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Abstract Let (X, θ) be a compact complex manifold X equipped with a smooth (but not
necessarily positive) closed (1, 1)-form θ. By a well-known envelope construction this data
determines, in the case when the cohomology class [θ ] is pseudoeffective, a canonical θ -psh
function uθ . When the class [θ ] is Kähler we introduce a family uβ of regularizations of
uθ , parametrized by a large positive number β, where uβ is defined as the unique smooth
solution of a complex Monge–Ampère equation of Aubin–Yau type. It is shown that, as
β → ∞, the functions uβ converge to the envelope uθ uniformly on X in the Hölder space
C1,α(X) for any α ∈]0, 1[ (which is optimal in terms of Hölder exponents). A generalization
of this result to the case of a nef and big cohomology class is also obtained and a weaker
version of the result is obtained for big cohomology classes. The proofs of the convergence
results do not assume any a priori regularity of uθ .Applications to the regularization ofω-psh
functions and geodesic rays in the closure of the space of Kähler metrics are given. As briefly
explained there is a statistical mechanical motivation for this regularization procedure, where
β appears as the inverse temperature. This point of view also leads to an interpretation of uβ

as a “transcendental” Bergman metric.
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1 Introduction

Let X be a compact complex manifold equipped with a smooth closed (1, 1)-form θ

on X and denote by [θ ] the corresponding class in the Bott–Chern cohomology group
H1,1(X, R).There is a range of positivity notions for such cohomology classes, general-
izing the classical positivity notions in algebraic geometry. The algebro-geometric situation
concerns the special case when X is projective variety and the cohomology class in question
has integral periods, which equivalently means that the class may be realized as the first
Chern class c1(L) of a line bundle L over X [25–27]. Accordingly, general cohomology
classes in H1,1(X, R) are some times referred to as transcendental classes and the corre-
sponding notions of positivity may be formulated in terms of the convex subspace of positive
currents in the cohomology class—the strongest notion of positivity is that of a Kähler class,
which means that the class contains a Kähler metric, i.e. a smooth positive form (see [27] for
equivalent numerical characterizations of positivity). In general, once the reference element
θ in the cohomology class in question has been fixed the subspace of positive forms may be
identified (mod R) with the space P SH(X, θ) of all θ -plurisubharmonic function (θ -psh,
for short), i.e. all integrable strongly upper semi-continuous functions u on X such that

θ + ddcu ≥ 0, ddc := i∂∂̄

holds in the sense of currents (in the integral case the space P SH(X, θ) may be identified
with the space of all singular positively curved metrics on the corresponding line bundle L).

When the class [θ ] is pseudo-effective, i.e. it contains a positive current, there is a canonical
element in P SH(X, θ) defined as the following envelope:

uθ (x) := sup{u(x) : u ≤ 0, u ∈ P SH(X, θ)},

defining a θ -plurisubharmonic function with minimal singularities in the sense of Demailly
[18,25].

In this paper we introduce a natural family of regularizations uβ of the envelope uθ ,

indexed by a positive real parameter β, where uβ is determined by an auxiliary choice of
volume form dV ; the functions uβ will be defined as solutions to certain complex Monge–
Ampère equations, parametrized by β. Several motivations for studying the functions uβ and
their asymptotics as β → ∞, will be given below. For the moment we just mention that uβ

can, in a certain sense, be considered as a “transcendental” analog of the Bergman metric for
a high power of a line bundle L over X and moreover from a statistical mechanical point of
view the limit β → 0 appears as a zero-temperature limit.

In order to introduce the precise setting and the main results we start with the simplest
case of a Kähler class [θ ]. First note that the envelope construction above can be seen as
a generalization of the process of replacing the graph of a given smooth functions with its
convex hull. By this analogy it is already clear from the one-dimensional case that uθ will
almost never by C2-smooth even if the class [θ ] is Kähler (unless θ is semi-positive, so that
uθ = 0).
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Fixing a volume form dV we consider, for β a fixed positive number, the following
complex Monge–Ampère equations for a smooth function uβ :

(θ + ddcuβ)n = eβuβ dV (1.1)

By the seminal results of Aubin [1] and Yau [64] there exists indeed a unique smooth solution
uβ to the previous equation. In fact, any smooth solution is automatically θ -psh and the form
ωβ := θ + ddcuβ defines a Kähler metric in [θ ].
Theorem 1.1 Let θ be a smooth (1, 1)-form on a compact complex manifold X such that
[θ ] is a Kähler class. Denote by uθ the corresponding θ -psh envelope and by uβ the unique
smooth solution of the complex Monge–Ampère equations 1.1 determined by θ and a fixed
volume form dV on X. Then, as β → ∞, the functions uβ converge to uθ in C1,α(X) for any
α ∈]0, 1[, with a uniform bound on ddcuβ.

In particular, the previous theorem yields a new direct PDE proof of the Laplacian bound
on uθ in [14] in the case of a Kähler class, with a rather explicit geometrical control on the
bound. More generally, the proof reveals that the result remains valid if dV is replaced by
any family dVβ of volume forms such that ddc(log(dVβ/dV1) = o(β). As a consequence
the convergence result above admits the following geometric formulation: let ωβ be a family
of Kähler metrics in [θ ] satisfying the following twisted Kähler–Einstein equation:

Ric ωβ = −βωβ + βθ + o(β),

where Ric ωβ denotes the form representing the Ricci curvature of the Kähler metric ωβ and
o(β) denotes a family of forms on X such that o(β)/β → 0 in the L∞-sense as β → ∞.

Then the previous theorem says that ωβ is uniformly bounded and converges to θ + ddcuθ

in the sense of currents and the normalized potentials of ωβ converge in C1,α(X) to uθ .

More generally, we will consider the case when the cohomology class [θ ] is merely
assumed to be big; this is the most general setting where complexMonge–Ampère equations
of the form make sense [18]. The main new feature in this general setting is the presence of
−∞-singularities of all θ -psh functions on X. Such singularities are, in general, inevitable
for cohomological reasons. Still, by the results in [18], the corresponding complex Monge–
Ampère equations admit a unique θ -psh function uβ with minimal singularities; in particular
its singularities can only appear along a certain complex subvariety of X, determined by
the class [θ ], whose complement is called the Kähler locus � of [θ ] (or the ample locus)
introduced in [17] (which in the algebro-geometric setting corresponds to the complement of
the augmented base locus of the corresponding line bundle). Moreover, in the case when the
class [θ ] is also assumed to be nef the solution uβ is known to be smooth on �, as follows
from the results in [18]. In this general setting our main result may be formulated as follows:

Theorem 1.2 Let θ be a smooth (1, 1)-form on a compact complex manifold X such that
[θ ] is a big class. Then, as β → ∞, the functions uβ converge to uθ uniformly, in the sense
that

∥
∥uβ − uθ

∥
∥

L∞ Z(X)
→ 0. Moreover, if the class [θ ] is also assumed to be nef, then the

convergence holds in C1,αloc (�) on the Kähler locus � of X.

In particular, in the general setting of a big class the proof of the previous theorem yields
an a priori L∞-bound on the Monge–Ampere measure of uθ :

(θ + ddcuθ )
n ≤ 1Dθn, D = {x ∈ X : uθ (x) = 0} (1.2)

Some further remarks are in order. First of all, as pointed out above, it was previously known
that the norm

∥
∥uβ − uθ

∥
∥

L∞(X)
is finite for any fixed β (since uβ and the envelope uθ both
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have minimal singularities) and the thrust of the first statement in the previous theorem is
thus that the norm in fact tends to zero. This global uniform convergence is considerably
stronger than a a local uniform convergence on �. Secondly, it seems natural to expect that
the local convergence on � in the previous theorem always holds in the C1,αloc (�)-topology,
regardless of the nef assumption. However, already the smoothness on � of solutions of
complexMonge–Ampère equations of the form 1.1 is an open problem; in fact, it even seems
to be unknown whether there always exists a θ -psh functions with minimal singularities,
which is smooth on �. On the other hand, for special big classes [θ ], namely those which
admit an appropriate Zariski decomposition on some resolution of X, the regularity and
convergence problem can be reduced to the nef case (in the line bundle case this situation
appears if the corresponding section ring is finitely generated).

1.1 Degenerations induced by a divisor and applications to geodesic rays

In the case of aKähler class andwhen θ is positive, i.e. θ isKähler form, it follows immediately
from the definition that uθ = 0 and in this case the convergence in Theorem 1.1 holds in the
C∞-sense, as recently shown in [36] using a completely different proof. However, as shown
in [45,47] in the integral case [ω] = c1(L), a non-trivial variant of the previous envelopes
naturally appear in the geometric context of test configurations for the polarized manifold
(X, L), i.e. C∗-equivariant polarized deformations (X ,L) of (X, L) and they can be used to
construct (weak) geodesic rays in the space of all Kähler metrics in [ω]. Such test configu-
rations were introduced by Donaldson in his algebro-geometric definition of K-stability of
a polarized manifold (X, L), which according to the the Yau–Tian–Donaldson is equivalent
to the existence of a Kähler metric in the class c1(L) with constant scalar curvature. Briefly,
K-stability of (X, L) amounts to the positivity of the Donaldson–Futaki invariants for all test
configurations, which in turn is closely related to the large time asymptotics of Mabuchi’s
K-energy functional along the corresponding geodesic rays (see [42] and references therein).

Let us briefly explain how this fits into the present setup in the special case of the test
configurations defined by the deformation to the normal cone of a divisor Z in X (e.g.
a smooth complex hypersurface in X). First we consider the following complex Monge–
Ampère equations degenerating along the divisor Z ,

(ω − λθL + ddcu)n = eβu ‖s‖2λβ dV,

where we have realized Z as the zero-locus of a holomorphic section s of a line bundle L over
X equipped with a fixed Hermitian metric ‖·‖ with curvature form θL and where λ ∈ [0,∞[
is an additional fixed parameter. As is well-known, for λ sufficiently small (λ ≤ ε) there
is, for any β > 0, a unique continuous ω − λθL -psh solution uβ,λ to the previous equation,
which is smooth on X − Z . We will show that, when β → ∞, the solutions uβ,λ converge
in C1,α(X) to a variant of the envelope uθ , that we will (abusing notation slightly) denote by
uλ :

uλ(x) := sup{u(x) : u ≤ −λ log ‖s‖2 u ∈ P SH(X, ω − λθL)}
(see Sect. 4). It may identified with the envelopes with prescribed singularities introduced in
[2] in the context of Bergman kernel asymptotics for holomorphic sections vanishing to high
order along a given divisor (see [45] for detailed regularity results for such envelopes and the
relations to Hele–Shaw type flows and [56] for related asymptotic results in the toric case).

