
Math. Z. (2018) 290:953–972
https://doi.org/10.1007/s00209-018-2047-8 Mathematische Zeitschrift

The boundary of the irreducible components for
invariant subspace varieties

Justyna Kosakowska1 · Markus Schmidmeier2

Received: 3 October 2016 / Accepted: 18 January 2018 / Published online: 14 March 2018
© The Author(s) 2018

Abstract Given partitions α, β, γ , the short exact sequences

0 −→ Nα −→ Nβ −→ Nγ −→ 0

of nilpotent linear operators of Jordan types α, β, γ , respectively, define a constructible
subset V

β
α,γ of an affine variety. Geometrically, the varieties V

β
α,γ are of particular interest

as they occur naturally and since they typically consist of several irreducible components. In
fact, each Littlewood–Richardson tableau Γ of shape (α, β, γ ) contributes one irreducible
component VΓ . We consider the partial order Γ ≤boundary ˜Γ on LR-tableaux which is
the transitive closure of the relation given by V

˜Γ ∩ VΓ �= ∅. In this paper we compare
the boundary relation with partial orders given by algebraic, combinatorial and geometric
conditions. It is known that in the case where the parts of α are at most two, all those partial
orders are equivalent. We prove that those partial orders are also equivalent in the case where
β\γ is a horizontal and vertical strip. Moreover, we discuss how the orders differ in general.
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1 Introduction

Often in geometry, naturally occuring conditions define subsets of varieties which are either
very big in size or tiny. For example, among all linear operators acting on a given finite
dimensional vector space, the invertible ones form an open and dense subset. And so do,
among all nilpotent operators, those which have only one Jordan block. A notable exception
to this rule occurs in the variety of short exact sequences of nilpotent linear operators; it can
be written, by means of Littlewood–Richardson tableaux, as a union of components of equal
dimension. They are the topic of this paper.

Throughout we assume that k is an algebraically closed field. A nilpotent k-linear operator
is a finite dimensional module over the localized polynomial ring k[T ](T ) in one indetermi-
nate, hence it has the form Nα = ⊕s

i=1 k[T ]/(T αi ) for a uniquely determined partition
α = (α1, . . . , αs) which represents the sizes of its Jordan blocks, (see Notation 2.12).

The Theorem of Green and Klein [8] states that for given partitions α, β, γ , there exists
a short exact sequence

0 −→ Nα −→ Nβ −→ Nγ −→ 0

of nilpotent linear operators if and only if there is a Littlewood–Richardson (LR-) tableau
of shape (α, β, γ ). The collection of all such short exact sequences forms a variety V

β
α,γ (k)

which can be written as a disjoint union, using LR-tableaux, as follows. Consider the affine
variety Homk(Nα, Nβ) of k-linear maps endowed with the Zariski topology, and assume that
all subsets carry the induced topology. Define

V
β
α,γ (k) = {

f : Nα → Nβ

∣

∣ f monomorphism of k[T ]-modules

with cokernel isomorphic to Nγ

}

.

The irreducible components of V
β
α,γ (k) are counted by the Littlewood–Richardson coeffi-

cient. Namely, to each monomorphism in V
β
α,γ one can associate an LR-tableau Γ of shape

(α, β, γ ), as we will see in Sect. 2. The subset VΓ of Homk(Nα, Nβ) of all such monomor-
phisms is constructible and irreducible as a space. All the VΓ have the same dimension. We
denote by VΓ the closure of VΓ in V

β
α,γ ; the sets VΓ define the irreducible components of

V
β
α,γ , they are indexed by the set T β

α,γ of all LR-tableaux of shape (α, β, γ ) (see [16, Theorem
4.3] and [18]).

Our aim in this paper is to shed light on the geometry in the variety

V
β
α,γ =

•
⋃

Γ ∈T β
α,γ

VΓ ;

by studying the boundary relation given as follows.

Γ �boundary ˜Γ ⇔ V
˜Γ ∩ VΓ �= ∅ where Γ, ˜Γ ∈ T β

α,γ . (1.1)

We illustrate the boundary relation in the simplest example. Consider the tableaux

It turns out that the varietyVΓ = OM consists of a single orbit (M = P3
1 ⊕P2

2 ⊕P1
0 , see Sect.

2), while V
˜Γ = OM ′ ∪OM ′′ is the disjoint union of two orbits (M ′ = P3

2 ⊕ P2
0 ⊕ P1

1 , M ′′ =
123



The boundary of the irreducible components. . . 955

P(0, 2) ⊕ P2
1 ). One can deduce the following, see [11]. The orbit OM ′ is dense. Moreover,

V
˜Γ is closed while VΓ = OM ∪ OM ′′ . Thus, V

˜Γ ∩ VΓ �= ∅ and hence Γ �boundary ˜Γ .
Obviously, �boundary is reflexive and we will see that it is anti-symmetric. We denote by

≤boundary the transitive closure of �boundary. In general, for a reflexive and anti-symmetric
relation �x we denote its transitive closure by ≤x.

On the set

P = Pβ
α,γ =

{

VΓ ; Γ ∈ T β
α,γ

}

of irreducible components of the representations space V
β
α,γ , there are several relations of

algebraic, geometric and combinatorial nature: the hom- and the ext-order, the degeneration
order and the boundary condition, the box relation and the dominance order. By taking the
reflexive and transitive closure of each relation, if necessary, we obtain six partial orders on
the set P . It is the aim of the paper to compare those partial orders.

Given two partial orders (P,≤x ), (P,≤y) on the same set, we say (P,≤x ) is finer than
(P,≤y) if P ≤y Q implies P ≤x Q for all P, Q ∈ P . With respect to the fineness relation,
we obtain the following diagram (whenever the box-relation is defined):

≤dom

≤hom ≤boundary

≤deg

≤ext

≤box

↓

↓

↙ ↘

↘ ↙

Examples 3.6 and 3.7 show that, in general, the ext and the deg relation, and the boundary
and the dom relation are not equivalent, respectively. Even in the case where β\γ is a
horizontal strip, the box and the dom relation may be different (Example 2.8).

