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Abstract
We refine estimates introduced by Balogh and Bonk, to show that the boundary exten-
sions of isometries between bounded, smooth strongly pseudoconvex domains in C

n

are conformal with respect to the sub-Riemannian metric induced by the Levi form.
As a corollary we obtain an alternative proof of a result of Fefferman on smooth exten-
sions of biholomorphic mappings between bounded smooth pseudoconvex domains.
The proofs are inspired by Mostow’s proof of his rigidity theorem and are based on
the asymptotic hyperbolic character of the Kobayashi or Bergman metrics and on the
Bonk-Schramm hyperbolic fillings.
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1 Introduction

Let D ⊂ C
n(n ≥ 2) be a bounded, strongly pseudo-convex domain with C∞-smooth

boundary. Denote by dK the distance function corresponding to a Finsler structure K
satisfying suitable estimates, see (2.8). For example, one may consider the Bergman
metric or the Kobayashi metric or the inner Carathéodory metric.

In [2,3], Balogh and Bonk have proved that the metric space (D, dK ) is hyper-
bolic in the sense of Gromov and its visual boundary coincides with the topological
boundary ∂ D. They also show that the Carnot–Carathéodory metric dCC correspond-
ing to the Levi form on ∂ D, determines the canonical class of snowflake equivalent
visual metrics on ∂ D. As a consequence, results from the theory of Gromov hyper-
bolic spaces can be immediately applied in this setting. Among these we recall that
every quasi-isometry between such spaces extends to a quasi-conformal map between
the visual boundaries, endowed with their families of visual metrics, see for instance
[6,17] and references therein.

Our main contribution is to show that extensions of isometries are actually diffeo-
morphisms that are conformal with respect to the Carnot–Carathéodory metric. We
only need to show that the extension is 1-quasi-conformal, as the smoothness then
follows from the recent results in [12].

As in [3], our strategy involves the Bonk-Schramm hyperbolic filling metric
g defined in (1.2). This metric provides a stepping stone to connect the Carnot–
Carathéodory distance, defined on the boundary by the Levi form (see Sect. 2.2),
with the invariant metric defined in the domain.

Theorem 1.1 Let D1, D2 ⊂ C
n be bounded strongly pseudoconvex C∞-smooth

domains and denote by dK the distance function corresponding to a Finsler structure
K satisfying (2.8), and by dCC the Carnot–Carathéodory distance on the boundaries
induced by the Levi form. If f : (D1, dK ) → (D2, dK ) is an isometry then the induced
boundary map F : (∂ D1, dCC ) → (∂ D2, dCC ) is a diffeomorphism, conformal with
respect to the metric dCC .

We emphasize that the result holds when dK is the Bergman, the Kobayashi, or the
inner Carathéodory metrics. Indeed, these distances satisfy (2.8) in view of the work
in [2,3,21].

As we noted above, the proof of Theorem 1.1 is based on the study of the relation
between the visual distances associated to dK and the visual distance of an ad-hoc
hyperbolic filing metric, built through the Carnot–Carathéodory distance: For x ∈ D
denote by h(x) := √

dE (x, ∂ D) and by π(x) ∈ ∂ D a closest point in ∂ D with respect
to the Euclidean distance dE (·, ·), noting it is uniquely defined in a neighborhood of
∂ D. Set

g(x, y) := 2 log

(
dCC(π(x), π(y)) + max(h(x), h(y))√

h(x)h(y)

)
. (1.2)

This is an hyperbolic filling metric built from the metric space (∂ D, dCC) (see Bonk
and Schramm [10]). Balogh and Bonk [3, Corollary 1.3], showed that g is a metric in
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Conformal equivalence of visual metrics. . . 745

a neighborhood of ∂ D and that g and the invariant distance function dK are (1, C)-
quasi-isometric. As a consequence, they give rise to quasi-conformally equivalent
visual metrics.

The main technical point of our work is to refine this result in a quantitative fashion.
We show that a particular visual quasi-distance ρK

o associated to the invariant metric
dK is in fact pointwise and asymptotically (1 + ε)-quasi-conformally equivalent to
the Carnot–Carathéodory dCC metric. By pointwise and asymptotically we mean that
for every point x ∈ ∂ D in the boundary, and for every ε > 0, one can choose a base
point o for the definition of the visual distances so that the identity map has distortion
less than 1+ ε at x . Following ideas in CAT(−1) spaces, given a pointed metric space
(X , d, o) we consider the visual function

ρd
o (x, y) = exp(−〈x, y〉o), (1.3)

where 〈x, y〉o denotes the Gromov product in (X , d), see Sect. 2. Usually, ρd
o is called

Bourdon distance since for CAT(−1) spaces it satisfies the triangle inequality. In our
setting, ρd

o may not be a distance.
Moreover, Bourdon showed in [9] that on a CAT(−1) space X the visual bound-

aries (∂∞ X , ρd
o ) corresponding to different base points o, o′ ∈ X are conformally

equivalent, thus implying immediately that any isometry of X extends to a conformal
maps of its visual boundaries. Since pseudoconvex domains may not have negative
curvature (see [19]) and may not be simply connected, they are not CAT(−1) spaces
and so one cannot apply Bourdon’s result.

Theorem 1.1 is achieved in two steps: First one shows that the Carnot–Carathéodory
distance is conformally equivalent1 to the function ρ

g
o associated to the hyperbolic

filling metric g.

Proposition 1.4 For any o ∈ D, the functions dCC and ρ
g
o are conformally equivalent.

In other words, the identity map (∂ D, dCC ) → (∂ D, ρ
g
o ) has distortion that is

identically equal to one. See (2.1) for the definition of distortion.
Next, we show that at every boundary point, and for any ε > 0, one can find a

base point o ∈ D such that the corresponding visual functions ρK
o and ρ

g
o are (1+ ε)-

biLipschitz equivalent in a neighborhood of that point. In the following we denote
Euclidean balls in Cn with the notation B(x, r).

