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Abstract
We prove that the eigenvalues of the n-dimensional massive Dirac operator D0 + V ,
n ≥ 2, perturbed by a potential V , possibly non-Hermitian, are contained in the union
of two disjoint disks of the complex plane, provided V is sufficiently small with respect
to the mixed norms L1

x j L
∞̂
x j
, for j ∈ {1, . . . , n}. In the massless case, we prove instead

that the discrete spectrum is empty under the same smallness assumption on V , and
in particular the spectrum coincides with the spectrum of the unperturbed operator:
σ(D0+V ) = σ(D0) = R. The main tools used are an abstract version of the Birman–
Schwinger principle, which allows in particular to control embedded eigenvalues, and
suitable resolvent estimates for the Schrödinger operator.

Mathematics Subject Classification Primary 35P15 · 35J99 · 47A10 · 47F05 · 81Q12

1 Introduction

In recent years, non-selfadjoint operators are attracting increasing attention, both in
view of applications to quantum mechanics and other branches of physics, and for
the interesting mathematical challenges they present. While the theory of selfadjoint
operators is mature and well established, references for the non-selfadjoint case are
more sparse. Good sources for the theory and its developments are the monographs
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[27,32,41] or e.g. the more recent books [3,15] where also physical applications may
be found.

In this paper, we deal with the free Dirac operator D0 perturbed by a potential

DV = D0 + V .

The importance of this family of operators in quantum physics is well known: in two
dimensions, the operator DV is related to the quantum theory of graphene, while in
the 3D case the HamiltonianDV models the dynamic of a relativistic quantum particle
of spin 1

2 subject to an external electric field.
We consider the operator DV acting on the Hilbert space of spinors H =

L2(Rn; C
N ), where n ≥ 2, N := 2�n/2� and �·� is the ceiling function. The free

Dirac operator D0 with non negative mass m is defined as

D0 = −ic� α · ∇ + mc2α0 = −ic�
n
∑

k=1

αk
∂

∂xk
+ mc2α0,

where c is the speed of light, � is the reduced Planck constant and the matrices αk ∈
C

N×N , for k ∈ {0, . . . , n}, are elements of the Clifford algebra (see [37]) satisfying
the anti-commutation relations

α jαk + αkα j = 2δ j,k ICN , for j, k ∈ {0, . . . , n}, (1.1)

where δ j,k is the Kronecker symbol. Without loss of generality we can take

α0 =
(

ICN/2×N/2 0
0 −ICN/2×N/2

)

and choose units so that c = � = 1. The free Dirac operator is selfadjoint with domain

dom(D0) = {ψ ∈ H : ∇ψ ∈ Hn}

and core C∞
0 (Rn; C

N ).
The potential V : R

n → C
N×N will be any complex matrix-valued function with

|V | ∈ L2
loc(R

n; R), where |V (x)| is the operator norm of the matrix V (x). With the
usual slight abuse, the same symbol V will denote the multiplication operator by V
on H, with initial domain dom(V ) = C∞

0 (Rn; C
N ).

In the case of the non-selfadjoint Schrödinger operator −� + V , properties of the
point spectrum σp(−�+V ) were investigated among others by Frank [22,23], Frank
and Sabin [24], Frank and Simon [25]. In particular, the eigenvalues of−�+V satisfy
the bound

|z|γ ≤ Dγ,n

∫

Rn

|V (x)|γ+n/2dx, 0 < γ

{

= 1
2 , if n = 1,

≤ 1
2 , if n ≥ 2,
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Eigenvalue bounds for non-selfadjoint Dirac operators 623

where the constant Dγ,n > 0 is independent of z and V . This localization estimate is
due toAbramov,Aslanyan andDavies [2] for n = 1,with sharp constant D1/2,1 = 1/2,
and for larger n to Frank [22]. The proof combines the Birman–Schwinger principle
with the uniform Sobolev inequalities

∥

∥

∥(−� − z)−1
∥

∥

∥

L p→L p′ ≤ C |z|−n/2+n/p−1,
2

n + 1
≤ 1

p
− 1

p′ ≤ 2

n
,

by Kenig et al. [33], where p′ = p/(p − 1) is the dual exponent of p. In [35,39],
Laptev and Safronov conjectured that the range of γ for n ≥ 2 can be extended to
0 < γ < n/2, and Frank and Simon [25] proved the conjecture to be true for radial
symmetric potentials.

Consider now the structure of σp(DV ). In the selfadjoint case there exists an exten-
sive literature on the spectral properties of DV , see for example the monograph by
Thaller [40]. In the non-selfadjoint case, the study of the spectrum ofDV was initiated
by Cuenin et al. [10] in the 1D case, followed by [8,11,18]. For the higher dimensional
case, we refer to the works [9,16,20,38].

In the 1D paper [10], it is proved that if V = (Vi j )i, j∈{1,2} with Vi j ∈ L1(R) and

‖V ‖L1(R) =
∫

R

|V (x)|dx < 1

then every non-embedded eigenvalue z ∈ ρ(D0) of DV lies in the union

z ∈ BR0(x
−
0 ) ∪ BR0(x

+
0 )

of two disjoint closed disks, with centers and radius respectively

x±
0 = ±

√

‖V ‖41 − 2 ‖V ‖21 + 2

4(1 − ‖V ‖21)
+ 1

2
, R0 =

√

‖V ‖41 − 2 ‖V ‖21 + 2

4(1 − ‖V ‖21)
− 1

2
.

In particular, in the massless case (m = 0), the spectrum of DV is R. Moreover, this
inclusion is sharp. The proof is essentially based on the combination of the Birman–
Schwinger principle with the resolvent estimate for the free Dirac operator

∥

∥

∥(D0 − z)−1
∥

∥

∥

L1(R)→L∞(R)
≤
√

1

2
+ 1

4

∣

∣

∣

∣

z + m

z − m

∣

∣

∣

∣

+ 1

4

∣

∣

∣

∣

z − m

z + m

∣

∣

∣

∣

, z ∈ ρ(D0).

It should be remarked that, in higher dimensions n ≥ 2, L p(Rn) → L p′
(Rn) estimates

for (D0 − z)−1 do not exist, as observed in the Introduction of [8]. Indeed, Cuenin
points out that, due to the Stein–Thomas restriction theorem and standard estimates
for Bessel potentials, the resolvent (D0 − z)−1 : L p(Rn) → L p′

(Rn) is bounded
uniformly in |z| > 1 if and only if

2

n + 1
≤ 1

p
+ 1

p′ ≤ 1

n
,
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624 P. D’Ancona et al.

and thus we are forced to choose n = 1. The situation for the Schrödinger operator is
better since the right-hand side of the above range is 2/n, as per theKenig–Ruiz–Sogge
estimates.

