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Abstract
Let G be a reductive linear algebraic group, H a reductive subgroup of G and X an affine
G-variety. Let XH denote the set of fixed points of H in X , and NG(H) the normalizer of H in
G. In this paper we study the natural map of quotient varieties ψX ,H : XH/NG(H) → X/G
induced by the inclusion XH ⊆ X . We show that, given G and H ,ψX ,H is a finite morphism
for all affine G-varieties X if and only if H is a G-completely reducible subgroup of G (in
the sense defined by Serre); this was proved in characteristic 0 by Luna in the 1970s. We
discuss some applications and give a criterion for ψX ,H to be an isomorphism. We show
how to extend some other results in Luna’s paper to positive characteristic and also prove the
following theorem. Let H and K be reductive subgroups of G; then the double coset HgK
is closed for generic g ∈ G if and only if H ∩ gKg−1 is reductive for generic g ∈ G.

Keywords Geometric invariant theory · Quotient variety · G-Complete reducibility · Étale
slice · Double cosets

Mathematics Subject Classification 14L24 · 20G15

1 Introduction

The purpose of this paper is to establish some results in geometric invariant theory over
fields of positive characteristic, where tools from characteristic 0—such as Luna’s Étale
Slice Theorem—are not available. In particular, we prove the following theorem and give
some applications (see Sect. 2 for precise definitions of terms). Let k be an algebraically
closed field of characteristic p ≥ 0.
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Theorem 1.1 Suppose G is a reductive linear algebraic group over k and H is a reductive
subgroup of G. Then the following are equivalent:

(i) H is G-completely reducible;
(ii) NG(H) is reductive and, for every affine G-variety X, the natural map of quotients

ψX ,H : XH/NG(H) → X/G is a finite morphism (here XH denotes the H-fixed
points in X).

The study of closed orbits is central in geometric invariant theory—the closed orbits for G
in X parametrise the points of the quotient variety X/G. An important piece of the proof of
Theorem 1.1 is Proposition 4.1, which gives a connection between the closed G-orbits in X
and the closed H -orbits in X ; cf. [2,33,48] and [7], for example.

Theorem 1.1 reduces to the main result in Luna’s paper [33] when k has characteristic 0,
because condition (i) and the first hypothesis of (ii) are automatic in characteristic 0 if H is
already assumed to be reductive. Luna’s methods use the powerful machinery of étale slices,
based on his celebrated “Étale Slice Theorem” [32]; see Sect. 3.1 below for more on étale
slices.Many useful consequences flow from the existence of an étale slice (see Proposition 3.1
below, for example). Although étale slices sometimes exist in positive characteristic [1], in
general they do not. Our methods differ from Luna’s in that they apply equally well in all
characteristics. These methods also allow us to provide extensions to positive characteristic
of other results from [33] (see Proposition 3.10, Remark 4.2(i) and Proposition 4.7).

The work in this paper fits into a broad continuing programme of taking results about alge-
braic groups and related structures from characteristic zero and proving analogues in positive
characteristic. A basic problem with this process is that results—such as the existence of an
étale slice—that are true when p = 0 may simply fail when p > 0 (cf. Examples 3.2, 8.1, 8.2
and 8.3); a further illustration of this in the context of this paper is that a reductive group
may fail to be linearly reductive (recall that a linear algebraic group is called reductive if
it has trivial unipotent radical, and linearly reductive if all its rational representations are
semisimple). When p = 0, a connected group is linearly reductive if and only if it is reduc-
tive, whereas if p > 0 a connected group is linearly reductive if and only if it is a torus [42].
Even if a result remains true in positive characteristic, it may be much harder to prove, an
example here being the problem of showing that the ring of invariants RG is finitely gen-
erated, where R is a finitely-generated k-algebra and G ⊆ Aut(R) is reductive. This was
resolved in characteristic 0 in the 1950s, but not in positive characteristic until the 1970s (see
the introduction to Haboush’s paper [22]).

In some contexts in positive characteristic where the hypothesis of reductivity is too weak
and linear reductivity is too strong, it has been found that a third notion, that of G-complete
reducibility, provides a good balance (cf. [37, Cor. 1.5]) and our main theorem is another
example of this phenomenon. See Sect. 2.4 for the definition. The idea is that when p = 0
there is no distinction between demanding that a subgroup H of a reductive group G is
reductive or linearly reductive or G-completely reducible, but there is a huge difference in
positive characteristic. The notion of complete reducibility was introduced by Serre [52] and
Richardson1 [49], and over the past twenty years or so has found many applications in the
theory of algebraic groups, their subgroup structure and representation theory, geometric
invariant theory, and the theory of buildings: for examples, see [2,5,9,30,35,36,39,56–58].

The paper is set out as follows. Section 2 contains preparatory material from geometric
invariant theory and the theory of complete reducibility. The proof of Theorem 1.1 contains

1 Richardsonoriginally defined strong reductivity for subgroupsofG, but his notionwas shown tobe equivalent
to Serre’s in [5, Theorem 3.1].
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three main ingredients, each dealt with in a separate section. In Sect. 3 we build on work of
Bardsley and Richardson to establish the important technical result Proposition 3.10, which
gives a criterion for a map of quotient varieties to be finite. In Sect. 4 we carry out our analysis
of the closed G- and H -orbits and show that ψX ,H is quasi-finite if H is G-completely
reducible (Theorem 4.4). In Sect. 5 we show that the image ofψX ,H is closed (Theorem 5.1).
The key idea here is to consider the map of projectivisations P(XH ) → P(X) induced by the
inclusion of XH in X when X is a G-module; the G-complete reducibility of H guarantees
that we get a well-defined map of quotient varieties P(XH )/G → P(X)/G. Section 6 draws
these strands together and completes the proof of Theorem 1.1 using Proposition 3.8 (a
variation on Zariski’s Main Theorem).

Section 7 gives a criterion for ψX ,H to be an isomorphism onto its image (Theorem 7.2).
In Sect. 8 we use representation theory to construct some examples relevant to Theorem 1.1.
In Sect. 9 we give a criterion (Theorem 9.1) for generic double cosets HgK of G to be
closed, where H and K are reductive subgroups of G. Luna proved a stronger result [31] in
characteristic 0 using étale slice methods, but our techniques work when étale slices are not
available. We give some applications of Theorem 9.1 (Examples 9.11 and 9.12); these serve
as applications of Theorem 1.1 as well. We finish in Sect. 10 by using the theory we have
developed to prove some results on complete reducibility.

2 Notation and preliminaries

2.1 Notation

Our basic references for the theory of linear algebraic groups are the books [10] and [54].
Unless otherwise stated, we work over a fixed algebraically closed field k with no restriction
on the characteristic. By a variety we mean a quasi-projective variety over k, and we identify
a variety X with its set of k-points. For a linear algebraic group G over k, we let G0 denote
the connected component of G containing the identity element 1 and Ru(G)�G0 denote the
unipotent radical ofG. We say thatG is reductive if Ru(G) = {1}; note that we do not require
a reductive group to be connected. When we discuss subgroups of G, we really mean closed
subgroups; for two such subgroups H and K of G, we set HK := {hk | h ∈ H , k ∈ K }. We
denote the centralizer of a subgroup H of G by CG(H), and the normalizer by NG(H). All
group actions are left actions unless otherwise indicated.

We make repeated use of the following result [35, Lemma 6.8]: if G is reductive and if H
is a reductive subgroup of G then NG(H)0 = H0CG(H)0.

Given a linear algebraic group G, let Y (G) denote the set of cocharacters of G, where a
cocharacter is a homomorphism of algebraic groups λ : k∗ → G. Note that since the image
of a cocharacter is connected, we have Y (G) = Y (G0). A linear algebraic group G acts on
its set of cocharacters: for g ∈ G, λ ∈ Y (G) and a ∈ k∗, we set (g · λ)(a) = gλ(a)g−1.

Given an affine variety X over k, we denote the coordinate ring of X by k[X ] and the
function field of X (when X is irreducible) by k(X). Given x ∈ X , we let Tx (X) denote the
tangent space to X at x . Recall that for a linear algebraic group G, T1(G) has the structure of
a Lie algebra, which we also denote by Lie(G) or g. Given a morphism φ : X → Y of affine
varieties X and Y and a point x ∈ X , we let dxφ : Tx (X) → Tφ(x)(Y ) denote the differential
of φ at x . We say that X is a G-variety if the linear algebraic group G acts morphically on
X . If X is affine then the action of G on X gives a linear action of G on k[X ], defined by
(g · f )(x) = f (g−1 · x) for all g ∈ G, f ∈ k[X ] and x ∈ X . Given a G-variety X and x ∈ X ,
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we denote the G-orbit through x by G · x and the stabilizer of x in G by Gx . If x, y ∈ X are
two points on the same G-orbit, then we sometimes say x and y are G-conjugate. For x ∈ X ,
we denote the orbit map G → G · x , g �→ g · x by κx ; we say the orbit G · x is separable if
κx is separable. We denote by XG the set of G-fixed points in X , and by k[X ]G the ring of
G-invariant functions in k[X ].

Given a morphism of varieties f : V → W , define e(v) for v ∈ V to be max(dim(Z)),
where Z ranges over the irreducible components of f −1( f (v)) that contain v. By [10,
AG.10.3], e(v) is an upper semi-continuous function of v. This implies the following use-
ful result about dimensions of stabilizers for a G-variety X [44, Lemma 3.7(c)]: for any
r ∈ N ∪ {0}, the set {x ∈ X | dim(Gx ) ≥ r} is closed. We deduce the lower semi-continuity
of orbit dimension: that is, for any r ∈ N ∪ {0}, the set {x ∈ X | dim(G · x) ≤ r} is closed.
In particular, the set {x ∈ X | dim(G · x) is maximal} is open. We also need an infinitesimal
version of these results. Given a variety Z , we denote the (reduced) tangent bundle of Z by
T Z ; we may identify T Z with the set of pairs {(z, v) | z ∈ Z , v ∈ Tz(Z)}, and we have a
canonical embedding from Z to T Z given by z �→ (z, 0). (The tangent bundle is constructed
in [10, AG.16] as a possibly non-reduced scheme over k; here we take the tangent bundle to
be the corresponding reduced scheme.) If ψ : Z → W is a morphism of varieties then we
have a map dψ : T Z → TW given by dψ(z, v) = (ψ(z), dzψ(v)).

Lemma 2.1 For any r ∈ N∪{0}, the set {x ∈ X | dim(Gx )+dim(ker(d1κx )) ≥ r} is closed.
Proof Define α : G × X → X × X by α(g, x) = (g · x, x). We obtain a morphism dα from
T (G × X) ∼= TG × T X to T (X × X) ∼= T X × T X . Let x ∈ X and consider the point
y := ((x, 0), (x, 0)) ∈ T X × T X . Now (dα)−1(y) is a closed subset Cy of TG × T X ; it is
clear that Cy = {((g, v), (x, 0)) | g ∈ Gx , v ∈ ker(d1κx ))}. Each irreducible component of
this set has dimension e′(y) := dim(Gx ) + dim(ker(d1κx )).

Define a function s : X → TG × T X by s(x) = ((1, 0), (x, 0)). We identify X with a
closed subset of T X × T X via the embedding x �→ ((x, 0), (x, 0)). Since s is a morphism,
we deduce from the upper semi-continuity of the function e(v)—taking (V ,W , f ) = (TG×
T X , T X × T X , dα)—that the function e′(y) is also upper semi-continuous. The result now
follows. �

A morphism φ : X → Y of affine varieties is said to be finite if the coordinate ring
k[X ] is integral over the image of the comorphism φ∗ : k[Y ] → k[X ]. Finite morphisms
are closed [40, Proposition I.7.3(i)]; in particular, a dominant finite morphism is surjective.
A morphism of affine varieties is called quasi-finite if its fibres are finite; finite morphisms
are always quasi-finite [40, Proposition I.7.3(ii)], but the converse is not true. A dominant
morphism φ : X → Y of irreducible varieties is called birational if the comorphism induces
an isomorphism of function fields k(X) ∼= k(Y ). Given an irreducible affine variety X , we can
form the normalization of X by considering the normal affine variety ˜X whose coordinate ring
is the integral closure of k[X ] in the function field k(X). The normalizationmap νX : ˜X → X
is, by construction, finite, birational and surjective.

Remark 2.2 We record an observation which we use several times in the sequel. Let φ : X →
Y and ψ : Y → Z be morphisms of affine varieties with ψ ◦ φ finite. Then it is easy to see
that:

(i) φ is finite;
(ii) if φ is dominant then ψ is finite.

We say that a property P(x) holds for generic x ∈ X if there is an open dense subset U
of X such that P(x) holds for all x ∈ U .
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For the remainder of the paper, we fix the convention that G denotes a reductive linear
algebraic group over k.

2.2 Group actions and quotients

Themain result of this paper, Theorem 1.1, concerns quotients of affine varieties by reductive
algebraic group actions. Let X be an affine G-variety. As noted above, G acts on k[X ], and
we can form the subring k[X ]G ⊆ k[X ] of G-invariant functions on X . It follows from [43]
and [22] that k[X ]G is finitely generated, and hence we can form an affine variety denoted
X/G with coordinate ring k[X/G] = k[X ]G . Moreover, the inclusion k[X ]G ↪→ k[X ] gives
rise to a morphism from X to X/G, which we shall denote by πX ,G : X → X/G. The map
πX ,G has the following properties [41, Theorem A.1.1], [44, Theorem 3.5], [1, Sect. 2]:

(i) πX ,G is surjective;
(ii) πX ,G is constant on G-orbits in X ;
(iii) πX ,G separates disjoint closed G-invariant subsets of X ;
(iv) each fibre of πX ,G contains a unique closed G-orbit, and πX ,G determines a bijective

map from the set of closed G-orbits in X to X/G;
(v) X/G is a categorical quotient of X : that is, for every variety V and every morphism

ψ : X → V which is constant onG-orbits, there is a uniquemorphismψG : X/G → V
such that ψ = ψG ◦ πX ,G .

(This means πX ,G is a good quotient in the sense of [44, Chapter 3, Sect. 4, p 57]. More
generally, if X is a quasi-projective G-variety and π is a map from X to another quasi-
projective variety Y then we call π a good quotient if it is an affine map and satisfies (i)–(v)
above.) We say that πX ,G : X → X/G is a geometric quotient if the fibres of πX ,G are
precisely the G-orbits. This is the case if and only if every G-orbit is closed (for instance, if
every G-orbit has the same dimension—e.g., if G is finite).

If φ : Y → X is a G-equivariant morphism of affine G-varieties, then the restriction of
the comorphism to k[X ]G induces a natural morphism from Y/G to X/G, which we shall
denote by φG . In a special case of this construction, we have the following result, which
follows from [44, Theorem 3.5, Lemma 3.4.1].

Lemma 2.3 Let X be an affine G-variety and let i : Y → X be an embedding of a closed
G-stable subvariety Y in X. Then πX ,G(Y ) is closed in X/G. Moreover, the induced map
iG : Y/G → X/G is injective and finite.

Remark 2.4 If char(k) = 0 then iG is an isomorphism onto its image. This need not be the
case in positive characteristic: see Example 3.2.

We record some other useful results. First, note that if G is a finite group, then the map
πG above is a finite morphism. To see this, let f ∈ k[X ] and let T be an indeterminate. Then
the polynomial F(T ) := ∏

g∈G(T − g · f ) ∈ (k[X ])[T ] is monic and has coefficients in

k[X ]G , and F( f ) = 0. This shows that k[X ] is integral over k[X ]G , which gives the claim.
If X is irreducible and normal then X/G is normal [1, 2.19(a)], while if G is connected

then k[X ]G is integrally closed in k[X ] [1, 2.4.1].
Now suppose H is a subgroup ofG such that the normalizer NG(H) is reductive. Then the

inclusion XH ⊆ X induces a map of quotients ψX ,H : XH/NG(H) → X/G. Theorem 1.1
asserts that when H is a G-completely reducible subgroup of G (in the sense of Sect. 2.4
below), this map is always a finite morphism.
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For technical reasons, we sometimes need to work with affine G-varieties satisfying an
extra property.

Definition 2.5 Let X be an affine G-variety. We denote by Xcl the closure of the set {x ∈ X |
G · x is closed}. Following Luna [32, Sec. 4], we say that X has good dimension (“bonne
dimension”) if Xcl = X . We say that x is a stable point of X for the G-action if dim(G · x)
is maximal and G · x is closed [44, Ch. 3, Sect. 4], [41, Ch. 1, Sect. 4].

Remark 2.6 The set of stable points is open [44, Ch. 3, Sect. 4], [41, Ch. 1, Sect. 4]
(this is true even without the assumption that G is reductive). Since the set {x ∈ X |
dim(G · x) is maximal} is open, it follows that if X is irreducible then X has good dimension
if and only if there exists a stable point.Moreover, if X has good dimension then generic fibres
of πX ,G : X → G are orbits of G. Hence if X is irreducible then dim(X/G) = dim(X)−m,
where m is the maximal orbit dimension.

