mr (E) h(2r) in Sect. 1 by
introducing the following change of variables, namely, by letting r = e−t ; the reason for this
change of variables is that it is more convenient to let t → ∞ when forming averages than
letting r ↘ 0). Using the notation from (2.1), the Hewitt–Stromberg pre-measures of X are
now given by

Uh
(X) = lim inf

t→∞ f hX (t),

Vh
(X) = lim sup

t→∞
f hX (t), (2.3)

and Theorem B therefore shows that the h-dimensional box counting function f hX (t) of a
typical compact metric space X ∈ KGH diverges in the worst possible way as t → ∞. Below
we analyse this divergence in detail using average procedures known as average systems.

2.5 Average Hewitt–Strombergmeasures

We start by recalling the definition of an averaging (or summability) system; the reader is
referred to Hardy’s classical text [9] for a systematic treatment of averaging systems.

Definition (Average system) An averaging system is a family � = (�t )t≥t0 with t0 > 0
such that:

(i) �t is a finite Borel measure on [t0,∞);
(ii) �t has compact support;
(iii) The Consistency Condition: If f : [t0,∞) → [0,∞) is a positive measurable function

and there is a real number a such that f (t) → a as t → ∞, then
∫

f d�t → a as t →
∞.

If f : [t0,∞) → [0,∞) is a positive measurable function, then we define lower and upper
�-average of f by

A� f = lim inf
t→∞

∫
f d�t

and

A� f = lim sup
t→∞

∫
f d�t ,

respectively.

Applying averaging systems to the box counting function f hE (t) in (2.2) leads to the definition
of average Hewitt–Stromberg measures.

Definition (Average Hewitt–Stromberg measures) Let h be a dimension function and let
� = (�t )t≥t0 be an averaging system. For a metric space X and E ⊆ X , we define the lower
and upper �-average h-dimensional Hewitt–Stromberg pre-measures of E by

Uh
�(E) = A� f hE = lim inf

t→∞

∫
f hE d�t

and

Vh
�(E) = A� f hE = lim sup

t→∞

∫
f hE d�t ,
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On average Hewitt–Stromberg measures of typical compact metric spaces 1209

We define the lower and upper �-average h-dimensional Hewitt–Stromberg measures of E
by

Uh
�(E) = inf

E⊆∪∞
i=1Ei

∞∑

i=1

Uh
�(Ei )

and

Vh
�(E) = inf

E⊆∪∞
i=1Ei

∞∑

i=1

Vh
�(Ei ),

respectively

Note that Hewitt–Stromberg measures are, in fact, average Hewitt–Stromberg measures.
Indeed, if X a metric space and we let � denote the average system defined by � = (δt )t≥1

(where δt denotes the Dirac measure concentrated at t), then clearly

Uh(E) = Uh
�(E), Vh(E) = Vh

�(E) (2.4)

for all subsets E of X . Below we list the basic inequalities satisfied by the average Hewitt–
Stromberg measures, the Hausdorff measure and the packing measure.

Proposition 2.2 Let h be a dimension function and let � be an averaging system. Then we
have

Uh
(E) ≤ Uh

�(E) ≤ Vh
�(E) ≤ Vh

(E) ≤ Ph
(E)

∨l ∨l ∨l ∨l ∨l

Hh(E) ≤ Uh(E) ≤ Uh
�(E) ≤ Vh

�(E) ≤ Vh(E) ≤ Ph(E)

for all metric spaces X and all E ⊆ X.

Proof The statement is not difficult to prove and we have therefore decided to omit the proof.
�

2.6 Average Hewitt–Strombergmeasures of typical compact spaces

In this section we present our main results. Many of our main results are valid for arbitrary
averaging systems. However, in order to obtain the most optimal results we occasionally will
have to assume that the averaging system satisfies a mild technical condition, namely, the
h-closure-stability condition given in the following definition.

Definition (h-closure-stable) Let h be a dimension function. An averaging system� is called

h-closure-stable if Uh
�(E) = Uh

�(E) and Vh
�(E) = Vh

�(E) for all metric spaces X and all
E ⊆ X .

We immediately note that two important classes of averaging system are closure-stable.
Namely, Proposition 2.3 (below) shows that the trivial averaging system � = (δt )t≥1 is
h-closure-stable for any dimension function, and Proposition 2.4 (below) shows that if � =
(�t )t≥t0 is an averaging system and each measure �t has a continuous density with respect
to Lebesgue measure, then � is h-closure-stable for any continuous dimension function.

Proposition 2.3 The averaging system � = (δt )t≥1 (where δt denotes the Dirac measure
concentrated at t) is h-closure-stable for any dimension function h.
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1210 L. Olsen

Proof This follows easily from the definitions and we have therefore decided to omit the
proof.

Proposition 2.4 Let � = (�t )t≥t0 be an averaging system and assume that for each t there
is a measurable function πt : [t0,∞) → [0,∞) satisfying

�t (B) =
∫

B
πt (s) ds

for all Borel sets B and such that if we write Tt = sup suppπt , then

(i) suppπt = [t0, Tt ];
(ii) πt is continuous on [t0, Tt ];
(iii) πt > 0 on [t0, Tt ].
Then � is h-closure-stable for any continuous dimension function h.

The proof of Proposition 2.4 is given in Sect. 4.We can now state the main result in this paper,
namely, Theorem 2.5 below. Theorem 2.5 provides the following (surprising?) extension of
Theorem B: not only is the box counting function f hX (t) = Me−t (X) h(2e−t ) of a typical
compactmetric space X divergent as t → ∞, but it is so irregular that it remains spectacularly
divergent as t → ∞ even after being “averaged” or “smoothened out” using very general
averaging systems including, as will be shown in Sect. 3, all higher order Hölder and Cesaro
averages.

Theorem 2.5 (Average Hewitt–Stromberg measures of typical compact spaces) Let h be a
continuous dimension function and let � be an averaging system.

(1) A typical compact metric space X ∈ KGH satisfies

Uh
�(X) = 0.

(2) A typical compact metric space X ∈ KGH satisfies

Vh
�(U ) = ∞

for all non-empty open subsets U of X.
(3) If, in addition, � is h-closure-stable, then a typical compact metric space X ∈ KGH

satisfies

Vh
�(U ) = ∞

for all non-empty open subsets U of X.