Remarkably, as shown in [45,47] (in the line bundle case) taking the Legendre transform
of the envelopes uλ + λ log ‖s‖2 with respect to λ produces a geodesic ray in the closure of
the space of Kähler potentials in [ω], which coincides with the C1,α-geodesic constructed
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From Monge–Ampère equations to envelopes. . . 369

by Phong-Sturm [40,41] (in general, the geodesics are not C2-smooth). Here, building on
[45,47], we show that the logarithm of the Laplace transform, with respect to λ, of the
Monge–Ampère measures of the envelopes uλ defines a family of subgeodesics in the space
of Kähler potentials converging to the corresponding geodesic ray (see Corollary 5.3). In
geometric terms the result may be formulated as follows

Corollary 1.3 Let ω be a Kähler form, and fix a constant c such that [ω] − c[Z ] is a Kähler
class. Let ωβ,λ be a family of currents in [ω] − λ[Z ], defining smooth Kähler metrics away
from the support of Z and satisfying

Ricωβ,λ = −βωβ,λ + β(ω − λ[Z ]) + o(β)

Then

ϕt
β := 1

β
log

∫

[0,c]
dλeβ(λ−c)t

ωn
β,λ

ωn

defines a family of subgeodesics converging in C0(X × [0, T ]), for any fixed T > 0, to a
geodesic ray ϕt associated to the test configuration (X ,Lc) defined by the deformation to
the normal cone of Z . Moreover, in the case when [ω] ∈ H2(X, Q) the convergence holds
in C0(X × [0,∞].

This can be seen as a “transcendental” analogue of the approximation result of Phong-
Sturm [44], which uses Bergman geodesic rays. However, while the latter convergence result
holds point-wise almost everywhere and for t fixed, an important feature of the convergence
in the previous corollary is that it is uniform, even when t ranges in all of [0,∞[. More
generally, we will establish an extension of the previous result to the case when [ω] − c[Z ]
(or equivalently Lc) is merely assumed big.

The motivation for considering this “transcendental” approximation scheme for geodesic
rays is two-fold. First, as is well-known, recent examples indicate that a more “transcenden-
tal” notion of K-stability is needed for the validity of the Yau–Tian–Donaldson conjecture,
obtained by relaxing the notion of a test configuration. One such notion, called analytic test
configurations, was introduced in [47] and as shown in op. cit. any such test configuration
determines a weak geodesic ray, which a priori has very low regularity. However, the approx-
imation scheme above could be used to regularize the latter weak geodesic rays, which opens
the door for defining a notion of generalized Donaldson–Futaki invariant by studying the
large time asymptotics of the K-energy functional along the corresponding regularizations
(as in the Bergmanmetrics approach in [44]). In another direction, the approximation scheme
above should be useful when considering the analog of K-stability for a non-integral Kähler
class [ω] (compare Sect. 5). The previous corollary is just a first illustration of this approxi-
mation scheme and we leave the development of more general approximation results for the
future.

On the proofs

Next, let us briefly discuss the proofs of the previous theorems, starting with the case of a
Kähler class. First, the weak convergence of uβ towards uθ (i.e. convergence in L1(X)) is
proved using variational arguments (building on [12]). In fact, we will give two different
proofs of this convergence, where the first one is variational and has two merits: (1) it
generalizes directly to the case of a big class and (2) it applies when dV is replaced with a
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370 R. J. Berman

quite singular measure μ0 (satifying a Bernstein–Markov property). The second proof uses
a direct simple maximum principle argument.

In either way, to conclude the proof of Theorem 1.1 we just have to provide a priori
estimates on uβ, which are uniform in β and which we deduce from Siu’s variant of the
Aubin–Yau Laplacian estimates. In particular, this implies convergence in L∞(X).However,
in the case of a general big class, in order to establish the global L∞-convergence, we need
to take full advantage of the variational argument, namely that the argument shows that uβ

converges to uθ in energy and not only in L1(X). This allows us to invoke the L∞-stability
results in [32]. Briefly, the point is that convergence in energy implies convergence in capacity,
which together with an L p-control on the corresponding Monge–Ampère measures opens
the door for Kolodziej type L∞-estimates. Moreover, a variant of the maximum principle
argument used in the case of the Kähler class, based on the theory of viscosity subsolutions
developed in [29], yields the bound 1.2 (only the local case of the results in [29] is needed).

1.2 Further background and motivation

Before turning to the proofs of the results introduced above it may be illuminating to place
the result into a geometric and probabilistic context (see also Sect. 3.1 for the relation to
Bergman kernel asymptotics).

Kähler–Einstein metrics and the continuity method

First of all we recall that the main geometric motivation for studying complex Monge–
Ampère equations of the form 1.1 comes from Kähler–Einstein geometry and goes back to
the seminal works of Aubin [1] and Yau [64] in setting when X is a canonically polarized
projective algebraic variety, i.e. the canonical line bundle K X := �nT ∗ X of X is ample. If
the form θ is taken as a Kähler metric ω on X in the first Chern class c1(K X ) of K X and
dV is chosen to be depend on ω in a suitable sense (i.e. dV = ehωωn, where hω is the Ricci
potential of ω), then the corresponding solution uβ of the Eq. 1.1 for β = 1 is the Kähler
potential of a Kähler–Einstein metric ωK E on X with negative Ricci curvature. Similarly, in
the case of β = −1 the Eq. 1.1 corresponds to the Kähler–Einstein equation for a positively
curved Kähler–Einstein equation in c1(−K X ) on a Fano manifold X. For a general value
on the parameter β the equation appears in the continuity method for the Kähler–Einstein
equation. Indeed, for L = ±K X the Eq. 1.1 is equivalent to the following equation for ωβ in
c1(L)

Ricωβ = −βωβ + (β − ±1)θ, (1.3)

which, for β negative, is precisely Aubin’s continuity equation for the Kähler–Einstein prob-
lem on a Fano manifold (when θ is taken as Kähler form in c1(±K X )). In the present setting,
where c1(±K X ) is replaced by a general Kähler (or big) cohomology class [θ ] there is no
canonical volume form dV attached to θ and we thus need to work with a general volume
form dV, but this only changes the previous equation with a term which is independent of β

and which, as we show, becomes negligible as β → ∞.

Interestingly, as observed in [50] the equation 1.3 can also be obtained from the Ricci
flow via a backwards Euler discretization. Accordingly, the corresponding continuity path is
called the Ricci continuity path in the recent paper [36], where it (or rather its “conical” gen-
eralization) plays a crucial role in the construction of Kähler–Einsteinmetrics with edge/cone
singularities, by deforming the “trivial” solution ωβ = θ at β = ∞ to a Kähler–Einstein
metric at β = ±1. It should however be stressed that the main point of the present paper
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From Monge–Ampère equations to envelopes. . . 371

is to study the case of a non-positive form θ which is thus different from the usual settings
appearing in the context of Kähler–Einstein geometry and where, as we show, the limit as
β → ∞ is a canonical positive current associated to θ.

Cooling down: the zero temperature limit

In [5,8] a probabilistic approach to the construction of Kähler–Einstein metrics, was intro-
duced, using certain β-deformations of determinantal point processes on X (which may be
described in terms of “free fermions” [5]). The point is that if θ is the curvature form of a
given Hermitian metric ‖·‖ on a, say ample, line bundle L → X, then

μ(Nk ,β) :=
∥
∥(det S(k))(x1, x2, . . . xNk )

∥
∥
2β/k

dV ⊗Nk

Zk,β

(1.4)

defines a random point process on X, i.e. symmetric probability measure on the space X Nk

(modulo the permutation group) of configurations of Nk points on X,where Nk is dimension
of the vector space H0(X, L⊗k) of global holomorphic sections of L⊗k and det S(k) is any
fixed generator in the top exterior power �Nk H0(X, L⊗k), identified with a holomorphic
section of (L⊗k)�Nk → X Nk .

From a statistical mechanical point of view the parameter β appears as the “thermody-
namical β ′′, i.e. β = 1/T is the inverse temperature of the underlying statistical mechanical
system and the complexMonge–Ampère equations above appear as themean field type equa-
tions describing the macroscopic equilibrium state of the system at inverse temperature β.

More precisely μβ := M A(uβ ) describes the expected macroscopic distribution of a single
particle when k and (hence also the number of particles Nk) tends to infinity,

∫

X Nk−1
μ(Nk ,β) → μβ

A formal proof of this convergence was first outlined in [5] and then a rigorous proof was
obtained in [8] (in fact, a much stronger convergence result holds, saying that the convergence
towards μβ holds exponentially in probability in the sense of large deviations with a rate
functional which may be identified with the twisted K-energy functional). Anyway, here we
only want to provide a statistical motivation for the large β-limit, which thus corresponds
to the zero-temperature limit, where the system is slowly cooled down. From this point of
view the convergence result in Theorem 1.1 can then be interpreted as a second order phase
transition for the corresponding equilibrium measures μβ. Briefly, the point is that while the
support of μβ is equal to all of X for any finite β the limiting measure μ∞(= M A(uθ )) is
supported on a proper subset S of X as soon as θ is not globally positive. The formation of a
limiting ordered structure (here M A(uθ ) and its support S) in the zero-temperature limit is
typical for second order phase transitions in the study of disordered systems. In fact, in many
concrete examples the limiting support S is a domain with piece-wise smooth boundary, but
it should be stressed that there are almost no general regularity results for the boundary of S
(when n > 1). In the one-dimensional case of the Riemann sphere the support set S appears
as the “droplet” familiar from the study of Coulomb gases and normal random matrices (see
[34,55] and references therein).

Added in proof

It has been pointed out by experts that the proof of the main result in [14], saying that the
Laplacian of uθ is in L∞

loc on the Kähler locus of X, is incomplete (further details need to
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be added about how to obtain the estimate 1.8 in [14]). The authors intend to complement
the proof given in [14] in the future, but in the case of a nef and big class the present paper
provides a direct PDE proof of the regularity in question. In the case of a big, but non-nef
class, the bound 1.2 is weaker than the bound in [14], but it appears to be adequate for all
current complex geometric applications of envelopes as above, such as the recent proof of
the duality between the pseudoeffective and the movable cone on a projective manifold in
[62].