Proposition 1.5 For any p̄ ∈ ∂ D and ε̄ > 0 there exists r > 0 such that for all
ω ∈ ∂ D ∩ B( p̄, r)\{ p̄} there exists r ′ > 0 such that for all o ∈ D ∩ B(ω, r ′) the two
functions ρ

g
o and ρK

o are (1 + ε̄)-biLipschitz on ∂ D ∩ B( p̄, r ′).

The proof of Proposition 1.5 and Theorem 1.1 are in Sect. 5. Theorem 1.1 follows
rather directly from Propositions 1.4 and 1.5 and from the following diagram

1 The result holds for any hyperbolic filling as in the work of Bonk and Schramm. See Sect. 3.1
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(D1, dK)
f

iso
(D2, dK)

(∂ D1, ρ
g
o)

id

(1+ε)BL
(∂ D1, ρ

K
o )

F

iso
(∂ D2, ρ

K
f (o))

id

(1+ε)BL
(∂ D2, ρ

g
f (o))

idconf

(∂ D1, dCC)

id conf

F
(∂ D2, dCC )

(D)

At the center of this chain of compositions there is an isometry, the rest of the links
are either (1 + ε)-biLipschitz maps or conformal maps, so that the total distortion is
at most ε away from being equal to 1 everywhere.

From the conformal equivalence theorem above and the results in [12], one can
immediately infer a result about boundary extensions for biholomorphisms between
strictly pseudoconvex domains in Cn , originally established by Fefferman [15].

Corollary 1.6 Let D1, D2 ∈ C
n(n ≥ 2) be bounded strongly pseudo-convex domains

with C∞-smooth boundaries. If f : D1 → D2 is a biholomorphism then it extends to
a smooth map F : ∂ D1 → ∂ D2 that is conformal with respect to the corresponding
subRiemannian contact structure. In particular, at every boundary point, its differential
is a similarity between the maximally complex tangent planes.

Since the publication of [15] there have been several significative extensions and
simplifications of the result. A small sample of this extensive line of inquiry can be
found in the references [1,4,5,8,13,20,22].

The contribution of the present paper does not lie so much in an innovation on a
technical level, but rather in two new insights: namely, that one can deduce Fefferman’s
result from the conformality of the boundary extension and that one can prove this
with relative ease from a combination of the general theory of Gromov hyperbolic
spaces in combination with careful estimates in Theorem 4.1.

We conclude by observing that our work can be seen as an instance of a dictionary,
introduced byBonk,Heinonen, andKoskela in [7], translating back and forth problems
in domains in Euclidean spaces by means of ad hoc hyperbolic or quasi-hyperbolic
metrics, that endow such domains with an hyperbolic structure in the sense of Gromov.
For more results along this line, see also the recent, interesting work of Zimmer in
[24].

2 Preliminaries

In this section we recall some basic definitions and results. We start by discussing
distortion and conformal maps on subRiemannian manifolds. Then we discuss pseu-
doconvex domains and their metrics. Finally we review hyperbolicity in the sense of
Gromov.
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Conformal equivalence of visual metrics. . . 747

2.1 Distorsion in subRiemannian geometry

By a previous work of the authors together with Ottazzi, we know that several def-
initions of conformal maps are equivalent in the setting of contact subRiemannian
manifolds. We now recall the two definitions that we shall need in this paper.

For a homeomorphism F : X → Y between general metric spaces, we consider
the following quantities

LF (x) := lim sup
x ′→x

d(F(x), F(x ′))
d(x, x ′)

and �F (x) := lim inf
x ′→x

d(F(x), F(x ′))
d(x, x ′)

.

The quantity LF (x) is sometimes denoted by LipF (x) and is called the pointwise
Lipschitz constant. Within this paper, we define the distortion of f at a point x ∈ X
as

H∗(x, F, dX , dY ) := LF (x)

�F (x)
. (2.1)

The homeomorphism f is said to be quasi-conformal if there exists K such that for
all x ∈ X one has

lim sup
r→0

sup{dY (F(p), F(q)) : dX (p, q) ≤ r}
inf{dY (F(p), F(q)) : dX (p, q) ≥ r} ≤ K .

It is well-known that in the literature there are several other equivalent definitions of
quasi-conformality in ‘geometrically nice’ spaces, see [23]. However, the equivalence
is not quantitative, in the sense that each definition has an associated constant (like
the K above) and the value of of these constants can be different from definition to
definition. Thus we need to clarify what is a conformal map. To do this we invoke
some recent results due to Citti, Ottazzi and the authors of the present paper.

Lemma 2.2 [12, Theorem 1.3 and Theorem 1.19] Let F : X → Y be a quasi-
conformal homeomorphism between two equiregular subRiemannian manifolds.

(i) The requirement H∗(·, F, dX , dY ) ≡ 1 is equivalent to other notions of 1-quasi-
conformality.

(ii) If X and Y are contact manifolds, then 1-quasi-conformality of F is equivalent to F
being conformal (i.e., smooth and with horizontal differential that is a homothety).

One of the advantages to work with (2.1) is that it immediately yields a chain rule:

H∗(x, F1 ◦ F2) ≤ H∗(x, F2)H∗(F2(x), F1). (2.3)

The last equation follows from the fact that lim sup anbn ≤ lim sup an lim sup bn

whenever an, bn ≥ 0. Moreover, we trivially have that if F is an L-biLipschitz home-
omorphism, then

H∗(x, F) ≤ L2. (2.4)
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748 L. Capogna, E. Le Donne

2.2 Pseudoconvex domains and hermitianmetrics

We recall some of the basic definitions about pseudoconvex domains and hermitian
metrics, as well as some key results proved by Balogh and Bonk in [3].