The proof of Theorem 2.5 is given in Sects. 4–6. Section 4 contains various preliminary
auxiliary results; the proof of Theorem 2.5.(1) is given in Sect. 5, and the proofs of Theo-
rem 2.5.(2)–(3) are given in Sect. 6.

Note that if we apply Theorem 2.5 to the trivial average system� defined by� = (δt )t≥1,
then it follows from (2.4) that the statement in Theorem 2.5 reduces to Theorem B.

Wewill now apply Theorem 2.5 to study averageHewitt–Strombergmeasures obtained by
considering higher order Hölder and Cesaro averages of the box counting function f hX (t) =
Me−t (X) h(2e−t ); this is the contents of Sect. 3 below.
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3 Hölder and Cesaro averages of Hewitt–Strimborgmeasurers of a
typical compact metric space

Two of the most commonly used averaging system are Hölder averages and Cesaro averages.
We will now define these average systems and apply them to the box counting function
f hX (t) = Me−t (X) h(2e−t ) of a metric space X . For a > 0 and a positive measurable
function f : (a,∞) → [0,∞), we define M f : (a,∞) → [0,∞) by

(M f )(t) = 1

t

∫ t

a
f (s) ds.

For a positive integer n, we now define the lower and upper n’th order Hölder averages of f
by

Hn f = lim inf
t→∞ (Mn f )(t),

Hn f = lim sup
t→∞

(Mn f )(t).

The Cesaro averages are defined as follows. First, we define I f : (a,∞) → [0,∞) by

(I f )(t) =
∫ t

a
f (s) ds.

For a positive integer n, we now define the lower and upper n’th order Cesaro averages of f
by

Cn f = lim inf
t→∞

n!
tn

(I n f )(t),

Cn f = lim sup
t→∞

n!
tn

(I n f )(t).

It is well-known that the Hölder and Cesaro averages satisfy the following inequalities,
namely,

lim inf
t→∞ f (t) = H0 f ≤ H1 f ≤ H2 f ≤ · · · ≤ H2 f ≤ H1 f ≤ H0 f = lim sup

t→∞
f (t),

lim inf
t→∞ f (t) = C0 f ≤ C1 f ≤ C2 f ≤ · · · ≤ C2 f ≤ C1 f ≤ C0 f = lim sup

t→∞
f (t).

(3.1)

It is also well-known that the Hölder and Cesaro averages are averaging systems in the sense
of the definition in Sect. 2.5. Indeed, if we for a positive integer n, define the averaging system
�H

n = (�H
n,t )t≥a by

�H
n,t (B) = 1

(n − 1)! t
∫

[a,t]∩B
(log t − log s)n−1 ds

for Borel subsets B of [a,∞), then

Hn f = lim inf
t

∫
f d�H

n,t ,

Hn f = lim sup
t

∫
f d�H

n,t ,

see, for example, [11, p. 675]. Similarly, if we for a positive integer n, define the averaging
system �C

n = (�C
n,t )t≥a by
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�C
n,t (B) = n

tn

∫

[a,t]∩B
(t − s)n−1 ds

then

Cn f = lim inf
t

∫
f d�C

n,t ,

Cn f = lim sup
t

∫
f d�C

n,t ,

see, for example, [9, pp. 110-111].
Using Hölder and Cesaro averages we can now introduce average Hölder and Cesaro

Hewitt–Stromberg measures by applying the definitions of the Hölder and Cesaro averages
to the function f hX (t) = Me−t (X) h(2e−t ). This is the content of the next definition.

Definition (Average Hölder and Cesaro Hewitt–Stromberg measures) Let X be a metric
space and n an integer with n ≥ 0. We define the lower and upper n’th order average Hölder
Hewitt–Stromberg measures of a subset E of X , denoted UH,h

n (E) and VH,h
n (E), by

UH,h
n (E) = Uh

�H
n
(E),

VH,h
n (E) = Vh

�H
n
(E).

Similarly, we define the lower and upper n’th order average Cesaro Hewitt–Stromberg mea-
sures of a subset E of X , denoted UC,h

n (E) and VC,h
n (E), by

UC,h
n (E) = Uh

�C
n
(E),

VC,h
n (E) = Vh

�C
n
(E).

The higher order average Hölder and Cesaro Hewitt–Stromberg measures form a double
infinite hierarchy between the Hausdorff measure and the packing measure in (at least)
countably infinite many levels, namely, we have (using (3.1))

Hh(E) ≤ Uh(E) = UH,h
0 (E) ≤ UH,h

1 (E) ≤ · · · ≤ VH,h
1 (E) ≤ VH,h

0 (E) = Vh(E) ≤ Ph(E),

Hh(E) ≤ Uh(E) = UC,h
0 (E) ≤ UC,h

1 (E) ≤ · · · ≤ VC,h
1 (E) ≤ VC,h

0 (E) = Vh(E) ≤ Ph(E).

(3.2)

As an application of Theorem 2.5, we will now show that the behaviour of a typical compact
metric space X ∈ KGH is so irregular that not even the hierarchies in (3.2) formed by taking
Hölder and Cesaro averages of all orders are sufficiently powerful to “smoothen out” the
behaviour of the box counting function f hX (t) = Me−t (X) h(2e−t ) as t → ∞.

Theorem 3.1 Let h be a continuous dimension function. A typical compact metric space
X ∈ KGH satisfies

UH,h
n (X) = UC,h

n (X) = 0

for all n ∈ N ∪ {0}, and
VH,h
n (U ) = VC,h

n (U ) = ∞
for all non-empty open subsets U of X and all n ∈ N ∪ {0}.
Proof This statement follows immediately from Theorem 2.5. �
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4 Proof of Proposition 2.4

We now turn towards the proof of Proposition 2.4. More precisely, the purpose of this section
is threefold. Firstly, we recall a technical auxiliary result due to Gruber [5] and Rouyer [20]
about the packing number (defined in (2.1)) and the covering number (defined below) of a
metric space; this result plays an important role in Sects. 5, 6 and is stated in Lemma 4.1.
Secondly, we prove an auxiliary results about the average h-dimensional Hewitt–Stromberg
measures associatedwith h-closure-stable average systems; this result also plays an important
role in Sects. 5, 6 and is proven in Lemma 4.2. Thirdly, and finally, we prove Proposition 2.4
showing that if � = (�t )t≥t0 is an averaging system and each measure �t has a continuous
density with respect to Lebesgue measure, then � is h-closure-stable for any continuous
dimension function h.