In [9], Cuenin localized the eigenvalues of the perturbed Dirac operator in terms
of the L p-norm of the potential V , but in an unbounded region of the complex plane.
Indeed, Theorem 6.1.b of [9] states that, if n ≥ 2 and |V | ∈ L p, with p ≥ n, then any
eigenvalue z ∈ ρ(D0) of DV satisfies

|z/�z|(n−1)/p |z|1−n/p ≤ C ‖V ‖L p(Rn) ,

where C is a constant independent of z and V . Similar unbounded enclosing regions
were obtained in [12], where Cuenin and Tretter study arbitrary non-symmetric per-
turbations of selfadjoint operators. In particular, for the massless Dirac operator inR

2,
if |V | ∈ L p with p > 2, they obtain that

σ(DV ) ⊂
⋂

0<b<1

⎧

⎪

⎨

⎪

⎩

z ∈ C : |z|2 ≤
(2π(p − 2))−

2
p−2 ‖V ‖

2p
p−2

L p(R2)
b− 4

p−2 + b2|�z|2
1 − b2

⎫

⎪

⎬

⎪

⎭

.

Considering instead the massive Dirac operator with Coulomb-like potential in R
3,

the authors in [12] obtain that, if |V (x)|2 ≤ C2
1 + C2

2 |x |−2 for almost all x ∈ R
3,

where C1,C2 ≥ 0 are constants such that C2
1 + 4C2

2m
2 < m2, then

σ(DV ) ⊂
{

z ∈ C : |�z| ≥ m −
√

C2
1 + 4C2

2m
2, |z|2 ≤ C2

1 + 4C2|�z|2
1 − 4C2

2

}

.

A different result on the localization of eigenvalues in an unbounded regions was
proved by Fanelli and Krejčiřík in [20]: in 3D, if |V | ∈ L3(R3) and z ∈ σp(DV ), then

(

1 + (�z)2

(�√
m2 − z2)2

)−1/2

< (π/2)1/3
√

1 + e−1 + 2e−2 ‖V ‖L3(R3) . (1.2)

The advantage of the last result lies in the explicit condition which is easy to check in
applications. However, also in this result the eigenvalues are localized in an unbounded
region around the continuous spectrum σ(D0) = (−∞,−m] ∪ [m,+∞) of the free
Dirac operator D0.

We finally mention the recent paper [7], where the authors obtain results on the
absence of eigenvalues for the Schrödinger and Pauli operators with a constant mag-
netic field and non-Hermitian potentials, and for the purely magnetic Dirac operators.
However, Dirac operators with electric perturbations can not be treated by the multi-
plicative techniques of [7] (recall that the square of a purely magnetic Dirac operator
is a diagonal magnetic Laplacian, which allows one to use the multiplier method).

Themain goal of the present paper is to generalize the results byCuenin et al. [10] to
higher dimensions, enclosing the eigenvalues of the massive (m > 0) Dirac operator
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Eigenvalue bounds for non-selfadjoint Dirac operators 625

DV in a compact region of the complex plane, provided the potential V satisfies a
suitable smallness condition in a mixed Lebesgue norm. In the case of the massless
(m = 0) Dirac operator, we obtain that the point spectrum of the perturbed operator
DV is empty, and then σ(DV ) = σ(D0) = R.

Before we formalize our results in Theorems 1 and 2 below, we introduce a few
notations used throughout the paper.

Notations We use the symbols σ(H), σp(H), σe(H) and ρ(H) respectively for the
spectrum, the point spectrum, the essential spectrum and the resolvent of an operator
H . More explicitly, we define

σe(H) = {z ∈ C : H − z is not a Fredholm operator},

whereas the discrete spectrum is defined as

σd(H) = {z ∈ C : z is an isolated eigenvalue of H of finite multiplicity}.

Recall that for non-selfadjoint operators, the essential spectrum defined above is not
the complement of the discrete spectrum, see e.g. [17]. For z ∈ ρ(H), we denote with
RH (z) := (H − z)−1 the resolvent operator of H . We recall also that

σ(−�) = σe(−�) = [0,+∞),

σ (D0) = σe(D0) = (−∞,−m] ∪ [m,+∞).

For j ∈ {1, . . . , n} and x = (x1, . . . , xn) ∈ R
n , we write

x̂ j := (x1, . . . , x j−1, x j+1, . . . , xn) ∈ R
n−1,

(x, x̂ j ) := (x1, . . . , x j−1, x, x j+1, . . . , xn) ∈ R
n .

The mixed Lebesgue spaces L p
x j L

q
x̂ j

(Rn) are the spaces of measurable functions on
R
n with

‖ f ‖L p
x j L

q
x̂ j

:=
(

∫

R

(∫

Rn−1
| f (x j , x̂ j )|qd x̂ j

)p/q

dx j

)1/p

< ∞.

Obvious modifications occur for p = ∞ or q = ∞ (see e.g. [4] for general properties
of such spaces).

For any matrix-valued function M : R
n → C

N×N , we set

‖M‖L p
x j L

q
x̂ j

:= ‖|M |‖L p
x j L

q
x̂ j

where |M(x)| denotes the operator norm of the matrix M(x). Further, we write

[ f ∗x j g](x) :=
∫

R

f (y j , x̂ j )g(x j − y j , x̂ j )dy j ,
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626 P. D’Ancona et al.

[Fx j f ](ξ j , x̂ j ) := 1√
2π

∫

R

e−i x j ξ j f (x j , x̂ j )dx j ,

[F−1
ξ j

f ](x j , x̂ j ) := 1√
2π

∫

R

eix j ξ j f (ξ j , x̂ j )dξ j ,

to denote the partial convolution respect to x j , the partial Fourier transform with
respect to x j , and its inverse, respectively. The partial (inverse) Fourier transform with
respect to x̂ j and the complete (inverse) Fourier transformwith respect to x are defined
in a similar way. Finally, we shall need the function spaces

X ≡ X(Rn) :=
n
⋂

j=1

L1
x j L

2
x̂ j (R

n), Y ≡ Y (Rn) :=
n
⋂

j=1

L1
x j L

∞̂
x j (R

n),

with norms defined as follows

‖ f ‖X = max
j∈{1,...,n} ‖ f ‖L1

x j
L2
x̂ j

, ‖ f ‖Y = max
j∈{1,...,n} ‖ f ‖L1

x j
L∞̂
x j

.

The dual space of X is given by

X∗ ≡ X∗(Rn) :=
n
∑

j=1

L∞
x j L

2
x̂ j (R

n)

(see e.g. [5]), endowed with the norm

‖ f ‖X∗ := inf

⎧

⎨

⎩

n
∑

j=1

∥

∥ f j
∥

∥

L∞
x j
L2
x̂ j

: f =
n
∑

j=1

f j

⎫

⎬

⎭

. (1.3)

We can now state our results.