Since the first preprint version of the present paper appeared on ArXiv there has been a
number of interesting developments that we briefly describe. In [24] it was shown that uθ

is Lipschitz continuous as soon as θ has a Lipschitz potential, using the regularizations uβ

above and Blocki’s gradient estimate (as a replacement of the Aubin–Yau–Siu inequality
used in Proposition 2.6). Moreover, very recently the convergence result for uβ in the present
paper was used in [22,54] to prove the C1,1-regularity of uθ (in the case of a Kähler class),
by using the recent C1,1-estimates in [21] as a replacement of the Aubin–Yau–Siu inequality.
In another direction it was shown in [38] how to extend the C0-convergence implicit in
Theorem 1.1 to the setting of Hessian equations on Kähler manifolds, leading to a new
global regularization result for (ω, m)-subharmonic functions (seeRemark3.5). Furthermore,
very recently it was shown in [51] and [28], independently, that a transcendtal Kähler class
containing a constant scalar curvature metric is K-semistable, in general, and K-stable [28] if
the automorphism group is discrete, which thus establishes one direction of the generalized
Yau–Tian–Donaldson conjecture discussed in Sect. 5.0.2. Moreover, solutions uβ of global
complex Monge–Ampère equations as above and their relative positivity properties were
used in [20] to give an alternative proof of Chen’s conjecture concerning the convexity
of the K-energy (recently established in [9]) with uβ replacing the local Bergman metric
approximations used in [9], which thus reinforces the intepretation of uβ as a transcendtal
Bergman metric discussed in Sect. 3.1. See also the very recent work [33] for applications
to viscosity theory. Finally, a dynamical analog of Theorem 1.1, formulated in terms of the
zero-temperature limit of the twisted Kähler–Ricci flow, is obtained in [15].

1.2.1 Organization

After having setup the general framework in Sect. 2 we go on to first prove the main result
(Theorem 1.1) in the case of Kähler class (by two different proofs) and then its generalization
to big classes (Theorem 1.2). The interpretation in terms of transcendental Bergman met-
rics is discussed in Sect. 3, together with applications to regularization of ω-psh functions.
Then in Sect. 4 we consider the singular version of the previous setup which appears in the
presence of a divisor Z on X. Finally, the results in the latter section are applied in Sect.
5 to the construction and regularization of geodesic rays and relations to the transcendtal
generalization of the Yau–Tian–Donaldson conjecture are discussed.

2 From Monge–Ampère equations to θ -psh envelopes

We start with the general setup. Let X be a compact complex manifold equipped with a
smooth closed (1, 1)-form θ and denote by [θ ] the corresponding (Bott–Chern) cohomology
class of currents:

[θ ] := {

θ + ddcu : u ∈ L1(X)
}

(

ddc := i

2π
∂∂̄

)
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We will denote by P SH(X, θ) the space of all θ -plurisubharmonic functions, which may be
defined as the space of all functions u on X taking values in ] − ∞,∞[ such that u ∈ L1(X)

and θ + ddcu ≥ 0 holds in the sense of currents and such that u is strongly upper semi-
continuous in the following sense: u is upper semi-continuous (usc) and for any x ∈ X
and null set N for the Lesbesgue measure there exists a sequence x j ∈ X − N such that
x j → x and u(x j ) → u(x) (the point is that the identity principle holds for strongly usc
functions: if they coincide a.e. on X then they coincide everywhere). Theprevious definition of
P SH(X, θ) is equivalent to the followingmore standard one:u ∈ P SH(X, θ) iffu(z)+φ0(z)
is plurisubharmonic, i.e. subharmonic along complex lines inC

n,where z denotes given local
holomorphic coordinates on X and φ0 is a local potential for θ (i.e. θ = ddcφ0 locally).

We equip, as usual, the space P SH(X, θ) with its L1-topology. The class [θ ] is said to
be pseudo-effective if P SH(X, θ) is non-empty. There is then a canonical element uθ in the
space P SH(X, θ) defined as the following envelope:

uθ (x) := sup{u(x) : u ≤ 0, u ∈ P SH(X, θ)}, (2.1)

Given a smooth θ -psh function u we will write

M Aθ (u) := (θ + ddcu)n

for the corresponding Monge–Ampère measure (often dropping the subindex θ from the
notation). In the case when the class [θ ] is big (see Sect. 2.2 below) the Monge–Ampère
measure M Aθ (u) is defined for any u ∈ P SH(X, θ) as the non-pluripolar Monge–Ampère
operator [18].

Given a volume form dV on X we will denote by uβ the unique θ -psh function with
minimial singularities solving the following complex Monge–Ampère equation:

M A(uβ) = eβuβ dV (2.2)

(the existence and uniqueness of a solution is shown in [18]). In the case when [θ ] is a Kähler
class, i.e. [θ ] contains a smooth and strictly positive form ω (i.e. a Kähler form) the solution
uβ is smooth, by the Aubin–Yau theorem.1

2.0.2 An alternative formulation in the Kähler case

It may be worth pointing out that, in the Kähler case, the following equivalent formulation
of the previous setup may be given, where the role of smooth form θ is played by a smooth
function f. We start by fixing a Kähler form ω on X and consider the corresponding Kähler
class [ω].We can then define a projection operator Pω from C∞(X) to P SH(X, ω) by setting

(Pω f )(x) := sup{ϕ(x) : ϕ ≤ f, ϕ ∈ P SH(X, ω)} (2.3)

Setting θ := ω + ddc f we see that uθ = Pω f − f. Similarly, given a volume form dV on
X we denote by ϕβ(:= Pβ( f )) the unique smooth solution to

(ω + ddcϕβ)n = eβ(ϕβ− f )dV (2.4)

so that uβ = ϕβ − f. One advantage of this new formulation is that it allows one to con-
sider case where f has +∞-singularities, leading to degeneracies in the rhs of the previous
Monge–Ampère equation. In particular, this will allow us to consider a framework of com-
plex Monge–Ampère equations degenerating along a fixed divisor Z in X. Interestingly, this

1 In the case of a Kähler class any solution uβ is automatically θ -psh, since by the minimum principle there
exists some point where θ + ddcuβ > 0 and hence θ + ddcuβ > 0 on all of X, since (θ + ddcuβ)n > 0 on
all of X.
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latter framework can, from the analytic point view, be seen as a variant of the setting of a big
class within a Kähler framework.

We will be interested in the limit when β → ∞. In order to separate the different kind of
analytical difficulties which appear in the case when [θ ] is Kähler from those which appear
in the general case when [θ ] is big, we will start with the Kähler case, even though it can be
seen as a special case of the latter.

2.1 The case of a Kähler class (Proof of Theorem 1.1)

In this section wewill assume that [θ ] is a Kähler class, i.e. there exists some smooth function
v ∈ P SH(X, θ) such that ω := θ + ddcv > 0, i.e. ω is a Kähler form.

2.1.1 Convergence in energy

For a given smooth function u we will write

E(u) := 1

n + 1

∫

X

n
∑

j=0

u(θ + ddcu) j ∧ θn− j (2.5)

More generally, the functional E(u) extends uniquely to the space P SH(X, θ), by demanding
that it be increasing and (strongly) usc [12]. Following [12] we will say that a sequence u j

in P SH(X, θ) converges to u in energy if u j → u in L1(X) and E(u j ) → E(u).

We recall that the functional E restricted to the convex space P SH(X, θ) ∩ L∞(X) (or
more generally, to the finite energy space {E1(X, θ) > −∞}) may be equivalently defined
as a primitive for the Monge–Ampère operator, viewed as a one-form on the latter space, in
the sense that

dE|u = M A(u) (2.6)

(i.e. dE(u + tv)/dt = ∫

M A(u)v at t = 0).
The next theorem concerns the following general setting: given a finite measure μ0 on X

we denote by uβ the solution to the Eq. 2.2 obtained by replacing dV with μ0 (the existence
of a solution with full Monge–Ampère mass is equivalent to μ0 not charging pluripolar
subsets of X). Following [11] the measure μ0 is said to have the Bernstein–Markov property
wrt P SH(X, θ) if for any positive constant ε there exists a constant C such that for any
u ∈ P SH(X, θ)

sup
X

eβu ≤ eC eεβ

∫

X
eβuμ0 (2.7)

In particular, any volume form dV has the Bernstein–Markov property wrt P SH(X, θ) (as
follows from the local submean property of psh functions).

Theorem 2.1 Let μ0 be a finite measure on X not charging pluripolar subsets. Denote by
uβ the solution to the complex Monge–Ampère equation determined by the data (θ, μ0, β). If
μ0 has the Bernstein–Markov property wrt P SH(X, θ), then uβ converges to uθ in energy.

Proof Without loss of generality we may assume that the volume V of the class [θ ] is equal
to one (by a trivial scaling). Consider the following functional:

Gβ(u) := E(u) − Lβ(u), Lβ(u) := 1

β
log

∫

X
eβuμ0,

which is invariant under the additive action ofR. Its critical point equation is the “normalized”
equation M A(u) = eβuμ0/

∫

X eβuμ0, whose unique sup-normalized solution is given by
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Uβ := uβ − supX uβ, where, as before, uβ denotes the unique solution of the corresponding
“non-normalized” equation. We will use that Uβ is a maximizer of Gβ, as follows from a
concavity argument [6,12].

Step 1 Any L1-limit point of the family Uβ is a maximizer of the following functional on
P SH(X, θ) :

G∞(u) := E(u) − sup
X

u

First observe that after a harmless normalization we may as well assume that μ0 is a prob-
ability measure. Then Lβ(u) ≤ supX u, which means that Gβ ≥ G∞. Hence, for any fixed
v ∈ P SH(X, θ) we have

Gβ(Uβ) ≥ Gβ(v) ≥ G∞(v). (2.8)

By the compactness of P SH(X, θ) ∩ {supX u = 0} in L1(X) [31] the family Uβ has a limit
point U∞ ∈ P SH(X, θ), where U∞ := lim j→∞ Uβ j in the L1-topology. Now fix ε > 0.
By the Bernstein–Markov property of μ0 there exists a constant C such that

Lβ(Uβ) ≥ sup
X

Uβ − C/β − ε

and hence

Gβ(Uβ) ≤ G∞(Uβ) + C/β + ε.

Finally, using that the functional E is usc on P SH(X, θ) and supX (·) is continuous (see [11,
Corollary 1.16] for a more general continuity result) it follows that

lim sup
j→∞

Gβ(Uβ) ≤ G∞(U∞) + ε

which combined with the inequality 2.8 concludes the proof of the first step.
Step two: uθ is the unique sup-normalized maximizer of G∞
First note that uθ maximizes G∞ on P SH(X, θ). To see this first observe that uθ is sup-

normalized, i.e. supX uθ = 0. Indeed, if supX uθ ≤ −δ ≤ 0 then uθ + δ ≤ 0 and hence
uθ ≥ uθ +δ (from the very definition of uθ ) forcing δ = 0.But ifU ∈ P SH(X, θ) is also sup
normalized, then uθ ≥ U and hence E(uθ ) ≥ E(U ), since E is increasing on P SH(X, θ),

showing that uθ is a maximizer of G∞. The proof of Step two is then concluded by using
the following fact: if u and v are two elements in P SH(X, θ) of finite energy such that
E(v) = E(u) and v ≤ u, then v = u. Indeed, by the standard cocycle property of E,

E(v) − E(u) = 1

n + 1

n
∑

j=0

∫

(v − u)(θ + ddcv)n− j ∧ (θ + ddcv) j .