However, if β\γ is a horizontal and vertical strip, then all the above relations are equal.
Since the set P of irreducible components of V

β
α,γ is in bijection with the set T β

α,γ , we

will work with posets (T β
α,γ ,≤x) instead of (P,≤x).

We are ready to present the main results of the paper.

1.1 Two algebraic tests

The algebraic group G = Autk[T ](Nα) ×Autk[T ](Nβ) acts on V
β
α,γ via (a, b) · f = b f a−1.

The orbits of this group action are in one-to-one correspondencewith the isomorphism classes
of embeddings f : Nα → Nβ .

We consider the following reflexive relation for LR-tableaux. We say Γ ≺deg ˜Γ if there
are embeddings f ∈ VΓ , f̃ ∈ V

˜Γ such that f ≤deg f̃ , that is, O f̃ ⊂ O f , where O f is the

orbit of f under the action of G on V
β
α,γ .

The degeneration relation is under control algebraically as the ext-relation ≺ext implies
the deg-relation ≺deg, which in turn implies the hom-relation ≺hom (see Sect. 4). We show
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956 J. Kosakowska, M. Schmidmeier

that the boundary relation implies the restricition ≤hom−picket of the hom order to certain
objects called pickets.

In the diagram below, the relations introduced so far on the set T β
α,γ are ordered vertically

by containment.

≤hom−picket

≤hom ≤boundary

≤deg

≤ext

↓

↙ ↘

↘ ↙

We show that the restriction of the hom-order to pickets is an anti-symmetric relation. As
a consequence, all the relations in the diagram are partial orders on T β

α,γ . We have algebraic
tests both for the validity and for the failure of the boundary relation:

Theorem 1.2 Suppose α, β, γ are partitions. The following implications hold for LR-
tableaux Γ, ˜Γ of shape (α, β, γ ):

Γ ≤ext ˜Γ �⇒ Γ ≤boundary ˜Γ �⇒ Γ ≤hom−picket ˜Γ .

We present proofs in Sect. 4.

1.2 Two combinatorial criteria

On the set T β
α,γ , there are two partial orders of combinatorial nature. The dominance relation

≤dom is given by the natural partial orders of the partitions defining the tableaux. The second
relation is the box-order ≤box, it is given by repeatedly exchanging two entries in the tableau
in such a way that the smaller entry moves up and such that the lattice permutation condition
is preserved. We introduce the two orders formally in Sect. 2.1.

The following result presents a necessary and a sufficient criterion of combinatorial nature
for two LR-tableaux to be in boundary relation:

Theorem 1.3 Given partitionsα, β, γ , the following implications hold for LR-tableauxΓ, ˜Γ

of shape (α, β, γ ).

(a) If Γ ≤boundary ˜Γ then Γ ≤dom ˜Γ .
(b) Suppose β\γ is a horizontal strip. If Γ ≤box ˜Γ then Γ ≤boundary ˜Γ .

We show in Sect. 3.1 that the dominance relation is in fact equivalent to the restriction of
the hom-order to pickets. The second part follows from a result in [13].

Proposition 1.4 Suppose Γ, ˜Γ are LR-tableaux which have the same shape and which are
horizontal strips. If Γ ≤box ˜Γ then Γ ≤ext ˜Γ .

1.3 Horizontal and vertical strips

Of particular interest is the case where the partitions are such that β\γ is both a horizontal
and a vertical strip. In this situation, the combinatorial relations ≤box and ≤dom are in fact
equivalent. In [14] we give two proofs for this statement; below in Sect. 2.1 we sketch the
algorithmic approach in one of them. We deduce the following result.
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Theorem 1.5 Suppose α, β, γ are partitions such that β\γ is a horizontal and vertical strip.
The following relations are partial orders which are equivalent to each other.

≤box, ≤ext, ≤deg, ≤hom, ≤boundary, ≤dom .

For comparison we note that there is a related result about the six partial orders in the case
where all parts of α are at most two. In this situation the orbits and the boundary relation are
given combinatorially in terms of arc diagrams and of resolution of crossings, respectively
[11,12].

Theorem 1.6 Supposeα, β, γ are partitions such that all parts ofα are atmost two. The rela-
tions ≤dom,≤hom,≤boundary,≤deg,≤ext,≤box are all partial orders which are equivalent
to each other.

1.4 Related results

The Theorem of Gerstenhaber and Hesselink shows that the natural partial order of parti-
tions is equivalent to the degeneration order of nilpotent linear operators, see [5,6,15]. We
investigate a similar problem: connections of the dominance order of LR-tableaux with the
boundary order defined below. Also extensions of nilpotent linear operators are of interest
as they are connected with the classical Hall algebras and Hall polynomials, see [17]. Well
understood are generic extensions and their relationships with the specializations to q = 0
of the Ringel-Hall algebras, see [3,4,10,19,20].

1.5 Organization of this paper

In Sect. 2, we describe how partitions and tableaux describe short exact sequences of linear
operators, or equivalently of embeddings or invariant subspaces of linear operators. More-
over, we introduce pickets as special types of embeddings.

In Sect. 3, we show that the boundary relation in Formula (1.1) implies the dominance
order (Part (a) of Theorem 1.3). As a consequencewe obtain that the boundary relation is anti-
symmetric.Wepresent an example showing that�boundary maynot be transitive. Example 3.6
shows that the dominance order does not imply the boundary relation in general, not even
for vertical strips. But note that the two relations are equivalent when we are dealing with
horizontal and vertical strips (Theorem 1.5).

In Sect. 4, we adapt the ext- deg- and hom-relations for modules to tableaux. As for mod-
ules, the ext-order implies the degeneration order, which implies the hom-order. Moreover,
the hom-relation implies the dominance order. This completes the proof of Theorem 1.2.
Using results given in [13] and in [14], we show part (b) of Theorem 1.3 and complete the
proof of Theorem 1.5.