Theorem 1 Let m > 0. There exists a constant C0 > 0 such that if

‖V ‖Y < C0,

then all eigenvalues z ∈ σp(DV ) of DV are contained in the union

z ∈ BR0(x
−
0 ) ∪ BR0(x

+
0 )

of the two closed disks in C with centers in x−
0 , x+

0 and radius R0, with

x±
0 := ±m

V2 + 1

V2 − 1
, R0 := m

2V
V2 − 1

where V = V(V ) :=
[

(n + 1)C0

‖V ‖Y − n

]2

> 1.
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Eigenvalue bounds for non-selfadjoint Dirac operators 627

Theorem 2 Let m = 0. There exists a constant C0 > 0 such that if

‖V ‖Y < C0,

then DV has no eigenvalues.
In this case, we have σ(DV ) = σe(DV ) = R.

Remark 1.1 The crucial tool in our proof is a sharp uniform resolvent estimate for the
free Dirac operator. This approach is inspired by [22], where the result by Kenig et
al. [33] was used for the same purpose. In our case, we prove in Sect. 2 the following
estimates, of independent interest:

‖R−�(z)‖X→X∗ ≤ C |z|−1/2, ‖∂k R−�(z)‖X→X∗ ≤ C .

and

∥

∥RD0(z)
∥

∥

X→X∗ ≤ C

[

n +
∣

∣

∣

∣

z + m

z − m

∣

∣

∣

∣

sgn(�z)/2
]

.

These can be regarded as precised resolvent estimates of Agmon–Hörmander type.
Note also that similar uniform estimates, but in non sharp norms, were proved earlier
by the first and second Author in [13,14,19].

In Sect. 3,we combine our uniform estimateswith theBirman–Schwinger principle,
enabling us in Sect. 4 to complete the proof of Theorems 1 and 2.

Remark 1.2 The space Y satisfies the embedding

Y ↪→ Ln,1(Rn) ↪→ Ln(Rn), (1.4)

where L p,q(Rn) denotes Lorentz spaces. Moreover, we have

W 1,1(Rn) ↪→
n
⋂

j=1

L1
x̂ j L

∞
x j (R

n) ↪→ Ln/(n−1),1(Rn),

where Wm,p(Rn) is a Sobolev space. In particular, in dimension 2 we obtain

W 1,1(R2) ↪→ Y = L1
x1L

∞
x2 (R

2) ∩ L1
x2L

∞
x1 (R

2) ↪→ L2,1(R2) ↪→ L2(R2).

We refer to Fournier [21], Blei and Fournier [6] and Milman [36] for these inclusions.

Remark 1.3 According to the previous remark we have Y (R3) ↪→ L3(R3). Thus in
the massive 3-dimensional case the assumption ‖V ‖Y < C0 implies both our result,
Theorem (1), and the one by Fanelli and Krejčiřík [20], i.e. the eigenvalue bound (1.2).
Although our result improves the latter one for large eigenvalues, bounding them in
two compact regions, it may happen that, in a neighbourhood of z = −m and z = m,
the bound in (1.2) improves the one stated in Theorem 1.
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628 P. D’Ancona et al.

Fig. 1 The disks in our Theorem 1, for n = 3, are represented in red; the Fanelli–Krejčiřík region [20]
defined by (1.2) is in blue; and the spectrum ofD0 is in green. When (1.5) holds we are in situation (a) and
our result implies the result in [20]; if (1.5) does not hold the two results are not entirely comparable, as
shown in picture (b) (color figure online)

Indeed, it is not hard to check that, supposing ‖V ‖Y sufficiently small, our disks
are enclosed in the region found by Fanelli and Krejčiřík if

m
V2 + 1

V2 − 1
−
√

(

m
2V

V2 − 1

)2

− (z)2

≥
√

√

√

√(1 − c2 ‖V ‖2
L3)m2 −

(

1 − 1

c2 ‖V ‖2
L3

)

(z)2, (1.5)

where

c = (π/2)1/3
√

1 + e−1 + 2e−2, V =
[

4C0

‖V ‖Y − 3

]2

.

This condition may not always be satisfied and depends on the norms of the potential
V in the spaces L3(R3) and Y (R3). If this happens, the result in Theorem 1 and the
one in [20] should be jointly taken in consideration for the eigenvalues bound. This
situation is illustrated in Fig. 1.

2 Uniform resolvent estimates

Fix constants r , R, δ > 0 such that

1 < r < R,
√

R2 − 1 < δ < 1,
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Eigenvalue bounds for non-selfadjoint Dirac operators 629

and consider the open cover S = {S+
j ,S−

j ,S∞} j∈{1,...,n} of the space R
n defined by

S±
j = {ξ ∈ R

n : ± ξ j > δ|̂ξ j |, |ξ | < R}, S∞ = {ξ ∈ R
n : |ξ | > r}.

Let {χ+
j , χ−

j , χ∞} j∈{1,...,n} be a smooth partition of unity subordinate to S, that is to
say a family of smooth positive functions such that

suppχ±
j ⊂ S±

j , suppχ∞ ⊂ S∞, χ∞ +
n
∑

j=1

[χ+
j + χ−

j ] ≡ 1.

From these, define the smooth partition of unity χ = {χ j } j∈{1,...,n}, with

χ j := χ+
j + χ−

j + 1

n
χ∞, (2.1)

and correspondingly, for j ∈ {1, . . . , n}, the Fourier multipliers

χ j (|z|−1/2D) f = F−1
ξ [χ j (|z|−1/2ξ)Fx f ].

Note in particular that

n
∑

j=1

χ j (|z|−1/2D) f = f . (2.2)

The following estimates hold true.

Lemma 1 For every z ∈ ρ(−�) = C\[0,+∞), f ∈ L1
x j L

2
x̂ j

and j, k ∈ {1, . . . , n},
we have that

∥

∥

∥χ j

(

|z|−1/2D
)

R−�(z) f
∥

∥

∥

L∞
x j
L2
x̂ j

≤ C |z|−1/2 ‖ f ‖L1
x j
L2
x̂ j

,

∥

∥

∥χ j

(

|z|−1/2D
)

∂k R−�(z) f
∥

∥

∥

L∞
x j
L2
x̂ j

≤ C ‖ f ‖L1
x j
L2
x̂ j

,

where {χ j } j∈{1,...,n} are defined in (2.1) and C > 0 does not depend on z.
In particular, it follows that

‖R−�(z)‖X→X∗ ≤ C |z|−1/2, ‖∂k R−�(z)‖X→X∗ ≤ C .

Lemma 2 For every z ∈ ρ(D0) = C\{ζ ∈ R : |ζ | ≥ m}, f ∈ L1
x j L

2
x̂ j

and j ∈
{1, . . . , n} we have that
∥

∥

∥χ j

(

|z2 − m2|−1/2D
)

RD0(z) f
∥

∥

∥

L∞
x j
L2
x̂ j

≤ C

[

n +
∣

∣

∣

∣

z + m

z − m

∣

∣

∣

∣

sgn(�z)/2
]

‖ f ‖L1
x j
L2
x̂ j

,
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630 P. D’Ancona et al.

where {χ j } j∈{1,...,n} are defined in (2.1) and C > 0 is the same as in Lemma 1. In
particular, it follows that

∥

∥RD0(z)
∥

∥

X→X∗ ≤ C

[

n +
∣

∣

∣

∣

z + m

z − m

∣

∣

∣

∣

sgn(�z)/2
]

.