We first recall the statement in Lemma 4.1 below; this is a well-known result due to Gruber
[5] and Rouyer [20] and lists some useful continuity properties of the packing number and
the covering number of a metric space. Recall, that if X is a metric space and E ⊆ X , then
the packing number Mr (E) of E is defined by

Mr (X) = sup
{
|B|

∣∣∣B is a family of pairwise disjoint closed balls in X

with radii equal to r and centres in E
}

. (4.1)

We also define the covering number Nr (E) of E by

Nr (E) = inf
{
|B|

∣∣∣B is a family of closed balls in X with radii equal to r that covers E
}

.

(4.2)

We can now state Lemma 4.1

Lemma 4.1 (1) The function Nr : KGH → R is lower semi-continuous for all r > 0.
(2) The function Mr : KGH → R is upper semi-continuous for all r > 0.
(3) We have Mr (X) ≤ Nr (X) ≤ Mr

3
(X) for all r > 0 and all X ∈ KGH.

Proof This follows from [20, Lemma 9]; see also [5]. �
Secondly, we prove Lemma 4.2 providing a useful technique for establishing lower bounds

for the average h-dimensional Hewitt–Stromberg measures associated with h-closure-stable
average systems. Recall (see Sect. 2.6), that if h is a dimension function, then an average

system � is called h-closure-stable if Uh
�(E) = Uh

�(E) and Vh
�(E) = Vh

�(E) for all metric
spaces X and all E ⊆ X . We can now state Lemma 4.2.

Lemma 4.2 Let h be a continuous dimension function and let� = (�t )t≥t0 be an h-closure-
stable averaging system. Let X be a complete metric space and let C be a compact subset of
X. Fix c ≥ 0. Then the following statements hold.

(1) If Uh
�(V ∩ C) ≥ c for all open subsets V of X with V ∩ C �= ∅, then Uh

�(C) ≥ c.

(2) If Vh
�(V ∩ C) ≥ c for all open subsets V of X with V ∩ C �= ∅, then Vh

�(C) ≥ c.

Proof (1) Assume thatUh
�(V ∩C) ≥ c for all open subsets V of X with V ∩C �= ∅. Wemust

now show that Uh
�(C) ≥ c. Let (Ei )i be a countable family of subsets of X with C ⊆ ∪i Ei .

Since C = ∪i Ei ⊆ ∪i Ei , it follows from Baire’s category theorem that there is an index i0
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and an open subset W of X such that C ∩W �= ∅ and C ∩W ⊆ Ei0 . We therefore conclude

that Uh
�( Ei0 ) ≥ Uh

�(C ∩ W ) ≥ c. Since � is h-closure-stable, it follows from this that
∑

i

Uh
�(Ei ) ≥ Uh

�(Ei0) = Uh
�( Ei0 ) ≥ c. (4.3)

Finally, using (4.3) and taking infimum over all countable families (Ei )i of subsets of X with

C ⊆ ∪i Ei , shows that Uh
�(E) = infE⊆∪∞

i=1Ei

∑∞
i=1 U

h
�(Ei ) ≥ c.

(2) The proof of this statement is identical to the proof of the statement in Part (1) and is
therefore omitted. �

Thirdly, and finally, we prove Proposition 2.4 from Sect. 2. We start with a small lemma.

Lemma 4.3 Let r > 0 and 0 < u < 1. Then

Mr ( E ) ≤ Mur (E).

for all compact metric spaces X and all E ⊆ X.

Proof Write δ = 1 − u ∈ (0, 1). It follows from the definition of the packing number

Mr ( E ) that we can find a family (C(xi , r))
Mr ( E )
i=1 of pairwise disjoint closed balls C(xi , r)

in X with radii equal to r and centres xi ∈ E . Since xi ∈ E , there is a point yi ∈ E such that

yi ∈ B(xi , δr), whence C(yi , (1 − δ)r) ⊆ C(xi , r). As the family (C(xi , r))
Mr ( E )
i=1 consists

of pairwise disjoint balls, we therefore conclude that (C(yi , (1 − δ)r))Mr ( E )
i=1 is a family of

pairwise disjoint closed balls in X with radii equal to (1 − δ)r and centres yi ∈ E . This
clearly implies that Mr ( E ) ≤ M(1−δ)r (E) = Mur (E). �
We can now prove Proposition 2.4.

Proof of Proposition 2.4 Let X be ametric space and E ⊆ X . It is clear that Uh
�(E) ≤ Uh

�(E)

and Vh
�(E) ≤ Vh

�(E), and it therefore suffices to prove that Uh
�(E) ≤ Uh

�(E) and Vh
�(E) ≤

Vh
�(E). We will now prove these inequalities. Let ε > 0. Fix t ≥ t0. Next we define three

numbers ρt , δt and ut as follows.

Definition of ρt . Write Kt = {(u, v) | u ≥ t0, v ≥ 0, t0 ≤ u − v ≤ Tt } and define
Dt : Kt → [0,∞) by Dt (u, v) = πt (u−v)

πt (u)
. Since Kt is compact and Dt is continuous,

we conclude that Dt is uniformly continuous, and we can therefore find a positive real
number ρt > 0 such that if (u′, v′), (u′′, v′′) ∈ Kt and |(u′, v′) − (u′′, v′′)| ≤ ρt , then
|Dt (u′, v′) − Dt (u′′, v′′)| ≤ ε. In particular, this implies that if (u, v) ∈ Kt and v ≤ ρt , then
|(u, v) − (u, 0)| = v ≤ ρt , and so |Dt (u, v) − Dt (u, 0)| ≤ ε, whence

Dt (u, v) ≤ Dt (u, 0) + ε = 1 + ε. (4.4)

Definition of δt . Since h is continuous, and therefore uniformly continuous on compact
subintervals of (0,∞), we can find a positive real number δt > 0, such that if s′, s′′ ∈ [t0, Tt ]
with |s′ − s′′| ≤ δt , then

|h(2e−s′) − h(2e−s′′)| ≤ ε

Me−(Tt+1) (E)
. (4.5)