2 Littlewood–Richardson tableaux

Given three partitions,α, β, γ ,we consider the setT β
α,γ of all Littlewood–Richardson tableaux

of shape (α, β, γ ). We define the dominance order on the set T β
α,γ . Moreover, we introduce

the LR-tableau of a short exact sequence, and determine the tableaux for certain types of
short exact sequences, in particular pickets. For the case where the skew diagram β\γ is
a horizontal strip, we also introduce the box-order.
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958 J. Kosakowska, M. Schmidmeier

2.1 Combinatorial orders on the set of LR-tableaux

Notation 2.1 Recall that a partition α = (α1, . . . , αs) is a finite non-increasing sequence of
natural numbers; we picture α by its Young diagram which consists of s columns of length
given by the parts of α. The transpose α′ of α is given by the formula

α′
j = #{i : αi ≥ j},

it is pictured by the transpose of the Young diagram for α. Two partitions α, α̃ are in the
natural partial order, in symbols α ≤nat α̃, if the inequality

α′
1 + · · · + α′

j ≤ α̃′
1 + · · · + α̃′

j

holds for each j .
Given three partitions α, β, γ , an LR-tableau of shape (α, β, γ ) is a Young diagram of

shape β in which the region β\γ contains α′
1 entries 1 , . . . , α′

t entries t , where t = α1 is
the largest entry, such that

– in each row, the entries are weakly increasing,
– in each column, the entries are strictly increasing,
– for each � > 1 and for each column c: on the right hand side of c, the number of entries

� − 1 is at least the number of entries �.

The skew diagram β\γ is said to be a horizontal strip if βi ≤ γi + 1 holds for all i , and
a vertical strip if β ′\γ ′ is a horizontal strip.

Example 2.2 Let α = (3, 2), β = (4, 3, 3, 2, 1), γ = (3, 2, 2, 1). Then the transpose of α is
α′ = (2, 2, 1), so we have to fill the skew diagram β\γ with two 1 ’s, two 2 ’s, and one
3 . Due to the conditions on an LR-tableau, this can be done in exactly two ways.

1
2

1 3
2

1
1

2 2
3

In this example, β\γ is a horizontal but not a vertical strip.

Notation 2.3 One can represent an LR-tableau Γ by a sequence of partitions

Γ = [γ (0), . . . , γ (t)]
where γ (i) denotes the region in the Young diagram β which contains the entries

, 1 , . . . , i . If Γ has shape (α, β, γ ), then γ = γ (0), β = γ (t), and α′
i = |γ (i)\γ (i−1)|

for i = 1, . . . , t .

In the example above, the first tableau is given by the sequence of partitions Γ =
[(3, 2, 2, 1), (3, 3, 2, 1, 1), (4, 3, 2, 2, 1), (4, 3, 3, 2, 1)].

We introduce two partial orders on the set T β
α,γ of all LR-tableaux of shape (α, β, γ ).

Definition 2.4 Two LR-tableaux Γ = [γ (0), . . . , γ (t)], ˜Γ = [γ̃ (0), . . . , γ̃ (t)] of the same
shape are in the dominance order, in symbols Γ ≤dom ˜Γ , if for each i , the corresponding
partitions γ (i), γ̃ (i) are in the natural partial order, i.e. γ (i) ≤nat γ̃ (i).

123



The boundary of the irreducible components. . . 959

Definition 2.5 Suppose Γ, ˜Γ are LR-tableaux of the same shape which we assume to be
a horizontal strip. We say ˜Γ is obtained from Γ by a box move if after two entries in Γ

have been exchanged in such a way that the smaller entry is in the higher position in ˜Γ , we
obtain ˜Γ by re-sorting the list of columns if necessary. We denote by ≤box the partial order
generated by box moves.

Here is an example:

Γ :
1

2
3

1
2

<box
˜Γ :

1
1

2
2

3

Remark 2.6 In [13] the box-order is defined in a more general case: in the case when LR-
tableaux are unions of so called columns. For simplicity, we present definitions and results
for horizontal strips.

Lemma 2.7 For LR-tableaux of the same shape, the ≤box-order implies the ≤dom-order.

Proof Suppose the LR-tableau ˜Γ = [γ̃ (0), . . . , γ̃ (t)] is obtained from Γ = [γ (0), . . . , γ (t)]
by a box move based on entries i and j with, say, i < j . The process of reordering the entries
in each rowwill not affect entries less than i or larger than j , so the partitions γ (0), . . . , γ (i−1),
and γ ( j), . . . , γ (t) remain unchanged. The partitions γ (�), γ̃ (�) for i ≤ � < j are different
and satisfy γ (�) <nat γ̃ (�) (since the defining partial sums can only increase). This shows
that Γ <dom ˜Γ . ��

The converse does not always hold, not even for horizontal strips:

Example 2.8 Let β = (4, 3, 3, 2, 1), γ = (3, 2, 2, 1) and α = (3, 2). We have seen that
there are two LR-tableaux of type (α, β, γ ). They are incomparable in ≤box-relation, but

1
2

1 3
2

≤dom

1
1

2 2
3

However for horizontal and vertical strips, the two partial orders are equivalent [14]:

Theorem 2.9 Suppose α, β, γ are partitions such that β\γ is a horizontal and vertical strip.
Then the two partial orders ≤dom,≤box are equivalent on T β

α,γ . ��
In [14] we present two proofs of the fact that ≤dom implies ≤box (for horizontal and

vertical strips). Both are algorithmic. Below we present one of these algorithms without any
proof of its correctness. The reader is referred to [14] for details and proofs.

Algorithm 2.10 For an LR-tableau Γ we denote by ω(Γ ) the list of entries when read from
left to right. Clearly, Γ is determined uniquely by its shape and by the list of its entries.