As a consequence, if v ≤ u then all terms above have to vanish. In particular the term with
j = n vanishes, which means that u ≤ v a.e. wrt M A(v). But, then v ≤ u on all of X, by
the domination principle in the class E1(X, θ) (the domination principle in the finite energy
space E1(X, θ) holds in the general setting of a big class; see [4, Remark 3.14]).

Finally, by the Bernstein–Markov property we have that limβ→∞ Lβ(Uβ) = limβ→∞
sup(Uβ) = 0 and hence uβ also converges to uθ in L1(X). Moreover, by Step one, we have
E(uβ) → E(uθ ), which concludes the proof of the theorem. 
�
Remark 2.2 The present definition of the Bernstein–Markov property is the natural “tran-
scendental” generalization of the definition used in [11, Definition 1.9], which concerns the
case when [θ ] = c1(L) for a big line bundle L . More generally, as in [11, Definition 1.9]
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one can consider the setting where a compact subset K of X has been fixed and say that a
measureμ0 supported on K has the Bernstein–Markov property wrt P SH(X, θ) for K if the
inequality 2.7 holds when X has been replaced with K . Repeating the proof in the previous
theorem then shows that if the latter Bernstein–Markov property holds, then uβ converges
to uθ,K defined as in formula 2.1 (with X replaced by K ) under the condition that uθ,K be
continuous (i.e. (K , θ) is regular in the sense of [11]).

In the case when [θ ] is a Kähler class we will only need the L1-convergence implicit in the
previous theorem. But it should be stressed that when we move on to the case of a big class
the convergence in energy will be crucial in order to establish the convergence in L∞-norms.

2.1.2 A direct proof using the maximum principle when μ0 is a volume form

Next we show how to give an alternative direct proof of the convergence of uβ towards uθ

(in the case of a given volume form dV ) by exploting that uβ is smooth, by the Aubin–Yau
theorem. It gives a quantitative L∞-convergence.

Proposition 2.3 Let [θ ] be a Kähler class and dV a volume form on X. Then the corre-
spondng smooth solution uβ of Eq. 2.2 satisfies

sup
X

|uβ − uθ | ≤ A logβ

β
,

where the constant A only depends on an upper bound on |θn/ωn |.
Proof Since the solution uβ is smooth and ddcuβ ≥ 0 at a point x0 where the maximum of
uβ is attained, Eq. 2.2 implies the uniform a priori estimate

uβ ≤ C/β, C := sup
X

log

((
θn

ωn

)

+

)

, a+ := max{0, a}.

Hence, uβ −C/β ≤ u′
θ where u′

θ is defined as uθ , but with the sup taken over the subspace of
all θ -psh functions u ≤ 0 which are smooth. Conversely, fixing a smooth and strictly θ -psh
function v and positive numbers ε and δ we consider a candidate u for the sup defining u′

θ

and set uε,δ := (1 − ε)u + εv − δ. Then

(θ + ddcuε,δ)
n ≥ eβuε,δ dV, (2.9)

as long as e−δβ ≤ Cεn, for a constant C only depending on the volume form dV (and the
fixed element v). In particular, the previous inequality holds for ε = 1/β and δ = C ′

β
logβ

for C ′ sufficently large. But then, comparing the inequality 2.9 and the defining Eq. 2.2, it
follows from the maximum principle that uε,δ ≤ uβ (see Lemma 2.4). All in all this means
that

uβ − C/β ≤ u′
θ ≤ 1

(1 − 1/β)
uβ + C ′

β
logβ,

and hence the proof is concluded by the observation that u′
θ = uθ , which is an immediate

consequence of Demailly’s regularization theorem. In fact, it is not necessary to invoke the
latter regularization result as the argumentent above leads to a new PDE proof of it, as
explained in Sect. 3. 
�
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2.1.3 L∞-estimates

We start with the following well-known

Lemma 2.4 Assume that u and v are (say, bounded) θ -psh functions such that M A(v) ≥
eβvdV and M A(u) ≤ eβudV . Then v ≤ u.

Proof In the smooth case this follows immediately from the maximum principle and in the
general case we can apply the comparison principle (which, by [18, Corollary 2.3], holds
in the general setting of a big class considered below). Indeed, according to the comparison
principle

∫

{u≤v} M A(v) ≤ ∫

{u≤v} M A(u) and hence
∫

{u≤v} eβvdV ≤ ∫

{u≤v} eβudV .But then
it must be that v ≤ u a.e. on X and hence everywhere. 
�

The previous lemma allows us to construct “barriers” to show that uβ is uniformly
bounded:

Lemma 2.5 Given β0 > 0 there exists a constant C such that supX |uβ | ≤ C when β ≥ β0.

Proof Take β such that β ≥ β0 (the given positive number). Let us start with the proof of
the lower bound on uβ. Since [θ ] is a Kähler class there is a smooth θ -psh function v such
that M A(v) ≥ e−AdV for some constant A. After shifting v by a constant we may assume
that v ≤ −A/β0 ≤ −A/β. But then M A(v) ≥ e−AdV ≥ eβv and hence by the previous
lemma v ≤ uβ which concludes the proof of the lower bound. Similarly, taking v to be a
smooth θ -psh function v such that M A(v) ≤ eAdV and shifting v so that A/β0 ≤ v proves
that uβ ≤ v, which concludes the proof of the lemma. 
�

2.1.4 The Laplacian estimate

Next we will establish the following key Laplacian estimate:

Proposition 2.6 Fix a Kähler form ω in [θ ]. Then there exists a constant C such that, for
β ≥ β0,

−C ≤ �ωuβ ≤ C

Proof The lower bound follows immediately from θ +ddcuβ ≥ 0. To prove the upper bound
we first recall the following variant of the Aubin–Yau Laplacian estimate in this context due
to Siu (compare [57, p. 99] and [19, Lemma 2.2]): given two Kähler forms ω′ and ω such
that ω′n = e f ωn we have that

�ω′ log trωω′ ≥ �ω f

trωω′ − Btrω′ω,

where the constant B is proportional to the infimumof the holomorphic bisectional curvatures
of ω. Fixing β > 0 and setting ω′ := θ + ddcu for u := uβ we have, by the MA-equation
for uβ, that f = βu + log(dV/ωn) and hence

Btrω′ω + �ω′ log trωω′ ≥ β
�ω(u + β−1 log(dV/ωn))

trωω′

Next, we note that �ωu = trωω′ − trωθ. Moreover, writing ω = ω′ − ddc(u − v), where v

is a smooth function such that
ω = θ + ddcv, (2.10)
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also gives trω′ω = n−�ω′(u−v).Accordingly, the previous inequalitymay be reformulated
as follows:

nB + �ω′(log trωω′ − B(u − v)) ≥ β
trωω′ − trωθβ

trωω′ , θβ := θ − β−1ddc log(dV/ωn)

and hence, letting C be the sup of trωθβ,

(Cβ + nBtrωω′)e−B(u−v) + �ω′ log(trωω′ − B(u − v))trωω′e−B(u−v) ≥ βtrωω′e−B(u−v)

(2.11)
Thus, setting s := supX e−B(u−v)trωω′ and taking the maximum over X in the previous
inequality gives

βs ≤ 0 + nBs + β sup
X

Ce−B(u−v)

Since u(:= uβ) is uniformly bounded in x (by the previous lemma) and and since v is
bounded, it follows that trωω′ is uniformly bounded from above, as desired. More precisely,
the previous argument gives the estimate

trω(θ + ddcuβ) ≤ supX

(

trωθβ

)

1 − nB/β
eB(uβ−v)e− infX B(uβ−v) (2.12)

when β > nB 
�
Remark 2.7 Note that, in general, the Ricci curvature of the Kähler forms ωβ := θ + ddcuβ

is unbounded, both from above and below, as β → ∞. Still, by the previous estimate, the
Kähler forms ωβ are uniformly bounded from above. However it should be stressed that,
unless θ > 0, there is no uniform bound of the form ωβ ≥ δω > 0 as it will follow from
Theorem 1.1 that ωn

β → 0 on large portions of X (indeed, for β large, ωn
β ≤ Ce−βεdV on

the open set where uθ < −2ε).

2.1.5 Proof of Theorem 1.1 using the variational approach

By Lemma 2.5 uβ is uniformly bounded and by the Laplacian estimate in Proposition 2.6
combined with Green’s formula the gradients of uβ are uniformly bounded. Hence, it follows
from basic compactness results that, after perhaps passing to a subsequence, uβ converges to
a function u in C1,α(X) for any fixed α ∈]0, 1[. It will thus be enough to show that u = uθ

(since this will show that any limit point of {uβ} is uniquely determined and coincides with
uθ ). But this follows from either Theorem 2.1 or Proposition 2.3.

2.2 The case of a big class (proof of Theorem 1.2)

A (Bott–Chern) cohomology class [θ ] in H1,1(X) is said to be big, if [θ ] contains a Kähler
current ω, i.e. a positive current ω such that that ω ≥ εω0 for some positive number ε,where
ω0 is a fixed strictly positive form ω0 on X. We also recall that a class [θ ] is said to be nef
if, for any ε > 0, there exists a smooth form ωε ∈ T such that ωε ≥ −εω0. To simplify the
exposition we will assume that X is a Kähler manifold so that the form ω0 may be chosen to
be closed. Then the cone of all big classes in the cohomology group H1,1(X)may be defined
as the interior of the cone of pseudo-effective classes and the cone of Kähler classes may be
defined as the interior of the cone of nef classes.

We also recall that a function u in P SH(X, θ) is said to have minimal singularities, if
for any v ∈ P SH(X, θ) the function u − v is bounded from below on X. In particular, the
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envelope uθ has (by its very definition) minimal singularities (and this is in fact the standard
construction of a functionwithminimal singularities). In the casewhen [θ ] is big any function
with minimal singularities is locally bounded on a Zariski open subset �, as a well-known
consequence of Demailly’s approximation results [26]. In fact, the subset � can be taken as
the Kähler (ample) locus of [θ ] defined in [17].