Definition of ut . We can clearly choose a positive number 0 < ut < 1 such that

| log ut | ≤ min

(
1, ρt , δt ,

ε(
supt0≤s≤Tt+1 f hE (s)

) (
supt0≤s≤Tt πt (s)

)
)

. (4.6)
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After having defined the numbers ρt , δt and ut , we put vt = | log ut | and note that
ut e−s = e−(s+vt ) for all real numbers s. Also, if s ∈ [t0, Tt ], then we conclude from this and
Lemma 4.3 that

f h
E
(s) = Me−s (E) h(2e−s)

≤ Mute−s (E) h(2e−s)

= Me−(s+vt ) (E) h(2e−s). (4.7)

However, since |(s + vt ) − s| = vt = | log ut | ≤ δt , it follows from (4.5) that h(2e−s) ≤
h(2e−(s+vt )) + ε

Me−(Tt+1) (E)
, and (4.7) therefore implies that

f h
E
(s) ≤ Me−(s+vt ) (E) h(2e−s)

≤ Me−(s+vt ) (E)

(
h(2e−(s+vt )) + ε

Me−(Tt+1) (E)

)

= f hE (s + vt ) + Me−(s+vt ) (E)

Me−(Tt+1) (E)
ε. (4.8)

Next, note that e−(Tt+1) ≤ e−(s+vt ) (because s ≤ Tt and vt = | log ut | ≤ 1), whence

Me−(s+vt ) (E) ≤ Me−(Tt+1) (E), and so
Me−(s+vt ) (E)

Me−(Tt+1) (E)
≤ 1. It follows from this and (4.8) that

f h
E
(s) ≤ f hE (s + vt ) + ε (4.9)

for all s ∈ [t0, Tt ].
Write εt = ε

∫
d�t and note that it follows from (4.9) that

∫
f h
E
d�t =

∫ Tt

t0
f h
E
(s)πt (s) ds

≤
∫ Tt

t0

(
f hE (s + vt ) + ε

)
πt (s) ds

=
∫ Tt

t0
f hE (s + vt )πt (s) ds + εt

=
∫ Tt+vt

t0+vt

f hE (u)πt (u − vt ) du + εt

=
∫ Tt

t0+vt

f hE (u)πt (u − vt ) du +
∫ Tt+vt

Tt
f hE (u)πt (u − vt ) du + εt

≤
∫ Tt

t0+ηt

f hE (u) πt (u) Dt (u, vt ) du

+vt

(
sup

t0≤s≤Tt+1
f hE (s)

) (
sup

t0≤s≤Tt
πt (s)

)
+ εt . (4.10)

Next, it follows from the definition of vt = | log ut | and (4.6) that vt (supt0≤s≤Tt+1 f hE (s))
(supt0≤s≤Tt πt (s)) ≤ ε, and we therefore conclude from (4.10) that

∫
f h
E
d�t ≤

∫ Tt

t0+vt

f hE (u) πt (u) Dt (u, vt ) du + ε + εt . (4.11)
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Also, note that for all u ∈ [t0 + vt , Tt ], we have (u, vt ) ∈ Kt and vt = | log ut | ≤ ρt (by
(4.6)), and it therefore follows from (4.4) that Dt (u, vt ) ≤ 1 + ε. We deduce from this and
(4.11) that

∫
f h
E
d�t ≤ (1 + ε)

∫ Tt

t0+vt

f hE (u) πt (u) du + ε + εt

≤ (1 + ε)

∫
f hE d�t + ε + εt . (4.12)

Since the consistency condition implies that εt = ε
∫
d�t → ε as t → ∞, we

conclude from (4.12) and the definitions of Uh
�(E) = lim inf t

∫
f h
E
d�t and Uh

�(E) =
lim inf t

∫
f hE d�t that Uh

�(E) ≤ (1 + ε)Uh
�(E) + 2ε. Finally, letting ε ↘ 0, gives

Uh
�(E) ≤ Uh

�(E). Similarly, using (4.12) we also conclude that Vh
�(E) ≤ Vh

�(E). �

5 Proof of Theorem 2.5.(1)

The purpose of this section is to prove Theorem 2.5.(1). Recall, that if h is a dimension
function and X ∈ KGH, then we define the function f hX : (0,∞) → (0,∞) by

f hX (t) = Me−t (X) h(2e−t ).

For a dimension function h, an averaging system � = (�t )t≥t0 , and t, c > 0, write

Lh,�
t,c =

{
X ∈ KGH

∣∣∣∣
∫

f hX d�t < c

}
. (5.1)

Lemma 5.1 Let h be a dimension function and let � = (�t )t≥t0 be an averaging system. Fix
t, c > 0. Then the set Lh,�

t,c is open in KGH.

Proof Write

F = KGH \ Lh,�
t,c =

{
X ∈ KGH

∣∣∣∣
∫

f hX d�t ≥ c

}
.

We must now prove that F is closed in KGH. In order to show this, we fix a sequence
(Xn)n in F and X ∈ KGH with Xn → X . We must now prove that X ∈ F , i.e. we must
prove that

∫
f hX d�t ≥ c. We prove this inequality below. For brevity define functions

ϕ, ϕn : [t0,∞) → [0,∞) by

ϕ(s) = Me−s (X) h(2e−s), ϕn(s) = Me−s (Xn) h(2e−s).

We now prove the following three claims.

Claim 1 We have
∫
supn ϕn d�t < ∞.

Proof of Claim 1 The measure �t has compact support, and we can therefore find T0 ≥ t0,
such that supp�t ⊆ [t0, T0]. It follows fromLemma4.1 thatMe−T0 is upper semi-continuous,
and so lim supn Me−T0 (Xn) ≤ Me−T0 (X). In particular, this implies that there is a constant
K such that Me−T0 (Xn) ≤ K for all n. For positive integers n and s ∈ [t0, T0] we therefore
conclude that ϕn(s) = Me−s (Xn) h(2e−s) ≤ Me−T0 (Xn) h(2e−t0) ≤ K h(2e−t0). Finally,

since supp�t ⊆ [t0, T0], it therefore follows that
∫
supn ϕn d�t = ∫ T0

t0
supn ϕn d�t ≤

K h(2e−t0)�t ([t0, T0]) < ∞ This completes the proof of Claim 1.
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Claim 2 We have c ≤ ∫
lim supn ϕn d�t .