Input: Two LR-tableaux Γ, ˜Γ of shape (α, β, γ ) such that β\γ is a horizontal and
vertical strip and such that Γ <dom ˜Γ .
Output: An LR-tableau ̂Γ of the shape (α, β, γ ) such that Γ ≤dom ̂Γ and ̂Γ <box ˜Γ .
Step 1. Find the smallest k such that ω(Γ )k �= ω(˜Γ )k and put x = ω(Γ )k .
Step 2. Choose the minimal m ≥ k + 1 such that x = ω(˜Γ )m .
Step 3. Let y = min{ω(˜Γ )i > x : k ≤ i < m}.
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960 J. Kosakowska, M. Schmidmeier

Step 4. Choose k ≤ l < m such that y = ω(˜Γ )l .
Step 5. Define ̂Γ such that ω(̂Γ )i = ω(˜Γ )i , for i �= l,m, and ω(̂Γ )l = x, ω(̂Γ )m = y.

Example 2.11 Let β = (6, 5, 4, 3, 2, 1), γ = (5, 4, 3, 2, 1) and α = (3, 2, 1). Consider
two LR-tableaux Γ and ˜Γ of the shape (α, β, γ ) such that ω(Γ ) = (1, 3, 2, 2, 1, 1) and
ω(˜Γ ) = (2, 3, 2, 1, 1, 1). It is straightforward to check that β\γ is a horizontal and vertical
strip and Γ <dom ˜Γ .

Γ :
1

1
2

2
3

1

<dom ˜Γ :
1

1
1

2
3

2

We apply the algorithm. Note that k = 1, x = 1 and m = 4. Now we can choose y =
ω(˜Γ )1 = 2 or y = ω(˜Γ )3 = 2. If we choose y = ω(˜Γ )1, then ̂Γ = Γ . In the second case,
i.e. if y = ω(˜Γ )3, we get ω(̂Γ ) = (2, 3, 1, 2, 1, 1). It is easy to see that Γ <dom ̂Γ and we
can continue.

2.2 The LR-tableau of a short exact sequence

Notation 2.12 By a nilpotent operator we understand a pair (V, T ) where V is a finite
dimensional k-vector space and T : V → V a k-linear nilpotent operator. Each such pair is
determined uniquely, up to isomorphy, by the partition α = (α1, . . . , αs) which records the
sizes of the Jordan blocks. We consider (V, T ) as the module over the polynomial ring

Nα :=
s

⊕

i=1

k[T ]/(T αi ).

Conversely, given a k[T ]-module M on which the variable T acts nilpotently, the transpose

of the partition β such that M ∼= Nβ is given by β ′
� = dim T �−1M

T �M
.

Given three partitions α, β, γ , there is a short exact sequence E : 0 → Nα → Nβ →
Nγ → 0 if and only if there is an LR-tableau of shape (α, β, γ ) [8]. The tableau Γ corre-
sponding to the sequence E is obtained as follows. Let B be the k[T ]-module Nβ and A the
submodule given by the image of the monomorphism Nα → Nβ . The partitions defining
Γ = [γ (0), . . . , γ (t)], where t = α1, are obtained as the isomorphism types of the nilpotent
operators [17, II, (1.4)]:

Nγ (i) = B/T i A.

Definition 2.13 Given two partitions γ, γ̃ , the union γ ∪ γ̃ has as Young diagram the sorted
union of the columns in the Young diagrams for γ and γ̃ , in symbols, (γ ∪ γ̃ )′i = γ ′

i + γ̃ ′
i .

For two tableaux Γ = [γ (0), . . . , γ (s)], ˜Γ = [γ̃ (0), . . . , γ̃ (t)], the union of the tableaux
is given rowwise:

Γ ∪ ˜Γ = [γ (0) ∪ γ̃ (0), · · · , γ (m) ∪ γ̃ (m)]
where m = max{s, t} and γ (i) = γ (s) for i > s and γ̃ (i) = γ̃ (t) for i > t .

Lemma 2.14 Suppose the exact sequences E, ˜E have LR-tableaux Γ, ˜Γ , respectively. Then
the LR-tableau of the direct sum E ⊕ ˜E is Γ ∪ ˜Γ .

Proof Suppose E, ˜E are given by the embeddings A ⊂ B, ˜A ⊂ ˜B. The j-th partition in the
LR-tableau for E ⊕ ˜E is the Jordan type for B/T j A ⊕ ˜B/T j

˜A, which is γ ( j) ∪ γ̃ ( j). ��

123
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Thus, the LR-tableau of a direct sum is obtained by merging the rows of the LR-tableaux
of the summands, starting at the top, and by sorting the entries in each row.

We present a formula for the number μ�,r of boxes � in the r -th row in the LR-tableau
Γ = [γ (0), . . . , γ (t)] of an embedding (A ⊂ B). We refer to [23, Theorem 1] for a module-
theoretic and homological interpretation of this number.

Denote by γ≤r = (γ ′
1, . . . , γ

′
r )

′ the partition which consists of the first r rows of γ . Thus,
if a k[T ]-module C has type γ , then C/T rC has type γ≤r . In particular, the first r rows of
the partitions γ (�) are given as follows.

γ
(�)
≤r = type

B

T �A + T r B
(2.15)

As an immediate consequence, the number of boxes � in the first r rows of Γ is given
by

|γ (�)
≤r \γ (�−1)

≤r | = dim
T �−1A + T r B

T �A + T r B
,

and the formula for μ�,r is as follows.

μ�,r (A ⊂ B) = |γ (�)
≤r \γ (�−1)

≤r | − |γ (�)
≤r−1\γ (�−1)

≤r−1 |

= dim
T �−1A + T r B

T �A + T r B
− dim

T �−1A + T r−1B

T �A + T r−1B
(2.16)

In the remainder of this section we study two types of examples.

2.3 Example 1: pickets

Definition 2.17 A short exact sequence E : 0 → A → B → C → 0 is a picket if B is
indecomposable as a k[T ]-module (so the partition β has only one part). A picket E is empty
if A = 0.

Remark 2.18 Recall that the invariant subspaces of a linear operator with only one Jordan
block are determined uniquely by their dimension. As a consequence, a picket E as above is
determined uniquely, up to isomorphy, by the dimensions n = dim B and m = dim A. We
write

Pn
m := ( 0 → (T n−m) ⊂ k[T ]/(T n) → k[T ]/(T n−m) → 0 ).

We picture pickets as follows. In the diagram, the column represents the Jordan block of
B and the dot in the (n − m + 1)-st box the submodule generator T n−m in B.