Example 2.8 Let Y be a singular algebraic variety in complex projective space ¶N and ω a
Kähler form on ¶n (for example, ω could be taken as the Fubini-Study metric so that [ω|Y ]
is the first Chern class of OX (1)). If now X → Y is a smooth resolution of Y, which can be
taken to invertible over the regular locus of Y ; then the pull-back of ω to X defines a class
which is nef and big and such that its Kähler locus corresponds to the regular part of Y.

We will denote by M A the Monge–Ampère operator on P SH(X, θ) defined by replac-
ing wedge products of smooth forms with the non-pluripolar product of positive currents
introduced in [18]. The corresponding operator M A is usually referred to as the non-
pluripolar Monge–Ampère operator. For example, if u has minimal singularities, then
M A(u) = 1�M A(u|�) on the Kähler locus �, where M A(u|�) may be computed locally
using the classical definition of Bedford–Taylor. We let V stand for the volume of the class
[θ ],which may be defined as the total mass of M A(u) for any function u in P SH(X, θ)with
minimal singularities. By [18] there exists a unique solution uβ to the Eq. 2.2 in P SH(X, θ)

with minimal singularities. Moreover, by [18] the solution is smooth on the Kähler locus in
the case when [θ ] is nef and big (which is expected to be true also without the nef assumption;
compare the discussion in [18]).

2.2.1 Convergence in energy

In the case of a big class one first defines, following [12], the following functional on the
space of all functions in n P SH(X, θ) with minimal singularities:

E(u) := 1

n + 1

∫

X

n
∑

j=0

(u − uθ )(θ + ddcu) j ∧ (θ + ddcuθ )
n− j (2.13)

(the point is that we needs to subtract uθ to make sure that the integral is finite). Equivalently,
E may be defined as the primitive of theMonge–Ampère operator on the the space of all finite
energy functions in P SH(X, θ), normalized so that E(uθ ) = 0. We then define convergence
in energy as before.

Remark 2.9 Strictly speaking, in the case of a Kähler class the definition 2.13 of E only
coincides with the previous one (formula 2.5) in the case when θ is semi-positive (since the
definition in formula 2.5 corresponds to the normalization condition E(0) = 0).But the point
is that, in the Kähler case, different normalizations gives rise to functionals which only differ
up to an overall additive constant and hence the choice of normalization does not effect the
notion of convergence in energy.

The proof of Theorem 1.1 can now be repeated word for word to give the following

Proposition 2.10 Suppose that θ is a smooth form such that the class [θ ] is big. Then uβ

converges to uθ in energy.
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2.2.2 L∞-estimates

We will also need the following upper bound on uβ :
Lemma 2.11 There exists a constant C such that

uβ ≤ uθ + C/β

(the constant C may be taken as log ((θn/dV )+) , where a+ := max{0, a}).
Proof We recall that if uβ is smooth (as in the case of a Kähler class) then the inequality
follows directly from the maximum principle. In the general case the inequality follows from
the fact that uβ is a viscosity subsolution of the Eq. 2.2, as follows from the results in the
first section of [29]. To explain this first assume that the maximum of uβ on X is achieved at
a point x0 in the Zariski open subset � (defined as the Kähler locus of the class [θ ]). Then
we can introduce local holomorphic coordinates centered at x0 and locally write θ = ddc f
for f smooth and set φ := uβ + f, which defines a locally bounded psh function φ. The
defining equation for uβ implies the following local inequality, say on a neighourhood of the
the ball B ⊂ C

n :
(ddcφ)n ≥ eβ(φ− f )dV

in the pluripotential sense of Bedford–Taylor (in fact, equality holds, but we will only need
the inequality above). Moreover, by assumption φ − f has a local maximum at 0. But then
it follows from local considerations (based on the Bedford–Taylor comparison principle for
bounded psh functions and a regularization argumetn using convolutions) that

eβ(φ− f )dV ≤ (ddc f )n at z = 0,

(see Proposition 1.11 in Sect. 1 on [29] or more precisely the implication in Proposition 1.1.
saying that pluripotential subsolutions are viscosity subsolutions).2 In other words,

uβ ≤ C0/β, C0 = log(θn/dV )+.

which proves the lemma in this case. In the general case we fix a sup-normalized function
v ∈ P SH(X, θ) wich is smooth on � and such that v − uθ → −∞ along the analytic
subvariety X − �. Given ε > 0 we set uβ,ε := (1 − ε)uβ + εv ∈ P SH(X, θ) which is
locally bounded on � and satisfies the following inequality in the sense of Bedford–Taylor
on �

M Aθ (uβ,ε) ≥ (1 − ε)neβuβ dV ≥ (1 − ε)neβεuβ,ε dV, βε := β(1 − ε)−1

using that v ≤ 0 in the last inequality. By assumption there exists a point xε in � where uβ,ε

achieves its maximum. Hence, we can apply the previous argument to φ := uβ,ε + f with
parameter βε to get an inequality of the form uβ,ε ≤ Cε/βε, where Cε → C0 as ε → 0.
Letting ε tend to zero thus concludes the proof of the lemma. 
�

We recall that in the case of a Kähler class the estimate in the previous lemmawas obtained
as consequence of themaximumprinciple in the proof of Proposition 2.3. Next, we generalize
the L∞-convergence in Proposition 2.3 to a general big class, using the convergence in energy
in Proposition 2.10.

2 There is an erratum [30] to [29], but it only concerns the proof of the global comparison principle for
viscosity solutions in Sect. 2 of [29] and not the local results in Sect. 1 of [29].
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Proposition 2.12 Suppose that θ is a smooth form such that the class [θ ] is big. Then uβ

converges uniformly to uθ on X, i.e.

lim
β→0

∥
∥uβ − uθ

∥
∥

L∞(X)
= 0

Proof According to the previous lemma we have that uβ ≤ uθ + C/β and hence
M A(uβ)/dV ≤ eC . Moreover, by Proposition 2.10 uβ converges to uθ in energy. As will
be next explained these properties are enough to conclude that uβ converges uniformly to
u. Indeed, it is well-known that if u j is a sequence in P SH(X, θ) converging in capacity
to u∞ with a uniform bound L p-bound on M A(u j )/dV, then

∥
∥u j − u∞

∥
∥

L∞(X)
→ 0, as

follows from a generalization of Kolodziej’s L∞-estimates to the setting of a big class (see
[18,32] and references therein). Finally, as shown in [12], convergence in energy implies
convergence in capacity, which thus concludes the proof of the previous proposition. In fact,
using the stability results in [32] a more quantitative convergence result can be given. Indeed,
according to Proposition 4.2 in [32] the following holds: assume that ϕ and ψ are functions
in P SH(X, θ) normalized so that supϕ = supψ = 0 and such that M A(ϕ) ≤ f dV, where
f ∈ L p(X, dV ). Then, for any sufficiently small positive number γ (see [32] for the precise
condition) there exists a constant M, only depending on γ and an upper bound on ‖ f ‖L p(dV ) ,

such that

sup
X

(ψ − ϕ)+ ≤ M
∥
∥(ψ − ϕ)+

∥
∥

γ

L1(X,M A(ϕ))

Setting ϕ := uβ − εβ, where εβ = sup uβ and ψ := uθ thus gives, for γ, fixed

sup
X

(uθ − uβ − εβ)+ ≤ M

(∫
∣
∣uθ − uβ − εβ

∣
∣ M A(uβ)

)γ

Now, by the convergence in energy and the L1-convergence in Proposition 2.10 we have
∫

(uβ − uθ )M A(uβ) → 0

and since
∣
∣
∫

uθ − uβ − εβ

∣
∣ M A(uβ) ≤ ∫

(uθ − uβ − C/β)M A(uβ)+ C/β + εβ we deduce
that supX (uθ − uβ − εβ)+ → 0, i.e. uθ ≤ uβ + ε′

β, which concludes the proof. 
�

2.2.3 Bound on the Monge–Ampère measure of uθ

As shown above uβ converges to uθ in energy (and even uniformly). In particular, the conver-
gence holds weakly for the corresponding Monge–Ampère measures. The bound in Lemma
2.11 thus implies that

M A(uθ ) ≤ sup
X

(
(θn)+

dV

)

dV

for any given volume form dV on X. Taking a sequence of volume forms dVε approximating
the measure (θn)+ thus gives M A(uθ ) ≤ (θn)+ on X. Since M A(uθ ) is supported on the
coincidence set D (which is contained in the set where θ ≥ 0) this proves the inequality 1.2.

2.2.4 Laplacian estimates

For the Laplacian estimate we will have to assume that the big class [θ ] is nef.
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Proposition 2.13 Suppose that the class [θ ] is nef and big. Then the Laplacian of uβ is
locally bounded wrt β on the Zariski open set � ⊂ X defined as the Kähler locus of X.

Proof We will assume that X is a Kähler manifold, i.e. X admits some Kähler form ω0 (not
necessarily cohomologous to θ). Then θ is nef precisely when the class [θ ]+ ε[ω0] is Kähler
for any ε > 0. Setting θε := θ + εω0 and fixing ε > 0 and β > 0 we denote by uβ,ε the
solutions of the Monge–Ampère equations obtained by replacing θ with θε. Then it follows
from well-known results [18] that, as ε → 0,

uβ,ε → uβ in C∞
loc(�).

Moreover, since [θ ] is assumed big there exists a positive current ω in [θ ] such that the
restriction of ω to � coincides with the restriction of a Kähler form on X. More precisely,
we can take ω to be a Kähler current on X such that ω = ddcv + θ for a function v on X
such that v is smooth on � and u − v → −∞ at the “boundary” of � (using that u has
minimal singularities; compare [18]). Setting u := uβ,ε the inequality 2.11 still applies on
�. Moreover, since u − v → −∞ at the boundary of � the sup s defined above is attained
at some point of � and supX Ce−B(u−v) ≤ C ′. Accordingly, we deduce that

s := sup
X

e−B(u−v)trωω′ ≤ C ′′

precisely as before, which in particular implies that trω(θ + ddcuβ,ε) is locally bounded
from above (wrt β and ε). Finally, letting ε → 0 concludes the proof. 
�

In the special case when θ is semi-positive and big (the latter condition then simply means
that V > 0) it follows from the results in [29] that uβ is continuous on all of X and hence
Proposition 2.12 then says that uβ → uθ in C0(X).