Proof of Claim 2 Since Xn ∈ F , we conclude that c ≤ ∫
f hXn

d�t = ∫
ϕn d�t for all n,

whence

c ≤ lim sup
n

∫
ϕn d�t . (5.2)

It also follows from Claim 1 and the Reverse Fatou Lemma (see, for example, [21, Theorem
3.2.3]) that

lim sup
n

∫
ϕn d�t ≤

∫
lim sup

n
ϕn d�t . (5.3)

The desired result follows immediately from (5.2) and (5.3). This completes the proof of
Claim 2.

Claim 3 For all s ≥ t0, we have lim supn ϕn(s) ≤ ϕ(s), and so
∫
lim supn ϕn d�t ≤ ∫

ϕ d�t .

Proof of Claim 3 This follows from the fact that Mr : KGH → R is upper semi-continuous
for all r > 0 by Lemma 4.1. This completes the proof of Claim 3.

Finally, we deduce immediately from Claims 2 and 3 that c ≤ ∫
lim supn ϕn d�t ≤∫

ϕ d�t = ∫
f hX d�t . �

Proposition 5.2 Let h be a dimension function and let� = (�t )t≥t0 be an averaging system.

(1) For c ∈ R
+, write

Tc =
{
X ∈ KGH

∣∣∣Uh
�(X) ≤ c

}
.

Then Tc is co-meagre.
(2) Write

T =
{
X ∈ KGH

∣∣∣Uh
�(X) = 0

}
.

Then T is co-meagre.

Proof (1) It suffices to show that there is a countable family (Gu)u∈Q+ of open and dense
subsets Gu of KGH with ∩u∈Q+Gu ⊆ Tc. For u ∈ Q

+, we define the set Gu by

Gu =
⋃

u<t

Lh,�
t,c ;

recall that the set Lh,�
t,c is defined in (5.1). Below we prove that the sets Gu are open and

dense subsets of KGH with ∩u∈Q+Gu ⊆ Tc; this is the contents of the three claims below.

Claim 1 Gu is open in KGH.

Proof of Claim 1 This follows immediately from Lemma 5.1. This completes the proof of
Claim 1.

Claim 2 Gu is dense in KGH.
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Proof of Claim 2 Wefirst prove that {X ∈ KGH | X is finite} ⊆ Gu . Indeed, if X is a finitemet-
ric space, then it is clear that f hX (t) = Me−t (X) h(2e−t ) → 0, and the consistency condition
therefore implies that

∫
f hX d�t → 0. It follows from this that there is a number t with t > u

and
∫

f hX d�t < c, whence X ∈ Lh,�
t,c ⊆ Gu . This proves that {X ∈ KGH | X is finite} ⊆ Gu .

Next, since {X ∈ KGH | X is finite} ⊆ Gu and {X ∈ KGH | X is finite} is dense in KGH,
we conclude that Gu is dense in KGH. This completes the proof of Claim 2.

Claim 3 ∩u∈Q+Gu ⊆ Tc.

Proof of Claim 3 Let X ∈ ∩u∈Q+Gu . We must now show that Uh
�(X) ≤ c. Since X ∈

∩u∈Q+Gu ⊆ ∩nGn , we conclude that for each positive integer n, we can find a positive
number tn with tn > n such that X ∈ Lh

tn ,c, whence
∫

f hX d�tn < c. It follows immediately

from this that Uh
�(X) = lim inf t

∫
f hX d�t ≤ lim infn

∫
f hX d�tn ≤ c, and so X ∈ Tc. This

completes the proof of Claim 3.
(2) This statement follows immediately from Part (1) since T = ∩c∈Q+Tc. �

We can now prove Theorem 2.5.(1).

Proof of Theorem 2.5.(1) Theorem 2.5.(1) follows immediately from Proposition 5.2.(2). �

6 Proof of Theorem 2.5.(2)–(3)

The purpose of this section is to prove Theorem 2.5.(2)–(3). We start by introducing the
following notation. First, recall that for a positive real number r , the covering number Nr (X)

of a metric space X is defined in (2.1). Next, for a dimension function h and a metric space
X , define the function ghX : (0,∞) → (0,∞) by

ghX (t) = Ne−t (X) h(2e−t ). (6.1)

Finally, for a dimension function h, an averaging system� = (�t )t≥t0 and r , t, c > 0, write

	
h,�
t,c =

{
X ∈ KGH

∣∣∣∣
∫

ghX d�t > c

}
, (6.2)

and

Lh,�
r ,t,c =

{
X ∈ KGH

∣∣∣ there is a positive integer N and

x1, . . . , xN ∈ X , C1, . . . ,CN ⊆ X , t1, . . . , tN > t,

such that

X = ∪i B(xi , r),

Ci ⊆ B(xi , r) for all i,

Ci ∈ 	
h,�
ti ,c for all i

}
. (6.3)

Lemma 6.1 Let h be a dimension function and let � = (�t )t≥t0 be an averaging system. Fix
t, c > 0. Then the set 	h,�

t,c is open in KGH.

Proof Write

F = KGH \ 	
h,�
t,c =

{
X ∈ KGH

∣∣∣∣
∫

ghX d�t ≤ c

}
.
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We must now prove that F is closed in KGH. In order to show this, we fix a sequence
(Xn)n in F and X ∈ KGH with Xn → X . We must now prove that X ∈ F , i.e. we must
prove that

∫
ghX d�t ≤ c. We prove this inequality below. For brevity define functions

ϕ, ϕn : [t0,∞) → [0,∞) by

ϕ(s) = Ne−s (X) h(2e−s), ϕn(s) = Ne−s (Xn) h(2e−s).

We now prove the following two claims.

Claim 1 We have
∫
lim infn ϕn d�t ≤ c.

Proof of Claim 1 Since Xn ∈ F , we conclude that
∫

ϕn d�t = ∫
ghXn

d�t ≤ c for all n,
whence lim infn

∫
ϕn d�t ≤ c. It follows immediately from this and Fatou’s Lemma that∫

lim infn ϕn d�t ≤ lim infn
∫

ϕn d�t ≤ c. This completes the proof of Claim 1.