P5
2 :

•
Γ :

2
1

To determine the LR-tableau Γ = [γ (0), . . . , γ (t)] of a picket, note that t = m, γ (0) =
type B/A = (n − m), γ (1) = type B/T A = (n − m + 1), . . . , γ (m) = type B = (n).

123
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2.4 Example 2: poles

Definition 2.19 A short exact sequence E : 0 → A → B → C → 0 is a pole if A is
indecomposable as a k[T ]-module and E is indecomposable as a short exact sequence.

Poles have been classified, up to isomorphy, by Kaplansky [7, Theorem 24].

Theorem 2.20 A pole with submodule generator a is determined uniquely, up to isomorphy,
by the radical layers of the elements T ia. ��

For a nonempty, strictly increasing sequence S = (x0, . . . , xL−1) of nonnegative integers
we construct the pole P(S) for which the submodule generator a satisfies that each T ia
occurs in the xi -st power of the radical.

Partition the sequence into intervals of subsequent numbers,

S = (y1, y1 + 1, . . . , y1 + �1 − 1, y2, . . . , y2 + �2 − 1, . . . , yu, . . . , yu + �u − 1),

so yi+1 > yi+�i for 1 ≤ i < u. Letβ be the partitionβ = (yu+�u, yu−1+�u−1, . . . , y1+�1),
and put B = Nβ and a = (T yu−�u−1−···−�1 , . . . , T y2−�1 , T y1) ∈ B. Then A = (a) is an
indecomposable k[T ]-module and P(S) : 0 → A ⊂ B → B/A → 0 is an indecomposable
short exact sequence such that for each i, 0 ≤ i < L , the element T ia is in the xi -th radical
of B.

The LR-tableau for P(S) = [γ (0), . . . , γ (L)] is easily computed as γ (i)\γ (i−1) consists
of a single box i in row xi−1 + 1.

For examples, note that each picket Pm
� with � > 0 is a pole, more precisely, Pm

� =
P(m−�,m−�+1, . . . ,m−1). We picture here the poles P(0, 2, 3) and P(0, 1, 3) and their
LR-tableaux as theywill occur in an example below. For the first pole,β = (4, 1), a = (T, 1);
for the second β = (4, 2), a = (T, 1).

P(0, 2, 3) : • •
ΓP :

3
2

1

P(0, 1, 3) : • •
ΓP :

3

2
1

3 The boundary relation and its properties

In this section we present properties of the boundary relation defined in Formula 1.1.

3.1 The boundary relation is anti-symmetric

We show that the boundary relation for LR-tableaux is anti-symmetric by verifying that it
implies the dominance order. This is Part (a) in Theorem 1.3.

Lemma 3.1 Suppose A, B are vector spaces and M ⊆ Homk(A, B) is a set of monomor-
phisms. For subspaces U ⊆ A, V ⊆ B and a natural number n, the set

{ f ∈ M : dim( f (U ) ∩ V ) ≥ n}
is closed in M.
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Proof LetM ⊆ Homk(A, B) be a set of monomorphisms,U ⊆ A and V ⊆ B be subspaces,
and let n ∈ N. Recall that for a natural number m, the condition rank( f ) > m defines an
open subset in Homk(A, B) since it is given by the non-vanishing of a minor in the matrix
representing f . By restricting that matrix to a basis for U and a basis for the complement of
V , we see that the condition dim f (U )+V

V > m also defines an open subset in Homk(A, B).

Let nowm = dimU−n. From the isomorphism f (U )+V
V

∼= f (U )
f (U )∩V we obtain that the subset

defined by dim f (U )
f (U )∩V > m is open, in particular it is open when restricted to M. Since

on M, all spaces f (U ) have the same dimension ( f is a monomorphism), the condition is
equivalent to

dim f (U ) ∩ V < dim f (U ) − m = n.

The complementary condition dim f (U ) ∩ V ≥ n defines a closed subset of M. ��
Proposition 3.2 For all natural numbers i, �, n, the subset

⋃
{

VΓ : Γ satisfies (γ (i))′1 + · · · + (γ (i))′� ≥ n
}

in V
β
α,γ (k) is closed.

Proof Suppose f : A → B is an embedding in VΓ . Recall that the partitions in Γ are given
by B/ f (T i A) = Nγ (i) .

Also recall that dim Homk[T ](N(�), N(m)) = min{�,m} = dim N(�)

TmN(�)
. Thus:

(γ (i))′1 + · · · + (γ (i))′� =
∑

j

min{γ (i)
j , �}

= dimHomk[T ](B/ f (T i A), N(�))

= dim
B/ f (T i A)

T �(B/ f (T i A))

= dim
B/ f (T i A)

(T �B + f (T i A))/ f (T i A)

Using the isomorphism T �B+ f (T i A)

f (T i A)
∼= T �B

T �B∩ f (T i A)
we obtain

(γ (i))′1 + · · · + (γ (i))′� = dim B − dim f (T i A) − dim T �B + dim T �B ∩ f (T i A).

Since dim B − dim f (T i A) − dim T �B = c is constant on V
β
α,γ , Lemma 3.1 implies that

the set
⋃

{

VΓ : (γ (i))′1 + · · · + (γ (i))′� ≥ n
}

=
{

f ∈ V
β
α,γ : dim T �B ∩ f (T i A) ≥ n − c

}

is a closed subset of V
β
α,γ . ��

We can now show that the boundary relation implies the dominance order.

Proof [of Part (a) of Theorem 1.3] We assume that Γ �dom
˜Γ and show that V

˜Γ ∩ VΓ = ∅.
By assumption, there exist i, � such that

n = (γ (i))′1 + · · · + (γ (i))′� > (γ̃ (i))′1 + · · · + (γ̃ (i))′�
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holds. By the proposition, U = ⋃ {

V
̂Γ : (γ̂ (i))′1 + · · · + (γ̂ (i))′� ≥ n

}

is a closed subset of

V
β
α,γ such that

VΓ ⊆ U and U ∩ V
˜Γ = ∅.