Lemma 2.7 Let X be an irreducible affine G-variety with good dimension. Then k(X/G) =
k(X)G. Moreover, πX ,G is separable.

Proof It is clear that k(X/G) is a subfield of k(X)G . Conversely, let f ∈ k(X)G . Set

U = {x ∈ X | there exists h1, h2 ∈ k[X ] such that f = h1/h2 and h2(x) �= 0}.
Then U is a nonempty open subset of X , and clearly U is G-stable. Hence C := X\U
is closed and G-stable. As X has good dimension, there exists 0 �= h ∈ k[X ]G such that
h|C = 0. Now f is a globally defined regular function on the corresponding principal open

set Xh , so f ∈ k[Xh] = k[X ][1/h]. Hence f = f ′

hr
for some f ′ ∈ k[X ] and some r ≥ 0.

Then f ′ is G-invariant, since f is, so f ∈ k(X/G).
The second assertion is [1, 2.1.9(b)]. Note that separability can fail if X does not have

good dimension: see [38]. �
Lemma 2.8 Let φ : X → Y be a finite surjective G-equivariant map of affine G-varieties.

(i) For all x ∈ X, G · x is closed if and only if G · φ(x) is closed. Moreover, if y ∈ Y and
G · y is closed then φ−1(G · y) is a finite union of G-orbits, each of which is closed
and has the same dimension as G · y.

(ii) The map φG : X/G → Y/G is quasi-finite.
(iii) X has good dimension if and only if Y does.

Proof If x ∈ X and G · x is closed then G · φ(x) = φ(G · x) is closed, as φ is finite.
Conversely, let y ∈ Y such that G · y is closed, and let n = dim(G · y). Let x ∈ φ−1(G · y).
Then dim(Gx ) ≤ dim(Gy), so dim(G · x) ≥ dim(G · y) = n. But φ is finite, so every
irreducible component of φ−1(G · y) has dimension n. It follows that dim(G · x) = n and
G · x is a union of irreducible components of φ−1(G · y); in particular, G · x is closed. This
proves (i). Part (iii) now follows.

To prove part (ii), let x ∈ X , y ∈ Y such that φG(πX ,G(x)) = πY ,G(y). Without loss of
generality, we can assume that G · x and G · y are closed. Now G · φ(x) is closed by (i),
so we must have G · φ(x) = G · y, so x ∈ φ−1(G · y). But φ−1(G · y) is a finite union of
G-orbits by (i), so we are done. �
Lemma 2.9 Let φ : X → Y be a finite birational G-equivariant morphism of irreducible
affine G-varieties. If one of X or Y has good dimension then φG : X/G → Y/G is birational.
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Proof By Lemma 2.8(iii), if one of X or Y has good dimension then they both do. It follows
from Lemma 2.7 that k(Y/G) = k(X/G) = k(X)G ; hence φG is birational. �

Later we also need some material on constructing quotients of projective varieties by
actions of reductive groups, but we delay this until Sect. 5.

Suppose H is a subgroup of G. Recall that the quotient G/H (which as a set is just the
coset space) has the structure of a quasi-projective homogeneous G-variety, and H is the
stabilizer of the image of 1 ∈ G under the natural map πG,H : G → G/H . Richardson has
proved the following in this situation ([47, Theorem A]; see also [23]).

Theorem 2.10 Suppose H is a subgroup of G. Then G/H is an affine variety if and only if
H is reductive.

Recall also that the Zariski topology on G/H is the quotient topology: that is, a subset
S ⊆ G/H is closed inG/H if and only if π−1

G,H (S) is closed inG. We need a technical result.

Lemma 2.11 Let H be a reductive subgroup of G. There exist a G-module Y and a nonempty
open subset U of Y H such that the following hold:

(i) Gy = H for all y ∈ U;
(ii) G · y is closed for all y ∈ U;
(iii) NG(H) · y is closed for all y ∈ U.

Proof Since H is reductive, G/H is affine. The group G acts on G/H by left multiplication.
Let x0 = πG,H (1); then Gx0 = H . If K is a reductive subgroup of G containing H then
K · πG,H (1) = πG,H (K ) is closed, as K is a closed subset of G that is stable under right
multiplication by H . We can embed G/H equivariantly in a G-module X . By the lower
semi-continuity of orbit dimension, there is a nonempty open subset U1 of XH such that
dim(Gx ) = dim(H) for all x ∈ U1—so Gx is a finite extension of H for all x ∈ U1. If
char(k) = 0 then we can conclude from Proposition 3.1 that there is an open neighbourhood
O of x0 such that Gx ≤ H for all x ∈ O . It then follows (applying the arguments for (ii) and
(iii) below) that we can take Y to be X and U a suitable nonempty open subset of XH ∩ O .
In general, however, we need a slightly more complicated construction.

Let Y be the G-module X ⊕ X . Note that Y H = XH ⊕ XH and for any (y1, y2) ∈ Y H ,
G(y1,y2) = Gy1 ∩ Gy2 . We show that Y has the desired properties. For each r ≥ 0, define

Cr = {y ∈ U1 ×U1 | |Gy : H | ≥ r}.
Then Cr is empty for all but finitely many r by [37, Lemma 2.2 and Defn. 2.3]. Moreover,
Cr is constructible. For let

˜Cr = {(y, g1, . . . , gr ) | y ∈ U1 ×U1, g1, . . . , gr ∈ Gy, g j g
−1
i /∈ H for 1 ≤ i, j ≤ r};

thenCr is the image of ˜Cr under projection onto the first factor. Set Dr = Cr\Cr+1. Then the
nonempty Dr form a finite collection of disjoint constructible sets that cover the irreducible
set U1 ×U1, so Ds contains a nonempty open subset U2 of U1 ×U1 for precisely one value
of s.

We show that s = 1. Suppose not. Choose y = (x1, x2) ∈ U2. Let g1, g2, . . . , gr be
coset representatives for Gx1/H with g1 ∈ H . Note that U3 = {x ∈ U1 | (x1, x) ∈ U2}
is an open dense subset of XH . Let z = (x1, x) ∈ U2. Then our hypothesis means that
g · (x1, x) = (x1, x) for some g /∈ H . Now g must fix x1, so g ∈ gi H for some i ≥ 1; in
fact, i ≥ 2 since g /∈ H . It follows that gi fixes (x1, x) since H fixes (x1, x), so gi fixes x .
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But
⋃r

j=2(X
gj ∩ XH ) is a proper closed subset of XH as none of the g j for j ≥ 2 fixes

x0, so we have a contradiction. We conclude that s = 1 after all. Hence Gy = H for all
y ∈ U2.

Set y0 = (x0, 0). The orbit NG(H) · x0 is closed in G/H , so the orbit NG(H) · y0 is
closed in Y H . Moreover, NG(H)y0 = H , so NG(H) · y0 has maximal dimension among
the NG(H)-orbits on Y H . Hence y0 is a stable point of Y H for the NG(H)-action. A sim-
ilar argument shows that y0 is a stable point of G · Y H for the G-action. Since the set of
stable points is open in each case, we can find a nonempty open subset U of U2 such that
(ii) and (iii) hold for U ; then (i) holds for U by construction. This completes the proof.

�

2.3 Cocharacters, G-actions and R-parabolic subgroups

Suppose that X is a G-variety. For any cocharacter λ ∈ Y (G) and x ∈ X we can define a
morphism ψ = ψx,λ : k∗ → X by ψ(a) = λ(a) · x for each a ∈ k∗. We say that the limit
lima→0 λ(a) · x exists if ψ extends to a morphism ψ : k → X . If the limit exists, then the
extension ψ is unique, and we set lima→0 λ(a) · x = ψ(0). It is clear that, for any G and X ,
if there exists λ ∈ Y (G) such that lima→0 λ(a) · x exists but lies outside G · x , then G · x is
not closed in X .

A subgroup P of G is called a parabolic subgroup if the quotient G/P is complete;
this is the case if and only if G/P is projective. If G is connected and reductive, then all
parabolic subgroups of G have a Levi decomposition P = Ru(P) � L , where the reduc-
tive subgroup L is called a Levi subgroup of P . In this case, the unipotent radical Ru(P)

acts simply transitively on the set of Levi subgroups of P , and given a maximal torus T
of P there exists a unique Levi subgroup of P containing T . For these standard results
see [10,11] or [54] for example. It is possible to extend these ideas to a non-connected
reductive group using the formalism of R-parabolic subgroups described in [5, Sec. 6]. We
give a brief summary; see loc. cit. for further details. Given a cocharacter λ ∈ Y (G), we
have:

(i) Pλ := {g ∈ G | lima→0 λ(a)gλ(a)−1 exists} is a parabolic subgroup of G; we call a
parabolic subgroup arising in this way an R-parabolic subgroup of G.

(ii) Lλ := CG(λ) = {g ∈ G | lima→0 λ(a)gλ(a)−1 = g} is a Levi subgroup of Pλ; we
call a Levi subgroup arising in this way an R-Levi subgroup of G.

(iii) Ru(Pλ) = {g ∈ G | lima→0 λ(a)gλ(a)−1 = 1}.
The R-parabolic (resp. R-Levi) subgroups of a connected reductive group G are the same
as the parabolic and Levi subgroups of G. Moreover, the results listed above for parabolic
and Levi subgroups of connected reductive algebraic groups also hold for R-parabolic and
R-Levi subgroups of non-connected reductive groups; that is, the unipotent radical Ru(P)

acts simply transitively on the set of R-Levi subgroups of an R-parabolic subgroup P , and
given a maximal torus T of P there exists a unique R-Levi subgroup of P containing
T .

Now, if H is a reductive subgroup of G and λ ∈ Y (H), then λ gives rise in a natural way
to R-parabolic and R-Levi subgroups of both G and H . In such a situation, we reserve the
notation Pλ (resp. Lλ) for R-parabolic (resp. R-Levi) subgroups of G, and use the notation
Pλ(H), Lλ(H), etc. to denote the corresponding subgroups of H . Note that for λ ∈ Y (H), it
is obvious from the definitions that Pλ(H) = Pλ ∩ H , Lλ(H) = Lλ ∩ H and Ru(Pλ(H)) =
Ru(Pλ) ∩ H .
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2.4 G-complete reducibility

Our main result, and many of the intermediate ones, uses the framework of G-complete
reducibility introduced by Serre [52], which has been shown to have geometric implications
in [5] and subsequent papers. We give a short recap of some of the key ideas concerning
complete reducibility.

Let H be a subgroup of G. Following Serre (see, for example, [52]), we say that H is
G-completely reducible (G-cr for short) if whenever H ⊆ P for an R-parabolic subgroup P
of G, there exists an R-Levi subgroup L of P such that H ⊆ L . For example, if G = SLn(k)
or GLn(k) then H is G-cr if and only if the inclusion of H is completely reducible in the
usual sense of representation theory. If H is G-cr then H is reductive, while if H is linearly
reductive then H is G-cr (see [5, Sects. 2.4, 6]). Hence in characteristic 0, H is G-cr if and
only if H is reductive.

In [2] and [37] it was shown that the notion of complete reducibility is useful when one
considers G-varieties and, as explained in the introduction, one of the purposes of this paper
is to expand upon this theme.

The geometric approach to complete reducibility outlined in [5] rests on the following
construction, which was first given in this form in [9]. Given a subgroup H of a reductive
group G and a positive integer n, we call a tuple of elements h ∈ Hn a generic tuple
for H if there exists a closed embedding of G in some GLm(k) such that h generates the
associative subalgebra of m × m matrices spanned by H [9, Defn. 5.4]. A generic tuple for
H always exists for sufficiently large n. Suppose h ∈ Hn is a generic tuple for H ; then in
[9, Theorem 5.8(iii)] it is shown that H is G-completely reducible if and only if the G-orbit
of h in Gn is closed, where G acts on Gn by simultaneous conjugation.

2.5 Optimal cocharacters

Let X be an affineG-variety. The classic Hilbert–Mumford Theorem [28, Theorem 1.4] says
that via the process of taking limits, the cocharacters of G can be used to detect whether or
not the G-orbit of a point in X is closed. Kempf strengthened the Hilbert–Mumford Theorem
in [28] (see also [24,41,51]), by developing a theory of “optimal cocharacters” for non-closed
G-orbits. We give an amalgam of some results from Kempf’s paper; see [28, Theorem 3.4,
Cor. 3.5] (and see also [9, Sect. 4] for the case of non-connected G).

Theorem 2.12 Let x ∈ X be such that G · x is not closed, and let S be a closed G-stable
subset of X which meets G · x. Then there exists an R-parabolic subgroup P(x) of G and a
nonempty subset 
(x) ⊆ Y (G) such that:

(i) for all λ ∈ 
(x), lima→0 λ(a) · x exists, lies in S, and is not G-conjugate to x;
(ii) for all λ ∈ 
(x), Pλ = P(x);
(iii) Ru(P(x)) acts simply transitively on 
(x);
(iv) Gx ⊆ P(x).

3 Preparatory results

In this section we collect some results concerning algebraic group actions on varieties which
will be useful in the rest of the paper. Recall our standing assumption that G is a reductive
group.
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3.1 Étale slices

Étale slices are a powerful tool in geometric invariant theory. Let X be an affineG-variety and
let x ∈ X such that G · x is closed. Luna introduced the notion of an étale slice through x [32,
III.1]: this is a locally closed affine subvariety S of X with x ∈ S satisfying certain properties.
He proved that an étale slice through x always exists when the ground field has characteristic
0. Bardsley and Richardson later defined étale slices in arbitrary characteristic [1, Defn. 7.1]
and gave some sufficient conditions for an étale slice to exist [1, Propns. 7.3–7.6]. If an étale
slice exists through x , the orbit G · x must be separable. We record an important consequence
of the étale slice theory [1, Proposition 8.6].

Proposition 3.1 Let X be an affine G-variety and let x ∈ X such that G · x is closed and
there is an étale slice through x. Then there is an open neighbourhood U of x such that for
all u ∈ U, Gu is conjugate to a subgroup of Gx .

The following example, based on a construction from [37, Example 8.3], shows that this
result need not hold when there is no étale slice.

Example 3.2 Let G = SL2(k) and let H = Cp × Cp = 〈γ1, γ2 | γ
p
1 = γ

p
2 =

[γ1, γ2] = 1〉. Define f : k × H → k × G by f (x, h) = (x, fx (h)), where fx (γ
h1
1 γ

h2
2 ) :=

(

1 h1x + h2x2

0 1

)

. Set Kx = im( fx ). Note that for each x ∈ k, there are only finitely

many x ′ ∈ k such that Kx and Kx ′ are G-conjugate. Define actions of G and H on k × G
by g · (x, g′) = (x, gg′) and h · (x, g′) = (x, g′ fx (h)−1). These actions commute with each
other, so we have an action of G on the quotient space V := (k × G)/H . Set ϕ = πk×G,H .
Since H is finite, ϕ is a geometric quotient. A straightforward calculation shows that for any
(x, g) ∈ k × G, the stabilizer Gϕ(x,g) is precisely gKxg−1. It follows that the G-orbits on
V are all closed, but the assertion of Proposition 3.1 cannot hold for any v ∈ V . Hence no
v ∈ V admits an étale slice. Note that generic stabilizers are nontrivial, but there do exist
orbits with trivial stabilizer (take x = 0).

Nonetheless we can even show (using étale slice methods!) that generic G-orbits in V are
separable. Let O = {x ∈ k | x2 �= 0, x, . . . , (p − 1)x}, an open subset of k. Then the finite
group H acts freely on O×G, so by [1, Proposition 8.2], O×G is a principal H -bundle in the
étale topology in the sense of [1, Defn. 8.1]. Let x ∈ O . It follows that the derivative d(x,g)ϕ

is surjective for all g ∈ G. Define an H -equivariant mapψx : G → k×G byψx (g) = (x, g).
An easy computation shows that the map (ψx )H : G/H → V induced by ψx is bijective and
separable when regarded as a map onto its image, so (ψx )H gives by Zariski’s Main Theorem
an isomorphism from G/H onto its image. Now (ψx )H is G-equivariant, where we let G act
on G/H by left multiplication. Since πG,H : G → G/H is separable, the orbit G · πG,H (g)
is separable for any g ∈ G. This means that the orbit G · ϕ(x, g) = G · (ψx )H (πG,H (g)) is
separable as well.

In contrast, consider the orbit G ·ϕ(0, g). This cannot be separable: for otherwise ϕ(0, g)
admits an étale slice by [1, Proposition 7.6], since the stabilizerGϕ(0,g) is trivial, andwe know
already that this is impossible. It follows easily that (ψ0)H : G/H → V is not an isomorphism
onto its image. We see from this that if i is the obvious inclusion of Y := {0} × G in k × G
then the induced map iG : Y/H → (k × G)/H = V is not an isomorphism onto its image
(cf. Remark 2.4).