Claim 2 For all s ≥ t0, we have ϕ(s) ≤ lim infn ϕn(s), and so
∫

ϕ d�t ≤ ∫
lim infn ϕn d�t .

Proof of Claim 3 This follows from the fact that Nr : KGH → R is lower semi-continuous for
all r > 0 by Lemma 4.1. This completes the proof of Claim 2.

Finally, we deduce from Claim 1 and Claim 2 that
∫
ghX d�t = ∫

ϕ d�t ≤∫
lim infn ϕn d�t ≤ c. �

Proposition 6.2 Let h be a dimension function and let� = (�t )t≥t0 be an averaging system.
Fix r , t, c > 0. Then the set Lh,�

r ,t,c is open in KGH.

Proof Let X ∈ Lh,�
r ,t,c and let dX denote the metric in X . We must now find ρ > 0 such that

B(X , ρ) ⊆ Lh
r ,t,c.

Since X ∈ Lh,�
r ,t,c, we conclude that here is a positive integer N and

x1, . . . , xN ∈ X , C1, . . . ,CN ⊆ X , t1, . . . , tN > t,

such that

X = ∪i BX (xi , r),

Ci ⊆ BX (xi , r) for all i,

Ci ∈ 	
h,�
ti ,c for all i .

Define 
 : X → R by 
(x) = mini dX (x, xi ) and note that 
 is continuous. Since X is
compact, we conclude that there is a point x0 ∈ X such that 
(x0) = supx∈X 
(x). For
brevity write r0 = 
(x0) = supx∈X 
(x), and note that since x0 ∈ X = ∪i B(xi , r), we can
find i0 with x0 ∈ B(xi0 , r), whence

r0 = 
(x0) ≤ dX (x, xi0) < r . (6.4)

Also, since Ci is compact and Ci ⊆ B(xi , r), we conclude that

ri = inf
{
s
∣∣∣Ci ⊆ B(xi , s)

}
< r . (6.5)

For brevity write

di = r − ri .
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Finally, since Ci ∈ 	
h,�
ti ,c and 	

h,�
ti ,c is open (by Lemma 6.1), we conclude that there is a

positive real number ρi > 0 with

B(Ci , ρi ) ⊆ 	
h,�
ti ,c . (6.6)

Now put

ρ = min
(

ρ1
2 , . . . ,

ρN
2 , r−r0

2 , d1
16 , . . . ,

dN
16

)
.

It follows from (6.4) and (6.5) that ρ > 0. We will now prove that

B(X , ρ) ⊆ Lh,�
r ,t,c. (6.7)

We therefore fix Y ∈ B(X , ρ) and proceed to show that Y ∈ Lh,�
r ,t,c. Let dY denote the

metric in Y . Since dGH(X , Y ) < ρ, it follows that we may assume that there is a complete
metric space (Z , dZ ) with X , Y ⊆ Z and dH(X , Y ) < ρ such that dX (x ′, x ′′) = dZ (x ′, x ′′)
for all x ′, x ′′ ∈ X , and dY (y′, y′′) = dZ (y′, y′′) for all y′, y′′ ∈ Y . Below we use the
following notation allowing us to distinguish balls in Y and balls in Z . Namely, we will
denote the open ball in Y with radius equal to δ and centre at y ∈ Y by BY (y, δ), i.e.
BY (y, δ) = {y′ ∈ Y | dY (y, y′) < δ}, and we will denote the open ball in Z with radius equal
to δ and centre at z ∈ Z by BZ (z, δ), i.e. BZ (z, δ) = {z′ ∈ X | dX (z, z′) < δ}. We must
now show that Y ∈ Lh,�

r ,t,c. Since dH(X , Y ) < ρ, we conclude that for each i , there is a point
yi ∈ Y with dZ (xi , yi ) < ρ. Next, put

Ki =
{
y ∈ Y

∣∣∣ dist(y,Ci ) ≤ ρ
}

.

It is clear that

y1, . . . , yN ∈ Y , K1, . . . , KN ⊆ Y , t1, . . . , tN > t,

Hence, to prove that Y ∈ Lh,�
r ,t,c, it suffices to show that

Y = ∪i BY (yi , r), (6.8)

Ki ⊆ BY (yi , r) for all i, (6.9)

Ki ∈ 	
h,�
ti ,c for all i . (6.10)

The proofs of (6.8)–(6.10) are the contents of the three claims below.

Claim 1 Y = ∪i BY (yi , r).

Proof of Claim 1 It is clear that∪i BY (yi , r) ⊆ Y . In order to prove the reverse inclusion,we let
y ∈ Y . Since dH(X , Y ) < ρ, we conclude that there is a point x ∈ X with dZ (x, y) < ρ. Also,
since mini dX (x, xi ) = 
(x) ≤ r0, we deduce that there is an index j with dX (x, x j ) ≤
r0. Finally, it follows from the definition of y j that dZ (x j , y j ) < ρ. Hence dY (y, y j ) =
dZ (y, y j ) ≤ dZ (y, x) + dZ (x, x j ) + dZ (x j , y j ) = dZ (y, x) + dX (x, x j ) + dZ (x j , y j ) <

ρ + r0 + ρ = 2ρ + r0 ≤ r , and so y ∈ BY (y j , r) ⊆ ∪i BY (yi , r). This completes the proof
of Claim 1.

Claim 2 Ki ⊆ B(yi , r) for all i .

Proof of Claim 2 Since Ci ⊆ BX (xi , r), it follows from the definition of the numbers ri =
inf{s |Ci ⊆ B(xi s)} and di = r − ri , that

Ci ⊆ BX

(
xi , r − di

2

)
. (6.11)
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Next, since dZ (xi , yi ) < ρ ≤ di
16 ≤ di

4 , it follows that

BX

(
xi , r − di

2

)
⊆ BZ

(
xi , r − di

2

)

⊆ BZ (yi , r − di
4 ). (6.12)

Finally, combining (6.11) and (6.12) shows that

Ci ⊆ BZ

(
yi , r − di

4

)
. (6.13)

We can nowprove that Ki ⊆ BY (yi , r). Let y ∈ Ki . Since y ∈ Ki , we have distZ (y,Ci ) ≤
ρ ≤ di

16 <
di
8 , and it therefore follows that there is x ∈ Ci with dZ (x, y) ≤ di

8 . Also, we

deduce from (6.13) that x ∈ Ci ⊆ BZ (yi , r− di
4 ), whence dZ (x, yi ) ≤ r− di

4 . Combining the

previous inequalities we have dY (y, yi ) = dZ (y, yi ) ≤ dZ (y, x)+dZ (x, yi ) ≤ di
8 +r− di

4 <

r , and so y ∈ BY (yi , r). This completes the proof of Claim 2.