Remark 2.14 The precise Laplacian estimate obtained in the previous proof may, for v and
ω as in the proof above may be formulated as

trωωuβ ≤ 1

1 − nB/β
eB(uβ−v) sup

X

(

trωθβ

)

e− infX B(uβ−v) (2.14)

In particular, normalizing v so that supX v = 0 gives

trωωuβ ≤ esup uβ−inf uβ

1 − nB/β
e−Bv sup

X

(

trωθβ

)

By the L∞-estimates above supX uβ − infX uβ is uniformly bounded in terms of
supX |θn/dV | . In particular, letting β → ∞ gives the following a priori estimate for the
Laplacian of the envelope uθ :

trωωuθ ≤ Ce−Bv, (2.15)

where the constant C only depends on an upper bound on |θ |ω. Interestingly, the estimate
2.15 is of the same form as the one obtained in [14], in the more general setting of a big
class, by a completely different method where the constant B (i.e. the lower bound on the
bisectional curvature) arises in the initial step of the proof where the envelope is regularized
by the global convolution type operator associated to the exponential flow determined by the
Chern connection.

2.2.5 End of the proof of Theorem 1.2 in the big case

This is proved exactly as in the case of aKähler class, given the convergence results established
above.
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3 Transcendental Bergman metric asymptotics and Applications to
regularization of ω-psh functions

3.1 Transcendental Bergman kernels

Consider an ample line bundle L → X and a pair (‖·‖ , dV ) consisting of an Hermitian
metric ‖·‖ on L and a volume form dV on X. We denote by θ the normalized curvature
form of ‖·‖ , which represents the first Chern class c1(L) in H1,1(X, R) ∩ H2(X, Z). The
corresponding Bergman function ρk (also called the density of states function), at level k,

may be defined

ρk(x) =
Nk∑

i=1

∥
∥
∥s(k)

i (x)

∥
∥
∥

2
,

in terms of any fixed basis s(k)
i in H0(X, L⊗k) which is orthonormal wrt the corresponding

L2-norm determined by the pair (‖·‖ , dV ). In other words, ρk(x) is the restriction to the
diagonal of the squared point-wise norm of the Bergman kernel of H0(X, L⊗k) (see [2] and
references therein). The function vk := 1

k log ρk is often referred to as the Bergman metric
(potential) at level k, determined by (‖·‖ , dV ) (geometrically, ‖·‖ e−kvk is the pull-back
of the Fubini-Study metric on the projective space ¶H0(X, L⊗k) under the corresponding
Kodaira embedding). As shown in [2] the corresponding Bergman measures

νk := 1

Nk
ρk(x)dV

converge weakly to M Aθ (uθ ) and vk converges uniformly to uθ . In particular,

M Aθ (vk) ≈ ekvk dV

in the sense that both measures have the same weak limit (namely M Aθ (uθ )). We can
thus view the Bergman metric vk as an approximate solution to the Eq. 1.1, for β = k. This
motivates thinkingof the familyuβ of exact solutions, definedwith respect to a general smooth
closed (1, 1)-form θ (not necessarily corresponding to a line bundle) as a transcendental
Bergman metric, in the sense that it behaves (at least asymptotically as β → ∞) as a
Bergman metric associated to an Hermitian line bundle. Similarly, ekuβ dV (= M Aθ (uβ))

can be thought of as a transcendental Bergman measure.
The main virtue of the family uβ is that it is canonically determined by the pair (θ, dV ))

and exists also in the general transcendental setting of a Kähler class [θ ] which can not be
realized as the first Chern class c1(L) of a line bundle. Accordingly, it seems natural to expect
that it can be used as a substitute for the timehonoured technique in complex geometry of
using Bergman kernels as an approximation tool. In Sects. 3.2 and 5 we will give two
such applications to the regularization problem of ω-psh functions and weak geodesic rays,
respectively.

In the following it will be convenient to use the equivalent formulation of envelopes of
the form Pω( f ) in Sect. 2.0.2 (occasionally dropping the subscript ω). In other words, we
start with a reference Kähler form ω on X. Given a smooth function f we denote by Pβ( f )

the solution ϕβ of the corresponding Monge–Ampère equation 2.4. In the line bundle setting
above this corresponds to fixing a reference metric ‖·‖0 on L and writing ‖·‖2 = ‖·‖0 e− f

wich has curvature form θ = ω + ddc f.
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Lemma 3.1 The operator Pβ : C∞(X) → S P SH(X, ω) ∩ C∞(X is decreasing, i.e. if
f ≤ g, then Pβ f ≤ Pβ g. Moreover, Pβ( f + c) = Pβ( f ) + c for any c ∈ R and hence

∥
∥Pβ f − Pβ g

∥
∥

L∞(X)
≤ ‖ f − g‖L∞(X) . (3.1)

Proof The decreasing property follows directly from the comparison principle (Lemma 2.4)
and the scaling property from the very definitions of Pβ . 
�

By Proposition 2.3 Pβ converges to the projection operator P :
∥
∥Pβ f − P f

∥
∥

L∞(X)
≤ A logβ

β
, . (3.2)

where the constant A only depends on an upper bound on (ω + ddc f )n . In particular,
by a simple approximation argument (using 3.1) Pβ f converges to f uniformly, for any
continuous function f on X. These convergence results can be viewed as transcental analogs
of the Bergman metric asymptotics in [2] (which has the corresponding rate with β =
k). Moreover, for f continuous the corresponding weak convergence of the transcendental
Bergman measures:

lim
β→∞ ek(Pβ f − f )dV = (ω + ddc P f )n

(resulting from the convergence ofMonge–Ampèremeasues) is the analog of the convergence
of Bergman measures towards equilibrium measures in [2] (first shown by Bouche and Tian,
independently, in the case of a smooth and metrics with strictly positive curvature form θ).

Remark 3.2 Let us briefly explain how the setting above fits into the statistical mechanical
setup recalled in Sect. 1.2. The point is that one can let the inverse temperature β, defining the
probability measures 1.4, depend on k. In particular, for β = k one obtains a determinantal
random point process. A direct calculation (compare [4]) reveals that the corresponding one
point correlation measure

∫

X Nk−1 μk,β then coincides with the Bergman measure νk defined
above. This means that the limit k → ∞ which appears in the “Bergman setting” can—from
a statistical mechanical point of view—be seen as a limit where the number Nk of particles
and the inverse temperature β jointly tend to infinity.

3.2 Regularization of ω-psh functions

In this sectionwe consider the case of aKähler class [ω].We show how to give a simple global
PDE proof of the following special case of the general regularization results of Demailly [26]:

Theorem 3.3 Let [ω] be a Kähler class. Then any function ψ ∈ P SH(X, ω) can be written
as a decreasing limit of functions ψ j which are smooth and strictly ω-psh.

Proof Since ψ is usc we can write it as a decreasing limit of smooth functions f j . Setting

(P ′
ω f )(x) := sup

{

ϕ(x) : ϕ ≤ f : ϕ ∈ P SH(X, ω) ∩ C∞}

(3.3)

we note that the sequence ϕ j := P ′
ω f j decreases to ψ. Indeed, since the operator P ′

ω is
decreasing the sequence ϕ j is decreasing and ϕ j ≥ ψ. Moreover, fixing a point x and ε > 0
we have that ϕ j (x) ≤ f j (x) ≤ ψ(x) + ε for j ≥ jε showing that ϕ j (x) decreases to ψ(x)

for any x, as claimed. Next, fixing β > 0 we set ϕ j,β := Pβ f j converging uniformly to ϕ j,β

as β → ∞ (by Proposition 2.3; compare formula 3.2). Hence, for appropriate choices of
sequence ε j → 0 and β j → ∞ the sequence ψ j := ϕ j,β j + ε j has the desired property (and
as a consequence we actually have P ′

ω f = Pω f, by approximation). 
�
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It should be pointed out that by a local gluing argument of Richberg [43] the regularization
result above can be reduced to the case of a continuous ω-psh function ψ (using the usual
local regularizations involving convolutions). In turn, it was shown in [16] that the continuity
assumption can be replaced by the assumption of vanishing Lelong numbers and hence, as
explained in [16], approximating a general element ψ ∈ P SH(X, ω) with the decreasing
sequence ψl := max{ψ, l} in P SH(X, ω) ∩ L∞ gives a simple elemenary proof of the
previous theorem. In the light of the discussion in the previous section the present global
regularization scheme can be seen as a transcental analog of the well-known Bergman kernel
approach to regularization used in the line bundle setting (see [26,31]). The present approach
has the virtue of preserving higher order regularity properties of ψ as summarized in the
following.

Theorem 3.4 Let (X, ω) be a compact Kähler manifold ϕ an ω-psh function such that
its Monge–Ampère measure (ω + ddcϕ)n has an L∞-density. Then ϕβ := Pβ(ϕ) is in
P SH(X, ω) ∩ C2,α for some α > 0 and satisfies

sup
X

∣
∣ϕβ − ϕ

∣
∣ ≤ C

logβ

β
, (ω + ddcϕβ)n ≤ Cωn

where the constant C only depends on an upper bound on the density (ω + ddcϕ)n/ωn .

Moreover, if the positive current (ω + ddcϕ) has coefficents in L∞ then ω + ddcϕβ ≤ C ′ω
and ϕβ is in P SH(X, ω) ∩ C3,α for any α < 1.

Proof Since (ω + ddc f )n has an L∞-density [37] gives that ϕ is in Cα(X) for some Hölder
exponent α′ > 0. By the complex generalization of Evans-Krylov theory in [60] it then
follows that ϕβ is in C2,α(X) for some α > 0. Moreover, if (ω + ddcϕ) has coefficents in
L∞ then elliptic boot strapping gives that ϕβ is in C3,α for any α < 1 and Proposition 2.6
shows that ω + ddcϕβ ≤ C ′ω. 
�

In particular, the transcendtal Bergman measure ek(Pβϕ−ϕ)dV is uniformly bounded from
above as long as (ω + ddcϕ)n has an L∞-density. For the ordinary Bergman measure the
corresponding uniform bound was recently established in [9], under the stronger assumption
that (ω + ddcϕ) has coefficents in L∞. The latter result was used in the proof, involving
local Bergman metric approximations, of Chen’s conjecture concerning the convexity of the
K-energy along weak geodesics in the closure of the space of Kähler metrics.

Remark 3.5 Inspired by the first preprint version of the present paper on ArXiv it was shown
in [38] how to use a genaralization of the transcental Bergman kernels introduced here,
using Hessian equations as a substitute for Monge–Ampère equations, in order to establish
the corresponding conjectural global regularization result for (ω, m)-subharmonic functions
(i.e. usc functions u such that (ω + ddcu)p ∧ωn−p ≥ 0 for p = 1, 2 . . . , m; the case m = n
corresonds to the present setting). The elegant argument in [38] uses the notion of viscocity
solutions of Hessian equations based on the technique introduced in [29].