Let D ⊂ C
n , n ≥ 2 be a smooth, bounded open set. Let ϕ : Cn → R denote the

signed distance function from ∂ D, negative in D and positive in its complement. Set
Nδ = {x ∈ D | dE (x, ∂ D) < δ}.
Lemma 2.5 (Tubular Neighborhood Theorem) Let D ⊂ C

n, n ≥ 2 be a bounded
domain with smooth boundary. There exists δ0 > 0 such that the projection π :
Nδo → ∂ D is a smooth, well defined map and the distance function dE (·, ∂ D) is
smooth on Nδ0 .

We will denote by n(x) the outer unit normal at x ∈ ∂ D, so that the fiber π−1(x)∩
Nδ0 = {x + sn(x)|s ∈ (0, δ0)}.

For p ∈ ∂ D, one can define the tangent space Tp∂ D = {Z ∈ C
n|Re〈∂̄ϕ(p), Z〉 =

0} and its maximal complex subspace Hp∂ D = {Z ∈ C
n|〈∂̄ϕ(p), Z〉 = 0}, where

〈Z , Z ′〉 = ∑n
i=1 Zi Z̄ ′

i is the hermitian product. By definition, the domain D is strictly
pseudoconvex if for every p ∈ ∂ D, the Levi form

Lϕ(p, Z) :=
n∑

α,β=1

∂2zα z̄β
ϕ(p)Zα Z̄β (2.6)

is positive definite on Hp∂ D.
For each p ∈ ∂ D one has a splitting C

n = Hp∂ D ⊕ Np∂ D, where Np∂ D is the
complex one-dimensional subspace orthogonal to Hp∂ D. This splitting at p induces
a decomposition Z = Z H + Z N for all Z ∈ C

n .
Metrics that are invariant under the action of biholomorphisms play a key role in

several complex variables. Important examples are the Bergmanmetric, the Kobayashi
metric, and the inner Carathéodory metric (see [19]). In all cases, for x ∈ D the length
of a complex vector Z ∈ Tx D = C

n is given by a Finsler structure K (x, Z). We will
rely on the following result, which can be found (along with more references) in [2]
and also [11], [14], [16], and [3, Proposition 1.2].

Proposition 2.7 (Balogh-Bonk) Let D ⊂ C
n, n ≥ 2 be a bounded, strictly pseudocon-

vex domain with smooth boundary and let K (x, Z) be the Finsler structure associated
to the Bergman metric or the Kobayashi metric or the inner Carathéodory metric. For
every ε̄ > 0 there exists δ0, C > 0 such that for all x ∈ D with dE (x, ∂ D) ≤ δ0 and
Z ∈ C

n one has

(1 − C
√

dE (x, ∂ D))

( |Z N |2
4d2

E (x, ∂ D)
+ (1 − ε̄)

Lϕ(π(x), Z H )

dE (x, ∂ D)

) 1
2

≤ K (x, Z)

≤ (1 + C
√

dE (x, ∂ D))

( |Z N |2
4d2

E (x, ∂ D)
+ (1 + ε̄)

Lϕ(π(x), Z H )

dE (x, ∂ D)

) 1
2

, (2.8)

where Z = Z H + Z N is the splitting at π(x).
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Conformal equivalence of visual metrics. . . 749

The subbundle H∂ D is a contact distribution on ∂ D and the triplet (∂ D, H∂ D, Lϕ)

yields a contact subRiemannian manifold. In this structure, the horizontal curves
are those arcs in ∂ D that are tangent to the contact distribution, and the Carnot–
Carathéodory distance dCC (p, q) between p, q ∈ ∂ D is defined as the minimum
time it takes to reach one point from the other traveling along horizontal curves at unit
speed with respect to the Levi form, see [18].

As in [3], we will need to use a family of Riemannian metrics on ∂ D that approx-
imate the sub-Riemannian metric associated to the Levi form, and that in fact have
corresponding distance functions that converge in the sense of Gromov-Hausdorff to
the Carnot–Carathéodory distance. For every k > 0 we define a Riemannian metric
gk on T ∂ D as

g2
k (p, Z) := Lϕ(p, Z H ) + k2|Z N |2, (2.9)

for every p ∈ ∂ D and every Z = Z H + Z N ∈ Tp∂ D. Here we just recall a basic
comparison result (see for instance [3, Lemma 3.2]) relating the distance function dk

associated to gk to the Carnot–Carathéodory distance dCC .

Lemma 2.10 There exists a constant C > 0 such that for all k > 0, and for all points
p, q ∈ ∂ D, with dCC (p, q) ≥ k−1 one has

C−1dk(p, q) ≤ dCC (p, q) ≤ Cdk(p, q). (2.11)

2.3 Gromov hyperbolicity

Let x, y, o be three points in a metric space (X , d). Then the Gromov product of x
and y at o, denoted 〈x, y〉o, is defined by

〈x, y〉o = 1

2

(
d(x, o) + d(y, o) − d(x, y)

)
.

Then X is called Gromov hyperbolic if there exists δ ≥ 0 such that

〈x, y〉o ≥ min{〈x, z〉o, 〈z, y〉o} − δ, for all x, y, z, o ∈ X .

For a Gromov hyperbolic space X one can define a boundary set ∂∞ X as follows,
see [6, p.431-2]. Fix a base point o ∈ X . A sequence (xi ) in X is said to converge at
infinity if limi, j→∞〈xi , x j 〉o = ∞. Two sequences (xi ) and (yi ) converging at infinity
are called equivalent if lim〈xi , yi 〉o = ∞. These notions do not depend on the choice
of the base point o. The set ∂∞ X is now defined as the set of equivalence classes of
sequences converging at infinity.

For p, q ∈ ∂∞ X and o ∈ X we define

〈p, q〉o = sup lim inf
i→∞ 〈xi , yi 〉o,
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750 L. Capogna, E. Le Donne

where the supremum is taken over all sequences (xi ) and (yi ) representing the bound-
ary points p and q, respectively. Actually, there exists such sequences (xi ) and (yi )

for which 〈p, q〉o = limi→∞〈xi , yi 〉o, see [6, Remark 3.17].
Balogh and Bonk have proved that if D ⊂ C

n , n ≥ 2 is a bounded, strictly
pseudoconvex domain with smooth boundary, and K (x, Z) is a norm satisfying (2.8),
then the corresponding metric space (D, dK ) is Gromov hyperbolic and its visual
boundary coincides with the topological boundary. See [3, Theorem 1.4].