Claim 3 Ki ∈ 	
h,�
ti ,c for all i .

Proof of Claim 3 It is clear that Ki is a closed subset of Y and so Ki ∈ KGH.
We now prove that

sup
x∈Ci

distZ (x, Ki ) ≤ ρ. (6.14)

Indeed, let x ∈ Ci . Since dH(X , Y ) < ρ, we conclude that there is y ∈ Y such that dZ (x, y) <

ρ. In particular, since x ∈ Ci , this shows that dist(y,Ci ) ≤ dZ (y, x) ≤ ρ, and so y ∈ Ki .
We deduce from this that dist(x, Ki ) ≤ dZ (x, y) ≤ ρ. Finally, taking supremum over all
x ∈ Ci shows that supx∈Ci

dist(x, Ki ) ≤ ρ. This completes the proof of (6.14).
Next, we prove that

sup
y∈Ki

dist(y,Ci ) ≤ ρ. (6.15)

Indeed, let y ∈ Ki . Since y ∈ Ki , it follows from the definition of Ki that there is x ∈ Ci

such that dZ (y, x) ≤ ρ, and so dist(y,Ci ) ≤ dZ (y, x) ≤ ρ. Finally, taking supremum over
all y ∈ Ki shows that supy∈Di

dist(y,Ci ) ≤ ρ. This completes the proof of (6.15).
Combining (6.14) and (6.15), we immediately conclude that dH(Ci , Ki ) = max(supx∈Ci

dist(x, Ki ), supy∈Ki
dist(y,Ci )) ≤ ρ ≤ ρi

2 < ρi , whence Ki ∈ B(Ci , ρi ) ⊆ 	
h,�
ti ,c . This

completes the proof of Claim 3.
It follows immediately from Claims 1–3 that Y ∈ Lh

r ,t,c. �
Proposition 6.3 Let h be a continuous dimension function and let � = (�t )t≥t0 be an
averaging system.

(1) For c ∈ R
+, write

Tc =
{
X ∈ KGH

∣∣∣Vh
�(U ) ≥ c for all open subsets U of X with U �= ∅

}
.

Then Tc is co-meagre.
(2) Write

T =
{
X ∈ KGH

∣∣∣Vh
�(U ) = ∞ for all open subsets U of X with U �= ∅

}
.

Then T is co-meagre.
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(3) Write

S =
{
X ∈ KGH

∣∣∣Vh
�(U ) = ∞ for all open subsets U of X with U �= ∅

}
.

If, in addition, Vh
�(E) = Vh

�(E) for all metric spaces and all E ⊆ X, then S is co-
meagre.

Proof (1) It suffices to show that there is a countable family (Gr ,u)r ,u∈Q+ of open and dense
subsets Gr ,u of KGH such that ∩r ,u∈Q+Gr ,u ⊆ Tc. For r , u ∈ Q

+, we define the set Gr ,u by

Gr ,u =
⋃

u<t

Lh,�
r ,t,c;

recall, that the set Lh,�
r ,t,c is defined in (6.2)–(6.3). We now prove that the sets Gr ,u are open

and dense subsets of KGH such that∩r ,u∈Q+Gr ,u ⊆ Tc; this is the contents of the three claims
below.

Claim 1 Gr ,u is open in KGH.

Proof of Claim 1 This follows immediately from Proposition 6.2. This completes the proof
of Claim 1.

Claim 2 Gr ,u is dense in KGH.

Proof of Claim 2 Let X ∈ KGH and ρ > 0. Also, let dX denote the metric in X . We must now
find Y ∈ Gr ,u such that dGH(X , Y ) < ρ.

Firstly, since X is compact, we can find a finite subset E of X such that

dH(X , E) <
ρ
2 .

Note that it is clear that we can find a constant k > 0 such that for all n ∈ N, all s > 0
and all δ > 0, we have

Nδ

( {z ∈ R
n | |z| ≤ s}) ≥ kδ−n . (6.16)

Next, choose real numbers T , t such that T > t > u, and for positive integers n, define
ϕn : (t0,∞) → (0,∞) by

ϕn(s) = esn h(2e−s).

Note that ϕn ↗ ∞, and it therefore follows from the Monotone Convergence theorem that∫
ϕn d�T ↗ ∫ ∞ d�T = ∞. In particular, this implies that we can choose a positive integer

N with
∫

ϕN d�T ≥ c
k . (6.17)

Put δ0 = min( ρ
2 , r) and let C = {z ∈ R

N | |z| ≤ δ0}. Finally, we define the space Y by

Y = E × C

and equipY with the supremummetric dY induced by dX and |·|, i.e. dY ( (x ′, z′), (x ′′, z′′) ) =
max( dX (x ′, x ′′), |z′ − z′′| ) for x ′, x ′′ ∈ E and z′, z′′ ∈ C . It is clear that Y is compact, and
so Y ∈ KGH. Below we show that dGH(X , Y ) < ρ and Y ∈ Gr ,u .
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Proof of dGH(X , Y ) < ρ. Define f : E → Y and g : Y → Y by f (x) = (x, 0) and
g : Y → Y by g(x, z) = (x, z). It is clear that f and g are isometries and we therefore
conclude that dGH(E, Y ) ≤ dH( f (E), g(Y )) = dH(E×{0}}, E×C) ≤ supz∈C |z| = δ0 ≤ ρ

2 ,
whence dGH(X , Y ) ≤ dGH(X , E) + dGH(E, Y ) < dH(X , E) + ρ

2 <
ρ
2 + ρ

2 = ρ. This
completes the proof of dGH(X , Y ) < ρ.
Proof of Y ∈ Gr ,u . Write E = {x1, . . . , xM } and put

yi = (xi , 0), Ci = {xi } × C, ti = T ,

for i = 1, . . . , M . In order to prove that Y ∈ Gr ,u , it suffices the show that Y ∈ Lh,�
r ,t,c, and

in order to show that Y ∈ Lh,�
r ,t,c, it clearly suffices to prove that

Y = ∪i B(yi , r), (6.18)