Remark 2.1 Before we proceed further, we give a heuristic explanation for the choice
of the localization in the frequency domain via the Fourier multiplier χ j (|z|−1/2D).
Since the symbol (|ξ |2 − z)−1 of the resolvent R−�(z) blows-up as z → ζ , for every
fixed ζ ≥ 0, our trick is to use the norms L∞

x j L
2
x̂ j

for j ∈ {1, . . . , n}, which allows

us to restrict the problem from the spherical surface {ξ ∈ R
n : |ξ | = |z|−1/2} to the

“equator” given by {ξ ∈ R
n : ξ j = 0, |̂ξ j | = |z|−1/2}. We then avoid these regions

thanks to the smooth functions χ j .

Proof of Lemma 1 The last two estimates follow trivially from the first two estimates,
(2.2) and the definitions of the norms on X and X∗.

For simplicity, from now on C > 0 will stand for a generic positive constant
independent of z and which may change from line to line. Clearly, by scaling, it is
sufficient to consider |z| = 1, z �= 1. Thus we are reduced to prove that

∥

∥χ j (D)∂sk R−�(z) f
∥

∥

L∞
x j
L2
x̂ j

≤ C ‖ f ‖L1
x j
L2
x̂ j

,

where |z| = 1, s ∈ {0, 1}, ∂0k = 1, ∂1k = ∂k and j, k ∈ {1, . . . , n}. This is equivalent
to

∥

∥

∥

∥

F−1
ξ

(

ξ sk χ j (ξ)

|ξ |2 − λ − iε
Fx f

)∥

∥

∥

∥

L∞
x j
L2
x̂ j

≤ C ‖ f ‖L1
x j
L2
x̂ j

, (2.3)

where we have written z = λ+ iε, λ2 +ε2 = 1 and z �= 1. We proceed by splitting χ j

in the functions which appear in its definition (2.1), localizing ourselves in the regions
of the frequency domain near the unit sphere, i.e. S±

j , and far from it, i.e. S∞.

Estimate on S±
j . We want to prove

∥

∥

∥

∥

∥

F−1
ξ

(

ξ skχ
±
j (ξ)

|ξ |2 − λ − iε
Fx f

)∥

∥

∥

∥

∥

L∞
x j
L2
x̂ j

≤ C ‖ f ‖L2
x̂ j
L1
x j

. (2.4)

Let us define the family of operators

T±
j : L p

x j L
2
x̂ j → L p

x j L
2
x̂ j , f �→ T±

j f := F−1
ξ

(

f̂ ◦ �
)

,

where

�(ξ) := (ξ j + ϕ(̂ξ j ),̂ξ j ), ϕ(̂ξ j ) := ±
√

|1 − |̂ξ j |2|.
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Eigenvalue bounds for non-selfadjoint Dirac operators 631

Roughly speaking, the operator T±
j flattens the upper half unit sphere in the frequency

domain {ξ ∈ R
n : |ξ | = 1,±ξ j > 0}. Writing more explicitly these operators, we

have

T±
j f (x) = 1

(2π)n/2

∫

Rn
eix ·ξ f̂ (ξ j + ϕ(̂ξ j ),̂ξ j )dξ

= 1

(2π)n

∫

Rn
eix ·ξ

∫

Rn
f (y)e−iy·(ξ j+ϕ(̂ξ j ),̂ξ j )dydξ

= 1

(2π)n

∫

Rn−1
ei x̂ j ·̂ξ j

∫

Rn−1
e−iy′ ·̂ξ j

∫

R

∫

R

f (y)ei(x j−y j )ξ j−iy jϕ(̂ξ j )dy j dξ j dy
′d̂ξ j

= 1

2π
F−1

̂ξ j
Fy′

(

e−i x jϕ(̂ξ j )

∫

R

∫

R

f (y)ei(x j−y j )ξ j dy j dξ j

)

= F−1
̂ξ j

Fy′
(

e−i x jϕ(̂ξ j ) f (x j , y
′)
)

where we used the substitution ξ j �→ ξ j − ϕ(̂ξ j ) in the fourth step. Applying the
Plancherel Theorem twice, we obtain that T±

j are isometries on L p
x j L

2
x̂ j
: for p ∈

[1,+∞] we have
∥

∥

∥T±
j f

∥

∥

∥

L p
x j L

2
x̂ j

= ‖ f ‖L p
x j L

2
x̂ j

. (2.5)

We can then write
∥

∥

∥

∥

∥

F−1
ξ

(

ξ skχ
±
j (ξ)

|ξ |2 − λ − iε
Fx f

)∥

∥

∥

∥

∥

L∞
x j

L2
x̂ j

=
∥

∥

∥

∥

∥

T±
j F

−1
ξ

(

ξ skχ
±
j (ξ)

|ξ |2 − λ − iε
Fx f

)∥

∥

∥

∥

∥

L∞
x j

L2
x̂ j

=
∥

∥

∥

∥

∥

F−1
ξ

(

(ξ skχ
±
j ) ◦ �

|�|2 − λ − iε
̂T±
j f

)∥

∥

∥

∥

∥

L∞
x j

L2
x̂ j

= 1√
2π

∥

∥

∥

∥

∥

∥

aλ,ε(D)ψ ∗x j F−1
ξ j

⎛

⎝

̂T±
j f

ξ j − i |ε|

⎞

⎠

∥

∥

∥

∥

∥

∥

L∞
x j

L2
̂ξ j

≤ 1√
2π

∥

∥aλ,ε(D)ψ
∥

∥

L1
x j

L∞̂
ξ j

∥

∥

∥

∥

∥

∥

F−1
ξ

⎛

⎝

̂T±
j f

ξ j − i |ε|

⎞

⎠

∥

∥

∥

∥

∥

∥

L∞
x j

L2
̂ξ j

where the last inequality follows from Young’s inequality and

aλ,ε(D)ψ = F−1
ξ j

(

aλ,εFx j (ψ)
)

,

aλ,ε(ξ) :=
(ξ j − i |ε|)

(

ξk ± δk, j

√

1 − |̂ξ j |2
)s

ξ j

(

ξ j ± 2
√

1 − |̂ξ j |2
)

+ 1 − λ − iε

√

(χ±
j ◦ �)(ξ),

ψ(x j ,̂ξ j ) = F−1
ξ j

(√

(χ±
j ◦ �)(ξ)

)

.
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632 P. D’Ancona et al.

