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The main results of [1], especially Theorems 1.1, 1.4 and Corollary 1.2, are correct as
written. However, the final sentence in the statement of Proposition 1.3 is false when
the quiver Q contains a loop at a vertex i € Qp. When this is the case, there exist
points y € My for which the corresponding A-module Vy contains a submodule of
dimension vector S; that is not isomorphic to §;; note that any such V), is not nilpotent.
This situation is very rare,! but it does occur.

Example 1 For the action of type %(1, 1,0), let y be a generic point in the (noncom-
pact) exceptional divisor in G -Hilb(C?), so y ¢ v~ !(x0). The nonzero maps in the

Lyr Q has a loop at vertex i € Qg, then the locus 771 (x0) is one-dimensional. Indeed, letny, ..., ny € N
be the corners of the polygon P and write Iy, ..., Iy for the corresponding perfect matchings. Letm € M
correspond to the loop £ in Q at vertex i. After reordering the corner perfect matchings if necessary, there
exists 1 <[ < k such that £ € Hj if and only if 1 < j < [. Then (n;, m) = degni L=1forl <i<I,
whereas (nj,m) =0for/ + 1 < j < k. Choose a Z-basis of N such that the affine span of P is the plane
{(x,y,1) e N®R | x,y € R}. If we write m := (u, v, w) € M in the dual coordinates, then the polygon
P is sandwiched between the parallel lines ux 4+ vy = —w and ux + vy = —w + 1 in the plane. Thus, P
contains no internal lattice points, so 1 (xp) contains no surfaces. The proves the assertion.

The original article can be found online at https://doi.org/10.1007/s00208-014-1085-8.
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A-module V, are shown

C o=, D

where pg and p; are the trivial and nontrivial representations of Z/2 respectively. The
submodule Wy C V) of dimension vector S; destabilises V, as ¢+ € C moves into
the wall C N Sl.L of the GIT chamber C, so y lies in the unstable locus of this wall.
However, Wy, 2 S1, 50 S; € soc(Vy).

This example shows that even when cn Sf is a wall of the chamber C, the unstable
locus of the wall need not coincide with Z; := {y € Y | S; C soc(V))}. In such cases,
the final sentence of Proposition 1.3 is false; that sentence should instead conclude
that:

...the locus Z; is the intersection of ! (x0) with
the unstable locus of the wall C N Sl-J‘. 0.1)

Indeed, Z; is a subset of the unstable locus of the wall, but this inclusion is equality
if and only if the unstable locus is contained in ! (xo). Instead, for any point y €
7~ !(x0) that lies in the unstable locus for the wall CN S l.J-, the destabilising submodule
W, C V, of dimension vector S; is necessarily isomorphic to §; since V) is nilpotent,
giving y € Z;. This proves the equality (0.1).

The error leads to the omission of a case from Lemma 4.8. We now correct that
statement:

Lemma 2 (= Lemma 4.8) Every wall of the chamber C that is of form C N Sl.l for some
nonzero i € Qq is either of type 0, type 1, or it is a type 11l wall with unstable locus
P! x C. In particular, the support of HO(W(S})) is a single (—1, —1)-curve (in type 1),
a single (0, —2)-curve (in type 111) or a connected union of compact torus-invariant
divisors (in type 0).

Proof The only walls that are excluded here are type III walls for which the unstable
locus is [F,, for some n > 0. Suppose that one such wall exists. The wall is of the form
cn Sf-, so Proposition 4.7 implies that W (S;) = Lfl |z;. Since IF,, < 77 (xp), the
locus Z; coincides with the unstable locus [, so the support of W (S;) is of dimension
two. To obtain a contradiction, let £ C Y be the fibre of the contraction F,, — P!

induced by the wall. For any z € ¢, the sequence

0 S; V. V./Si — 0 0.2)

is the 6p-destabilising sequence for V. In particular, the proof of Ishii—-Ueda [2, Propo-
sition 11.31] gives that W (S;) = O, (—1), so the support of W (S;) has dimension one,
a contradiction. The second statement follows from (0.1) above, where in the type III
case we compute Z; to be the intersection of 771 (x() with the unstable locus P! x C,
i.e. Z; is the torus-invariant (0, —2)-curve in P! x C. ]
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The additional case of the type III wall in Lemma 2 should have been analysed in
[1, Lemma 4.10, Proposition 4.11]. We now correct those omissions.

Lemma3 (= Lemma 4.10) Let £ be a (—1, —1)-curve or a (0, —2)-curve in Y that
arises as the intersection of 7=V (x0) with the unstable locus for a wall of the form
cn Sl-l for some nonzero i € Qq that is of type 1 or type 1l respectively. Then
Lj|g = ﬁgforallj ;é i and Li|g = ﬁg(l)

Proof The proof from [1, Lemma 4.10] for a (—1, —1)-curve applies verbatim for a
(0, —2)-curve, but the appropriate reference to the work of Ishii-Ueda in this latter
case is [2, Lemma 11.32]. O

Proposition 4 (=Proposition4.11) Leti € Qg be a nonzero vertex. If HO(W (S;)) # 0,
then U (S;) = Ll._l |z;, where Z; is the intersection of T (x0) with the unstable locus
for the wall C N Sf‘.

Proof The additional case from Lemma 3 shows that the support of H 0(W(S;)) can
be a single (0, —2)-curve £; equal to the locus Z; for a type III wall C N Sl.l. The proof
from [1, Proposition 4.11] in the case where ¢; is a (—1, —1)-curve applies verbatim,
except that the required isomorphisms L |y, = Oy, forall j # i and L;|,;, = Oy, (1)
are obtained from Lemma 3. O

The final correction is in [1, Proof of Theorem 1.1], where in describing the
case HO(\II (S;)) # 0, the locus Z; should equal the intersection of 1 (xo) with
the unstable locus of the wall C N SiJ-. In particular, this locus Z; can be either a
single (—1, —1)-curve, a single (0, —2)-curve or a connected union of compact torus-
invariant divisors according to the type of the wall as in Lemma 2.

Itremains to note that [ 1, Conjecture 1.5] should refer to the intersection of ~L(x0);
in what follows, we take the determinant of LZ before restricting to Z,, (this operation
was omitted in [1]):

Conjecture5 (= Conjecture 1.5) The object V(S,) is a pure sheaf in degree 0 if
and only if C N S/J; is a wall of the chamber C defining G -Hilb(C?), in which case

(S, = det(L\’f) |z, where Z,, is the intersection of TV (xq) with the unstable locus
of the wall C N Sf;.
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