Thus, V
˜Γ ∩ VΓ = ∅. ��

As a consequence we obtain:

Corollary 3.3 The boundary relation is reflexive and antisymmetric. ��
We conclude this section with a result for later use.

Lemma 3.4 Suppose f, g : Nα → Nβ are objects in V
β
α,γ . Let W be a subspace of Nβ

which is invariant under all automorphisms of Nβ as a k[T ]-module. If O f ⊂ Og then

dim Im f ∩ W ≥ dim Img ∩ W.

Examples of possible invariant submodules of Nβ are the powers of the radical T r Nβ ,
powers of the socle T−s0, and their intersections T r Nβ ∩ T−s0.

Proof Let hλ : Nα → Nβ be a one-parameter family of objects in V
β
α,γ such that hλ

∼= g
for λ �= 0 and h0 ∼= f . Put n = dim Img ∩ W .

Any isomorphism hλ
∼= g (λ �= 0) induces an isomorphism Imhλ ∩ W ∼= Img ∩ W since

W is invariant under automorphisms of Nβ . By Lemma 3.1, the set
{

h ∈ V
β
α,γ : dim Imh ∩ W ≥ n

}

is closed in V
β
α,γ , so with hλ, λ �= 0, also h0 is in the set. This shows dim Im f ∩ W =

dim Imh0 ∩ W ≥ n. ��
3.2 The boundary relation and the dominance relation

We have seen in Sect. 3.1 that the boundary relation implies the dominance relation. Here we
give an example that in general, the boundary relation is strictly stronger than the dominance
relation.

In this and in the following section, we determine all isomorphism types of objects which
realize a given tableau that has at most 4 rows. Such objects occur in the categoryS(4) studied
in [22, (6.4)] of all pairs consisting of a nilpotent linear operator with nilpotency index at
most 4 and an invariant subspace.

Lemma 3.5 Each object in the category S(4) is a direct sum of indecomposables. There are
20 indecomposable objects, up to isomorphy: Four empty pickets P1

0 , . . . , P4
0 , fifteen poles

P(S), where S is a non-empty subset of {0, 1, 2, 3}, and a remaining object X which has the
property that the invariant subspace has two Jordan blocks:

X : • •
• ΓX : 1

3

2
1

��
Recall that the LR-tableau of a direct sum is obtained by merging the rows of the LR-

tableaux of the summands, see Lemma 2.14.
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Example 3.6 For α = (3, 1), β = (4, 3, 1), γ = (3, 1), there are two LR-tableaux of shape
(α, β, γ ):

Γ1 :
1

1
2

3

Γ2 :
1

2
3

1

We determine the possible isomorphism types of embeddings which have LR-tableaux Γ1

and Γ2, respectively. For each tableau, there is only one realization, up to isomorphy.

M1 = P4
3 ⊕ P3

0 ⊕ P1
1 : •

•
M2 = P4

1 ⊕ P3
3 ⊕ P1

0 :
•

•

There are no other realizations: Any such embedding occurs in the category S(4), so
Lemma 3.5 can be used. Considering the LR-tableau for X , this module cannot occur as
a summand (since, for example, the LR-tableau for X has a 1 in the third row, but neither
Γ1 nor Γ2 does). Hence any realization is a direct sum of poles and empty pickets. Note that
the pole P(0, 2, 3) cannot occur in a decomposition for Γ1 since this would require that P2

1
is a summand, which is not possible since there is no column of length 2 in Γ1. Since each
pole P(S) is determined by the sequence S, up to isomorphy, and since S determines the
entries in the LR-tableau, there are no other choices.

As a consequence, the varieties VΓ1 and VΓ2 have the same dimension, and each consists
of only one orbit. Hence

VΓ1 ∩ VΓ2 = ∅ = VΓ2 ∩ VΓ1 .

Thus, Γ1 and Γ2 are not in boundary relation, but clearly Γ1 >dom Γ2.

3.3 The boundary relation may not be transitive

In general, the boundary relation given by

V
˜Γ ∩ VΓ �= ∅

is not transitive. In this section, we provide an example.

Example 3.7 Let α = (3, 1), β = (4, 3, 2, 1), γ = (3, 2, 1). There are three LR-tableaux:

Γ1 :
1

1
2

3

Γ2 :
1

2
1

3

Γ3 :
1

2
3

1

Distributed over those three tableaux are five pairwise nonisomorphic embeddings which
can be determined using Lemma 3.5.

M1 = P4
3 ⊕ P3

0 ⊕ P2
0 ⊕ P1

1 ,

M12 = P(0, 2, 3) ⊕ P3
0 ⊕ P2

1 ,

M2 = X ⊕ P3
0 ⊕ P1

0 ,

M23 = P(0, 1, 3) ⊕ P3
1 ⊕ P1

0 ,

M3 = P4
1 ⊕ P3

3 ⊕ P2
0 ⊕ P1

0
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The notation is such that Mi or Mix has LR-tableau Γi .
We show that the containment relation of orbit closures is as follows.

M1

M12

M2

M23

M3

�
�

�

�
�

�

︸ ︷︷ ︸

Γ1

︸ ︷︷ ︸

Γ2

︸ ︷︷ ︸

Γ3

The short exact sequence

0 −→ P2
1 −→ M2 −→ P(0, 2, 3) ⊕ P3

0 −→ 0

shows thatO(M12) ⊂ O(M2) (since the ext-order implies the degeneration order, see Sect. 4).
Hence VΓ1 ∩ VΓ2 �= ∅ and Γ1 >boundary Γ2.

Similarly, the short exact sequence

0 −→ P3
1 −→ M3 −→ P(0, 1, 3) ⊕ P1

0 −→ 0

shows that O(M23) ⊂ O(M3), hence VΓ2 ∩ VΓ3 �= ∅ and Γ2 >boundary Γ3.
However, VΓ1 ∩ VΓ3 = ∅. The only possible orbit in the intersection is O(M12), since

there are only two orbits in VΓ1 , and since the other orbit O(M1) has the same dimension as
VΓ3 = O(M3).