The failure of Proposition 3.1 and other consequences of the machinery of étale slices
when slices do not exist is behind many of the technical difficulties we need to overcome in
order to prove Theorem 1.1.
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3.2 Some results on closed orbits

We first need a technical lemma which collects together various properties of orbits and
quotients and the associated morphisms. For more details, see the proofs of [48, Lemmas 4.2,
10.1.3] or the discussion in [27, Sect. 2.1], for example; the extension to non-connected G
is immediate. Note that if G acts on a variety X then for any x ∈ X , G · x is locally closed
[10, Proposition 1.8], so it has the structure of a quasi-affine variety.

Lemma 3.3 Let X be a G-variety. Suppose x ∈ X, and letψx : G/Gx → G ·x be the natural
map. Then:

(i) ψx is a homeomorphism;
(ii) G · x is affine if and only if G/Gx is affine if and only if Gx is reductive;
(iii) ψx is an isomorphism of varieties if and only if the orbit G · x is separable.

Remark 3.4 All the subtleties here are only really important in positive characteristic since
in characteristic 0 the orbit map is always separable, so the morphism ψx is always an
isomorphism. The result shows that even in bad cases where the orbit map is not separable
we can reasonably compare the quotient G/Gx with the orbit G · x , as one might hope.

Lemma 3.5 Let H be a subgroup of G and suppose x ∈ X. Set K = Gx and let H act on X
by restriction of the G-action. Then:

(i) H · x is closed in G · x if and only if HK = {hk | h ∈ H , k ∈ K } is a closed subset of
G.

(ii) If G · x is closed in X then H · x is closed in X if and only if HK is closed in G.

Proof Part (ii) follows immediately from part (i). For part (i), since the map ψx : G/K →
G · x from Lemma 3.3 is a homeomorphism, H · x is closed in G · x if and only if the
corresponding subset H · πG,K (1) is closed in G/K (recall that πG,K : G → G/K is the
canonical projection). Since G/K has the quotient topology, this is the case if and only if the
preimage of this orbit is closed in G. But the preimage is precisely the subset HK . �

Our next result involves the following set-up: Suppose Y is anotherG-variety. ThenG×G
acts on the product X × Y via (g1, g2) · (x, y) = (g1 · x, g2 · y), and identifying G with its
diagonal embedding (G) in G × G, we can also get the diagonal action of G on X × Y :
g · (x, y) = (g · x, g · y).
Lemma 3.6 With the notation just introduced, let x ∈ X, y ∈ Y and set K = Gx , H = Gy.
Then:

(i) H · x is closed in G · x if and only if K · y is closed in G · y if and only if G · (x, y) is
closed in (G · x) × (G · y).

(ii) If G · x is closed in X and G · y is closed in Y , then H · x is closed in X if and only if
K · y is closed in Y if and only if G · (x, y) is closed in X × Y .

Proof (i). The first equivalence follows from Lemma 3.5 since K H = (HK )−1 is closed in
G if and only if HK is closed inG (note that this argument is based on the one in the proof of
[48, Lemma 10.1.4]). For the second equivalence, consider the orbit map κ1 : G × G → G
associated to the orbit of 1 ∈ G for the double coset action of G ×G on G (cf. Sect. 9); so κ1
is given by κ1(g1, g2) = g1g

−1
2 . Then κ1 is surjective and open. Now, since the (G×G)-orbit

of (x, y) is (G · x) × (G · y) and the stabilizer of (x, y) in G × G is K × H , we have that
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G · (x, y) = (G) · (x, y) is closed in (G · x) × (G · y) if and only if (G)(K × H) is
closed in G × G, by Lemma 3.5(i). Now (G)(K × H) is closed in G × G if and only if
(K × H)(G) is, and (K × H)(G) = κ−1

1 (K H). Since κ1 is a surjective open map, we
conclude that (G)(K × H) is closed in G × G if and only if K H is closed in G, which
happens if and only if K · y is closed in G · y, by Lemma 3.5(i) again.

(ii). This chain of equivalences follows quickly from part (i). �
Remark 3.7 The results above give criteria for a result of the form “G · x closed implies
H · x closed” for a point x in a G-variety X . We can’t hope for a general converse to this.
For example, let G be any connected reductive group and, in the language of Sect. 2.4, let
x ∈ X = Gn be a generic tuple for a Borel subgroup of G and y ∈ Y = Gn be a generic
tuple for G itself. Then, Gx = Gy = Z(G), the G-orbits of y and (x, y) are closed, but the
G-orbit of x is not closed.

3.3 Finite morphisms and quotients

In this sectionwe provide some general results on finitemorphisms and quotients by reductive
group actions. We begin with an extension of Zariski’s Main Theorem which deals with
nonseparable morphisms. Recall that if X is an irreducible affine variety then νX : ˜X → X
denotes the normalization of X .

Proposition 3.8 Let φ : X → Y be a dominant quasi-finite morphism of irreducible affine
varieties. Suppose Y is normal and generic fibres of φ are singletons. Then φ is a finite
bijection onto an open subvariety of Y . Moreover, the normalization map νX : ˜X → X is a
bijection.

Proof As φ is dominant, we may identify k[Y ] with a subring of k[X ] and k(Y ) with a
subfield of k(X). The hypothesis on the fibres of φ implies that φ is purely inseparable [25,
Theorem 4.6]. Let f1, . . . , fr be generators for k[X ] as a k-algebra. Then there exists a
power q of p such that f qi ∈ k(Y ) for all i . Let S be the k-algebra generated by k[Y ] together
with f q1 , . . . , f qr and let Z be the corresponding affine variety, so that S = k[Z ]. Then the
inclusions k[Y ] ⊆ k[Z ] ⊆ k[X ] give rise to maps ψ : X → Z and α : Z → Y such that
φ = α ◦ ψ . Now k[X ] is integral over k[Z ] by construction, so ψ is finite and surjective,
and hence α is quasi-finite and has the same image as φ. But α is birational by construction,
so α is an isomorphism from the affine variety Z onto an open subvariety of Y by Zariski’s
Main Theorem (since Y is normal). To complete the proof of the first assertion, it is enough
to show that ψ is injective. This follows because any k-algebra homomorphism k[X ] → k
is completely determined by its values on f q1 , . . . , f qr , which are elements of k[Z ].

Because νX is finite and birational, the map φ ◦ νX : ˜X → Y satisfies the hypotheses of
the proposition. Hence φ ◦ νX is injective. This forces νX to be injective also. But νX is also
surjective, and we are done. �

We need some further results about the behaviour of affine G-varieties under normaliza-
tion. If X is an affine G-variety then ˜X inherits a unique structure of a G-variety such that
νX is G-equivariant (cf. [1, Sect. 3]). This gives a map of quotients (νX )G : ˜X/G → X/G.

Lemma 3.9 Let X be an irreducible affine G-variety with good dimension and let (νX )G be
as above. Then (νX )G is finite and ˜X/G is the normalization of X/G.

Proof The natural map of quotients X/G0 → X/G can be viewed as the quotient map by
the finite group G/G0 and is therefore finite. The same is true for ˜X/G0 → ˜X/G, so by
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Remark 2.2(ii) it follows that (νX )G is finite if (νX )G0 is. Hence we may assume that G is
connected.

The coordinate ring k[˜X ] of the normalization of X is the integral closure of k[X ] in
the function field k(X). Let S be the integral closure of k[X ]G in k(X). Then S is finitely
generated as a k-algebra [1, 2.4.3], and S ⊆ k[˜X ] as k[˜X ] is integrally closed, so S ⊆ k[˜X ]G
as G is connected (see the proof of [1, 2.4.1]). Let Z be the affine variety corresponding

to S. Then (νX )G factors as ˜X/G
α→ Z

β→ X/G. It is clear that Z is normal (in fact, S is
the integral closure of k[X ]G in k(X)G , so Z is the normalization of X/G). Now (νX )G is
birational and quasi-finite by Lemmas 2.9 and 2.8(ii), so α is also birational and quasi-finite.
It follows from Zariski’s Main Theorem that α is an open embedding.

The map β is finite by construction, so to complete the proof that (νX )G is finite it is
enough to show that α is surjective. Define θ : ˜X → Z × X by θ = (α ◦ π

˜X ,G) × νX and let
C be the closure of θ(˜X). We have a commutative diagram

˜X

π
˜X ,G

θ
C

pr1

˜X/G
α

Z

where pr1 is projection onto the first factor. The composition ˜X → C → X is finite, where
the second map is projection onto the second factor, so θ is a finite map from ˜X to C ; in
particular, C = θ(˜X).

Let G act on Z × X trivially on the first factor, and by the given action on the second.
It is immediate that θ is G-equivariant, so C is G-stable and we have an induced map
θG : ˜X/G → (Z×X)/G. The image D of θG is πZ×X ,G(C), and this is closed in (Z×X)/G
as C is closed and G-stable. There is an obvious map ξ : (Z × X)/G → Z × X/G, and it is
easily checked that ξ is an isomorphism; hence ξ(D) is closed. Untangling the definitions,

we find that α factors as ˜X/G
θG→ (Z × X)/G

ξ→ Z × X/G
τ→ Z , where τ is projection

onto the first factor.
Clearly ξ(D) is contained in the subset {(z, e) ∈ Z × X/G | β(z) = e}, which we can

identify with Z via τ . It follows that α(˜X/G) = τ(ξ(D)) is closed in Z . But α(˜X/G) is a
nonempty open subset of Z , so we must have α(˜X/G) = Z , as required.

To finish the proof, we note that for any G (connected or otherwise), the variety ˜X/G is
normal since ˜X is normal, and the considerations above show that (νX )G : ˜X/G → X/G is
finite. Moreover, (νX )G is birational by Lemma 2.9 since X has good dimension. The result
now follows from another application of Zariski’s Main Theorem. �

Next we extend a result of Bardsley and Richardson [1, 2.4.2], which they prove in the
special case when X and Y are normal and φ is dominant. It provides an extension to positive
characteristic of a result used freely in [33].

Proposition 3.10 Let φ : X → Y be a finite G-equivariant morphism of affine G-varieties.
Then φG : X/G → Y/G is finite.

Proof As at the start of the proof of Lemma 3.9, we can immediately reduce to the case when
G is connected, since the natural maps X/G0 → X/G and Y/G0 → Y/G are finite. The
map Xcl/G → X/G is surjective, and Lemma 2.3 implies it is finite. We may also assume,
therefore, that X has good dimension. Since a morphism is finite if and only if its restriction
to every irreducible component of the domain is finite, we can assume X is irreducible. By
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the proof of Lemma 2.8, φ(Xcl) ⊆ Ycl, so after replacing Y with φ(X) if necessary, we may
assume by Lemma 2.3 that φ is dominant and Y is irreducible and has good dimension.

The map φ : X → Y gives rise to a map ˜φ : ˜X → ˜Y , and ˜φ is finite as φ is. We have a
commutative diagram

˜X

νX

˜φ
˜Y

νY

X
φ

Y

where the vertical arrows are the normalization maps. Taking quotients by G, we obtain a
commutative diagram

˜X/G

(νX )G

˜φG
˜Y/G

(νY )G

X/G
φG

Y/G

Since ˜φ is finite and dominant and ˜X and ˜Y are irreducible and normal, the map ˜φG :
˜X/G → ˜Y/G is finite and dominant [1, 2.4.2]. Now Lemma 3.9 shows that the map (νY )G :
˜Y/G → Y/G is finite and so (νY )G ◦ ˜φG is finite. Therefore, φG ◦ (νX )G is finite and by
Remark 2.2(ii) we get that φG is finite, as required. �

4 Proof of Theorem 1.1, Part 1: quasi-finiteness

In this section we provide the first step towards our proof of Theorem 1.1, showing that
the map ψX ,H in question is quasi-finite. We are also able to retrieve other results from
[33] which follow from the main theorem, but in arbitrary characteristic. Our first result is a
generalization of [2, Theorem 4.4]; see also [7, Theorem 5.4].

Proposition 4.1 Suppose that G is a reductive group and X is an affine G-variety. Let H be
a G-completely reducible subgroup of G and let x ∈ XH . Then the following are equivalent:

(i) NG(H) · x is closed in X;
(ii) G · x is closed in X and H is Gx -cr.

Proof First suppose G · x is not closed. Let P(x) and 
(x) be the R-parabolic subgroup and
class of cocharacters given by Theorem 2.12. Since H ≤ Gx ≤ P(x) is G-cr, there exists
an R-Levi subgroup L of P(x) containing H . Since Ru(P(x)) acts simply transitively on

(x) and on the set of R-Levi subgroups of P(x), there exists λ ∈ 
(x) with L = Lλ. But
then H ⊆ Lλ means that λ ∈ Y (CG(H)) ⊆ Y (NG(H)); in particular, λ(a) · x ∈ NG(H) · x
for all a ∈ k∗. Now lima→0 λ(a) · x exists in X and is not G-conjugate to x , so it is not
NG(H)-conjugate to x , so NG(H) · x is not closed. This shows that if (i) holds then G · x
must be closed. Therefore, in order to finish the proof, we need to show that NG(H) · x is
closed if and only if H is Gx -cr under the assumption that G · x is closed (note that since
G · x is closed, Gx is reductive (Lemma 3.3(ii)), and hence it makes sense to ask whether or
not H is Gx -cr).

To see this equivalence, let h ∈ Gn for some n be a generic tuple for the subgroup H and
consider the diagonal action of G on Gn × X . Then CG(H) = Gh. Now, by Lemma 3.6,

123



Orbit closures and invariants 1135

since G · x is closed in X , CG(H) · x is closed in X if and only if Gx · h is closed in Gn .
The latter condition is equivalent to requiring that H is Gx -cr, and since x is H -fixed and
NG(H) is a finite extension of HCG(H), CG(H) · x is closed in X if and only if NG(H) · x
is closed in X . This completes the proof. �
Remarks 4.2 (i). In characteristic 0, the subgroup H ofG isG-cr if and only if H is reductive.
In this case, therefore, we are just requiring that H is reductive and the second condition in
part (ii) of the Theorem is then automatic. Therefore, when char(k) = 0, we retrieve Luna’s
result [33, Sect. 3, Cor. 1].

(ii). The implication (ii) implies (i) of Proposition 4.1 is not true in general without the
hypothesis that H is Gx -cr, as a straightforward modification of [2, Ex. 4.6] shows. See also
[6, Ex. 5.1, Ex. 5.3], noting that if A, B are commuting G-cr subgroups of G and B is not
CG(A)-cr then B is not NG(A)-cr by [6, Proposition 2.8].

(iii) Suppose H is a torus in Proposition 4.1; then H is linearly reductive, so H is G-cr.
Now NG(H) is a finite extension of the Levi subgroup CG(H) of G, so NG(H) · x is closed
if and only if CG(H) · x is closed. Moreover, H is automatically Gx -cr if Gx is reductive. It
follows that G · x is closed if and only if CG(H) · x is closed. (This is also a special case of
[4, Theorem 5.4].) We use this result repeatedly in Sect. 9.

Some of the constructions used in the proof of the next result are based on those in [8,
Sec. 3.8].

Lemma 4.3 Suppose H is a reductive subgroup of G such that H is not G-cr. Then:

(i) There exists an affine G-variety X and a point x ∈ XH such that G · x is not closed.
(ii) There exists a rational G-module V and a nonzero subspace W ⊆ V H such that:

(a) 0 lies in the closure of G · w for all w ∈ W;
(b) NG(H) · w is finite (hence closed in V ) for all w ∈ W.

In particular, if NG(H) is reductive, then the map ψV ,H : V H/NG(H) → V /G is not
quasi-finite.

Proof Choose a closed embedding G ↪→ SLm(k) for some m and think of H and G as
closed subgroups of SLm(k). Let Matm denote the algebra of all m × m matrices. Let x =
(x1, . . . , xn) ∈ Hn be a basis for the associative subalgebra of Matm spanned by H ; then x is
a generic tuple for H (see Sect. 2.4). This means that if we let SLm(k) act on Y := (Matm)n

by simultaneous conjugation, then G · x is not closed. Note that since H is itself H -cr, the
H -orbit of H · x is closed in Y .

There is also a right action of GLn(k) on Y , which we denote by ∗. Given a matrix
A = (ai j ) ∈ GLn(k) and an element y = (y1, . . . , yn) ∈ Y , we can set

y ∗ A =
(

n
∑

i=1

ai1yi , . . . ,
n

∑

i=1

ain yi

)

.

This is the action obtained by thinking of the tuple y as a row vector of length n and letting the
n×n matrix A act on the right in the obvious way. Note that the SLm(k)- and GLn(k)-actions
commute.