3 Conformal equivalence of boundarymetrics

3.1 Boundary distances of hyperbolic fillings

An important contribution of Bonk and Schramm [10], is that the functor X → ∂∞ X
has an inverse functor, in the form of hyperbolic filling spaces Con(Z). To be more
precise, one defines Con(Z) = Z × (0, D), endowed with the metric given by

g((x, u), (y, v)) = 2 log

(
d1(x, y) + max(u, v)√

uv

)
. (3.1)

The space (Con(Z), g) is Gromov hyperbolic, and its visual boundary is Z , with
the canonical class of snowflake equivalent metrics given by d1. In this section we
prove that a particular visual metric, i.e. the visual metric generated by g through the
formula (1.3), is actually conformal to d1. Choose a generic base point o = (z, s),
with z ∈ Z and s ∈ (0, D). For any two points x, y ∈ Z so that d1(x, y) < s. consider
u, v ∈ (0, d1(x, y)). Following (1.3), we let d2(x, y) be defined as follows

d2(x, y) = lim
u,v→0

e−〈(x,u),(y,v)〉o .

Notice that in general, functions defined as in (1.3), associated to the hyperbolic
fillings are a quasi-distance. By quasi-distance we intend that the triangle inequality
is satisfied modulo a multiplicative constant.

Proposition 3.2 Let d1 a distance on a bounded space Z. If d2 is defined as in (1.3),
associated to the hyperbolic filling for d1, then d1 and d2 are conformally equivalent.

Proof In order to show that d1, d2 are conformally equivalent it suffices to prove
that the limit limy→x d1(x, y)/d2(x, y) exists for every x ∈ Z . Fix any z ∈ Z and
s ∈ (0, D). Let o = (z, s). Take two points x, y ∈ Z so that d1(x, y) < s. Take
u, v ∈ (0, d1(x, y)).

The rest of the proof follows from

〈(x, u), (y, v)〉o = 1

2
(d2((x, u), o) + d2((y, v), o) − d2((x, u), (y, v)))

= log

(
d1(x, z) + max(u, s)√

us

)
+ log

(
d1(y, z) + max(v, s)√

vs

)
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− log

(
d1(x, y) + max(u, v)√

uv

)

= log
(d1(x, z) + s)(d1(y, z) + s)

s(d1(x, y) + max(u, v))

= log

(
(d1(x, z) + s)(d1(y, z) + s)

s(d1(x, y) + max(u, v))

d1(x, y)

d1(x, y)

)

= − log(d1(x, y)) + log

(
d1(x, y)(d1(x, z) + s)(d1(y, z) + s)

s(d1(x, y) + max(u, v))

)

We calculate limy→x d1(x, y)/d2(x, y). Consider the quotient

d2(x, y)/d1(x, y) = lim
u,v→0

e−〈(x,u),(y,v)〉o

d1(x, y)

= lim
u,v→0

elog
(

d1(x,y)
)
e
− log

(
d1(x, y)(d1(x, z) + s)(d1(y, z) + s)

s(d1(x, y) + max(u, v))

)

d1(x, y)

= lim
u,v→0

(
d1(x, y)(d1(x, z) + s)(d1(y, z) + s)

s(d1(x, y) + max(u, v))

)−1

= sd1(x, y)

d1(x, y)(d1(x, z) + s)(d1(y, z) + s)

= s

(d1(x, z) + s)(d1(y, z) + s)
.

The latter implies that

lim
y→x

d2(x, y)

d1(x, y)
= s

(d1(x, z) + s)2
,

which gives the conclusion. ��
As a corollary of the previous result, one immediately has a proof for Proposi-

tion 1.4. In fact, by setting d1 = dCC and applying Proposition 3.2 it follows that the
identity map (∂ D, dCC ) → (∂ D, ρ

g
o ) is 1-quasi-conformal.

For possible future reference, we conclude this section by providing an explicit
formula for the “distance” function ρ

g
o , where g is as defined in (1.2) and ρ

g
o is its

visual metric as defined in (1.3). We represent p and q by two sequences xi and
yi ∈ D, respectively. Notice that since xi → p inCn then π(xi ) → p and h(xi ) → 0.
In particular, we also have that max(h(xi ), h(o)) = h(o). Similar considerations apply
to yi and q. Elementary computations yield the following

ρ
g
o (p, q) = exp(−〈p, q〉o)

= lim
i→∞ exp(−〈xi , yi 〉o)

= lim
i→∞ exp(−1

2
(g(xi , o) + g(yi , o) − g(xi , yi )))
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752 L. Capogna, E. Le Donne

= lim
i→∞ exp

(
− log

(
dCC(π(xi ), π(o)) + max(h(xi ), h(o))√

h(xi )h(o)

)

− log

(
dCC(π(yi ), π(o)) + max(h(yi ), h(o))√

h(yi )h(o)

)

+ log

(
dCC(π(xi ), π(yi )) + max(h(xi ), h(yi ))√

h(xi )h(yi )
)

)

= lim
i→∞

(
dCC(p, π(o)) + h(o)√

h(xi )h(o)

)−1(dCC(q, π(o)) + h(o)√
h(yi )h(o)

)−1 dCC(p, q)√
h(xi )h(yi )

= dCC(p, q) h(o)

(dCC(p, π(o)) + h(o))(dCC(q, π(o)) + h(o))
.

4 Comparing d and g, after Balogh and Bonk

The quantitative bounds on the distortion of the identity map in Proposition 1.5 follow
from the following result, which is a refinement of an analogue statement of Balogh
and Bonk [3, Corollary 1.3]. We follow largely their arguments, but where in [3] the
noise due to the rough geometry would yield an additive constant, here instead we
need to exploit the fact that the geometry is asymptotically hyperbolic to show that
such constants can be chosen arbitrarily small the closer one gets to the boundary.