Ci ⊆ B(yi , r) for all i, (6.19)

Ci = 	
h,�
ti ,c for all i . (6.20)

Below we show that the statements in (6.18)–(6.20) are satisfied.
Indeed, it is clear that Y = E × C = ∪i ({xi } × C) = ∪i B(yi , r); this proves (6.18).
It is also clear that Ci ⊆ B(yi , r) for all i ; this proves (6.19).
Finally, we prove (6.20). We have

∫
ghCi

d�ti =
∫

Ne−s (Ci ) h(2e−s) d�T (s)

=
∫

Ne−s ({xi } × C) h(2e−s) d�T (s)

=
∫

Ne−s (C) h(2e−s) d�T (s). (6.21)

However, it follows from (6.16) that Ne−s (C) ≥ kesN , and we therefore conclude from (6.21)
that

∫
ghCi

d�ti ≥ k
∫
esN h(2e−s) d�T (s) = k

∫
ϕN d�T . (6.22)

Finally, combining (6.17) and (6.22), we now deduce that
∫
ghCi

d�ti ≥ k c
k = c, whence

Ci ∈ 	
h,�
ti ,c . This completes the proof of (6.20).

It follows immediately from (6.18)–(6.20) that Y ∈ Lh,�
r ,t,c ⊆ Gr ,u . This completes the

proof of Claim 2.

Claim 3 ∩r ,u∈Q+Gr ,u ⊆ Tc.

Proof of Claim 3 Let X ∈ ∩r ,u∈Q+Gr ,u . We must now show that if U is an open subset of X

with U �= ∅, then Vh
�(U ) ≥ c. We therefore let U be an open subset of X with U �= ∅, and

proceed to show that Vh
�(U ) ≥ c. SinceU is non-empty and open there is x0 ∈ U and r0 > 0

with B(x0, r0) ⊆ U . Next, since X ∈ ∩r ,u∈Q+Gr ,u ⊆ ∩nG r0
2 ,n , we conclude that for each

positive integer n, we can find a positive real number tn with tn > n such that X ∈ Lh,�
r0
2 ,tn ,c

.

In particular, this implies that there is a positive integer Nn and

xn,1, . . . , xn,Nn ∈ X , Cn,1, . . . ,Cn,Nn ⊆ X , tn,1, . . . , tn,Nn > tn,
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such that

X = ∪i B
(
xn,i ,

r0
2

)
,

Cn,i ⊆ B
(
xn,i ,

r0
2

)
for all i,

Cn,i ∈ 	
h,�
tn,i ,c for all i .

Since x0 ∈ X = ∪i B(xn,i ,
r0
2 ), we can choose an index in ∈ {1, . . . , Nn} such that

x0 ∈ B(xn,in ,
r0
2 ), whence B(xn,in ,

r0
2 ) ⊆ B(x0, r0), and so Cn,in ⊆ B(xn,in ,

r0
2 ) ⊆

B(x0, r0) ⊆ U . Since it follows from Lemma 4.1 that f hU (s) ≥ ghU (s) for all s, we conclude

from this combined with the fact that Cn,in ∈ 	
h,�
tn,in ,c, that

∫
f hU d�tn,in

≥ ∫
ghU d�tn,in

≥∫
ghCn,in

d�tn,in
≥ c. Finally, since tn,in > tn > n and so tn,in → ∞, we deduce from the

previous inequality that Vh
�(U ) = lim supt

∫
f hU d�t ≥ lim supn

∫
f hU d�tn,in

≥ c. This
completes the proof of Claim 3.

(2) This statement follows immediately from Part (1) since clearly T = ∩c∈Q+Tc.
(3) Using Part (2), it clearly suffices to prove that

T ⊆ S. (6.23)

We will now prove (6.23). Let X ∈ T . We must now show that X ∈ S, i.e. we must show
that if U is an open subset of X with U �= ∅, then Vh

�(U ) = ∞. We therefore let U be an
open subset of X withU �= ∅, and proceed to show that Vh

�(U ) = ∞. SinceU is non-empty
and open there is x ∈ U and r > 0 such that BX (x, r) ⊆ U . In particular, if we write
C = B(x, r

2 ), thenC is compact andC ⊆ B(x, r) ⊆ U . Next, we prove the following claim.

Claim 4 If V is an open subset of X with V ∩ C �= ∅, then Vh
�(V ∩ C) = ∞.

Proof of Claim 4 Let V be an open subset of X with V ∩ C �= ∅. We must now show that

Vh
�(V ∩C) = ∞. As V ∩C �= ∅, it is possible to choose y ∈ V ∩C . Since y ∈ V and V is

open, we can choose ε > 0 such that B(y, ε) ⊆ V . Next, since y ∈ C = B(x, r
2 ), we choose

z ∈ B(x, r
2 ) such that z ∈ B(y, ε). Finally, since z ∈ B(x, r

2 ) ∩ B(y, ε), we can find δ > 0
with B(z, δ) ⊆ B(x, r

2 ) ∩ B(y, ε), whence B(z, δ) ⊆ B(x, r
2 ) ∩ B(y, ε) ⊆ C ∩ V , and so

Vh
�(B(z, δ)) ≤ Vh

�(C ∩ V ). (6.24)

However, since B(z, δ) is open and non-empty and X ∈ T , it follows that Vh
�(B(z, δ)) = ∞,

and we therefore conclude from (6.24) that Vh
�(C ∩ V ) = ∞. This completes the proof of

Claim 4.

Finally, it follows immediately from Claim 4 and Lemma 4.2 that Vh
�(C) = ∞, and since

C ⊆ U , this implies that Vh
�(U ) = ∞. �

We can now prove Theorem 2.5.(2)–(3).

Proof of Theorem 2.5.(2)–(3) The statements in Theorems 2.5.(2) and 2.5.(3) follow immedi-
ately from the statements in Propositions 6.3.(2) and 6.3.(3), respectively. �
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