Note that we dropped the absolute value in the definition of ϕ, i.e.
√

|1 − |̂ξ j |2| =
√

1 − |̂ξ j |2, because supp{χ±
j ◦ �} ⊂ {ξ ∈ R

n : |̂ξ j | ≤ 1}, thanks to the definition of

S±
j and the assumption δ ≥ √

R2 − 1. It is simple to see that aλ,ε(D)ψ ∈ S , where
S is the space of Schwartz functions, since aλ,ε(D)ψ is the inverse Fourier transform
of a smooth compactly supported function. Moreover, we can consider aλ,ε(D)ψ as
a pseudodifferential operator with symbol aλ,ε applied to the Schwartz function ψ ;
letting λ + iε → 1 we have the pointwise convergence

lim
λ+iε→1

aλ,ε(ξ) =

(

ξk ± δk, j

√

1 − |̂ξ j |2
)s

ξ j ± 2
√

1 − |̂ξ j |2

√

χ±
j

(

ξ j ±
√

1 − |̂ξ j |2,̂ξ j
)

=: a(ξ) ∈ S

and hence aλ,ε(D)ψ → a(D)ψ inS which implies

lim
λ+iε→1

∥

∥aλ,ε(D)ψ
∥

∥

L1
x j
L∞̂

ξ j

= ‖a(D)ψ‖L1
x j
L∞̂

ξ j
< +∞.

Thus,
∥

∥aλ,ε(D)ψ
∥

∥

L1
x j
L∞̂

ξ j

is uniformly bounded respect to z ∈ C with |z| = 1. We

have proved

∥

∥

∥

∥

∥

F−1
ξ

(

ξ skχ
±
j (ξ)

|ξ |2 − λ − iε
Fx f

)∥

∥

∥

∥

∥

L∞
x j
L2
x̂ j

≤ C

∥

∥

∥

∥

∥

∥

F−1
ξ

⎛

⎝

̂T±
j f

ξ j − i |ε|

⎞

⎠

∥

∥

∥

∥

∥

∥

L∞
x j
L2
̂ξ j

. (2.6)

By Plancherel’s Theorem and Young’s inequality, and by equality (2.5), we have

√
2π

∥

∥

∥

∥

∥

∥

F−1
ξ j

⎛

⎝

̂T±
j f

ξ j − i |ε|

⎞

⎠

∥

∥

∥

∥

∥

∥

L∞
x j
L2
̂ξ j

=
∥

∥

∥

∥

F−1
ξ j

(

1

ξ j − i |ε|
)

∗x j Fx̂ j (T
±
j f )

∥

∥

∥

∥

L∞
x j
L2
̂ξ j

=
∥

∥

∥ie−|ε|x j θ ∗x j Fx̂ j (T
±
j f )

∥

∥

∥

L∞
x j
L2
̂ξ j

≤
∥

∥

∥

∥

∥

e−|ε|x j θ ∗x j
∥

∥

∥T±
j f

∥

∥

∥

L2
x̂ j

∥

∥

∥

∥

∥

L∞
x j

≤
∥

∥

∥e−|ε|x j θ
∥

∥

∥

L∞
x j

‖ f ‖L1
x j
L2
x̂ j

= ‖ f ‖L1
x j
L2
x̂ j

,

where θ ≡ θ(x j ) is the Heaviside function. Inserting this in (2.6) we get (2.4).
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Eigenvalue bounds for non-selfadjoint Dirac operators 633

Estimate on S∞. We shall now prove that

∥

∥

∥

∥

F−1
ξ

(

ξ skχ∞(ξ)

|ξ |2 − λ − iε
Fx f

)∥

∥

∥

∥

L∞
x j
L2
x̂ j

≤ C ‖ f ‖L2
x̂ j
L1
x j

. (2.7)

We consider three cases, depending on whether we are localized in the regions defined
by

C1R, j := {ξ ∈ R
n : |̂ξ j | > R},

C2R, j := {ξ ∈ R
n : |̂ξ j | ≤ R, |ξ j | ≤ 2R},

C3R, j := {ξ ∈ R
n : |̂ξ j | ≤ R, |ξ j | > 2R}.

We set

χ1∞(ξ) :=
{

1 if |̂ξ j | > R,

0 otherwise,

χ2∞(ξ) :=
{

χ∞(ξ) if |̂ξ j | ≤ R and |ξ j | ≤ 2R,

0 otherwise,

χ3∞(ξ) :=
{

1 if |̂ξ j | ≤ R and |ξ j | > 2R,

0 otherwise,

and observe that χ∞ = χ1∞ + χ2∞ + χ3∞, since χ∞ ≡ 1 for |ξ | > R, from the
assumptions on the cover S and the partition χ .

By Plancherel’s Theorem and Hölder’s, Young’s andMinkowski’s integral inequal-
ities, for h ∈ {1, 2, 3} we infer

∥

∥

∥

∥

∥

F−1
ξ

(

ξ skχ
h∞(ξ)

|ξ |2 − λ − iε
Fx f

)∥

∥

∥

∥

∥

L∞
x j
L2
x̂ j

≤ Ch ‖ f ‖L1
x j
L2
x̂ j

with

Ch := 1√
2π

∥

∥

∥

∥

∥

F−1
ξ j

(

ξ sk χh∞(ξ)

ξ2j + σ 2

)∥

∥

∥

∥

∥

L∞
x j
L∞̂

ξ j

, σ :=
√

|̂ξ j |2 − λ − iε. (2.8)

Here and below, we always consider the principal branch of the complex square root
function. Clearly, if we prove that Ch for h ∈ {1, 2, 3} is bounded uniformly with
respect to λ and ε, we recover (2.7).

Estimate on C1R, j . Observing that χ1∞(ξ) ≡ χ1∞(̂ξ j ) and noting that

�σ =
√

|σ |2 + |̂ξ j |2 − λ

2
> 0,
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634 P. D’Ancona et al.

we can explicitly compute the Fourier transforms:

• if k �= j , then

C1 =
∥

∥

∥

∥

χ1∞(̂ξ j )ξ
s
k
e−σ |x j |

2σ

∥

∥

∥

∥

L∞
x j
L∞̂

ξ j

≤
∥

∥

∥

∥

χ1∞(̂ξ j )|̂ξ j |s e
−�σ |x j |

2|σ |
∥

∥

∥

∥

L∞
x j
L∞̂

ξ j

≤ sup
|̂ξ j |>R

|̂ξ j |s
2(|̂ξ j |4 − 2λ|̂ξ j |2 + 1)1/4

≤
{

Rs

2
√
R2−1

if λ > 0,

1/2 if λ ≤ 0;

• if s = 1, k = j , then

C1 =
∥

∥

∥

∥

χ1∞(̂ξ j )
i

2
sgn{x j }e−σ |x j |

∥

∥

∥

∥

L∞
x j
L∞̂

ξ j

≤ 1

2
.