Theorem 4.1 For every p̄ ∈ ∂ D and ε > 0 there exists r > 0 such that for all distinct
p, q ∈ ∂ D ∩ B( p̄, r) there exists r ′ > 0 such that for all x ∈ D ∩ B(p, r ′) and all
y ∈ D ∩ B(q, r ′)

g(x, y) − ε ≤ dK (x, y) ≤ g(x, y) + ε. (4.2)

In the rest of the paper we will refer to this result in connection with the quintuplet
( p̄, p, q, x, y).

4.1 Lemmata

Theproof ofTheorem4.1 is based on preliminary estimates established inLemmas 4.3,
4.8, and 4.12.

Lemma 4.3 Let δ0 > 0 to be the constant in Lemma 2.5. For x1, x2 ∈ D with
dE (xi , ∂ D) < δ0, and h(x1) ≥ h(x2), consider a piecewise C1 curve γ : [0, 1] → Nδ0

with γ (0) = x1 and γ (1) = x2. The length lK (γ ) of γ with respect to the metric dK

satisfies

lK (γ ) ≥ ln
h(x1)

h(x2)
− C

(
h(x1) − h(x2)

)
, (4.4)

where C is the same constant as in (2.8). Moreover, if the curve is a segment γ (t) =
x1 + t(x2 − p1) ⊂ π−1(p) for some p ∈ ∂ D then one has

lK (γ ) ≤ ln
h(x1)

h(x2)
+ C

(
h(x1) − h(x2)

)
, (4.5)
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Proof Recall from [3, page 517] that

∣∣∣∣ d

dt
h(γ (t))

∣∣∣∣ = |Re〈n(π(γ (t))), γ ′(t)〉|
2h(γ (t))

≤ |γ ′
N (t)|

2h(γ (t))
.

The latter and (2.8) yield

lK (γ ) =
∫ 1

0
K (γ (t), γ ′(t))dt

≥
∫ 1

0
(1 − Cd

1
2
E (γ (t), ∂ D))

( |γ ′
N (t)|2

4d2E (γ (t), ∂ D)
+ (1 − ε̄)

Lϕ(π(γ (t), γ ′
H (t))

dE (γ (t), ∂ D)

) 1
2

dt

≥
∫ 1

0
(1 − Cd

1
2
E (γ (t), ∂ D))

|γ ′
N (t)|

2dE (γ (t), ∂ D)
dt ≥

∫ 1

0

(1 − Ch(γ (t))

h(γ (t))

d

dt
h(γ (t))dt

= ln
h(x1)

h(x2)
− C(h(x1) − h(x2)),

which gives (4.4).
On the other hand, if γ (t) = x1 + t(x2 − x1), then we observe that γ ′ is parallel

to the unit normal at π(xi ) and so has no tangent component, hence no horizontal
component with respect to the splitting at π(xi ). Using the fact that

dE (γ (t), ∂ D) = |γ (t) − p| = |t(x2 − x1)| + |x1 − p|,

and (2.8) one has

lK (γ ) =
∫ 1

0
K (γ (t), γ ′(t))dt

≤
∫ 1

0
(1 + Cd

1
2
E (γ (t), ∂ D))

( |γ ′
N (t)|2

4d2E (γ (t), ∂ D)
+ (1 + ε̄)

Lϕ(π(γ (t), γ ′
H (t))

dE (γ (t), ∂ D)

) 1
2

dt

= 1

2

∫ 1

0

|x2 − x1|
t |x2 − x1| + |x1 − p|dt + C

2

∫ 1

0

1√
t |x2 − x1| + |x1 − p|dt

= ln
h(x1)

h(x2)
+ C(h(x1) − h(x2)),

which gives (4.5). ��

An immediate consequence of Lemma 4.3 is the following.

Corollary 4.6 Let δ0 > 0 to be the constant in Proposition 2.5. If x1, x2 ∈ D, with
δ0 > h(x1) ≥ h(x2), then

ln
h(x1)

h(x2)
− C

(
h(x1) − h(x2)

) ≤ dK (x1, x2).
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Moreover, if π(x1) = π(p2), then we also have

dK (x1, x2) ≤ ln
h(x1)

h(x2)
+ C

(
h(x1) − h(x2)

)
(4.7)

where C is the same constant as in (2.8).

The next lemma provides an upper bound for dK (x1, x2) in the case when both
points x1, x2 are at the same distance from the boundary and equal to the Carnot–
Carathéodory distance between the projections π(x1), π(x2).

Lemma 4.8 Let p1, p2 ∈ ∂ D. If we set xi := pi − dCC (p1, p2)n(pi ), i = 1, 2, then

dK (x1, x2) → 0, as dCC (p1, p2) → 0. (4.9)

Proof Let η > 0 and let α : [0, 1] → ∂ D be any horizontal curve with α(0) = p1 and
α(1) = p2, such that its subRiemannian length lCC , satisfies

lCC (α) =
∫ 1

0
L

1
2
ϕ (α(t), α′(t))dt ≤ dCC (p1, p2)(1 + η).

Define a new curve γ : [0, 1] → D as a lift at height h ∈ (0, δ0) of α by the formula

γ (t) := α(t) − h n(α(t)). (4.10)

Arguing as in the proof of [3, Lemma 2.2] yields the following relations between α′
and γ ′,

L(α(t), γ ′
H (t)) = L(α(t), α′(t)) + O(h|α′(t)|2)

|γ ′
N (t)| = O(h|α′(t)|). (4.11)

In fact, from (4.10) one has γ ′(t)|H = α′(t) − h[dn|α(t)α
′(t)]H which, together with

the bilinearity of the Levi form, yields (4.11). Consequently we have

lK (γ ) =
∫ 1

0
K (γ (t), γ ′(t))dt

≤
∫ 1

0
(1 + Cd

1
2
E (γ (t), ∂ D))

( |γ ′
N (t)|2

4d2E (γ (t), ∂ D)
+ (1 + ε̄)

Lϕ(π(γ (t), γ ′
H (t))

dE (γ (t), ∂ D)

) 1
2

dt

=
∫ 1

0
(1 + Ch

1
2 )

( |γ ′
N (t)|2
4h2

+ (1 + ε̄)
Lϕ(π(γ (t), γ ′

H (t))

h

) 1
2

dt

≤
∫ 1

0
(1 + Ch

1
2 )

(
C |α′(t)|2 + (1 + ε̄)

Lϕ(α(t), α′(t))
h

) 1
2

dt

≤ (1 + C
√

h)(1 + η)

[
CdCC (p1, p2) + (1 + ε̄)

1
2 h− 1

2 dCC (p1, p2)

]
.