Given any h ∈ H , since x is a basis for the associative algebra generated by H , we have
that h · x is also a basis for this algebra, and hence there exists a unique A(h) ∈ GLn(k) such
that h · x = x ∗ A(h). Note also that

(h1h2) · x = h1 · (h2 · x) = h1 · (x ∗ A(h2)) = (h1 · x) ∗ A(h2) = x ∗ (A(h1)A(h2)),
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and hence the map A : H → GLn(k) is a group homomorphism. This map is in fact a
rational representation of H since it arises from the morphic action of H on the vector space
spanned by the entries of x. Let K denote the image of H in GLn(k); then K is a reductive
group and x ∗ K = H · x is closed. Moreover, since the elements of the tuple x are linearly
independent, the stabilizer of x in K is trivial. Hence x is a stable point for the action of K
on Y . Now let X = Y/K and set x := πY ,K (x). Since the SLm(k)- and GLn(k)-actions on
Y commute, we obtain an action of SLm(k) on X . It is immediate that x ∈ XH .

We know that G · x is not closed in Y , so there exists a cocharacter λ ∈ Y (G) such that
lima→0 λ(a) ·x = y exists and is notG-conjugate to x. Since πY ,K isG-equivariant, it is easy
to see that lima→0 λ(a) · x = πY ,K (y) (and in particular this limit exists). Suppose πY ,K (y)
is G-conjugate to x . Then there exists g ∈ G such that g · πY ,K (y) = πY ,K (g · y) = x ,
so g · y ∈ π−1

Y ,K (x) = π−1
Y ,K (πY ,K (x)). But x is a stable point for K , so π−1

Y ,K (πY ,K (x)) is
precisely K · x, which coincides with H · x by construction. Hence g · y = h · x for some
h ∈ H and we see that y and x are G-conjugate, which is a contradiction. Hence π(y) and x
are not conjugate, and the G-orbit of x ∈ XH is not closed, which proves (i).

To prove (ii), let S denote the unique closedG-orbit in the closure ofG ·x . Then, following
[28, Lemma 1.1(b)], we can find a rational G-module V with a G-equivariant morphism
φ : X → V such thatφ−1(0) = S. SinceG ·x is not closed, it does notmeet S, and hence v :=
φ(x) �= 0. However, by Theorem 2.12, there existsμ ∈ Y (G) such that lima→0 μ(a) · x ∈ S,
and since the morphism φ is G-equivariant, we have that {0} is the unique closed G-orbit in
the closure ofG ·v. Note also that v is H -fixed since x is. Now the tuple x consists of elements
of H , so is CG(H)-fixed, and hence x = πY ,K (x) is also CG(H)-fixed, which means that x
is actually HCG(H)-fixed. Since H is reductive, NG(H)0 = H0CG(H)0, so x is NG(H)0-
fixed and hence the NG(H)-orbit of x is finite. This in turn implies that the NG(H)-orbit of
v is finite, and hence closed in V . Finally, let W ⊆ V H be the one-dimensional subspace
of V spanned by v. Then for all w ∈ W , NG(H) · w is finite, hence closed, and 0 is in the
closure of G · w, so we have parts (a) and (b) of (ii). For the second statement, if NG(H) is
reductive—so that it definitely makes sense to talk about the quotient V H/NG(H)—then the
image of W in V H/NG(H) is still infinite, but every element of this infinite set is mapped
to the point corresponding to 0 in V /G under the natural morphism V H/NG(H) → V /G,
so this morphism cannot be quasi-finite. �

With this result in hand, we can provide the first step towards the proof of Theorem 1.1
by showing that the morphism ψX ,H is quasi-finite.

Theorem 4.4 Suppose H is a reductive subgroup of G. The following conditions on H are
equivalent:

(i) NG(H) is reductive and for every affine G-variety X, the natural morphism ψX ,H :
XH/NG(H) → X/G is quasi-finite;

(ii) H is G-cr.

Proof Suppose H is not G-cr. Then either NG(H) is not reductive, in which case the first
part of condition (i) fails, or else NG(H) is reductive but the second part of condition (i) fails
by Lemma 4.3(ii). Hence (i) implies (ii).

Conversely, suppose H is G-cr, and let X be any affine G-variety. Since H is G-cr, and
hence H is reductive, we have NG(H)0 = H0CG(H)0. That NG(H) is reductive is shown
in [5, Proposition 3.12], and hence it always makes sense to take the quotient XH/NG(H).

Suppose x ∈ XH . We first claim that the unique closed G-orbit S in G · x meets XH .
Indeed, either G · x is already closed, in which case S = G · x , or we can find the optimal
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parabolic P(x) and optimal class
(x) as given in Kempf’s Theorem 2.12. Since H ≤ Gx ≤
P(x) and H is G-cr, there is a Levi subgroup L of P(x) containing H . Since the unipotent
radical acts simply transitively on 
(x) and on the set of Levi subgroups of P(x), there is
precisely one element λ ∈ 
(x) with L = Lλ, and this choice of λ commutes with H . But
then y := lima→0 λ(a) · x ∈ S ∩ XH , which proves the claim.

Now any point of X/G has the form πX ,G(x), where G · x is closed in X . So let x ∈ X
such thatG ·x is closed. For any y ∈ π−1

X ,G(πX ,G(x))∩XH ,G ·x is the unique closedG-orbit

in G · y. Hence, if π−1
X ,G(πX ,G(x)) ∩ XH is nonempty, G · x must meet XH , by the claim in

the previous paragraph. It follows from the definitions that π−1
XH ,NG (H)

(ψ−1
X ,H (πX ,G(x))) =

π−1
X ,G(πX ,G(x)) ∩ XH , so to show that ψX ,H is quasi-finite, we need to show that for each

such x there are only finitely many closed NG(H)-orbits in π−1
X ,G(πX ,G(x)) ∩ XH . But any

y ∈ XH with a closed NG(H)-orbit has a closed G-orbit, by Proposition 4.1, and hence any
y ∈ π−1

X ,G(πX ,G(x)) ∩ XH with a closed NG(H)-orbit is already G-conjugate to x . So we

must show that there are only finitely many closed NG(H)-orbits in G · x ∩ XH .
Fix x ∈ XH with G · x closed, and recall that Gx is reductive since G · x is closed. Let

y ∈ G · x ∩ XH , and write y = g · x for some g ∈ G. Since G · y is closed, Proposition 4.1
says that NG(H) · y is closed if and only if H is Gy-cr, which is the case if and only if
g−1Hg is Gx -cr. Suppose g−1Hg and H are Gx -conjugate: say H = g−1

1 (g−1Hg)g1 for
some g1 ∈ Gx . Then gg1 ∈ NG(H) and y = g · x = (gg1) · x , so we see that x and y
are NG(H)-conjugate. Conversely, suppose x and y are NG(H)-conjugate: say y = m · x
for some m ∈ NG(H). Then m−1g ∈ Gx and m−1g(g−1Hg)g−1m = H , so g−1Hg and
H are Gx -conjugate. Hence the distinct closed NG(H)-orbits in G · x ∩ XH correspond to
the distinct Gx -conjugacy classes of Gx -cr subgroups of the form g−1Hg inside Gx . It is
therefore enough to show that there are only finitely many such conjugacy classes.

Let h ∈ Hn be a generic tuple for H in Gx for some n and let g ∈ G such that g−1Hg
is a Gx -cr subgroup of Gx . Then g−1 · h is a generic tuple for g−1Hg. Since g−1Hg is
both G-cr and Gx -cr, the G- and Gx -orbits of h in Gn are both closed. It follows from [35,
Theorem 1.1] that the natural map of quotients Gn

x/Gx → Gn/G is finite, and hence there
are only finitely many closed Gx -orbits contained in G · h ∩ Gn

x . This proves the result. �
Remark 4.5 Note that if Gx = H and G · x is closed then the argument in the proof above
shows that there is precisely one closed NG(H)-orbit insideG · x ∩ XH (namely, NG(H) · x),
and therefore ψ−1

X ,H (πX ,G(x)) is a singleton. We will use this observation in Sects. 6 and 7.

The third paragraph of the proof above shows that for any x ∈ XH , the unique closed
orbit contained in G · x also meets XH . This allows us to prove the following:

Lemma 4.6 The map ψX ,H : XH/NG(H) → X/G of Theorem 1.1 has closed image if and

only if for all x ∈ G · XH such that G · x is closed, x ∈ G · XH .

Proof Since G · XH is closed and G-stable, we may replace X with G · XH ; then saying
ψX ,H has closed image is the same as saying thatψX ,H is surjective. But this is equivalent to
saying that the fibre above every point of X/G meets XH . Since each fibre contains a unique
closed orbit, the observation before the Lemma gives the result. �

Now we extend Luna’s result [33, Cor. 3] to positive characteristic.

Proposition 4.7 Suppose H is a reductive subgroup of G. The following conditions on H are
equivalent:
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(i) for every affine G-variety X, every G-orbit in X that meets X H is closed;
(ii) H is G-cr and NG(H)/H is a finite group.

Proof Suppose (i) holds. Then H must be G-cr, by Lemma 4.3. Since H is reductive,
NG(H)0 = H0CG(H)0. Let x ∈ CG(H)0 and let G act on itself by conjugation. We
have x ∈ CG(H) = GH , so the G-orbit of x (i.e., the conjugacy class of x) must be closed
in G. As x belongs to G0, it follows from [55, Cor. 3.6] that x is a semisimple element of G.
SinceCG(H)0 consists entirely of semisimple elements, it must be a torus [10, Cor. 11.5(1)].
Hence NG(H)0 = H0CG(H)0 is a reductive group and (NG(H)/H)0 is a torus.

Now suppose, for contradiction, that NG(H)/H is infinite. Then there exists a one-
dimensional subtorus S of CG(H)0 not contained in H . To ease notation, let Z = HS
and note that Z is reductive. Since H is normal in Z and Z/H ∼= S/(S ∩ H) is a one-
dimensional torus, we have a multiplicative character χ : Z → k∗ with kernel H ; let V
denote the corresponding 1-dimensional Z -module. Set Y = G × V , let Z act on Y via
z · (g, v) := (gz−1, χ(z)v), and let G act by left multiplication on the first factor and trivially
on the second factor. Now let X = Y/Z ; this is a special case of a construction described in
[32, I.3]. Since Z is reductive and Y is affine, X is affine, and since Z acts freely on Y , the
fibres of πY ,Z are precisely the Z -orbits in Y . Moreover, since the G- and Z -actions on Y
commute, X is naturally a G-variety. Let 0 �= v ∈ V and choose a cocharacter λ of Z such
thatm := −〈λ, χ〉 > 0. Then λ(a) ·πY ,Z (1, v) = πY ,Z (1, χ(λ(a−1))v) = πY ,Z (1, amv) for
all a ∈ k∗, so lima→0 λ(a)·πY ,Z (1, v) = πY ,Z (1, 0) /∈ G ·πY ,Z (1, v), soG ·πY ,Z (1, v) is not
closed. However, πY ,Z (1, v) is H -fixed, and we have our contradiction. Hence NG(H)/H
is finite. This completes the proof that (i) implies (ii).

Conversely, suppose (ii) holds and X is any affineG-variety. Let x ∈ XH , so that H ≤ Gx .
Since NG(H)/H is finite, NG(H) · x is a finite union of H -orbits. But NG(H) · x ⊆ XH ,
so each of these H -orbits is a singleton and NG(H) · x is finite, and therefore closed in
X . Now we can apply Proposition 4.1 to deduce that the G-orbit of x is also closed, which
gives (i). �

5 Proof of Theorem 1.1, Part 2: surjectivity

In this section, we prove the following:

Theorem 5.1 Let X be an affine G-variety and let H be a G-cr subgroup of G. Then the map
ψX ,H : XH/NG(H) → X/G has closed image.

The proof of Theorem 5.1 in positive characteristic requires some preparation. Before we
begin, we note that if char(k) = 0 thenwe can give amuch quicker proof using themachinery
of étale slices, as follows. Let x ∈ G · XH such that G · x is closed. Then there is an étale
slice through x for the G-action [32, III.1]. By Proposition 3.1, there is an open G-stable
neighbourhood O of x such that Gy is conjugate to a subgroup of Gx for all y ∈ O . Since
O meets G · XH , H must be conjugate to a subgroup of Gx . Hence x ∈ G · XH , and we are
done by Lemma 4.6.

We need some material on weighted projective varieties and their quotients by reductive
groups (cf. [44, Chapter 3, Sect. 4]). Let V be a G-module equipped with an action of k∗
which commutes with the action of G. Suppose the weights of k∗ on V are all positive, so
that limc→0 c · v = 0 for every v ∈ V , where the c ∈ k∗. The action of k∗ decomposes
V into weight spaces, and this in turn gives a grading by non-negative integers of the coor-
dinate ring k[V ]. Let k[V ]i denote the i th-graded piece of k[V ]. We say that f ∈ k[V ]
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is homogeneous if f ∈ k[V ]i for some i ; in this case we write deg( f ) = i (so deg( f ) is
the weighted degree rather than the usual degree of a polynomial). The action of k∗ can be
diagonalised, so we can choose a basis {v1, . . . , vn} for V consisting of weight vectors. Then
the corresponding elements X1, . . . , Xn of the dual V ∗ are weight vectors and we can write
k[V ] = k[X1, . . . , Xn]; we set di = deg(Xi ) for each i .

Set W(V ) = Proj(k[V ]); we call this the weighted projectivization of V according to the
k∗-action [18]. Then W(V ) is a projective variety and we may identify the points of W(V )

with the equivalence classes of V \{0} under the equivalence relation ∼, where v ∼ w if and
only if v = c · w for some c ∈ k∗. If the weights of the k∗-action on V are all 1—that is, if
the action of k∗ on V is by ordinary scalar multiplication—then W(V ) is just the ordinary
projective space P(V ) associated to V , but in Sect. 6 we will need to consider the general
weighted case. One can show that the canonical projection ξV : V \{0} → W(V ) is a good
quotient. If f ∈ k[V ] is homogeneous and deg( f ) ≥ 1 then we set W(V ) f = {ξV (v) | v ∈
V , f (v) �= 0}; then W(V ) f is an open affine subset of W(V ), with coordinate ring (k[V ] f )0
(the zero-graded part of the localisation k[V ] f ).

Since the G- and k∗-actions commute, the ring k[V ]G of invariants also inherits a grading
by non-negative integers: if f ∈ k[V ]G and f = f0 + · · · + fr is a decomposition with
fi ∈ k[V ]i for each i , then fi ∈ (k[V ]G)i for each i . It is easily checked that the action of
G on V descends to give an action of G on W(V ). We say that x ∈ W(V ) is a semistable
point (or G-semistable point) if x ∈ W(V ) f for some homogeneous f ∈ k[V ]G such that
deg( f ) ≥ 1; otherwise we say that x is unstable (or G-unstable). We define W(V )ss,G to be
the set of G-semistable points of W(V ); this is an open subset of W(V ).

Let Y = Proj(k[V ]G). Then Y is a projective variety and the inclusion of k[V ]G in k[V ]
gives rise to a map ηV ,G : W(V )ss,G → Y . It follows from the proof of [44, Theorem 3.14]
that Y is a good quotient of W(V )ss,G in the sense of [44, Chapter 3, Sect. 4, p 57] (the
argument given in loc. cit. is only for the ordinary projective variety P(V ), but it is clear that
it holds for the weighted case as well). We set W(V )ss,G/G := Y . Moreover, if f ∈ k[V ]G
is homogeneous and deg( f ) ≥ 1 then Y f := ηV ,G(W(V ) f ) is an open affine subvariety of
Y , with coordinate ring ((k[V ]G) f )0, and the induced map of affine varieties from W(V ) f
to Y f is a good quotient.

We have an analogous notion of semistable points in the affine variety V . We say that
v ∈ V semistable (or G-semistable) if f (v) �= 0 for some homogeneous f ∈ k[V ]G
such that deg( f ) ≥ 1, and we define Vss,G to be the set of semistable points; note that
Vss,G = ξ−1

V (W(V )ss,G). If v is not stable then we say that v is unstable (or G-unstable).
Since the homogeneous elements of k[V ]G generate k[V ]G , v is unstable if and only if
πV ,G(v) = πV ,G(0). By the Hilbert–Mumford Theorem, this is the case if and only if there
exists λ ∈ Y (G) such that lima→0 λ(a) · v = 0. We denote the composition Vss,G →
W(V )ss,G

ηV ,G−→ Y by νV ,G .
Now suppose K is a reductive subgroup ofG and X is a closed (K ×k∗)-stable subvariety

of V (so that in particular 0 ∈ X ). Then the vanishing ideal for X in k[V ] is homogeneouswith
respect to our fixed k∗-grading, so k[X ] inherits a grading. The constructions above still go
through replacing V andG with X and K . We have projective varietiesW(X) := Proj(k[X ])
and W(X)ss,K /K := Z := Proj(k[X ]K ), where W(X)ss,K is defined analogously to above;
the map W(X)ss,K → Z is a good quotient. Note that the proof of [44, Theorem 3.14] still
goes through: all one needs is that k[X ] is graded and theG-action preserves the grading. Since
W(V ) and W(X) are categorical quotients of V \{0} and X\{0} respectively, the inclusion
of X in V gives rise to a map from W(X) to W(V ).
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It is clear from the characterisation of semistable points in terms of the Hilbert–Mumford
Theorem that X ∩ Vss,G ⊆ Xss,K . Suppose Xss,K ⊆ Vss,G ; then Xss,K = X ∩ Vss,G . Since
Y and Z are categorical quotients of W(V )ss,G and W(X)ss,K , respectively, the inclusion of
W(X)ss,K in W(V )ss,G gives rise to a map φ : Z → Y . Now we come to the point: because
Y and Z are projective, the image of φ is closed.