4 Degenerations induced by a divisor

Let now (X, ω) be a compact Kähler manifold with a fixed divisor Z , i.e. Z is cut out
by a holomorphic section s of a line bundle L → X. We identify the divisor Z with the
corresponding current of integration [Z ] := [s = 0]. Let us also fix a smooth Hermitian
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metric ‖·‖ on L and denote by θL its normalized curvature form. Fixing a parameter λ ∈ [0, 1[
we set

ϕλ := sup{ϕ ϕ ≤ 0, ϕ ≤ λ log ‖s‖2 + O(1)} (4.1)

The upper bound on ϕ is equivalent to demanding that νZ (ϕ) ≥ λ, where νZ (ϕ) denotes the
Lelong number of ϕ along Z . To the pair ([ω], Z) we associate the following two constants:

ε := sup {λ : [ω] − λ[Z ] is K ähler }
and

ε′ := sup {λ : [ω] − λ[Z ] is big} ,

so that ε ≤ ε′ (the constants ε and ε′ appears as nef and psef thresholds, respectively, in
the algebraic geometry litterature). In the following we will always assume that λ ∈ [0, ε′[,
which ensures that ϕλ is not identically equal to −∞.

Set uλ := ϕλ − λ log ‖s‖2 , defining a function in P SH(X, θ), where θ := ω − λθL .

Equivalently,
uλ := Pθ (−λ log ‖s‖2) (4.2)

in the sense of formula 2.3. This is equivalent to the construction of envelopes of metrics with
prescribed singularities out-lined in the introduction of [2] (see also [45] where it is shown
that uλ is in C1,1loc (X − Z)) in the case of an integral class).

Note that it follows immediately from the definition that uλ has minimal singularities. In
particular, ifλ < ε, then uλ is bounded. In fact, uλ is even continuous. The point is that, as long
as the function ϕ0 is lower semi-continuous the corresponding envelope Pθ (ϕ0) will also be
continuous. Indeed, it follows immediately that Pθ (ϕ0)

∗ ≤ ϕ0 and hence Pθ (ϕ0)
∗ = Pθ (ϕ0),

showing upper-semi continuity. The lower semi-continuity is then a standard consequence
of Demailly’s approximation theorem applied to the Kähler class [θ ] (Theorem 3.3).

Theorem 4.1 Let (X, ω) be a Kähler manifold and Z a divisor on X and fix a positive
number λ < ε′. Setting θ := ω − λθL , let uβ,λ be the unique θ -psh function with minimal
singularities solving

(θ + ddcu)n = eβu ‖s‖2λβ dV

Then uβ,λ converges uniformly, as β → ∞, to the envelope uλ. More precisely,

sup
X

∣
∣uβ,λ − uλ

∣
∣ ≤ δβ

for some family of positive numbers δβ (independent of λ) tending to 0 as β → ∞. Moreover,
if λ < ε′, then θ+ddcuβ,λ ≤ Cω and hence the convergence holds in C1,α(X) for any α < 1.

Proof Set f := −‖s‖2 ,which is a lsc function X →]−∞,∞] such that ddc f ≤ Cω. The
convergence in energy and hence the uniforme convergence then follows as before. Finally,
the uniform bound on ddcuβ,λ is obtained by writing f is a decreasing limit of smooth
function f j such that ddc f j ≤ C ′ω, applying Proposition cr for a fixed j and finally letting
j → ∞. 
�

Note that ϕλ,β := uλ +λ log ‖s‖2 ∈ P SH(X, ω) is uniquely determined by the following
equation on X − Z :

(ω + ddcϕλ,β)n = eβϕλ,β dV (4.3)

together with the asymptotics ϕλ,β = λ log ‖s‖2 + O(1) close to Z .
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Remark 4.2 More generally, it is enough to assume that ω is semi-positive and big; then
the uniform bound on ddcuβ,λ in the previous theorem holds on any compact subset of the
Kähler locus of X (by Proposition 2.13). For example, this situation appears naturally when
Z is the expectional divisor in the blow-up of a point on a Kähler manifold (M, ωM ) and ω

is the pull-back of M. Then the corresponding constant ε is the Seshadri constant of p wrt
[ωM ].

5 Applications to geodesic rays and test configurations

Let us start by briefly recalling the notions of geodesic rays and test configurations in Kähler
geometry (see [42,47] and references therein). Given an n-dimensional Kähler manifold
(X, ω) we denote by Kω the space of all ω-Kähler potentials ϕ, i.e. ϕ is smooth and ω +
ddcϕ > 0 (which equivalently means that ϕ is in the interior of the space P SH(X, ω) ∩
C∞(X)). The infinite dimensional spaceKω comes with a canonical Riemannian metric, the
Mabuchi-Semmes-Donaldson metric. The corresponding geodesics rays ϕt (x) satisfy a PDE
on X × [0,∞[ which, upon complexification of t (where t := − log |τ |2) is equivalent to an
S1-invariant smooth solution to the Dirichlet problem for the Monge–Ampère equation on
the product X ×�∗ of X with the punctured unit-disc in the one-dimensional complex torus
C

∗. In other words, ϕ(x, τ ) := ϕt (x) satisfies

(ddcϕ + π∗ω)n+1 = 0, on X × �∗

and ϕt is called a subgeodesic if ddcϕ + π∗ω ≥ 0. In the case of an integral class [ω], i.e.
when the class is equal to the first Chern class c1(L) of a line bundle L , there is a particularly
important class of (weak) geodesics which are associated to so called test configurations
for (X, L). This is an algebro-geometric gadget which gives an appropriate C

∗-equivariant
polarized closure X of X × C

∗ over C. More precisely, the data defining a test configuration
(X ,L) for (X, L) consists of

• A normal variety X with a C
∗-action and flat equivariant map π : X → C

• A relatively ample Q-line bundle L over X equipped with an equivariant lift ρ of the
C

∗-action on X
• An isomorphism of (X, L) with (X ,L) over 1 ∈ C

Here, we note that a “transcendental” analog of a test configuration can be defined in the
setting of non-integer classes.

Definition 1 Let (X, [ω]) be a complex manifold equipped with a Kähler class [ω]. A test
configuration for (X, [ω]) consists of the following data:

• A normal Kähler spaceX equipped with a holomorphic S1-action and a flat holomorphic
map π : X → C.

• An S1-equivariant embedding of X × C
∗ in X such that π commutes with projection

onto the second factor of X × C
∗.

• A (1, 1)-cohomologyKähler class [�] onX whose restriction to X×{1}maybe identified
with [ω] under the previous embedding.

In particular, a test configuration (X ,L) for a polarized variety (X, L) induces a test
configuration for (X, c1(L)). The point is that the C

∗-action on (X ,L) induces the required
isomorphism between X and X × C

∗ over C
∗.
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Next, we explain how to obtain geodesic rays from a test configuration. Given a test
configuration (X , [�]) for (X, [ω]) we fix a smooth representative form � which is S1-
invariant. For the sake of notational simplicity we also assume that � coincides with ω on
X × {1}. First we let � be the unique bounded �-psh function on M := π−1(�) ⊂ X
satisfying the Dirichlet problem

(ddc� + �)n+1 = 0, on int(M) (5.1)

with vanishing boundary values (in the sense that �(p) → 0 as p approaches a point in
∂M). In fact, it can be shown, that � is automatically continuous up to the boundary (see
below). Next, we fix an S1-invariant function F on X × C

∗ such that

� = π∗ω + ddc F

and set ϕ := � + F, which gives a correspondence

P SH(X × C
∗,�) ←→ P SH(X × C

∗, π∗ω), � ↔ ϕ (5.2)

Setting ϕt (x) := ϕ(x, τ ) for ϕ corresponding to the solution � of the Dirichlet problem 5.1
then defines the geodesic ray in question.

Let us also recall that the solution � of the Dirichlet problem 5.1 may alternatively be
defined as the following envelope:

�(x) = sup {�(x) : � ∈ P SH(M,�) : �∂M ≤ 0} (5.3)

As shown in [47], in the line bundle case, the geodesic ray ϕt may be realized as a Legendre
transform of certain envelopes determined by the test configuration. Here we note that the
latter result may be generalized to the “transcendental” setting. To this end first observe that
a test configuration (X , [�]) for (X, [ω]) determines a concave decreasing family

Fμ(X, ω) ⊂ P SH(X, ω)

of convex subspaces indexed by μ ∈ R, defined as follows: the subspace Fμ(X, ω) consists
of all ϕ in P SH(X, ω) such that, setting ϕ̄(x, t) := ϕ(x), the current

ddc(ϕ̄ − μ log |τ |2) + π∗ω

on X × C
∗ extends to a positive current on X in [�]. In other words, we demand that the

current ddcϕ̄ +π∗ω extends to current on X in [�] with Lelong number at least μ along the
central fiber of X (in a generalized sense, as we are allowing negative Lelong numbers). The
family Fμ(X, ω), thus defined, is clearly a concave decreasing family of convex subspaces
(it is the “psh analogue” of the filtrations of H0(X, kL) defined in [47,61]). Next, to the
family Fμ(X, ω) we associate the following family of envelopes ψμ in P SH(X, ω) :

ψμ(x) := sup
ψ∈Fμ(X,ω)

{ψ(x), ψ ≤ 0} , (5.4)

Proposition 5.1 Let (X , [�]) be a test configuration for (X, [ω]). Then the corresponding
geodesic ray ϕt in P SH(X, ω) may be realized as the Legendre transform (wrt t) of the
envelopes ψμ, i.e.