Setting h = dCC (x1, x2) in the latter yields the conclusion. ��
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The next lemma will be instrumental in establishing a lower bound for dK (x1, x2)
in the case when a length minimizing arc γ joining two points x1, x2 ∈ D will travel
at a distance further than the Carnot–Carathéodory distance between their projections.

Lemma 4.12 Let δ0 > 0 be smaller than the similarly named constants in Propo-
sitions 2.5 and 2.7. Consider two points x1, x2 ∈ D with dE (xi , ∂ D) < δ0. Set
pi = π(xi ) ∈ ∂ D, and let γ : [0, 1] → D denote an arc joining x1 and x2. If
maxz∈γ h(z) ≥ dCC (p1, p2) then

lK (γ ) ≥ 2 ln

(
dCC (p1, p2)√

h(x1)h(x2)

)
− C(2dCC (p1, p2) − h(x1) − h(x2)), (4.13)

where C is the same constant as in (2.8).

Proof Choose t0 ∈ [0, 1] such that h(γ (t0)) = maxz∈γ h(z). Set γ1, γ2 be the two
branches of the curve γ corresponding to the subintervals [0, t0] and [t0, 1]. Set also
γ̄1 and γ̄2 to be the connected components on γ1 and γ2 joining xi to the closest points
yi ∈ γ such that h(yi ) = dCC (p1, p2), for i = 1, 2. More formally, y1 = γ (t1),
with t1 = inf{t ∈ [0, t1] such that h(γ (t)) ≥ dCC (p1, p2)}. The point y2 is defined
analogously.

Next we invoke Lemma 4.3 to deduce

lK (γ ) ≥ lK (γ̄1) + lK (γ̄2)

≥ ln
dCC (p1, p2)

h(x1)
+ ln

dCC (p1, p2)

h(x2)
− C(2dCC (p1, p2) − h(x1) − h(x2))

= 2 ln

(
dCC (p1, p2)√

h(x1)h(x2)

)
− C(2dCC (x1, x2) − h(x1) − h(x2)),

which is the desired bound (4.13). ��

4.2 Proof of Theorem 4.1

Thanks to the previous lemmata we can now prove the main result of the section.

Proof of Theorem 4.1 We shall show that for all p̄ ∈ ∂ D and ε > 0 one can choose
r > 0 small enough so that for all distinct p, q ∈ ∂ D∩ B( p̄, r) one can find r ′ ∈ (0, r)

such that (4.2) holds for all x ∈ D ∩ B(p, r ′) and all y ∈ D ∩ B(q, r ′). In our proof
we begin with arbitrary values of r and r ′ and then put several constrains on them.

If p and q are distinct, then the value d1 := dCC (p, q) is strictly positive. We shall
choose r smaller that the constants δ0 in Propositions 2.5 and 2.7 and so that d1 is small
enough to be determined later. Denote by x̄ , and ȳ the projections on the boundary of
x and y, respectively. Note that since the projections are the closest points in ∂ D, then
x̄ ∈ B(p, 2r ′) and ȳ ∈ B(q, 2r ′). Set d2 := dCC (x̄, ȳ). Notice that as r ′ → 0 we have
d2 → d1. We shall choose r ′ sufficiently small so that r ′ < d2 and d2 ∈ (d1/2, 2d1).
In particular, if r was chosen small enough, then d2 is positive and smaller than the
constants δ0 in Propositions 2.5 and 2.7.
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756 L. Capogna, E. Le Donne

Proof of the upper bound in (4.2). Set x ′ := x̄ − d2n(x̄) and y′ := ȳ − d2n(ȳ), so x ′,
y′ are points in D at distance d2 from ∂ D and with the same projection on ∂ D as x ,
y, respectively.

By Lemma 4.8 we can choose d1 sufficiently small so that dK (x ′, y′) < ε/3.
Invoking (4.7), since h(x ′) = h(y′) = d2 > max{h(x), h(y)}, yields

dK (x, x ′) ≤ log(d2/h(x)) + C(d2 − h(x)) and

dK (y, y′) ≤ log(d2/h(y)) + C(d2 − h(y)).

Choose d1 chosen sufficiently small so that Cd2 ≤ ε/3.
Combining the previous bounds with the definition of g, we obtain the following

estimates

dK (x, y) − g(x, y) ≤ dK (x, x ′) + dK (x ′, y′) + dK (y′, y) − g(x, y)

≤ log(d2/h(x)) + C(d2 − h(x)) + ε/3

+ log(d2/h(y)) + C(d2 − h(y)) − 2 ln

(
d2 + h(x) ∧ h(y))√

h(x)h(y)

)

≤ ε − Ch(x) − Ch(y) − 2 ln

(
1 + h(x) ∧ h(y)

d2

)
< ε,

where we used that the terms h(x), h(y), ln(1+ h(x)∧h(y)
d2

) are positive. This conclude
the proof of the upper bound in (4.2).
Proof of the lower bound in (4.2). Choose δ > 0 such that ln(1/(1 + δ)) < ε and
r ′ > 0 small enough so that max(h(x),h(y))

dCC (p,q)
≤ δ, for all x ∈ D ∩ B(p, r ′) and all

y ∈ D ∩ B(q, r ′). Consider any arc γ : [0, 1] → D joining x and y, and set H :=
maxz∈γ h(z).
- If H ≥ dCC (x̄, ȳ) then in view of Lemma 4.12 we have

dK (x, y) − g(x, y) ≥ 2 ln

(
d2√

h(x)h(y)