We can now state and prove the main result of this section.

Proposition 5.2 Let V be a G-module equipped with a k∗-action as above. Let K be a
reductive subgroup of G, let X be a closed (K ×k∗)-stable subset of V and suppose Xss,K ⊆
Vss,G. Then the naturalmorphism of quotients X/K → V /G has closed image (i.e.,πV ,G(X)

is closed in V /G).

Proof For the purposes of the proof, we need to replace G with a slightly larger group
to take into account possible effects of passing to the weighted projectivisation. Without
loss, we may assume that G is a subgroup of GL(V ). Let R = k[V ]G and let f1, . . . , fr
be homogeneous generators for R. Let m be the lowest common multiple of the degrees
deg( f1), . . . , deg( fr ) and write m = pαm′ for some m′ coprime to p. Let F be the finite
group of m′th roots of unity, regarded as a subgroup of k∗ (equipped with its given action on
V ). Now set � = FG. Then � inherits an action on V from the commuting actions of G
and k∗, and Vss,� = Vss,G because �0 = G0. Further, F acts on the quotient V /G and the
quotient map πV /G,F : V /G → (V /G)/F = V /� is a geometric quotient. The subset X
of V is k∗-stable, and hence F-stable, so πV ,G(X) is a πV /G,F -saturated subset of V /G –
that is, π−1

V /G,F (πV /G,F (πV ,G(X))) = πV ,G(X). Hence, to show the result claimed, we may

replace G with � and show that πV ,�(X) is closed in V /�. Now let S = k[V ]� ⊆ k[V ]G .
A homogeneous f ∈ R belongs to S if and only if deg( f ) is divisible by m′ (since then the
action of F is killed by the degree).

To show that πV ,�(X) is closed in V /�, it is enough to show that for every x ∈ � · X with
closed�-orbit, there exists an x ′ ∈ X withπV ,�(x ′) = πV ,�(x) (cf. Lemma 4.6). If x ∈ � · X
is unstable and � · x is closed, then x must actually be 0, so x ∈ X also. Therefore, we may
assume that we have x ∈ Vss,�∩� · X such that� ·x is closed (in V ). By the discussion before
the proposition, we have a morphism φ : W(X)ss,K /K → W(V )ss,�/� with closed image
C , say. Note that since we are assuming Xss,K = Vss,� ∩X , we have� ·Xss,K = Vss,� ∩� ·X ,
and this set is dense inVss,�∩� · X . The compositionVss,�

ξV−→ W(V )ss,�
ηV ,�−→ W(V )ss,�/�

takes � · Xss,K into C , and since C is closed that means that the composition in fact takes all
of Vss,� ∩� · X into C . Therefore, we can find z in W(X)ss,K /K with φ(z) = ηV ,�(ξV (x)).
Tracing back through the definitions, we see that φ(z) = ηV ,�(ξV (y)) for some y ∈ Xss,K .
It follows that ηV ,�(ξV (x)) = ηV ,�(ξV (y)); we claim that in fact πV ,�(x) = πV ,�(c · y)
for some c ∈ k∗. Note that suffices to finish the proof, since in particular y ∈ X , so setting
x ′ = c · y ∈ X gives us what we want.

Both points x and y lie in Vss,� , so there are homogeneous generators fi , f j ∈ R for
which fi (x) �= 0 and f j (y) �= 0. By definition of m, there are mi ,m j ∈ N such that f mi

i

and f
m j
j both have degree m. Taking a suitable linear combination of f mi

i and f
m j
j , we can

therefore find a homogeneous f ∈ R of degree m for which f (x) �= 0 �= f (y). Now we can
choose c ∈ k∗ such that f (x) = f (c · y).

Let f ′ ∈ S be non-constant and homogeneous; as previously observed, f ′ ∈ S means

that deg( f ′) = rm′ for some r ∈ N. Then ( f ′)pα
has degree rm, so ( f ′)pα

f r has degree 0
in the localization R f . Further, since x and c · y have the same image in (W(V )ss,�/�) f ,

we have ( f ′)pα
f r (x) = ( f ′)pα

f r (c · y). Since f (x) = f (c · y) �= 0, this in turn implies that
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( f ′)pα
(x) = f ′pα

(c · y), and hence f ′(x) = f ′(c · y). Since S is generated by homogeneous
elements, we see that πV ,�(x) = πV ,�(c · y), as required. This finishes the proof. �

Proof of Theorem 5.1 We can choose a G-equivariant closed embedding of X in a G-module
V . Letv ∈ V H such thatv isG-unstable.By the argument in the proof ofProposition4.1, there
exists λ ∈ Y (NG(H)) such that lima→0 λ(a) ·v = 0. This shows that (V H )ss,NG (H) ⊆ Vss,G .
TheG-action commutes with the natural k∗-action by scalars, and this preserves the subspace
V H also, so Proposition 5.2 implies that the map ψV ,H : V H/NG(H) → V /G has closed
image.

Now G · XH ∩ V H ⊆ X ∩ V H = XH , so G · XH ∩ V H = XH . Let x ∈ G · XH such
that G · x is closed. Then, since x ∈ G · V H andψV ,H has closed image, Lemma 4.6 implies
x ∈ G ·V H , so we can write x = g ·v for some v ∈ V H . But then v ∈ G · XH ∩V H = XH ,
so x ∈ G · XH and we are done by Lemma 4.6. �

Remark 5.3 For the proof of Theorem 5.1, we only need to apply Proposition 5.2 when
the k∗-action is the standard action by scalars, so the weighted projectivization is the usual
projectivization in this case. However, we do need Proposition 5.2 in this more general set-up
to complete the proof of Theorem 1.1 in the next section.

Example 5.4 LetG act on X := G by conjugation and let H be amaximal torus ofG. Assume
G is connected. Then XH = H . Since the closed orbits in X are precisely the semisimple
conjugacy classes [55], the map ψX ,H : XH/NG(H) → X/G is surjective—in fact, it is
well known that ψX ,H is an isomorphism (cf. Sect. 7). Note, however, that although G · XH

is dense in X , not every element of X belongs to G · H (just take x ∈ X not semisimple).

6 Proof of Theorem 1.1, Part 3: finiteness

We now complete the proof of Theorem 1.1. The implication (ii) �⇒ (i) follows from
Theorem 4.4, so it remains to show that if H is G-completely reducible then the morphism
ψX ,H is finite. By Lemma 2.3, we can replace X with a larger affineG-variety, hence without
loss we can assume that X is a G-module.

Let G1 be the subgroup of G generated by G0 and H . The inclusion of XH in X gives
rise to a morphism ψ1

X ,H : XH/NG1(H) → X/G1. We have a commutative diagram

XH/NG1(H)
ψ1
X ,H

X/G1

XH/NG(H)
ψX ,H

X/G

(6.1)

where the vertical arrows are the obvious maps. We may identify X/G with the quotient of
X/G0 by the finite group G/G0, so the map X/G0 → X/G is finite. This map factorizes as
X/G0 → X/G1 → X/G, so the map X/G1 → X/G is finite by Remark 2.2(ii). Likewise,
the map XH/NG1(H) → XH/NG(H) is finite. Hence both of the vertical maps in (6.1) are
finite and surjective. Now using Remark 2.2(ii) we see it is enough to show that ψ1

X ,H is
finite. So it is enough to prove that ψX ,H is finite under the assumption that G = G1.
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Let Y and U ⊆ Y H be as in Lemma 2.11 and set V = X ⊕ Y . We have a G-equivariant
closed embedding of X in V given by x �→ (x, 0). LetW = G · V H ; thenWH = V H . Note
that G ·V H = G0 ·V H by our assumption that G = G1, soW is irreducible. By Lemma 2.3
again, it is enough to prove that ψW ,H is finite.

The subset XH × U of XH ⊕ Y H = V H = WH is open and dense, and Gw = H for
w ∈ XH ×U . Next we claim that W has good dimension (for the G-action). To see this, let
y0 ∈ U and set w0 = (0, y0). Then G · w0 is a G-orbit of maximal dimension in W , and
G · w0 is closed (as G · y0 is, by Lemma 2.11), so w0 is a stable point ofW for the G-action.
The claim now follows from Remark 2.6. By a similar argument, WH has good dimension
for the NG(H)-action. Now since the stable points form an open subset, we can conclude
that G · w and NG(H) · w are closed for generic w ∈ WH , and it follows from Remark 4.5
that generic fibres of ψW ,H are singletons.

Now consider the normalization ˜W of W . Since the normalization map νW : ˜W → W
is birational, ˜W contains an open dense subvariety ˜O such that the map ˜O → W is an
isomorphism onto its image O , and O is open in W . We can take ˜O and O to be G-stable,
so the latter meets G · WH . Now G · WH is constructible and dense in W , so it contains a
nonempty open subset of W . Hence, by adjusting O and ˜O if necessary, we can assume that
O ⊆ G · WH and O is NG(H)-stable. Since νW is G-equivariant, we get an isomorphism
from ˜OH onto OH . LetC be the closure in ˜W of ˜OH ; thenC ⊆ ˜WH andC is NG(H)-stable.
Further, since the open subset ˜OH inC is isomorphic to the open subset OH in the irreducible
set WH , C is irreducible; it follows from Zariski’s Main Theorem that C is isomorphic to
WH . Hence C ∼= WH = V H carries a vector space structure, and we can identify a point
0C ∈ C corresponding to the zero 0V ; we have νW (0C ) = 0V by construction. Furthermore,
the action of k∗ on W by scalar multiplication lifts to an action of k∗ on ˜W which preserves
the closed subset C .

We want to apply Proposition 5.2 to deduce that the map C/NG(H) → ˜W/G has closed
image (note that we cannot use Theorem 5.1 directly because C might be properly contained
in ˜WH ). In order to do this, we choose a (G × k∗)-equivariant embedding i of ˜W in a vector
space M such that 0C maps to the zero 0M ∈ M . (For instance, choose f1, . . . , fs ∈ k[ ˜W ]
for some s such that the fi generate k[ ˜W ] as a k-algebra and f1(0C ) = · · · = fs(0C ) = 0;
we can take M to be the dual of N , where N is a (G×k∗)-stable subspace of k[ ˜W ] containing
all the fi .) Replacing M with the subspace spanned by i( ˜W ), we can assume that i( ˜W ) spans
M .

Let λ0 : k∗ → k∗ be the identity cocharacter of k∗. Now {0V } is the unique closed k∗-orbit
in W , and each element of W is destabilized to 0V by λ0. It follows from Lemma 2.8(i) that
{0C } is the unique closed k∗-orbit in ˜W . Let 0C �= w̃ ∈ ˜W . The Hilbert–Mumford Theorem
implies that lima→0 λ0(a) · w̃ = 0C or lima→0(−λ0)(a) · w̃ = 0C . In particular, k∗ does not
fix w̃, so k∗ does not fix νW (w̃), so νW (w̃) �= 0V . Suppose lima→0(−λ0)(a) · w̃ = 0C . Then
lima→0(−λ0)(a) · νW (w̃) = νW (0C ) = 0V . But this is impossible because lima→0 λ0(a) ·
νW (w̃) = 0V and νW (w̃) �= 0V . We deduce that lima→0 λ0(a) · w̃ = 0C . Hence, we can
conclude that k∗ acts on M with positive weights. Further,C is a closed (NG(H)×k∗)-stable
subset of M . By the same argument as in the proof of Proposition 4.1, if c ∈ C is G-unstable,
then since c is H -fixed and H is G-cr, c is also NG(H)-unstable. Hence Css,NG (H) ⊆ Mss,G .
Thus we can now apply Proposition 5.2 to deduce that C/NG(H) has closed image in
M/G. Since iG : ˜W/G → M/G is injective (Lemma 2.3), we deduce that C/NG(H) has
closed image in ˜W/G, as we wanted. This allows us to draw the following commutative
diagram:
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C/NG(H)
ψ

˜W ,H
˜W/G

(νW )G

W H/NG(H)
ψW ,H

W/G

where by abuse of notation we denote the restriction of ψ
˜W ,H to C/NG(H) by the same

symbol. The leftmost vertical arrow is the isomorphism inducedby the isomorphismC ∼= WH

above. The other vertical map is finite (Proposition 3.10) and birational (Lemma 2.9; recall
that W has good dimension). By Theorem 5.1, ψW ,H has closed image, and we have just
argued that ψ

˜W ,H (C/NG(H)) is closed. But W = G · WH , so ψW ,H is surjective, and it
follows that ψ

˜W ,H (C/NG(H)) = ˜W/G. Since ψW ,H is quasi-finite (Theorem 4.4) and has
singletons as generic fibres, the same is true of ψ

˜W ,H . As ˜W/G is normal, it follows from
Proposition 3.8 that ψ

˜W ,H is finite and bijective. This implies that (νW )G ◦ ψ
˜W ,H is finite.

Since the leftmost vertical arrow is an isomorphism, we have thatψW ,H is finite, as required.
This completes the proof of Theorem 1.1.

7 Separability ofÃX,H

Wenow consider the question of whenψX ,H is an isomorphism, or close to being one. Before
we state our result, we need some terminology.

Definition 7.1 Let H be a subgroup of G. We say that H is a principal stabilizer for the
G-variety X if there exists a nonempty open subsetU of X such that Gx is G-conjugate to H
for all x ∈ U . We say that H is a principal connected stabilizer for the G-variety X if H is
connected and there exists a nonempty open subsetU of X such that G0

x is G-conjugate to H
for all x ∈ U . It is immediate that if G permutes the irreducible components of X transitively
then a principal stabilizer (resp., principal connected stabilizer) is unique up to conjugacy, if
one exists.

In characteristic 0, principal stabilizers exist under mild hypotheses: for instance, if X is
smooth [50, Proposition 5.3] or if X has good dimension [34, Lemma 3.4]. For a counterex-
ample in positive characteristic, see Example 3.2.

Theorem 7.2 Let X be an affine G-variety. Suppose that: (a) H is a principal stabilizer for
Xcl; (b) H is G-cr; (c) X/G and XH/NG(H) are irreducible; and (d) X/G is normal. Then
ψX ,H is finite and bijective. In particular, if ψX ,H is separable then it is an isomorphism.

Observe that this result extends a theorem of Luna and Richardson [34, Theorem 4.2]
to positive characteristic; note that in characteristic 0, a reductive group H is automatically
G-cr, ψX ,H is automatically separable and principal stabilizers exist, as noted above.

Proof By Theorem 1.1,ψX ,H is finite, so its fibres are finite. To prove the first assertion of the
theorem it is enough, therefore, by Proposition 3.8 to show thatψX ,H is surjective and generic
fibres of ψX ,H are singletons. By hypothesis, G · XH contains a nonempty open subset of
Xcl. The assumption that X/G is irreducible implies that the action of G is transitive on the
irreducible components of Xcl so we can conclude that πX ,G(XH ) = πX ,G(G ·XH ) contains
a nonempty open subset of X/G. As X/G is irreducible, ψX ,H (XH/NG(H)) = X/G. If x
is a stable point of Xcl and Gx = H then ψ−1

X ,H (ψX ,H (πXH ,NG (H)(x))) is a singleton, by
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Remark 4.5. This proves the first assertion as the set of conjugates of such x is open in Xcl. If
ψX ,H is separable then the second assertion follows from Zariski’s Main Theorem, as X/G
is normal. �
Remark 7.3 The assertion of Theorem 7.2 also holds by a similar argument if we replace the
hypothesis that H is a principal stabilizer for Xcl with the hypothesis that H is a principal
connected stabilizer for Xcl.

Next we study the separability condition. To simplify the arguments below, we consider
only the case when X has good dimension for the G-action.