Estimate on C2R, j . By the definition of the inverse Fourier transform in (2.8) and

from the fact that χ2∞(ξ) = 0 when |ξ | < r , we see that

C2 ≤ 1

2π

∥

∥

∥

∥

∥

∫ +∞

−∞
|eix j ξ j | |ξ sk | χ2∞(ξ)

||ξ |2 − λ| dξ j

∥

∥

∥

∥

∥

L∞
x j
L∞̂

ξ j

≤ (2R)s

2π

∥

∥

∥

∥

χ2∞(ξ)

|ξ |2 − 1

∥

∥

∥

∥

L∞̂
ξ j
L1

ξ j

which is finite since χ2∞ is compactly supported due to its definition.
Estimate on C3R, j . By the inverse Fourier transform in (2.8), recalling the definition

of χ3∞ and exploiting the substitution ξ j �→ sgn{x j }ξ j , we have

C3 = 1

2π

∥

∥

∥

∥

∥

(1 − χ1∞)(̂ξ j )

∫

|ξ j |>R
ei |x j |ξ j

ξ sk

ξ2j + σ 2
dξ j

∥

∥

∥

∥

∥

L∞
x j
L∞̂

ξ j

= 1

2π

∥

∥

∥

∥

∥

∫

|ξ j |>R
ψ(x j ,̂ξ j , ξ j )dξ j

∥

∥

∥

∥

∥

L∞
x j
L∞̂

ξ j

where, for fixed̂ξ j , x j , the complex function ψ(x j ,̂ξ j , ·) : C → C is defined by

ψ(x j ,̂ξ j , w) :=

⎧

⎪

⎨

⎪

⎩

(1 − χ1∞)(̂ξ j )
ξ sk

w2 + σ 2 e
i |x j |w if k �= j,

(1 − χ1∞)(̂ξ j )
w

w2 + σ 2 e
i |x j |w if s = 1, k = j,
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Eigenvalue bounds for non-selfadjoint Dirac operators 635

which is holomorphic in C\{w−, w+}, where w± = ±iσ . Observe that ψ ≡ 0 for
|̂ξ j | > R, and if |̂ξ j | ≤ R we have

|w±| = |σ | = 4
√

(|̂ξ j |2 − λ)2 + ε2 <
√
2R. (2.9)

Define, for a radius A > 0, the half circle γA := {Aeiθ : θ ∈ [0, π ]} in the upper half
complex plane. Fixing ρ > R, by the Residue Theorem, we get

(

∫

[−ρ,−2R]
−
∫

γ2R

+
∫

[2R,ρ]
+
∫

γρ

)

ψ(x j ,̂ξ j , w)dw = 0.

Observing that we can consider x j �= 0, letting ρ → +∞ we can apply Jordan’s
lemma to the integral on the curve γρ , finally getting

C3 = 1

2π

∥

∥

∥

∥

∫

γ2R

ψ(x j ,̂ξ j , w)dw

∥

∥

∥

∥

L∞
x j
L∞̂

ξ j

≤ (2R)s

2π

∥

∥

∥

∥

(1 − χ1∞)(̂ξ j )

∫ π

0

dθ

|4R2e2iθ + σ 2|
∥

∥

∥

∥

L∞̂
ξ j

≤ (2R)s−2,

where we used the relation (2.9).
Summing up, we can finally recover the desired estimate (2.3), where the positive

constant C does not depend on λ and ε, but only on R and the partition χ . ��

Lemma 2 is now a straightforward corollary to Lemma 1.

Proof of Lemma 2 Again, the last estimate in the statement follows from the first one,
(2.2) and the definition of the X and X∗ norms.

From the anticommutation relations (1.1) we infer, for every z ∈ C,

(D0 − z IN )(D0 + z IN ) = (−� + m2 − z2)IN .

Thus as usual, for z ∈ ρ(D0) we can write

RD0(z) = (D0 + z IN )R−�(z2 − m2)IN .
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Write f j = χ j (|z2 − m2|−1/2D) f . By Lemma 1, it is easy to get

∥

∥RD0(z) f j
∥

∥

L∞
x j
L2
x̂ j

≤
∥

∥

∥

∥

∥

n
∑

k=1

αk∂k R−�(z2 − m2) f j

∥

∥

∥

∥

∥

L∞
x j
L2
x̂ j

+
∥

∥

∥(mα0 + z IN )R−�(z2 − m2) f j
∥

∥

∥

L∞
x j
L2
x̂ j

≤
n
∑

k=1

∥

∥

∥∂k R−�(z2 − m2) f j
∥

∥

∥

L∞
x j
L2
x̂ j

+ max{|z + m|, |z − m|}
∥

∥

∥R−�(z2 − m2) f j
∥

∥

∥

L∞
x j
L2
x̂ j

≤C

[

n +
∣

∣

∣

∣

z + m

z − m

∣

∣

∣

∣

sgn(�z)/2
]

‖ f ‖L1
x j
L2
x̂ j

as claimed. ��

3 The Birman–Schwinger principle

In this section, following the approach of Kato [31] and Konno and Kuroda [34], we
define in a rigorousway the closed extension of a perturbed operatorwith a factorizable
potential, formally defined as H0 + B∗A, in order to give an abstract version of the
Birman–Schwinger principle. We mention also the recent work [30] by Hansmann
and Krejčiřík, where, among others, a nice and innovative approach is developed to
deal with the embedded eigenvalues.

LetH,H′ beHilbert spaces and consider the densely defined, closed linear operators

H0 : dom(H0) ⊆ H → H, A : dom(A) ⊆ H → H′, B : dom(B) ⊆ H → H′,

such that ρ(H0) �= ∅ and

dom(H0) ⊆ dom(A), dom(H∗
0 ) ⊆ dom(B).

For simplicity, we assume also that σ(H0) ⊂ R. For z ∈ ρ(H0), denote by RH0(z) =
(H0 − z)−1 the resolvent operator of H0.

The idea of the principle is easy to explain in the case of bounded operators A and
B. Then H = H0 + B∗A is well defined as a sum of operators, and if z ∈ ρ(H0), the
Birman–Schwinger operator

Q(z) = A(H0 − z)−1B∗

is also a bounded operator. One checks immediately that z ∈ σp(H) ∩ ρ(H0) implies
−1 ∈ σp(Q(z)), and so ‖Q(z)‖H′→H′ ≥ 1. Hence, a bound for the norm of Q(z)
gives information on the localization of the non-embedded eigenvalues of H .
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Eigenvalue bounds for non-selfadjoint Dirac operators 637

We now return to the general case of an unbounded B∗A. As in [34], we assume
the following set of assumptions.

Assumption 1 For some, and hence for all, z ∈ ρ(H0), the operator ARH0(z)B
∗,

densely defined on dom(B∗), has a closed extension Q(z) in H′,

Q(z) = ARH0(z)B
∗,

which we call the Birman–Schwinger operator, with norm bounded by

‖Q(z)‖H′→H′ ≤ �(z) (3.1)

for some function � : ρ(H0) → R+.

Assumption 2 There exists z0 ∈ ρ(H0) such that −1 ∈ ρ(Q(z0)).