)
− C(2d2 − h(x) − h(y)))

−2 ln

(
d2 + h(x) ∧ h(y))√

h(x)h(y)

)

≥ 2 ln

(
1

1 + max(h(x),h(y))
d2

)
− C(2d2 − h(x) − h(y))

≥ −(C + 2)ε. (4.14)

In this case the proof is concluded.
- If H ≤ dCC (x̄, ȳ) then it follows that H is smaller than the constants δ0 in
Propositions 2.5 and 2.7. In particular we can assume without loss of generality that
C H < 1/2, where C is as in (2.8). Let t0 ∈ [0, 1] be such that h(γ (t0)) = H and
consider the two branches γ1, γ2 of γ given by restrictions to [0, t0] and [t0, 1]. Given
ε > 0 as in the statement, let θ ∈ (1, 2] so that ln θ < ε and define k ∈ N such that
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h(γ (0)) ∈
[

H

θk
,

H

θk−1

]
.

Following [3], we define s0, s1, . . . , sk ∈ [0, t0] such that s0 = 0 and

sl = min

{
s ∈ [0, t0] such that h(γ (s)) = H

θk−l

}
.

Set t1 = sk ≤ t0 and for each l = 1, . . . , k,

ν−1
l = dCC (x̄, ȳ) · (θ − 1)

8θk−l
.

For each of the two branches γ1, γ2, we distinguish two alternatives:

• Alternative #1 (All sub-arcs have large slope) In this alternative we assume that
for every l = 1, . . . , k one has

dCC (π(γ (sl−1)), π(γ (sl))) ≤ ν−1
l (4.15)

From the latter we draw two conclusions. The first is a simple application of the
triangle inequality,

dCC (z̄, π(γ (t1)) (A1 (i))

≤
k∑

l=1

dCC (π(γ (sl−1)), π(γ (sl))) ≤ (θ − 1)
dCC (x̄, ȳ)

8θk

k∑
l=1

θ l ≤ dCC (x̄, ȳ)

4
.

On the other hand, in view of Lemma 4.3 one has

lK (γ |[0,t1]) ≥ ln
h(γ (t1))

h(x)
− C(h(γ (t1)) − h(x)) = ln

H

h(x)
− C(H − h(x)).

(A1 (ii))

• Alternative #2 (One sub-arc has small slope) In this alternative, we assume that
there exists l ∈ {1, . . . , k} such that

dCC (π(γ (sl−1)), π(γ (sl))) > ν−1
l (4.16)

Note that if s ∈ [sl−1, sl ] then from the definition of the points sl , one has

h(γ (s)) ≤ θ l−k H ≤ 8

θ − 1
ν−1

l .

We then claim that there exists a constant C > 0 depending only on the defining
function ϕ such that

lK (γ |[sl−1,sl ]) ≥ C(θ − 1)2
dCC (x̄, ȳ)

H
. (4.17)
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Indeed, arguing as in [3, page 521] we invoke (2.8), Lemma 2.10, and (4.16) and
we bound as follows:

lK (γ |[sl−1,sl ])

≥ C (1 − C H)θk−l

H

∫ sl

sl−1

[
Lϕ(π(γ (s)), [π(γ (s))]′H )

+(θ − 1)2ν2l |[π(γ (s))]′N |2
] 1

2

ds

≥ C
2
(θ − 1)

θk−l

H

∫ sl

sl−1

[
Lϕ(π(γ (s)), [π(γ (s))]′H ) + ν2l |[π(γ (s))]′N |2

] 1
2

ds

≥ C(θ − 1)
θk−l

H
dνl (π(γ (sl−1)), π(γ (sl)))

≥ C(θ − 1)
θk−l

H
dCC (π(γ (sl−1)), π(γ (sl)))

≥ C(θ − 1)2
dCC (x̄, ȳ)

H
,

where dνl denotes the approximation of the Carnot–Carathéodory metric defined
in (2.9).
Next we claim that

lL(γ |[0,t1]) ≥ ln

(
H

h(y)

)
+ C(θ − 1)2

H
dCC (x̄, ȳ) − C

(
H − h(y)

) − ε. (A2)

Indeed, Lemma 4.3 and (4.17) yields

lL(γ |[0,t1]) = lK (γ |[0,sl−1]) + lK (γ |[sl−1,sl ]) + lK (γ |[sl ,t1])

≥ ln

(
H

h(γ (sl))

h(γ (sl−1))

h(x)

)
+ C(θ − 1)2

H
dCC (x̄, ȳ)

−C
(
H − h(γ (sl) + h(γ (sl−1)) − h(x)

)

≥ ln

(
H

h(x)
θ−1

)
+ C(θ − 1)2

H
dCC (x̄, ȳ) − C

(
H − h(x)

)

≥ ln

(
H

h(x)

)
+ C(θ − 1)2

H
dCC (x̄, ȳ) − C

(
H − h(x)

) − ε.

Applying similar consideration to the branch γ2 one obtains a t2 ∈ [t0, 1] such that
one of the following two alternatives hold: Either

dCC (ȳ, π(γ (t2)) ≤ dCC (x̄, ȳ)

4
and lK (γ |[t2,1]) ≥ ln

H

h(y)
− C(H − h(y)). (B1)
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or

lL(γ |[t2,1]) ≥ ln

(
H

h(y)

)
+ C(θ − 1)2

H
dCC (x̄, ȳ) − C

(
H − h(y)

) − ε. (B2)

To conclude the proof we need to examine all possible combinations of these alter-
natives. We will show that in each case one obtains

lK (γ ) ≥ 2 ln

(
dCC (x̄, ȳ)√

h(x)h(y)

)
− C(2dCC (x̄, ȳ) − h(x) − h(y)) − ε. (4.18)

• Suppose both (A1) and (B1) hold. Observe that

dCC (π(γ (t1)), π(γ (t2))) ≥ dCC (x̄, ȳ) − dCC (x̄, π(γ (t1))) − dCC (ȳ, π(γ (t2)))

≥ dCC (x̄, ȳ)

2
.