Lemma 7.4 Suppose an affine G-variety X has good dimension and hypotheses (a)–(c) of
Theorem 7.2 hold. Then ψX ,H is separable if and only if for generic x ∈ XH , Tx (G · x) ∩
Tx XH = Tx (NG(H) · x).
Proof Clearly Tx (G · x) ∩ Tx XH ⊇ Tx (NG(H) · x), so the content here is in the reverse
inclusion. First we claim that XH has good dimension for the NG(H)-action. To see this,
observe that G · XH = X by the surjectivity assertion of Theorem 7.2 (which does not
depend on hypothesis (d)), so every closed G-orbit in X meets XH by Lemma 4.6. As H is
a principal stabilizer for X , we must have Gx = H for generic x ∈ XH , and it follows from
Proposition 4.1 that generic NG(H)-orbits in XH are closed, as required. We now see from
Remark 2.6 that

π−1
X ,G(πX ,G(x)) = G · x and π−1

XH ,NG (H)
(πXH ,NG (H)(x)) = NG(H) · x (7.5)

for generic x ∈ XH . Now πX ,G and πXH ,NG (H) are separable (Lemma 2.7), and it follows
from this and from Eq. (7.5) that for generic x ∈ XH , dxπX ,G is surjective at x with kernel
Tx (G · x) and dxπXH ,NG (H) is surjective at x with kernel Tx (NG(H) · x).

The map ψX ,H is surjective and finite (by Theorem 1.1), so it is separable if and only its
derivative is an isomorphism for generic points in XH/NG(H). The result now follows from
the argument above. �

Recall that a pair (G, H) of reductive groups with H ≤ G is called a reductive pair if
h = Lie(H) splits off as a direct H -module summand of g = Lie(G), where H acts via the
adjoint action of G on g, and a subgroup A ≤ G is called separable in G if

Lie(CG(A)) = cg(A) := {X ∈ g | AdG(a)(X) = X for all a ∈ A}.
Proposition 7.6 Suppose an affine G-variety X has good dimension and hypotheses (a)–(c)
of Theorem 7.2 hold. Suppose one of the following holds:

(i) there exists x ∈ X such that Gx = H and there is an étale slice through x for the
G-action;

(ii) H is separable in G, (G, H) is a reductive pair and there exists x ∈ X such that
Gx = H and G · x is separable.

Then ψX ,H is separable.

Proof By the argument of Theorem 7.2, ψX ,H is dominant. Suppose first that (i) holds. Let
x ∈ X with Gx = H and let S be an étale slice through x for the G-action. By the definition
of étale slices and the proof of [1, Proposition 8.6], there exists aG-stable open neigbourhood
U of x in X such that Gy ≤ Gx for all y ∈ S ∩U and the obvious maps G × (S ∩U ) → X
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and (S ∩U )/H → X/G are étale. As H is a principal stabilizer for X , we can assume after
replacing U with a smaller open set that Gy is conjugate to H for all y ∈ S ∩ U . We have
Gx = H by hypothesis, so it follows that Gy = H for all y ∈ S ∩ U . As the set of stable
points of X is G-stable, open and nonempty and the set of smooth points of X/G is open
and nonempty, there is a nonempty G-stable open subset U1 of U such that G · y is closed
and πX ,G(y) is a smooth point of X/G for all y ∈ U1.

Since G · (S ∩ U1) is open and S ∩ U1 ⊆ XH , G · (S ∩ U1) contains a nonempty
open subset of XH . Let y′ ∈ XH ∩ G · (S ∩ U1): say, y′ = g · y for some y ∈ S ∩ U1,
g ∈ G. Then Gy = H and Gy′ is G-conjugate to H ; but y′ ∈ XH , so Gy′ = H . It
follows that g ∈ NG(H). We deduce that XH ∩ G · (S ∩ U1) = NG(H) · (S ∩ U1). So
πXH ,NG (H)(S ∩U1) = πXH ,NG (H)(NG(H) · (S ∩U1)) contains a nonempty open subset of
XH/NG(H).

So pick y ∈ S ∩ U1 such that πXH ,NG (H)(y) is a smooth point of XH/NG(H). The map
(S ∩ U )/H → X/G is étale, so its derivative is an isomorphism everywhere. Hence the
derivative of the map XH → X/G induced by πX ,G is surjective at y. This in turn implies
that the derivative of ψX ,H is surjective at πXH ,NG (H)(y). But πXH ,NG (H)(y) and πX ,G(y)
are smooth points by construction, so ψX ,H is separable.

Now suppose that (ii) holds. We argue along the lines of the proof of [48, Theo-
rem A]. Let d be an H -module complement to h in g. Let X0 = {x1 ∈ X | Gx1 =
H and G · x1 is closed and separable}. Let x1 ∈ X0. Then the orbit map κx1 : G → G · x1
gives an isomorphism φ : G/H → G · x1. In particular, the derivative d1φ at 1 ∈ G gives
an isomorphism from g/h to the tangent space Tx1(G · x1), and it is easily checked that
d1φ is H -equivariant. It follows that d1κx1 gives an isomorphism of H -modules from d to
Tx1(G · x1). Now let β ∈ Tx1(G · x1) ∩ Tx1X

H . Then β is fixed by H , so β = d1κx1(α) for
some α ∈ dH . As H is separable in G, α ∈ Lie(NG(H)). Hence β ∈ Tx1(NG(H) · x1).

To finish, it is enough by Lemma 7.4 to show that generic elements of XH belong to X0.
As H is a principal stabilizer for X and X has good dimension for the G-action, Gx1 = H
and G · x1 is closed for generic x1 ∈ XH . Now

dim(Gx1) + dim(ker(d1κx1)) ≥ 2 dim(H) (7.7)

for all x1 ∈ XH . But equality holds in Eq. (7.7) for x1 = x , so it holds for generic x1 ∈ XH

by Lemma 2.1. This shows that G · x1 is separable for generic x1 ∈ XH , so we are done. �
The following example shows that separability does not hold automatically under the

hypotheses of Theorem 7.2, not even when X has good dimension.

Example 7.8 Let G = SLp(k), where k has characteristic p and p > 2. Let e1, . . . , ep be the
standard basis vectors for the vector space V := k p and let B0 be the standard nondegenerate
symmetric bilinear form on k p given by B0(ei , e j ) = δi j . Now let Y be S2(V )∗, the vector
space of symmetric bilinear forms on k p; then G acts on Y by (g · B)(v,w) = B(g−1 ·
v, g−1 · w). If B ∈ Y then B is nondegenerate if and only if the p× p matrix with i, j-entry
B(ei , e j ) has nonzero determinant, so the subvariety X of nondegenerate forms is open and
affine.Moreover, X has good dimension since theG-orbits on X all have the same dimension.

The stabilizer GB0 is the special orthogonal group H := SOp(k), and H is G-cr as
char(k) �= 2 (in fact, H is contained in no proper parabolic subgroups of G, so H is “G-
irreducible”). It is easily seen that XH = {cB0 | c ∈ k∗} and NG(H) = H ; hence NG(H)

acts trivially on XH . Moreover, X = G · XH . Hence H is a principal stabilizer and X has
good dimension for the action of G on X .

Let 0 �= B = cB0 ∈ XH . Define λ ∈ Y (G) by λ(a) = diag(a−1, . . . , a−1, a p−1) (the
diagonal matrix with given entries with respect to the basis e1, . . . , ep). Let B1 ∈ Y be the

123



1146 M. Bate et al.

degenerate form given by B1(a1e1 + · · · + apep, b1e1 + · · · + bpep) = capbp . Then for
all a ∈ k∗, λ(a) · B = a2B + (a2−2p − a2)B1. As X is open in Y , we may identify TB X
with TBY . Making the usual identification of the tangent spaces T1k∗ and TBY with k and
Y , respectively, we see that

d1κB(1) = 2B

(note that since char(k) = p, we have
d

da
(a2−2p − a2)

∣

∣

∣

∣

a=1
= 0). Now d1κB(1) belongs to

TB(G · B) and to TB(XH ), but not to TB(NG(H) · B) since the latter tangent space is zero.
It follows from Lemma 7.4 that ψX ,H is not separable.

8 Examples

The constructions in Lemma 4.3 demonstrate the failure of Theorem 1.1 when the hypothesis
of complete reducibility is removed. In this section we provide some concrete and straight-
forward examples of this phenomenon.

Example 8.1 Let the characteristic be 2 and let ρ : SL2(k) → SL3(k) be the adjoint repre-
sentation of SL2(k). Concretely, let

e =
(

0 1
0 0

)

, h =
(

1 0
0 1

)

, f =
(

0 0
1 0

)

be the standard basis for X := Lie(SL2(k)) and let SL2(k) act on X by conjugation. Then,
with respect to this basis, we have

ρ

(

a b
c d

)

=
⎛

⎝

a2 0 b2

ac 1 bd
c2 0 d2

⎞

⎠ .

Let H be the image of ρ inside G = SL3(k)with natural module X . Then H is reductive, but
H is notG-cr since the representationρ is not semisimple: the H -fixed subspace of X spanned
by the vector h has no H -stable complement. Since H is reductive, NG(H)0 = H0CG(H)0.
Direct calculation shows that CG(H) is finite and hence NG(H)/H is finite. Now the vector
h is H -fixed but has a non-closedG-orbit, since if we let λ ∈ Y (G) be the cocharacter defined
by

λ(a) :=
⎛

⎝

1 0 0
0 a 0
0 0 a−1

⎞

⎠

for each a ∈ k∗, then λ(a) · h = ah, so lima→0 λ(a) · h = 0. It is obvious that 0 is not
G-conjugate to h. Note that the same reasoning works for any nonzero multiple of h. On the
other hand, the NG(H)-orbit of any nonzero multiple of h is finite (and hence closed), and
there are therefore infinitely many such closed NG(H)-orbits. Hence the fibre of ψX ,H over
πX ,G(0) is infinite.

Note that this example onlyworks in characteristic 2 because it relies on the existence of the
H -fixed vector h. This is consistent with the results above, since away from characteristic 2
the image of the adjoint representation of SL2(k) in SL3(k) is completely reducible—actually,
it is irreducible—and hence is SL3(k)-cr.
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Example 8.2 We now provide an infinite family of examples generalizing the previous one.
In these examples, G is SLm(k) acting on its natural module X , and H is the image of some
reductive group under a representation in SL(X). Since G has only one closed orbit in X (the
orbit {0}), the quotient X/G is just a single point.

First we consider polynomial representations of GLn(k)where k is an algebraically closed
field of positive characteristic p. A good reference for the polynomial representation theory
of GLn(k) is the monograph [21]. Further details may also be found in the monograph [20].
(To apply this here one should take q = 1 in the set-up considered there.)

Let the characteristic be p > 0 and let G = GLn(k) be the group of n × n-invertible
matrices. The irreducible polynomial representations of G are parametrized by partitions
with at most n parts. More precisely, let �+(n) be the set of partitions λ = (λ1, . . . , λn)

with λ1 ≥ · · · ≥ λn ≥ 0. We may regard λ as a weight of the standard maximal torus of G:
we set λ(t) = tλ11 . . . tλnn . Then for each λ ∈ �+(n) there exists an irreducible polynomial
G-module L(λ) such that L(λ) has unique highest weight λ and λ occurs as a weight with
multiplicity one. The modules L(λ), λ ∈ �+(n), form a complete set of pairwise non-
isomorphic polynomial irreducible G-modules. We write T for the maximal torus of G
consisting of diagonal matrices and B for the subgroup ofG consisting of all invertible lower
triangular matrices. We shall also need modules induced from B to G. We denote by kλ the
1-dimensional rational T -module onwhich t ∈ T acts asmultiplication by λ(t). The action of
T on kλ extends to an action of B. For each λ ∈ �+(n) the induced module ∇(λ) := indGB kλ

is a non-zero polynomial representation of G. Then ∇(λ) is finite-dimensional and contains
the irreducible module L(λ): in fact the G-socle of ∇(λ) is L(λ).

We consider the induced GLn(k)-module ∇(n(p − 1)). We have that ∇(n(p − 1)) =
Sn(p−1)E , where Sn(p−1)E is the n(p−1)th symmetric power of the natural GLn(k)-module
E .

By [19, Lemma 3.3] and [20, 4.3, (10)], the GLn(k)-module ∇(n(p − 1)) has simple
head L(p − 1, . . . , p − 1), which is the 1-dimensional module obtained as the (p − 1)th
tensor power of the determinant module D = L(1, . . . , 1) of GLn(k). Now let (n(p − 1))
be the Weyl module corresponding to the partition (n(p − 1)). This is the contravariant dual
of ∇(n(p − 1)). Since ∇(n(p − 1)) has simple head we get that (n(p − 1)) has simple
socle; more precisely,

socGLn(k)((n(p − 1))) = L(p − 1, . . . , p − 1) = D⊗(p−1).

Now consider(n(p−1)) as an SLn(k)-module in the usual way. As an SLn(k)-module,
(n(p−1)) is theWeyl module corresponding to the dominant weight (n(p−1)) and by the
considerations above we get that it has simple socle; in particular, socSLn(k)((n(p−1))) =
L(0) = k is the trivial SLn(k)-module. Moreover, since (n(p − 1)) is multiplicity-free as
an SLn(k)-module we have that L(0) appears as a composition factor of (n(p − 1)) with
multiplicity 1.

We consider thematrix representation obtained by the SLn(k)-module(n(p−1)). Hence
we have a group homomorphism

ρ : SLn(k) → SLm(k),

where m = dim((n(p− 1))) = (np−1
np−n

)

. Let X = (n(p− 1)) and let H be the image of ρ

inside G = SLm(k) = SL(X). The previous reasoning shows that X is an indecomposable
H -module and the trivial module appears in the H -socle of X . The group H is reductive but
not G-cr since the representation X is not semisimple.
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Since H is reductive we have that NG(H)0 = H0CG(H)0. Moreover, EndH (X) =
EndSLn(k)(X) = k (see [26, Proposition 2.8]); this implies thatCG(H) is finite, so NG(H)/H
is finite.

Now the quotient XH/NG(H) is infinite since H fixes a full 1-dimensional subspace of
X and NG(H)/H is finite. On the other hand, the quotient X/G is a single point and so the
morphism

ψX ,H : XH/NG(H) → X/G

is not a finite morphism.
Note that Example 8.1 above is just this one with p = n = 2.

Example 8.3 We provide another example, this time with a symplectic group. Let p = 2
and consider the symplectic group Sp4(k). We choose the simple roots α = (2,−1) and
β = (−2, 2). The simple Sp4(k)-module L(0, 1), corresponding to the dominant weight
(0, 1), is 4-dimensional with weights (0, 1), (2,−1), (−2, 1), (0,−1). We consider theWeyl
module (0, 1) corresponding to (0, 1). This is an indecomposable 5-dimensional module
with simple head L(0, 1) and it fits into the short exact sequence

0 → k → (0, 1) → L(0, 1) → 0,

where k is the trivial Sp4(k)-module.
Now consider thematrix representation corresponding to the Sp4(k)-module(0, 1). This

gives a group homomorphism

ρ : Sp4(k) → SL5(k).

Let X = (0, 1) and let H be the image of Sp4(k) in G = SL5(k) with natural module X .
Then X is an indecomposable H -module and the trivial module appears in the H -socle of
X . The group H is reductive but not G-cr since the representation X is not semisimple.

Since H is reductive we have that NG(H)0 = H0CG(H)0. Moreover, we have that
EndH (X) = EndSp4(k)(X) = k (see [26, Proposition 2.8]), so the only endomorphisms of X
as an H -module are the scalars. Since G = SL5(k), this means that CG(H) is finite and so
NG(H)/H is finite. Now, as in our previous examples, the quotient XH/NG(H) is infinite
since H fixes a full one-dimensional subspace of X and NG(H)/H is finite, whereas the
quotient X/G is a single point. Therefore the morphism ψX ,H : XH/NG(H) → X/G is not
a finite morphism.

Example 8.4 The above examples show that if H is the image of a non-completely reducible
representation of a reductive group in G = GL(X) or SL(X) then the conclusion of Theo-
rem 1.1 can fail. On the other hand, if H is the image of a completely reducible representation
then we get an easy representation-theoretic proof of Theorem 1.1 in this special case, as
follows. If the representation is trivial (of any dimension), so that H is the trivial group, then
XH = X and NG(H) = G, so the map ψX ,H is the identity map. If the representation is
non-trivial and irreducible, then XH = {0} and the map ψX ,H : XH/NG(H) → X/G is just
the map from a singleton set to a singleton set and hence is finite. If the representation is
non-trivial and completely reducible but not irreducible then XH has an H -complement in
X : say, X = XH ⊕ W . The centre of the Levi subgroup of G corresponding to the given
decomposition normalizes H and acts as scalars on XH , so XH/NG(H) is again a singleton
set and ψX ,H is finite.
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9 Double cosets

In this section we consider a separate but related problem, using techniques from earlier
sections. Fix a reductive group G, and reductive subgroups H and K of G. The group H ×K
acts on G by the formula (h, k) · g = hgk−1; the orbits of the action are the (H , K )-double
cosets and we call this action the double coset action. The stabilizer (H × K )g is given by
{(h, g−1hg) | h ∈ H ∩ gKg−1}. We are interested in the following question: when does
G have good dimension for the double coset action? Note that, again, in characteristic 0
this problem was solved by Luna in [31]; he showed using étale slices that G always has
good dimension for the double coset action. The problem of translating Luna’s results to
positive characteristic was also studied by Brundan [12–14,16], who considered in particular
the question of when there is a dense double coset in G. Our main result gives a necessary
and sufficient condition for G to have good dimension for the double coset action in terms
of the stabilizers of the action.