Note that the module M12 = (U ⊂ V ) has the property that dimU ∩ T 2V ∩ soc V = 1,
while for the module M3, the corresponding dimension is 2. It follows from Lemma 3.4 with
W = T 2V ∩ soc V that O(M12) � O(M3).

This finishes the example which illustrates that in general, the condition for LR-tableaux
that V

˜Γ ∩ VΓ �= ∅ may not define a partial order. ��

4 The algebraic orders for LR-tableaux

For modules of a fixed dimension over a finite dimensional algebra the three partial orders

≤ext, ≤deg, ≤hom

have been studied extensively, see for example [1,2,9,21,24]. In particular, the partial orders
are available for invariant subspaces in V

β
α,γ , see [11, Section 3.2]. For the convenience of

the reader we recall these definitions. Let f, g ∈ V
β
α,γ .

– The relation f ≤ext g holds if there exist embeddings hi , ui , vi of linear operators
and short exact sequences 0 → ui → hi → vi → 0 of embeddings such that f ∼=
h1, ui ⊕ vi ∼= hi+1 for 1 ≤ i ≤ s, and g ∼= hs+1, for some natural number s.

– The relation f ≤deg g holds if Og ⊆ O f in V
β
α,γ (k).

– The relation f ≤hom g holds if

[ f, h] ≤ [g, h]
for any embedding h, where [ f, h] denotes the dimension of the linear space Hom( f, h)

of all homomorphisms of embeddings.
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They induce three reflexive and anti-symmetric relations on the set T β
α,γ .

Definition 4.1 Suppose Γ, ˜Γ are two LR-tableaux of shape (α, β, γ ). We write Γ ≤ext ˜Γ

(Γ ≤deg ˜Γ ; Γ ≤hom ˜Γ ) if there is a sequence

Γ = Γ (0), Γ (1), . . . , Γ (s) = ˜Γ

such that for each 1 ≤ i ≤ s there are f ∈ VΓ (i−1) , g ∈ VΓ (i) with f ≤ext g ( f ≤deg g;
f ≤hom g).

It follows from the corresponding properties for modules that:

– Γ ≤ext ˜Γ implies Γ ≤deg ˜Γ and
– Γ ≤deg ˜Γ implies Γ ≤hom ˜Γ .

Also, it is clear from the definitions that

– Γ ≤deg ˜Γ implies Γ ≤boundary ˜Γ .

We observe that if there are only finitely many isomorphism classes of embeddings in
V

β
α,γ , then the converse is true:

– Γ ≤boundary ˜Γ implies Γ ≤deg ˜Γ .

Indeed, assume Γ ≺boundary ˜Γ . By definition, V
˜Γ ∩ VΓ �= ∅. Note that VΓ = ⋃

O f

and VΓ = ⋃

O f , where the (finite!) union runs over all isomorphism classes of embeddings
in VΓ . It follows that there exist g ∈ V

˜Γ and f ∈ VΓ such that Og ⊆ O f .
We have seen in Sect. 3.1 that the boundary relation implies the dominance order ≤dom.

In the following section we show that also the hom-relation implies the dominance order.
As a consequence, each of the three relations ≤ext, ≤deg, ≤hom is anti-symmetric, hence a
partial ordering.

4.1 The Hom-relation implies the dominance order

We start with an abstract result.
Denote by N the category mod k[T ](T ) of all nilpotent linear operators, and by S =

S(k[T ](T )) the category of all invariant subspaces. For each i ∈ N, there is a pair of functors

Ri : S → N , (A ⊂ B) �→ B

T i A
Li : N → S, X �→ (soc i X ⊂ X).

Lemma 4.2 For each i ∈ N, the functors Ri , Li form an adjoint pair.

Proof Given an operator X ∈ N and an invariant subspace (A ⊂ B) ∈ S, we need to show
that there is a natural isomorphism

HomS((A ⊂ B), Li (X)) ∼= HomN (Ri (A ⊂ B), X).

A morphism in S is given by a commutative diagram:

A
f |A−−−−→ soc i X

⏐

⏐

�

⏐

⏐

�

B −−−−→
f

X
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It gives rise to the commutative diagram:

radi A −−−−→ 0
⏐

⏐

�

⏐

⏐

�

B −−−−→
f

X

Hence we obtain a morphism in N :

f̄ : B

radi A
−−−−−−→ X.

Conversely, themorphism inN gives rise to a commutative diagram and hence to amorphism
in S. Clearly, the two constructions are inverse to each other. ��

We recognize that the objects of the form P�
i = Li (N(�)) are pickets.

Proposition 4.3 Suppose the objects (A ⊂ B) and (˜A ⊂ ˜B) have LR-tableaux Γ and ˜Γ ,
respectively. The following assertions are equivalent:

1. Γ ≤dom ˜Γ

2. For each picket P�
i the inequality holds:

dimHomS((A ⊂ B), P�
i ) ≤ dimHomS((˜A ⊂ ˜B), P�

i )

Proof By the definition given in Sect. 2.1, the condition Γ ≤dom ˜Γ is equivalent to

(γ (i))′1 + · · · + (γ (i))′� ≤ (γ̃ (i))′1 + · · · + (γ̃ (i))′� for each i and �.

Let i and � be natural numbers. We obtain from Lemma 4.2 and from the equality in the
proof of Proposition 3.2 that

(γ (i))′1 + · · · + (γ (i))′� = dimHomN (B/T i A, N(�)) = dimHomS((A ⊂ B), P�
i )

The claim follows from this and from the corresponding equality for (˜A ⊂ ˜B). ��

It follows that the restriction ≤hom−picket of the hom order to pickets and the dominance
relation are equivalent. Hence, the hom-relation implies the dominance order.Without impos-
ing any conditions on the triple (α, β, γ ), we have established the following implications:

≤dom

≤hom ≤boundary

≤deg

≤ext

↓

↙ ↘

↘ ↙
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4.2 The box-order implies the ext-order (for horizontal strips)

Assume thatΓ, ˜Γ are LR-tableaux of the shape (α, β, γ ) such thatβ\γ is a horizontal strip. In
[13] we prove the following. Suppose that the Littlewood–Richardson tableau ˜Γ is obtained
from Γ by an increasing box move. By [13, Proposition 4.1] there exist embeddings M, ˜M
that realize tableaux Γ, ˜Γ , respectively, and such that M = R ⊕ R′ ⊕ N , ˜M = ˜R ⊕ ˜R′ ⊕ N
for certain suitable embeddings R, R′

˜R, ˜R′, N . In [13, Section 4.2] it is shown that there
exists a short exact sequence

0 −→ ˜R −→ Q −→ ˜R′ −→ 0

for some embedding Q with the same LR-tableau as R ⊕ R′. Therefore Q ≤ext ˜R ⊕ ˜R′ and
Γ ≤ext ˜Γ .