ϕt (x) = sup
μ∈R

{

ψμ(x) + μt
}
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Proof By the definition of the envelopes it is equivalent to prove that

ϕt (x) = sup
ψμ

{

ψμ(x) + μt
}

where the sup ranges over all ψμ ∈ Fμ(X, ω) with ψμ ≤ 0 on X. Using the correspondence
5.2 we may identify ψμ(x) + μt with a function �μ in P SH(X × C

∗,�), which, by the
extension assumption for the elements in the subspaceFμ(X, ω), extends uniquely to define
an element in P SH(X ,�) (which by construction vanishes on the boundary of M). But
then �μ ≤ �, the envelope defining the geodesic ray ϕt . This proves the lower bound on
ϕt (x). To prove the upper bound we note that, by the convexity in t, we may write

ϕt (x) = sup
μ∈R

{

φ∗
μ(x) + μt

}

,

where φ∗
μ is the Legendre transform, wrt t, of ϕt (with our sign conventions φ∗

μ is thus
concave wrt μ) :

φ∗
μ(x) = inf

t

{

μt + ϕt (x)
}

In particular, φ∗
μ(x) + μt ≤ ϕt and moreover, by Kiselman’s minimum principle, φ∗

μ(x) is
ω-psh on X. Identifying φ∗

μ(x) + μt with a function �μ in P SH(X × C,�), as before,
it thus follows that �μ ≤ �. In particular, �μ is bounded from above and thus extends to
define an element in P SH(X ,�), i.e. the corresponding curvature current is positive. But
this means that φ∗

μ(x) ∈ Fμ(X, ω) which concludes the proof of the upper bound. 
�
Example 5.2 (deformation to the normal cone; compare [48,49]). Any given (say reduced)
divisor Z in X determines a special test configuration whose total spaceX is the deformation
to the normal cone of Z . In other words, X is the blow-up of X × C along the subscheme
Z × {0}. Denote by π the corresponding flat morphism X → C which factors through the
blow-down map p from X to X × C. This construction also induces a natural embedding of
X ×C

∗ inX .Given aKähler class [ω] on X,whichwemay identify with a class on X ×C and
a positive number c we denote by [�c] the corresponding class [p∗ω] − c[E] on X , where
E is the exceptional divisor and we are assuming that c < ε, where ε is defined as the sup
over all positive numbers c such that the class [�c] is Kähler (i.e. ε is the Seshadri constant
of Z wrt [ω]). In this setting it is not hard to check that ϕ ∈ Fμ(X, ω) iff νZ (ϕ) ≥ μ + c,
where νZ (ϕ) denotes the Lelong number of ϕ along the divisor Z in X. The point is that
[p∗ω] − cE may be identified with the subspace of currents in [p∗ω] with Lelong number
at least c along the divisor E in X which in this case is equivalent to having Lelong number
at least c along the central fiber [X0], which in turn is equivalent to ϕ having Lelong number
at least c along Z in X. In particular, setting μ = λ − c we have ϕλ = ψμ, where ϕλ is the
envelope defined by formula 4.1, i.e. uλ = ψμ − λ log ‖s‖2 , where uλ is defined by 4.2.

Now we observe that one obtains a family of subgeodesics, approximating the weak
geodesic ϕt in the closure of Kω, associated to a divisor Z and a number c ∈ [0, ε[, as in the
previous example, by setting

ϕt
β := 1

β
log

∫

[0,c]
dλeβ((λ−c)t+ϕλ,β),

where ϕλ,β is the regularization of ϕλ introduced in Sect. 4, solving the Monge–Ampère
equation 4.3 (which is indeed a subgeodesic as it is a superposition of the subgeodesics
(λ − c)t + ϕλ,β ). Combining Theorem 4.1 with the previous proposition we arrive at the
following
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Theorem 5.3 Let [ω] be a Kähler class on X and Z a divisor in X and fix a positive number
c ∈ [0, ε[. Then the corresponding subgeodesics ϕt

β converge, as β → ∞, to the weak
geodesic ϕt , uniformly on X × [0, T [ for any fixed T < ∞ (and for T = ∞ in the case
when [ω] ∈ H2(X, Q)). Moreover, the first order space-time derivatives of ϕt

β are uniformly
bounded on X × [0,∞].

Proof By Theorem 4.1

ϕt
β = 1

β
log

∫

[0,�]
dλeβ((λ−c)t+ϕλ) + o(1), ϕλ := uθ,λ + λ log ‖s‖2 ,

where the o(1)-term is independent of t and converges uniformly to 0 on X × [0, c] as
β → ∞. As a consequence, for t ∈ [0, T ] we clearly have

ϕt
β = sup

μ∈[−c,0]
(

μt + ψμ

) + o(1)

(where, as explained in the previous example, ψμ = ϕλ for μ = λ − c) and by Proposition
5.1 the first term above defines the desired geodesic ray ϕt . Finally, we need to show that the
error term above is uniform at T → ∞ in the case when [ω] ∈ H2(X, Q)). To this end we
will use a compactification argument. Set, as before t = − log |τ |2, where τ ∈ C

∗. By the
definition of the deformation to the normal cone X (see the previous example) the function
�μ defined in the proof of Proposition 5.1 defines an �-psh function on X . We thus a get a
family of functions on X defined by

�β := 1

β
log

∫

[−c,0]
dμeβ�μ

and such that �β increases (by Hölder’s inequality) to the function �∞ := supμ �μ, which,
according to the proof of Proposition 5.1, coincides with the envelope � defined by formula
5.3. But the latter envelope is continuous (up to the boundary) on M and hence it follows
from Dini’s lemma that �β converges to � uniformly, as desired. The continuity of the
envelope � follows from standard arguments in the case when M is smooth and the back-
ground form η is Kähler. We recall that the argument just uses that any sequence of η-psh
functions may be approximated by a decreasing sequence of continuous η-psh functions, as
follows from the approximation results in [26] (see for example [14] for a similar situation).
The latter approximation property has been generalized, in the case of rational classes, to
the case when η is merely assumed to be semi-positive (and big) [23] and hence the proof
of the continuity still applies in the present situation (strictly speaking the results in op. cit.
apply to compact complex manifolds, but we can simply pass to a resolution of the the C

∗-
equivariant compactification of X fibered over the standard ¶1-compactification of C and
adopt the argument using barriers in [7]).

Finally, to prove the last statement we observe that, fixing a first order differential operator
Dx on X, we have

d

dt
ϕt

β(x) :=
∫

[0,c]
(λ − c)ν(β)

(x,t)(λ), Dxϕ
t
β(x) =

∫

[0,c]
Dxϕβ,λ(x)ν

(β)

(x,t)(λ),

in terms of the following probability measure ν
(β)

(x,t) on [0, c] :

ν
(β)

(x,t)(λ) := eβ((λ−c)t+ϕλ,β)/

∫

[0,c]
dλeβ((λ−c)t+ϕλ,β)
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But then the estimate on the time derivative follows immediately from the uniform bound
|λ| ≤ c and the estimate on the space derivative form the uniform bound on Dxϕβ,λ (Theorem
4.1). 
�
Remark 5.4 In the case when [ω] = c1(L) it was shown in [44] how to approximate (in a
point-wise almost everywhere sense) a weak geodesic ϕt associated to a test configuration
by smooth Bergman geodesics associated to higher powers of the line bundle L (see also
[47] for an alternative proof). Accordingly, it seems natural to view ϕt

β as a transcendtal
analog of the Phong-Sturm Bergman geodesics. One advantage of ϕt

β is that the convergence
is uniform (even when t is not constrained to be in a bounded interval in the case of a
rational class). Assuming the conjectural validity of the appoximation result in [23] for
general transcendental classes, the uniformity in the previous theorem holds for T = ∞, in
general. It is also interesting to compare the bound on the first derivatives above with the case
of toric Bergman geodesics studied in [58], where uniform C1-convergence is established. It
seems likely that a similar C1-convergence holds in the present setting (even in the general
non-toric setting), but we will not go further into this here. It would also be interesting to see
if there is a uniform bound on the space Laplacians of ϕt

β (say on any fixed time inverval).

5.0.1. General (analytic) test configurations

Of course, the test configurations defined by the deformation to the normal cone of a divisor
are very special ones. But the convergence result in Corollary 5.3 can be extended to general
test configurations for a polarized manifold (X, L) (by replacing M A(uβ,λ) with M A(ϕβ,μ)

where ϕβ,μ ∈ Fλ(X, ω) satisfies the Eq. 4.3). The argument uses Odaka’s generalization of
the Ross-Thomas slope theory [39] defined in terms of a flag of ideals on X. The point is
that by blowing up the corresponding ideals one sees that the pullback of the corresponding
envelopes ψμ have divisorial singularities (compare Proposition 3.22 in [35]) so that the
previous convergence argument can be repeated (as they apply also when L is merely semi-
ample and big, which is the case on the blow-up).

More generally, an analytic generalization of test configurations for a polarization (X, L)

was introduced in [47]. Similarly, an analytic test configuration for a Kähler manifold (X, ω)

may be defined as a concave family [ψμ] of singularity classes in P SH(X, ω). The corre-
sponding spaceFμ(X, ω)may then be defined as all elementsψ in such that [ψ] = [ψμ]. To
any such family one associates a family of envelopes ψμ defined by formula 5.4. As shown
in [47] taking the Legendre transform of ψμ wrt μ gives a curve ϕt in P SH(X, ω) which is
a weak geodesic. The regularization scheme introduced in this paper could be adapted to this
general framework by first introducing suitable algebraic regularizations of the singularity
classes and using blow-ups (as in [39]). But we leave these developments and their relation to
K-stability and the Yau–Tian–Donaldson conjecture for the future. For the moment we just
observe that the latter conjecture admits a natural generalization to transcendental classes.

Example 5.5 Continuing with the previous example of deformation to the normal cone, we
observe that one obtains a (transcendtal) analytic test configuration, which is not a bona fide
test configuration, when c ∈]ε, ε′[. In geometric terms this corresponds to allowing the line
bundle L (or the corresponding Kähler class on the total space) to be merely big. In this
setting the C0-convergence in Theorem 5.3 still holds (with the same proof) as long as t is
restricted to a bounded interval.
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5.0.2. A generalization of the Yau–Tian–Donaldson conjecture to transcendetal classes

Using Wang’s intersection formula [59] there is a natural generalization of the notion of
K-stability of a polarization (X, L): by definition, a Kähler class [ω] on X is K-stable if, for
any test configuration (X , [�]) for (X, [ω]) the corresponding Donaldson–Futaki invariant
satisfies DF(X , [�]) ≥ 0 with equality iff X is equivariantly isomorphic to a product.
Similarly, K-polystability is defined by not requiring that the isomorphism be equivariant.
Here DF(X , [�]) is defined as the following sum of intersection numbers

DF(X , [�]) := a[�]n+1 + (n + 1)KX /¶1 · [�]n, a := n(−K X ) · [ω]n−1/[ω]n

where we have replaced X with its equivariant compactification over ¶1 and [�] with the
corresponding class on the compactification and the intersection numbers are computed on
the compactification. The transcendental version of theYau–Tian–Donaldson conjecturemay
then be formulated as the conjecture that [ω] admits a constant scalar curvature metric iff
(X, [ω]) isK-polystable. It is interesting to compare this generalizationwithDemailly–Paun’s
generalization of the Nakai-Moishezon criterium for ample line bundles [27], which in the
case when X is a projective manifold says that if a (1, 1)-class [θ ] has positive intersections
with all p-dimensional subvarieties of X then [θ ] contains a Kähler form ω. The difference
is thus that in order to draw the considerably stronger conclusion that ω can be chosen to
have constant scalar curvature one needs to impose conditions on “secondary” intersection
numbers as well, i.e. intersection numbers defined over all suitable degenerations of (X, [θ ]).
Finally, it should be pointed out that it may very well be that the notion of (transcendental)
test configuration above has to be generalized a bit further in order for the previous conjecture
to stand a chance of being true (compare the discussion in the introduction of the paper).
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