Theorem 9.1 Let G be connected. The following are equivalent:

(i) G has good dimension for the (H × K )-action;
(ii) generic stabilizers of H × K on G are reductive;
(iii) H ∩ gKg−1 is reductive for generic g ∈ G.

Remarks 9.2 (i). It follows from [37, Theorem 1.1] that in order to show that generic sta-
bilizers are reductive, it is enough to show that (H × K )g has minimal dimension and is
reductive for some g ∈ G.

(ii). Work of Popov [45] implies that if a connected semisimple group G acts on a smooth
irreducible affine variety V and the divisor class group Cl(V ) has no elements of infinite
order then generic orbits of G on V are closed if and only if generic stabilizers of G on V
are reductive. By work of Tange [59, Theorem 1.1], if G is connected then Cl(G) has no
elements of infinite order, so Theorem 9.1 follows if H and K are connected and semisimple.

We need some preparatory results and notation. First, given a cocharacter τ = (λ, μ) ∈
Y (H×K ) and g ∈ G, we say that τ destabilizes g if lima→0 τ(a)·g = lima→0 λ(a)gμ(a)−1

exists. Given g ∈ G, define a homomorphism̂φg : G → G×G bŷφg(g′) = (g′, g−1g′g). A
short calculation shows that̂φg induces an isomorphism φg : H ∩gKg−1 → (H ×K )g . This
shows that (ii) and (iii) of Theorem 9.1 are equivalent. Moreover, given g ∈ G we define an
isomorphism of varieties rg : G → G by rg(g′) = g′g−1 and an isomorphism of algebraic
groups ψg : H × K → H × gKg−1 by ψg(h, k) = (h, gkg−1); then rg is a ψg-equivariant
map from the (H × K )-variety G to the (H × gKg−1)-variety G, where we let H × gKg−1

act on G by the double coset action.

Lemma 9.3 Let g ∈ G. Then G has good dimension for the (H × K )-action if and only if G
has good dimension for the H × gKg−1-action, and generic stabilizers of H × K on G are
reductive if and only if generic stabilizers of H × gKg−1 on G are reductive.

Proof The ψg-equivariance of rg implies that (H × gKg−1) · rg(g′) = rg((H × K ) · g′) and
rg((H × K )g′) = (H × gKg−1)rg(g′) for all g′ ∈ G. The result follows. �

In the special case when A is reductive, the next result is [35, Lemma 4.1]. We take the
opportunity to correct the proof given in loc. cit.

Lemma 9.4 Let k′ be an algebraically closed extension field of k. Let A be a linear algebraic
group acting on an affine variety X, and let A′ (resp. X ′) be the group (resp. variety) over k′
obtained from K (resp. X) by extension of scalars. Let x ∈ X. Then:
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(i) dimk′(A′
x ) = dimk(Ax ) and dimk′(A′ · x) = dimk(A · x);

(ii) A′ · x is closed in X ′ if and only if A · x is closed in X.

Proof We regard X as a subset of X ′ and A as a subgroup of A′ in the obvious way. The orbit
map κx : A′ → A′ · x is defined over k, so the closure A′ · x (in X ′) is k-defined [10, Cors.
AG.14.5 and AG.14.6]. This implies that A′ · x ∩ X = A · x , where the RHS is the closure
in X . The stabilizer A′

x is k-defined—in fact, A′
x is naturally isomorphic to the group over

k′ obtained from Ax by extension of scalars. Hence dimk′(A′
x ) = dimk(Ax ). This proves the

first assertion of (i), and the second follows immediately.
Let r = dimk′(A′ · x) = dimk(A · x). Set X ′

t = {y′ ∈ X ′ | dimk′(A′
y′) ≥ t} and

Xt = {y ∈ X | dimk(Ay) ≥ t} for t ≥ 0. Then X ′
t and Xt are closed in X ′ and X ,

respectively, and it follows from the proof of [44, Lemma 3.7(c)] that X ′
t is k-defined. By (i),

Xt = X ′
t ∩ X . Now A′ · x is the union of A′ · x with certain other A′-orbits, each of which has

dimension strictly less than r , and likewise for A · x . Hence A′ ·x (resp., A ·x) is closed if and
only if A′ · x ∩ X ′

r+1 = ∅ (resp., A · x ∩ Xr+1 = ∅). But A′ · x ∩ X ′
r+1 is k-defined and k is

algebraically closed, so A′ · x∩X ′
r+1 is empty if andonly if (A′ · x∩X ′

r+1)∩X = A · x∩Xr+1

is empty. Part (ii) now follows. �
Lemma 9.5 Assume G is connected. Let k′ be an algebraically closed extension field of k and
let G ′, H ′ and K ′ be the algebraic groups over k′ obtained from G, H and K , respectively,
by extension of scalars. Then:

(i) generic stabilizers of H ′ × K ′ on G ′ are reductive if and only if generic stabilizers of
H × K are reductive;

(ii) G ′ has good dimension for the (H ′ × K ′)-action if and only if G has good dimension
for the (H × K )-action.

Proof Wecan regardG, H and K as dense subgroups ofG ′, H ′ and K ′, respectively. If g ∈ G
then (H ′ ×K ′)g is isomorphic to the group obtained from (H ×K )g by extension of scalars,
so (H ′ ×K ′)g is reductive if and only if (H ×K )g is reductive. By Lemma 9.4, (H ′ ×K ′) ·g
is closed in G ′ if and only if (H × K ) · g is closed in G, and dim((H ′ × K ′)g) is minimal if
and only if dim((H × K )g) is minimal, so g is a stable point for the (H ′ × K ′)-action if and
only if it is a stable point for the (H × K )-action. The union of the stable (H × K )-orbits is
open in G, and likewise for H ′ × K ′ and G ′ (Lemma 2.6). The union of the (H × K )-orbits
of minimum dimension having reductive stabilizer is open in G, and likewise for H ′ × K ′
and G ′ [37, Theorem 1.1]. Putting these facts together, we obtain the desired result. �
Lemma 9.6 Let λ ∈ Y (H), μ ∈ Y (K ). Given g ∈ G such that (λ, μ) destabilizes g, set
g0 := lima→0 λ(a)gμ(a)−1 and let u = gg−1

0 . Then μ = g−1
0 · λ and u ∈ Ru(Pλ).

Proof Since g0 is obtained as a limit along (λ, μ), we have that (λ, μ) fixes g0, so
λ(a)g0μ(a)−1 = g0 for all a ∈ k∗. Rearranging, we see that μ = g−1

0 · λ. Now for all
a ∈ k∗,

λ(a)gμ(a)−1 = λ(a)ug0μ(a)−1 = λ(a)ug0(g
−1
0 λ(a)−1g0) = λ(a)uλ(a)−1g0.

As lima→0 λ(a)gμ(a)−1 = g0, it follows that lima→0 λ(a)uλ(a)−1 = 1, so u ∈ Ru(Pλ). �
Lemma 9.7 Assume G is connected. Let G1 = G/Z(G)0, let σ : G → G1 be the canonical
projection and set H1 = σ(H) and K1 = σ(K ). Then for all g ∈ G:

(i) (H × K )g is reductive if and only if (H1 × K1)σ(g) is reductive;

123



Orbit closures and invariants 1151

(ii) if (H1 × K1) · σ(g) is closed then (H × K ) · g is closed.

Proof (i) Let ˜H = HZ(G)0 and let ˜K = K Z(G)0. Let A = (σ × σ)−1((H1 × K1)σ(g)), a
subgroup of ˜H × ˜K . Defineψ : A → G byψ(˜h,˜k) = g−1

˜hg˜k−1. A short calculation shows
that ψ gives a homomorphism from A to Z(G)0, with kernel (H × K )g . Moreover, σ × σ

gives an epimorphism from A to (H1 × K1)σ(g), with kernel Z(G)0 × Z(G)0. Part (i) now
follows.

(ii) Let g ∈ G and suppose (H1 × K1) · σ(g) is closed. Let (λ, μ) ∈ Y (H × K ) such that
g′ := lima→0 λ(a)gμ(a)−1 exists. Set g1 = σ(g), g′

1 = σ(g′). Let λ1 = σ ◦λ ∈ Y (H1) and
μ1 = σ ◦ μ ∈ Y (K1); then g′

1 = lima→0 λ1(a)g1μ1(a)−1. By hypothesis, g′
1 is (H1 × K1)-

conjugate to g1. Now the group Z(G)0 acts on G by right inverse multiplication, and we can
identify σ with the canonical projection to the quotient. The orbits of Z(G)0 all have the
same dimension, so σ is a geometric quotient. Moreover, the Z(G)0-action commutes with
the (H×K )-action, so H×K acts onG1. By construction, (h, k)·σ(x) = (σ (h), σ (k))·σ(x)
for all x ∈ G, h ∈ H and k ∈ K . In particular, g′

1 is (H × K )-conjugate to g1. It follows
from [9, Cor. 3.5(ii)] that g′ is (H × K )-conjugate to g. Hence (H × K ) · g is closed. This
proves (ii). �
Lemma 9.8 Suppose G, H and K are connected. Let λ ∈ Y (H). Suppose there exists a
nonempty subset C of G such that (H × K ) · C is open and has the following property: for
all g ∈ C, there exists τg = (λ, μg) ∈ Y (H × K ) such that τg destabilizes g.

(i) There exists g0 ∈ G such that λ ∈ Y (g0Kg−1
0 ) and (H × g0Kg−1

0 ) · Pλ is dense in G.
Moreover, for all g ∈ Pλ, the cocharacter (λ, λ) of H × g0Kg−1

0 destabilizes g.
(ii) Suppose in addition that τg fixes g for all g ∈ C. Then (H × g0Kg−1

0 ) · Lλ is dense in
G, and (λ, λ) fixes every l ∈ Lλ.

Proof Fix v ∈ C and let v0 := lima→0 τv(a) · v = lima→0 λ(a)vμv(a). Then λ = v0 · μv

by Lemma 9.6, so λ ∈ Y (v0Kv−1
0 ). The equivariance of rv0 implies that for any w ∈ C ,

(λ, v0 ·μw) ∈ Y (H×v0Kv−1
0 ) destabilizeswv−1

0 tow0v
−1
0 , wherew0 := lima→0 τw(a) ·w.

By Lemma 9.3, we can replace K with v0Kv−1
0 andC withCv−1

0 . So without loss we assume
that λ ∈ Y (K ).

Let g ∈ C . By hypothesis, τg = (λ, μg) destabilizes g. As im(λ) is contained in K , there
exists k ∈ K such thatμ := k ·μg commuteswith λ. Set g1 = gk−1 = (1, k)·g, so that (λ, μ)

destabilizes g1. Finally, set g2 = lima→0 λ(a)g1μ(a)−1. Then λ = g2 · μ by Lemma 9.6.
Fix a maximal torus T of G such that λ,μ ∈ Y (T ) and let n1, . . . , nr ∈ NG(T ) be a set
of representatives for the Weyl group NG(T )/T . Now g2Tg

−1
2 is a maximal torus of Lλ, so

by conjugacy of maximal tori in Lλ, we have xg2Tg
−1
2 x−1 = T for some x ∈ Lλ. Then

xg2 = tni for some i and some t ∈ T , so g2 = lni , where l := x−1t ∈ Lλ. By Lemma 9.6, we
have g1 = ug2 = ulni for some u ∈ Ru(Pλ), so g1 ∈ Pλni and g = g1k ∈ (H ×K ) ·(Pλni ).
Since g ∈ C was arbitrary, it now follows that

⋃r
i=1(H × K ) · (Pλni ) contains (H × K ) ·C

and, since G is connected, (H × K ) · (Pλni ) is dense in G for at least one i . Note also that
λ = g2 · μ = lni · μ, so μ = n−1

i l−1 · λ = n−1
i · λ, so λ = ni · μ ∈ Y (ni Kn−1

i ).
Keeping the notation in the previous paragraph, for each i , (H×K )·(Pλni ) is constructible,

so (H × K ) · (Pλni ) is either dense or contained in a proper closed subset of G. Thus the
union of those subsets (H × K ) · (Pλni ) that are dense contains an open subset of G; note
also that this union is (H × K )-stable. Since (H × K ) · C is open, we can find g′ ∈ C such
that for any i , if g′ ∈ (H × K ) · (Pλni ) then (H × K ) · (Pλni ) is dense. By the arguments in
the paragraph above applied to g′, there exists i such that g′ ∈ (H × K ) · (Pλni ) and for this
i we have λ = ni ·μ ∈ Y (ni Kn−1

i ); moreover, (H × K ) · (Pλni ) is dense by construction. It
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follows that (H × ni Kn−1
i ) · Pλ = rni ((H × K ) · (Pλni )) is dense in G, so the first assertion

of part (i) follows with g0 = ni . It is obvious that (λ, λ) destabilizes g for all g ∈ Pλ, so we
have proved part (i).

If g ∈ C and τg fixes g then (λ, μ) fixes g1, so g1 = g2 ∈ Lλni for some i . The first
assertion of (ii) follows by a similar argument to that above but applied to

⋃r
i=1(H × K ) ·

(Lλni ), and the second assertion is again obvious. �
Proof of Theorem 9.1 We have shown already that (ii) and (iii) are equivalent, so it is enough
to prove that (i) and (ii) are equivalent. First note that for any g ∈ G, (H ∩ K ) · g is closed
if and only if (H ∩ K )0 · g = (H0 ∩ K 0)0 · g is closed, and H ∩ gKg−1 is reductive if
and only if (H ∩ gKg−1)0 = (H0 ∩ gK 0g−1)0 is reductive, which is the case if and only if
H0 ∩ gK 0g−1 is reductive. Hence we can assume that H and K are connected. Moreover,
we can assume by Lemma 9.5 that k is uncountable.

The implication (i) �⇒ (ii) follows immediately from Lemma 3.3(ii). For the reverse
implication, we use induction on dim(G). Suppose generic stabilizers are reductive. The
result is immediate if dim(G) = 0. If G is not semisimple then let G1, σ , H1 and K1 be as
in Lemma 9.7. Then generic stabilizers of H1 × K1 on G1 are reductive, by Lemma 9.7(i).
Since dim(G1) < dim(G), it follows by induction that generic orbits of H1 × K1 on G1 are
closed. Part (ii) of Lemma 9.7 now implies that generic orbits of H × K on G are closed, so
we are done. Hence we can assume that G is semisimple.

Firstwe consider the casewhengeneric stabilizers ofH×K onG are positive-dimensional.
Then all stabilizers of H ×K on G are positive-dimensional, by semi-continuity of stabilizer
dimension. For each g ∈ G such that (H × K )g is reductive, choose a nontrivial cocharacter
τg ∈ Y ((H × K )g). The fixed point set Gτg := G im(τg) is closed, so Cg := (H × K ) ·Gτg is
constructible. Since generic stabilizers of H × K on G are reductive, the constructible sets
Cg for g ∈ G such that (H × K )g is reductive cover an open dense subset U of G, by [37,
Theorem 1.1]. There are only countably many of these sets, as H × K has only countably
many conjugacy classes of cocharacters. By [37, Cor. 2.5], Cg̃ is dense in G for some g̃ ∈ G.
Hence there exists τ = (λ, μ) ∈ Y (H × K ) such that for generic g ∈ G, g is fixed by an
(H × K )-conjugate of τ . It follows from Lemma 9.8 that for some g0 ∈ G, λ ∈ Y (g0Kg−1

0 )

and (H × g0Kg−1
0 ) · Lλ is dense in G. By Lemma 9.3, there is no harm in assuming that

g0Kg−1
0 = K—i.e., that λ ∈ Y (K ) and (H × K ) · Lλ is dense in G—and we shall do this

for notational convenience.
To prove that generic (H × K )-orbits on G are closed, it is therefore enough to show

that (H × K ) · l is closed for generic l ∈ Lλ. Let H2 = Lλ(H) and let K2 = Lλ(K );
then H2 × K2 = L(λ,λ)(H × K ). Consider the double coset action of H2 × K2 on Lλ.
Let l ∈ Lλ. Then (λ, λ) fixes l, so (H2 × K2)l = L(λ,λ)((H × K )l), which is reductive if
(H×K )l is. Hence generic stabilizers of (H2×K2) on Lλ are reductive. AsG is semisimple,
dim(Lλ) < dim(G), so generic (H2 × K2)-orbits on Lλ are closed by induction. It follows
from Remark 4.2(iii) that (H × K ) · l is closed for generic l ∈ Lλ, so we are done as
(H × K ) · Lλ is dense in G.

