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The main results of [1], especially Theorems 1.1, 1.4 and Corollary 1.2, are correct as
written. However, the final sentence in the statement of Proposition 1.3 is false when
the quiver Q contains a loop at a vertex i ∈ Q0. When this is the case, there exist
points y ∈ Mϑ for which the corresponding A-module Vy contains a submodule of
dimension vector Si that is not isomorphic to Si ; note that any such Vy is not nilpotent.
This situation is very rare,1 but it does occur.

Example 1 For the action of type 1
2 (1, 1, 0), let y be a generic point in the (noncom-

pact) exceptional divisor in G -Hilb(C3), so y /∈ τ−1(x0). The nonzero maps in the

1 If Q has a loop at vertex i ∈ Q0, then the locus τ−1(x0) is one-dimensional. Indeed, let n1, . . . , nk ∈ N
be the corners of the polygon P and write�1, . . . , �k for the corresponding perfect matchings. Letm ∈ M
correspond to the loop � in Q at vertex i . After reordering the corner perfect matchings if necessary, there
exists 1 ≤ l ≤ k such that � ∈ � j if and only if 1 ≤ j ≤ l. Then 〈ni ,m〉 = deg�i

� = 1 for 1 ≤ i ≤ l,
whereas 〈n j ,m〉 = 0 for l + 1 ≤ j ≤ k. Choose a Z-basis of N such that the affine span of P is the plane
{(x, y, 1) ∈ N ⊗ R | x, y ∈ R}. If we write m := (u, v, w) ∈ M in the dual coordinates, then the polygon
P is sandwiched between the parallel lines ux + vy = −w and ux + vy = −w + 1 in the plane. Thus, P
contains no internal lattice points, so τ−1(x0) contains no surfaces. The proves the assertion.

The original article can be found online at https://doi.org/10.1007/s00208-014-1085-8.
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A-module Vy are shown

ρ0 ρ1

where ρ0 and ρ1 are the trivial and nontrivial representations of Z/2 respectively. The
submodule Wy ⊂ Vy of dimension vector S1 destabilises Vy as ϑ ∈ C moves into
the wall C ∩ S⊥

i of the GIT chamber C , so y lies in the unstable locus of this wall.
However, Wy � S1, so Si � soc(Vy).

This example shows that even whenC∩ S⊥
i is a wall of the chamberC , the unstable

locus of the wall need not coincide with Zi := {y ∈ Y | Si ⊆ soc(Vy)}. In such cases,
the final sentence of Proposition 1.3 is false; that sentence should instead conclude
that:

...the locus Zi is the intersection of τ
−1(x0) with

the unstable locus of the wall C ∩ S⊥
i . (0.1)

Indeed, Zi is a subset of the unstable locus of the wall, but this inclusion is equality
if and only if the unstable locus is contained in τ−1(x0). Instead, for any point y ∈
τ−1(x0) that lies in the unstable locus for the wallC∩S⊥

i , the destabilising submodule
Wy ⊂ Vy of dimension vector Si is necessarily isomorphic to Si since Vy is nilpotent,
giving y ∈ Zi . This proves the equality (0.1).

The error leads to the omission of a case from Lemma 4.8. We now correct that
statement:

Lemma 2 (= Lemma 4.8) Every wall of the chamber C that is of form C∩ S⊥
i for some

nonzero i ∈ Q0 is either of type 0, type I, or it is a type III wall with unstable locus
P
1×C. In particular, the support of H0(�(Si )) is a single (−1,−1)-curve (in type I),

a single (0,−2)-curve (in type III) or a connected union of compact torus-invariant
divisors (in type 0).

Proof The only walls that are excluded here are type III walls for which the unstable
locus is Fn for some n ≥ 0. Suppose that one such wall exists. The wall is of the form
C ∩ S⊥

i , so Proposition 4.7 implies that �(Si ) = L−1
i |Zi . Since Fn ⊆ τ−1(x0), the

locus Zi coincides with the unstable locus Fn , so the support of�(Si ) is of dimension
two. To obtain a contradiction, let � ⊂ Y be the fibre of the contraction Fn → P

1

induced by the wall. For any z ∈ �, the sequence

0 −−−−→ Si −−−−→ Vz −−−−→ Vz/Si −−−−→ 0 (0.2)

is the θ0-destabilising sequence for Vz . In particular, the proof of Ishii–Ueda [2, Propo-
sition 11.31] gives that �(Si ) = O�(−1), so the support of �(Si ) has dimension one,
a contradiction. The second statement follows from (0.1) above, where in the type III
case we compute Zi to be the intersection of τ−1(x0) with the unstable locus P

1 × C,
i.e. Zi is the torus-invariant (0,−2)-curve in P

1 × C. 
�
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The additional case of the type III wall in Lemma 2 should have been analysed in
[1, Lemma 4.10, Proposition 4.11]. We now correct those omissions.

Lemma 3 (= Lemma 4.10) Let � be a (−1,−1)-curve or a (0,−2)-curve in Y that
arises as the intersection of τ−1(x0) with the unstable locus for a wall of the form
C ∩ S⊥

i for some nonzero i ∈ Q0 that is of type I or type III respectively. Then
L j |� ∼= O� for all j �= i and Li |� ∼= O�(1).

Proof The proof from [1, Lemma 4.10] for a (−1,−1)-curve applies verbatim for a
(0,−2)-curve, but the appropriate reference to the work of Ishii–Ueda in this latter
case is [2, Lemma 11.32]. 
�
Proposition 4 (= Proposition 4.11) Let i ∈ Q0 be a nonzero vertex. If H0(�(Si )) �= 0,
then �(Si ) ∼= L−1

i |Zi , where Zi is the intersection of τ−1(x0) with the unstable locus
for the wall C ∩ S⊥

i .

Proof The additional case from Lemma 3 shows that the support of H0(�(Si )) can
be a single (0,−2)-curve �i equal to the locus Zi for a type III wall C ∩ S⊥

i . The proof
from [1, Proposition 4.11] in the case where �i is a (−1,−1)-curve applies verbatim,
except that the required isomorphisms L j |�i ∼= O�i for all j �= i and Li |�i ∼= O�i (1)
are obtained from Lemma 3. 
�

The final correction is in [1, Proof of Theorem 1.1], where in describing the
case H0(�(Si )) �= 0, the locus Zi should equal the intersection of τ−1(x0) with
the unstable locus of the wall C ∩ S⊥

i . In particular, this locus Zi can be either a
single (−1,−1)-curve, a single (0,−2)-curve or a connected union of compact torus-
invariant divisors according to the type of the wall as in Lemma 2.

It remains to note that [1, Conjecture 1.5] should refer to the intersection of τ−1(x0);
in what follows, we take the determinant of L∨

ρ before restricting to Zρ (this operation
was omitted in [1]):

Conjecture 5 (= Conjecture 1.5) The object �(Sρ) is a pure sheaf in degree 0 if
and only if C ∩ S⊥

ρ is a wall of the chamber C defining G -Hilb(C3), in which case

�(Sρ) ∼= det(L∨
ρ )|Zρ where Zρ is the intersection of τ−1(x0) with the unstable locus

of the wall C ∩ S⊥
ρ .
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