Observe that the last assumption is implied by the following one:
Assumption B’. There exists z0 ∈ ρ(H0) such that �(z0) < 1.
Indeed, assuming Assumptions A and B’, we get that ‖Q(z0)‖H′→H′ < 1. Thus,

expanding in a Neumann series, we see that (1 + Q(z0))−1 exists and hence −1 ∈
ρ(Q(z0)).

Let us collect some useful facts in the next lemma.

Lemma 3 Suppose Assumptions A and B and let z, z1, z2 ∈ ρ(H0). Then the following
holds true:

(i) ARH0(z) ∈ B(H,H′), RH0(z)B
∗ = [B(H∗

0 − z)−1]∗ ∈ B(H′,H),
(ii) RH0(z1)B

∗ − RH0(z2)B
∗ = (z1 − z2)RH0(z1)RH0(z2)B

∗ = (z1 − z2)RH0(z2)
RH0(z1)B

∗,
(iii) Q(z) = ARH0(z)B

∗, Q(z)∗ = BRH0(z)
∗A∗,

(iv) ran(RH0(z)B
∗) ⊆ dom(A), ran(RH0(z)

∗A∗) ⊆ dom(B),
(v) Q(z1) − Q(z2) = (z1 − z2)ARH0(z1)RH0(z2)B

∗ = (z1 − z2)ARH0(z2)
RH0(z1)B

∗.

Proof See Lemma 2.2 in [29]. ��
We can construct now the extension of the perturbed operator H0 + B∗A.

Lemma 4 (Extension of operators with factorizable potential) Suppose Assumptions
A and B. Let z0 ∈ ρ(H0) such that −1 ∈ ρ(Q(z0)). Then the operator

RH (z0) = RH0(z0) − RH0(z0)B
∗(1 + Q(z0))

−1ARH0(z0) (3.2)

defines adensely defined, closed, linear operator H inHwhichhas RH (z0)as resolvent
and which extends H0 + B∗A.

Proof We refer to Theorem 2.3 in [29]. See also the work by Kato [31]. ��
We can finally formulate the abstract Birman–Schwinger principle.
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Lemma 5 (Birman–Schwinger principle) Suppose Assumptions A and B. Let z0 ∈
ρ(H0) such that −1 ∈ ρ(Q(z0)) and H be the extension of H0 + B∗A given by
Lemma 4. Fix z ∈ σp(H) with eigenfunction 0 �= ψ ∈ dom(H), i.e. Hψ = zψ , and
set φ := Aψ .

Then φ �= 0, and in addition

(i) if z ∈ ρ(H0) then

Q(z)φ = −φ

and in particular

1 ≤ ‖Q(z)‖H′→H′ ≤ �(z);

(ii) if z ∈ σ(H0)\σp(H0) and if H0 is self-adjoint, then

lim
ε→0± Q(z + iε)φ = −φ weakly,

id est

lim
ε→0±(ϕ, Q(z + iε)φ)H′ = −(ϕ, φ)H′ (3.3)

for every ϕ ∈ H′, where (·, ·)H′ is the scalar product on H′. In particular

1 ≤ lim inf
ε→0± ‖Q(z + iε)‖H′→H′ ≤ lim inf

ε→0± �(z + iε). (3.4)

Proof Let ε = 0 if z ∈ ρ(H0) and ε �= 0 if z ∈ σ(H0)\σp(H0). In order to treat the
embedded eigenvalues, we will adapt the argument of Lemma 1 in [34] together with
the limiting argument from Theorem 8 in [30].

Note that Hψ = zψ is equivalent to

ψ = (z − z0)RH (z0)ψ, (3.5)

and hence we obtain from (3.2) that

(H0 − z − iε)RH0(z0)ψ = −(z − z0)RH0(z0)B
∗(1 + Q(z0))

−1ARH0(z0)ψ

−iεRH0(z0)ψ. (3.6)

Define ˜ψ = (1 + Q(z0))−1ARH0(z0)ψ . If ˜ψ = 0, by (3.6) follows (H0 −
z)RH0(z0)ψ = 0. Since 0 �= RH0(z0)ψ ∈ dom(H0), we get z ∈ σp(H0), which
contradicts the assumption on z. Thus, we proved ˜ψ �= 0. Moreover, we can show the
identity

φ = Aψ = (z − z0)(1 + Q(z0))
−1ARH0(z0)ψ = (z − z0)˜ψ, (3.7)
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from which in particular φ �= 0. Indeed, by (3.2) and (iii) of Lemma 3, it follows that

ARH (z0) = (1 + Q(z0))
−1ARH0(z0)

which combined with (3.5) gives us (3.7).
Multiplying by (1 + Q(z0))−1ARH0(z + iε) both sides of (3.6), we obtain

˜ψ = − (z − z0)(1 + Q(z0))
−1ARH0(z + iε)RH0(z0)B

∗˜ψ
− iε(1 + Q(z0))

−1ARH0(z + iε)RH0(z0)ψ

and so, by (v) of Lemma 3 and by the resolvent identity, we have

˜ψ = − z − z0
z − z0 + iε

(1 + Q(z0))
−1[Q(z + iε) − Q(z0)]˜ψ

− iε

z − z0 + iε
(1 + Q(z0))

−1A[RH0(z + iε) − RH0(z0)]ψ

= ˜ψ − z − z0
z − z0 + iε

(1 + Q(z0))
−1(1 + Q(z + iε))˜ψ

− iε

z − z0 + iε
(1 + Q(z0))

−1ARH0(z + iε)ψ,

from which, using identity (3.7), we finally arrive at

Q(z + iε)φ = −φ − iεARH0(z + iε)ψ. (3.8)

If z ∈ ρ(H0), then ε = 0 and we completely proved case (i), the “in particular” part
being straightforward.

In the following, we suppose z ∈ σ(H0)\σp(H0) and H0 self-adjoint. Fixedϕ ∈ H′,
we get from (3.8) that

(ϕ, Q(z + iε)φ)H′ = −(ϕ, φ)H′ − iε(ϕ, ARH0(z + iε)ψ)H′

=: −(ϕ, φ)H′ + Iε.

Exploiting the Spectral Theorem and denoting the spectral measure of H0 as E0, we
have

Iε =
∫

σ(H0)

fε(λ)d(ϕ, AE0(λ)ψ)H′, where fε(λ) := −iε

λ − z − iε
.

From the fact that

lim
ε→0± fε(λ) =

{

0 if λ �= z,

1 if λ = z,
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and E0({z}) = 0 since z /∈ σp(H0), we infer that fε → 0 as ε → 0± almost
everywhere with respect to the spectral measure. Moreover

| fε(λ)| = |ε|
√

(λ − z)2 + ε2
≤ 1 and

∫

σ(H0)

d(ϕ, AE0(λ)ψ)H′ = (ϕ, Aψ)H′ ,

hence by dominated converge theorem we conclude that Iε → 0 as ε → 0±, proving
(3.3).