Now consider the case when generic stabilizers of H ×K onG are finite. Suppose generic
(H×K )-orbits onG are not closed. ThenGcl is a proper closed subset ofG, so the union of the
non-closed orbits contains a nonempty open subset ofG. For each g ∈ G such that (H×K )·g
is not closed, choose nontrivial τg ∈ Y (H × K ) such that τg destabilizes g. By an argument
similar to the one in the positive-dimensional case above, there exist λ ∈ Y (H) and g0 ∈ G
such thatλ ∈ Y (g0Kg−1

0 ) and (H×g0Kg−1
0 )·Pλ is dense inG. As before,we can assume that

g0Kg−1
0 = K . Now Ru(P−λ)(H)Pλ(H) and Pλ(K )Ru(P−λ)(K ) are nonempty open subsets

of H and K respectively [10, Proposition 14.21(iii)], so Ru(P−λ)(H)PλRu(P−λ)(K ) is dense
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in G, as HPλK is. It follows that dim(Ru(P−λ)(H)) + dim(Ru(P−λ)(K )) + dim(Pλ) ≥
dim(G), so dim(Ru(P−λ)(H))+dim(Ru(P−λ)(K )) ≥ dim(G)−dim(Pλ) = dim(Ru(Pλ)).

By hypothesis, we can choose g ∈ Pλ such that (H × K )g is finite. Write g = ul,
where l = Lλ and u ∈ Ru(Pλ); then l = lima→0(λ, λ)(a) · g. We show that l is (H ×
K )-conjugate to g. Consider the double coset action of Ru(Pλ(H)) × Ru(Pλ(K )) on G.
Let O = (Ru(Pλ(H)) × Ru(Pλ(K ))) · g and consider the orbit map κg : Ru(Pλ(H)) ×
Ru(Pλ(K )) → O given by κg(h, k) = hgk−1. It is clear that O ⊆ Ru(Pλ)l. Note that
O is closed, since O is the orbit of an action of a unipotent group on an affine variety [10,
Proposition 4.10]. The stabilizer of g in Ru(Pλ(H))×Ru(Pλ(K )) is finite, since (H×K )g is
finite, so O has dimension dim(Ru(Pλ(H))) + dim(Ru(Pλ(K ))). Now dim(Ru(Pλ(H))) +
dim(Ru(Pλ(K ))) = dim(Ru(P−λ)(H)) + dim(Ru(P−λ)(K )) ≥ dim(Ru(Pλ)), and since O
is closed, this forces O to be the whole of Ru(Pλ)l. Hence there exists (h, k) ∈ Ru(Pλ(H))×
Ru(Pλ(K )) such that (h, k) · g = l, as required.

Now (H×K )l is finite, since l is (H×K )-conjugate to g. But (λ, λ)fixes l, a contradiction.
We deduce that generic (H × K )-orbits on G are closed after all. This completes the proof.

�
Remark 9.9 One can prove the following more general statement of Theorem 9.1 for non-
connected reductive G. Let G1, . . . ,Gr be the minimal subsets of G having the property that
eachGi is (H ×K )-stable and contains some connected component ofG. EachGi is a union
of certain connected components of G; if H and K are connected then the Gi are precisely
the connected components of G. Here is our result: for each i , Gi has good dimension for
the (H × K )-action if and only if generic stabilizers of H × K on Gi are reductive if and
only if H ∩ gKg−1 is reductive for generic g ∈ Gi . To see this, note first that we can assume
that H and K are connected, by the proof of Theorem 9.1; hence we can assume that each
Gi is a connected component of G. We can now choose g ∈ G such that Gi g = G0, and use
the map rg to translate the case of Gi into the case of the connected group G0 (cf. the proof
of Lemma 9.3). We leave the details to the reader.

We record a useful corollary.

Corollary 9.10 Suppose one of H and K is a torus. Then G has good dimension for the
(H × K )-action.

Proof This is immediate from Theorem 9.1, since any subgroup of a torus is reductive. �
We now consider a concrete example; our methods allow us to deal with arbitrary char-

acteristic. Note that we use Theorem 1.1 in parts (a) and (b) below.

Example 9.11 Let G be simple of type B2 and fix a maximal torus T of G. Let A be the
subgroup of G generated by the long root groups with respect to T . If p = 2 then let B be
the subgroup of G generated by the short root groups with respect to T . The groups A and
B are normalized by NG(T ).

(a). Let p be arbitrary and let H = K = A. Since dim(G) = 10 and dim(H) = dim(K ) =
6, dim(H × K )g ≥ 2 for all g ∈ G, with equality if and only if (H × K ) · g is dense in G.
Let λ ∈ Y (T ) be nontrivial. We show first that for generic l ∈ Lλ, (H × K ) · l is closed. If
Lλ = T or Lλ is a long-root Levi subgroup (that is, a Levi subgroup L such that [L, L] is
the subgroup of type A1 corresponding to some long root) then Lλ ≤ A, so (H × K ) · l = A
is closed. Note that in this case, (H × K ) · Lλ = A is not dense in G.

So suppose Lλ is a short-root Levi subgroup. As in the positive-dimensional case in
the proof of Theorem 9.1, it is enough to show that (Lλ(H) × Lλ(K )) · l is closed for
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generic l ∈ Lλ. But this follows from Corollary 9.10, since Lλ(H) × Lλ(K ) = T × T is
a torus. Moreover, in this case the quotient space Lλ/(T × T ) is positive-dimensional, as
dim(T × T ) = 4 = dim(Lλ) and (T × T )l has dimension at least 1 for all l ∈ L (since
(λ, λ) fixes l). It follows that the quotient space G/(H × K ) is positive-dimensional. To see
this, let S be the image of (λ, λ); note that T × T ≤ NH×K (S) ≤ NH×K (T × T ). Now
consider the maps Lλ/(T × T ) → Lλ/NH×K (S) → G/(H × K ). The first map is finite as
T × T has finite index in NH×K (S), while the second is finite by Theorem 1.1 (applied to
the subgroup S of H × K ), so dim(G/(H × K )) ≥ dim(Lλ/(T × T )) ≥ 1, as claimed.

Next we show that for generic g ∈ G, (H × K )g contains a nontrivial torus. Suppose not.
Then for generic g ∈ G, (H × K )0g is a unipotent subgroup of H of dimension at least 2, so
(H × K )0g is a maximal unipotent subgroup of H and has dimension 2. But then the orbit
(H × K ) · g is dense in G, so G/(H × K ) is a single point, which is a contradiction.

It follows from the proof of the positive-dimensional case of Theorem 9.1 that (H ×
ni Kn−1

1 ) ·Lλ is dense inG for some nontrivial λ ∈ Y (T ) and some i . But NG(T ) normalizes
K , so (H × K ) · Lλ is dense in G (and hence Lλ is a short-root Levi subgroup of G). We
deduce from the discussion above that generic (H × K )-orbits in G are closed. Moreover,
we see that the map Lλ/(T × T ) → G/(H × K ) is finite and dominant, hence surjective.
A simple calculation shows that generic stabilizers of T × T on Lλ have dimension 1, so
dim(Lλ/(T × T )) = 1, which implies that dim(G/(H × K )) = 1. Hence generic stabilizers
of H × K on G are reductive groups of dimension 3. It follows that for generic g ∈ G,
(H × K )0g is of type A1.

(b). Let p = 2 and let H = K = B. Then generic orbits of H × K on G are closed and
for generic g ∈ G, (H × M)0g is of type A1. The proof is similar to case (a).

(c). Let p = 2, let H = A and let K = B. Consider the stabilizer (H × K )1, which is
isomorphic via themap φ1 to H∩K . It is easily seen that H∩K = T , so (H×K )1 = {(t, t) |
t ∈ T }. It follows that dim((H×K )·1) = dim(H×K )−dim(T ) = 12−2 = 10 = dim(G),
so (H × K ) · 1 is dense in G and generic stabilizers have dimension 2 and are reductive. It
follows from Theorem 9.1 that generic orbits are closed. Hence (H × K ) · 1 is closed and
H × K acts transitively on G. (This conclusion also follows from [14, Theorem A], since
A and B are maximal connected subgroups of G.)

We finish the section with a further example.

Example 9.12 Suppose p �= 2 and let G be simple and of rank r . Let τ ∈ Aut(G) be an
involution that inverts a maximal torus of G—such a τ always exists, by [17, Lemma 3.6]—
and let H = K = CG(τ ). Then (H × K )g = H ∩ gKg−1 is a finite group of order 2r

for generic g ∈ G [17, Theorem 9], so G has good dimension for the H × K -action, by
Theorem 9.1. (Note that in [17, Sect. 3.2] one considers the action of H by left multiplication
on G/K rather than the double coset action of H × K on G, but the arguments carry over
easily to our setting. See also [37, Example 8.4].)

We now consider a striking feature of this example: namely that, although generic stabi-
lizers for the double coset action are nontrivial, there is a unique (H ×K )-orbit O consisting
of elements with trivial stabilizer [17, Theorem 9] (compare Example 3.2). If p = 0 then
O cannot be closed: for otherwise there would exist an étale slice through any element of
O , so every element in some open neighbourhood of O would have trivial stabilizer by the
argument of Example 3.2, a contradiction. More generally, for arbitrary p �= 2 the argument
of [37, Ex. 8.4] implies that G has a principal stabilizer A which is a finite group of order 2r ,
and it follows from Theorem 1.1 that if g′ ∈ G and (H × K ) · g′ is closed then (H × K )g′
contains a conjugate of A. Hence we see again that O cannot be closed.
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We give a direct proof of this. The orbit O is of the form (H ×K ) ·g, where g ∈ G has the
property that u := ττ g is a regular unipotent element of G and u is inverted by τ (see [17,
Proposition 3.1]). In fact, we can choose g to be a regular unipotent element of G such that
g2 = u and τ inverts g (take g to be us if p > 0, where 2s ≡ 1 mod |u|). Set U = 〈g〉; then
τ normalizes U , as τ inverts g. There exists λ ∈ Y (G) such that lima→0 λ(a)g′λ(a)−1 = 1
for all g′ ∈ U . We can choose λ to be optimal in the sense of [9, Defn. 4.4 and Theorem 4.5]
(cf. Sect. 2.5). Then τ normalises Pλ. Now NAut(G)(Pλ) is an R-parabolic subgroup of the
reductive group Aut(G) [35, Proposition 5.4(a)], so NG(Pλ) = Pμ for some μ ∈ Y (G). As
τ ∈ Pμ and 〈τ 〉 is linearly reductive, we can choose μ to centralize τ : that is, we can choose
μ to belong to Y (H).

Let σ = (μ,μ) ∈ Y (H × K ). Then lima→0 σ(a) · g = lima→0 μ(a)gμ(a)−1 = 1 since
U ≤ Ru(Pλ) = Ru(Pμ). But clearly 1 /∈ O , so O is not closed, as claimed.

10 Applications toG-complete reducibility

We finish with some applications of ideas from Sects. 3 and 9 to G-complete reducibility.
Our next lemma gives a basic structural result about G and its subgroups which can quickly
be proven using the framework we have now set up; the setting is as in Sect. 9 but more
general, since we allow one of the subgroups to be non-reductive (cf. [15]). The argument
used is taken from the proof of [29, Kap. III.2.5, Satz 2]; note that although the reference [29]
works with groups and varieties defined over the complex numbers, many of the arguments
are completely general. For convenience, we reproduce the details here.

Lemma 10.1 Suppose K is a subgroup of G and let H be a reductive subgroup of G that
contains a maximal torus of K . Then HK is a closed subset of G.

Proof First suppose that K is unipotent. The quotient X = G/H is affine and H is the
stabilizer in G of the point x = πG,H (1) ∈ X . Since K is unipotent, and all orbits for
unipotent groups on affine varieties are closed [10, Proposition 4.10], K · x is closed, so K H
(and hence HK ) is closed in G by Lemma 3.5.

Now, in the general case, let T be a maximal torus of K contained in H and let B be a
Borel subgroup of K containing T with unipotent radical U . Then UH = BH is closed in
G by the first paragraph, and the following argument from [29, Kap. III.2.5, Satz 2] gives us
what we want. We have a sequence of morphisms

K × G
φ−→ K × G

ρ=πK ,B×id−−−−−−−→ K/B × G
pr2−→ G

where φ(g′, g) := (g′, g′g) for g′ ∈ K , g ∈ G, πK ,B is the quotient morphism K → K/B
and pr2 is the projection of K/B × G onto the second factor. Let Y = K × BH . Since BH
is closed in G, Y is closed in K × G. Since φ is an isomorphism of varieties, φ(Y ) is closed
in K × G and therefore ρ(φ(Y )) is closed in K/B × G. Finally, since K/B is complete,
pr2(ρ(φ(Y ))) is closed in G. But it is easy to see that pr2(ρ(φ(Y ))) = K H , so we are done.

�
The lemma above allows a quick proof of the following result.

Proposition 10.2 Suppose G is reductive, X is an affine G-variety and x ∈ X. If H is a
reductive subgroup of G containing a maximal torus of Gx , then H · x is closed in G · x. In
particular, if G · x is closed in X then H · x is closed in X.
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Proof By Lemma 10.1, under the given hypotheses, HGx is closed in G. Hence, by
Lemma 3.5, H · x is closed in G · x . �
Remark 10.3 The argument of Lemma 10.1 is used in [29, Kap. III, 2.5, Folgerung 3] to show
that if X is affine and Gx contains a maximal torus of G, then G · x is closed, a result which
has obvious similarities to Proposition 10.2.

Corollary 10.4 Suppose H and K are reductive subgroups of the reductive group G. If H ∩K
contains a maximal torus of H or K , then HK is closed in G and H ∩ K is a reductive
group.

Proof Without loss, suppose H ∩ K contains a maximal torus of K . The first conclusion is
a special case of Lemma 10.1. For the second, apply Proposition 10.2 to the action of G and
H on the quotient G/K . Since G/K is affine and H · πG,K (1) is closed in G/K , this orbit
is also affine and hence the stabilizer HπG,K (1) = H ∩ K is reductive by Lemma 3.3(ii). �

A theme running through [5] and subsequent papers on complete reducibility by the same
authors is the following general question: if A and H are subgroups of G with A ⊆ H and H
reductive, what conditions ensure that if A isG-cr then A is H -cr, and vice versa? Because of
the link between complete reducibility and closed orbits in Gn explained in Sect. 2.4 above,
this is readily seen to be a special case of the general questions considered in this paper. Since
this was one of the original motivations for the work presented here, we briefly record some
of the translations of our main results into the language of complete reducibility and give a
couple of other consequences in this setting.

First note that Proposition 10.2 specializes to [5, Proposition 3.19] in the setting of com-
plete reducibility: that is, with notation as just set up, if H also contains a maximal torus of
CG(A) and A is G-cr, then A is H -cr. More generally, we have:

Proposition 10.5 Suppose H is a reductive subgroup of G, and let A be a subgroup of H.

(i) If A is H-cr, then HCG(A) is closed in G.
(ii) If A is G-cr, then A is H-cr if and only if HCG(A) is closed in G.

Proof (i). Let a ∈ Hn be a generic tuple for A. Suppose A is H -cr; then H · a is closed
in Hn . Since Hn is closed in Gn , H · a is closed in G · a. Therefore, by Lemma 3.5(i),
HGa = HCG(A) is closed in G.

(ii). Using a generic tuple for A again, this becomes a direct application of Lemma 3.5(ii).
�

The notions of reductive pairs from [46, Sect. 3] and separability from [5, Def. 3.27] have
proved useful in the study of complete reducibility: see [3,5,7, Sect. 3.5] for example. Recall
that the definitions of reductive pair and separable subgroup were given in Sect. 7. We have
the following result:

Proposition 10.6 Suppose (G, H) is a reductive pair. Let A be a separable subgroup of G
contained in H. Then HCG(A) is closed in G.

Proof Let a ∈ Hn be a generic tuple for A. Then CG(A) = Ga, and since A is separable
in G, the orbit G · a is separable. Now Richardson’s “tangent space argument” [46, Sect. 3]
(generalized to n-tuples in [53]) shows that G · a ∩ Hn decomposes into finitely many H -
orbits, each of which is closed in G · a ∩ Hn . Since one of these orbits is H · a, we can
conclude that H · a is closed in G · a∩ Hn , and hence in G · a. Therefore, HGa = HCG(A)

is closed in G by Lemma 3.5(i). �
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Remark 10.7 Note that every pair (G, H) of reductive groups with H ≤ G is a reductive pair
in characteristic 0 and the separability hypothesis is also automatic. In characteristic p > 0,
every subgroup of G is separable as long as p is “very good” for G; see [7, Theorem 1.2].

As a final remark, we note that there are Lie algebra analogues of Propositions 10.5
and 10.6, where we replace the subgroup A with a Lie subalgebra of Lie(H). For details of
how to make such translations, see [9, Sect. 5], for example.
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