With the assumption that β\γ is a horizontal strip we have the following implications:

≤dom

≤hom ≤boundary

≤deg

≤ext

≤box

↓

↓

↙ ↘

↘ ↙

Remark 4.4 1. In [13] the implication ≤box �⇒ ≤ext is proved in a more general case.
2. Example 2.8 shows that these orders are not equivalent in general (even for horizontal

strips).
3. Results of [14] prove the equivalence of all these orders in the case β\γ is a horizontal

and vertical strip (compare Theorem 1.5).

4.3 The ext- and deg-relations are not equivalent

It is well-known that for modules, the ext-relation ≤ext implies the deg-relation ≤deg. In
general for modules, the converse is not the case. Here we give an example for embeddings
of linear operators.

Example 4.5 For α = (4, 2), β = (6, 4, 2), γ = (4, 2), there are three LR-tableaux:

Γ1 :
3
4

1
2

1
2

Γ2 :
2
4

1
3

1
2

Γ3 :
1
2

3
4

1
2
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We show that the partial orders given by ≤ext and ≤deg are as follows:

ext:

Γ1

Γ2 Γ3

�
�

��

�
�
��

deg:

Γ1

Γ2

Γ3

(In each case, Γ1 is the largest element in the poset.)
First we describe the embeddingswhich realize the tableaux. From [22]we know that there

is a one-parameter family of indecomposable embeddings M2(λ) occurring on the mouths of
the homogeneous tubes with tubular index 0; they all have type Γ2. The first modules in each
tube are pictured in the figure in [22, p. 27, before (2.4)]. Note that the abbreviation c′ in [22]
is to be taken as c′ = c− 1 instead of c′ = 1− c. There are two additional indecomposables,
they occur in the tube of circumference 2 at index 0; the modules are dual to each other and
have type Γ1 and Γ2, respectively. We sketch the modules, using the conventions as in [22].

M12 : • •
• • M23 : • • •

•

In addition, there are three decomposable configurations; note that M1 is the dual of M3

while M123 is self dual.

M1 : • •
M123 : • •

• M3 :
•

•

The modules M1 = P6
4 ⊕ P4

0 ⊕ P2
2 and M123 = P(0, 1, 4, 5) ⊕ P4

2 have type Γ1, and
M3 = P6

2 ⊕ P4
4 ⊕ P2

0 has type Γ3.

We claim that there are no further isomorphism types of objects in V
β
α,γ .

For finite fields, the Hall polynomial gβ
α,γ counts the number of submodules of Nβ which

are isomorphic to Nα and have factor Nγ . For each of the isomorphism types of embed-
dings (that is, M1, M12, M123, M2(λ) (λ �= 0, 1), M23, M3), we can count the corresponding
numbers of submodules of Nβ . It is straightforward to verify that the sum, taken over the

isomorphism types, is exactly gβ
α,γ .

For algebraically closed fields, the embeddings M1, M123, M3 are sums of exceptional
objects in the covering category S(˜6) studied in [22], the others are indecomposable non-
exceptional objects. The M2(λ) occur in the homogeneous tubes, M12 and M23 in the tube of
circumference 2 in the tubular family of index 0; the remaining tubes of index 0 are pictured
in [22, (2.3)], they contain no non-exceptional objects inV

β
α,γ . All non-exceptional objects in

tubes of index different from 0 have higher dimension. (Namely, an indecomposable module
of index different from zero occurs as the image under the covering functor of a regular
module over the tubular algebra Θ0 corresponding to a tubular index γ = (p : q) ∈ Q

+
[22, (1.4),(1.1)]. Since the modules in an extended tube in Tγ which have distance from the
mouth less than the rank of the tube are all exceptional, one deduces that each non-exceptional
module in Tγ has dimension pair at least (p + q) · (12, 6).)

123



The boundary of the irreducible components. . . 971

It follows that each remaining object in V
β
α,γ is a direct sum of exceptional modules. Each

exceptional object X is determined uniquely by its dimension vector in S(˜6) and can be
realized over any field. The dimension of the homomorphism spaces Hom(P, X) where P
is a picket, and hence the LR-tableau for X ([23]) do not depend on the base field. Hence
M1, M123 and M3 are the only objects in V

β
α,γ which have an exceptional direct summand.

We determine the ext-order and the deg-order on T β
α,γ .

Consider the short exact sequences

0 −→ P4
2 −→ M23 −→ P(0, 1, 4, 5) −→ 0

and

0 −→ P4
2 −→ M3 −→ P(0, 1, 4, 5) −→ 0.

In each, the sum of the end terms is M123. It follows that Γ1 ≥ext Γ2 and Γ1 ≥ext Γ3,
respectively. Note that Γ2 �>extΓ3 since there is no decomposable module of type Γ2.

Since the ext-relation implies the deg-relation, it remains to show that Γ2 ≥deg Γ3. As
mentioned, the modules M1 and M3 are dual to each other, so their orbits have the same
dimension. As OM3 = VΓ3 , and since all varieties given by LR-tableaux are irreducible of
the same dimension, it follows thatOM1 is dense in VΓ1 . In particular,OM1 containsOM12 in
its closure. Applying duality again, we obtain that OM3 contains OM23 in its closure. Thus,
OM23 is in the closure of VΓ3 . ��
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