Finally, since by (3.3) we have

‖φ‖2H′ = |(φ, φ)H′ | = lim
ε→0± |(φ, Q(z + iε)φ)H′ | ≤ ‖φ‖2H′ lim inf

ε→0± ‖Q(z + iε)‖H′→H′

we get the first inequality in (3.4), while the second one is obvious by Assumption A.
��

4 Proof of the Theorems

We can now specialize to our problem the abstract theory developed in the last section.
We choose H = H′ = L2(Rn; C

N ) and H0 the free Dirac operator D0. The factor-
ization of V is given using the polar decomposition V = UW where W = (V ∗V )1/2

and the unitary matrix U is a partial isometry: then we may set A = W 1/2 and
B = W 1/2U∗. It is easy to see that Assumption A holds thanks to Lemma 2 with

�(z) := nC ‖V ‖Y
[

n +
∣

∣

∣

∣

z + m

z − m

∣

∣

∣

∣

sgn(�z)/2
]

.

Indeed, for ϕ ∈ C∞
0 (Rn; C

N ),

∥

∥ARD0(z)B
∗ϕ
∥

∥

H
≤

n
∑

j=1

∥

∥

∥A χ j (|z2 − m2|−1/2D)RD0(z)B
∗ϕ
∥

∥

∥

H

≤ C

[

n +
∣

∣

∣

∣

z + m

z − m

∣

∣

∣

∣

sgn(�z)/2
]

n
∑

j=1

‖A‖L2
x j
L∞̂
x j

∥

∥B∗∥
∥

L2
x j
L∞̂
x j

‖ϕ‖H

≤ �(z) ‖ϕ‖H ,

and hence by density (3.1). We used above the relation

‖A‖L2
x j
L∞̂
x j

= ∥

∥B∗∥
∥

L2
x j
L∞̂
x j

=
∥

∥

∥W 1/2
∥

∥

∥

L2
x j
L∞̂
x j

= ‖V ‖1/2
L1
x j
L∞̂
x j

.
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We show now that alsoAssumption B’ holds. To find z0 ∈ ρ(D0) such that�(z0) <

1, let us define

C0 = [n(n + 1)C]−1, V = [(n + 1)C0/ ‖V ‖Y − n]2.

Since from the hypothesis of Theorems 1, 2 we have ‖V ‖Y < C0 and so V > 1, the
condition 1 ≤ �(z) is equivalent to V ≤ |z/z| if m = 0, and to

(

�z − sgn(�z)m
V2 + 1

V2 − 1

)2

+ z2 ≤
(

m
2V

V2 − 1

)2

(4.1)

if m > 0. Then, if m = 0 it is sufficient to choose z0 ∈ C\R, while if m > 0 we take
z0 ∈ ρ(D0) outside the disks in the statement of Theorem 1.

Thus, we can apply Lemma 5, which combined with relation (4.1) and with relation
V ≤ |z/z| proves Theorem 1 and Theorem 2 respectively.

For the final claim in Theorem 2, we will follow the argument in [10] to prove
that the potential V ∈ Y = ⋂n

j=1 L
1
x j L

∞̂
x j

(Rn) leaves the essential spectrum invariant
and that the residual spectrum of DV is absent. To get the invariance of the essential
spectrum, it is sufficient to prove that, fixed z ∈ ρ(D0) such that −1 ∈ ρ(Q(z)), the
operator ARD0(z) is a Hilbert–Schmidt operator, hence compact. Thus identity (3.2)
gives

RDV (z) − RD0(z) = −RD0(z)B
∗(1 + Q(z))−1ARD0(z)

from which it follows that RDV (z) − RD0(z) is compact and so, by Theorem 9.2.4 in
[17],

σe(DV ) = σe(D0) = (−∞,−m] ∪ [m,∞).

To see that ARD0(z) is a Hilbert–Schmidt operator, we need to prove that its kernel
A(x)K (z, x − y) is in L2(Rn × R

n; C
N ), where K (z, x − y) is the kernel of the

resolvent (D0 − z)−1. By the Young inequality

∥

∥

∥A(D − z)−1
∥

∥

∥

2

HS
=
∫

Rn

∫

Rn
|A(x)|2|K (z, x − y)|2dxdy ≤ ‖V ‖L p ‖K ‖2L2q

(4.2)

where 1/p+ 1/q = 2. Hence we need to find in which Lebesgue space L2q(Rn; C
N )

the kernelK (z, x) lies. For z ∈ ρ(−�) = C\[0,∞), it is well-known (see e.g. [26])
that the kernel K0(z, x − y) of the resolvent operator (−� − z)−1 is given by

K0(z, x − y) = 1

(2π)n/2

( √−z

|x − y|
)

n
2−1

K n
2−1(

√−z|x − y|)

where Kν(w) is the modified Bessel function of second kind and we consider the
principal branch of the complex square root. Fixed now z ∈ ρ(D0) = C\{ζ ∈
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R : |ζ | ≥ m}, from the identity

(D0 − z IN )−1 = (D0 + z IN )(−� + m2 − z2)−1 IN

and relations 9.6.26 in [1] for the derivative of themodifiedBessel functions, we obtain

K (z, x − y) = 1

(2π)n/2

(

k(z)

|x − y|
) n

2

α · (x − y)K n
2
(k(z)|x − y|)

+ 1

(2π)n/2

(

k(z)

|x − y|
) n

2−1

(mα0 + z)K n
2−1(k(z)|x − y|)

where for simplicity k(z) = √
m2 − z2. From the limiting form for themodifiedBessel

functions

Kν(w) ∼ 1

2
�(ν)

(w

2

)−ν

for �ν > 0 and w → 0,

K0(w) ∼ − lnw for w → 0,

Kν(w) ∼
√

π

2w
e−w for w → ∞ in | argw| ≤ 3π/2 − δ,

we obtain that

‖K (z, x)‖ ≤ C(n,m, z)

{ |x |−(n−1) if |x | ≤ x0(n,m, z)

|x |−(n−1)/2e−�k(z)|x | if |x | ≥ x0(n,m, z)

for some positive constants C(n,m, z), x0(n,m, z) depending on z. Hence it is clear
that K (z, x) ∈ L2q(Rn; C

N ) for 2q < n/(n − 1) and, consequently, from equation
(4.2) we have that A(D0 − z)−1 is a Hilbert–Schmidt operator if V ∈ L p(Rn; C

N )

for p > n/2. Since by (1.4) we have V ∈ Ln(Rn; C
N ), the proof of the identity

σe(DV ) = σe(D0) is complete.
Finally, to get the absence of residual spectrum, since ρ(D0) = C\σe(D0) is

composed by one, or two in the massless case, connected components which intersect
ρ(DV ) in a non-empty set, by Theorem XVII.2.1 in [28] we have σ(DV )\σe(DV ) =
σd(DV ).
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