Repeating the argument in (4.17) for l = k and invoking the Riemannian approx-
imation lemma [3, Lemma 3.2] one has

lL(γ |[t1,t2]) ≥ C(θ − 1)2
dνk (π(γ (t1)), π(γ (t2)))

H
≥ C(θ − 1)2

dCC (x̄, ȳ)

H
.

The latter, together with (A1 (ii)), and the second inequality in (B1) yields

lK (γ ) ≥ 2 ln

(
H√

h(x)h(y)

)
+ C(θ − 1)2

dCC (x̄, ȳ)

H
− C(2H − h(x) − h(y)).

Since the right hand side is monotone decreasing in H ≤ dCC (x̄, ȳ) then one has

lK (γ ) ≥ 2 ln

(
dCC (x̄, ȳ)√

h(x)h(y)

)
+ C(θ − 1)2 − C(2dCC (x̄, ȳ) − h(x) − h(y))

≥ 2 ln

(
dCC (x̄, ȳ)√

h(x)h(y)

)
− C(2dCC (x̄, ȳ) − h(x) − h(y))

completing the proof of (4.18).
• Suppose both (A1) and (B2) hold. One immediately has

lK (γ ) ≥ lK (γ[0,t1]) + lK (γ |[t2,1])
≥ ln

(
H

h(x)

)
+ C(θ − 1)

H
dCC (x̄, ȳ) − C[H − h(x)]

−ε + ln
H

h(y)
− C(H − h(y)).

Applying the same consideration as above we immediately deduce (4.18).
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• Suppose both (A2) and (B1) hold. This combination is dealt with analogously to
the previous case.

• Suppose both (A2) and (B2) hold. Estimate (4.18) follows immediately from
(A2) and (B2).

To conclude the proof we need to consider the infimum of lK (γ ) among all arcs γ

joining x and y and apply (4.18) to each. One has

dK (x, y) − g(x, y) ≥ 2 ln

(
dCC (x̄, ȳ)√

h(x)h(y)

1
dCC (x̄,ȳ)√

h(x)h(y)
+ max{h(x),h(y)}√

h(x)h(y)

)

−C(2dCC (x̄, ȳ) − h(x) − h(y)) − ε

= −2 ln

(
1 + max{h(x), h(y)}

dCC (x̄, ȳ)

)

−C(2dCC (x̄, ȳ) − h(x) − h(y)) − ε.

The proof is then concluded by applying the same argument as in (4.14). ��

5 Local biLipschitz equivalence of visual quasi-distances and proof of
main result

In this section we prove Proposition 1.5 and the main result, Theorem 1.1.

Proof of Proposition 1.5 Let p̄ as in the statement and choose ε > 0 such that
exp( 32ε) ≤ 1 + ε̄. Invoke Theorem 4.1 in correspondence to the choice of p̄ and
ε, to obtain the value r > 0 and select any ω ∈ ∂ D ∩ B( p̄, r)\{ p̄}. In correspondence
to this choice of ω, Theorem 4.1 yields a smaller radius 0 < r ′ < r , so that if we
choose y ∈ D ∩ B( p̄, r ′) and o ∈ D ∩ B(ω, r ′) and then apply Theorem 4.1 to the
quintuplet ( p̄, p̄, ω, y, o) we obtain

|g(y, o) − dK (y, o)| < ε, for all y ∈ D ∩ B( p̄, r ′), and o ∈ D ∩ B(ω, r ′)

Next, given p, q ∈ ∂ D ∩ B( p̄, r ′) we similarly use Theorem 4.1 to infer the
existence of a r ′′ > 0 for which, applying Theorem 4.1 to the quintuplet ( p̄, p, qx, y)

|dK (x, y)− g(x, y)| ≤ ε, for all x ∈ D ∩ B(p, r ′′), and for all y ∈ D ∩ B(q, r ′′).

If xi (resp., yi ) is a sequence in D converging to p (resp., q), then for i large enough
xi ∈ D ∩ B(p, r ′′) and yi ∈ D ∩ B(q, r ′′) and xi , yi ∈ B( p̄, r ′). From the above
bounds one obtains

∣∣∣〈yi , xi 〉g
o − 〈yi , xi 〉K

o

∣∣∣ = 1

2
|g(yi , o) − dK (yi , o) + g(xi , o)

−dK (xi , o) + dK (xi , yi ) − g(xi , yi )|
≤ 3

2
ε.
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Consequently, if the sequences xi , yi are taken so that 〈p, q〉g
o = limi→∞〈yi , xi 〉g

o , we
have

ρK
o (p, q)

ρ
g
o (p, q)

≤ limi→∞ exp(−〈yi , xi 〉K
o )

limi→∞ exp(−〈yi , xi 〉g
o)

= lim
i→∞ exp

(
〈yi , xi 〉g

o − 〈yi , xi 〉K
o

)

≤ exp(
3

2
ε) ≤ 1 + ε̄.

And similarly, ρg
o (p, q)/ρK

o (p, q) is bounded by 1 + ε̄. ��
Proof of Theorem 1.1 For any p̄ ∈ ∂ D1 and ε̄ > 0we show that the boundary extension
is (1+ε̄)−quasi-conformal at p̄, i.e. H∗( p̄, F, dCC , dCC ) ≤ 1+ε̄, where H∗ is defined
as in (2.1). Following the diagram (D) in the introduction, from (2.3) for every o ∈ D1
we have

H∗( p̄, F, dCC , dCC )

≤ H∗( p̄, Id∂ D1 , dCC, ρ
g
o )H∗( p̄, Id∂ D1 , ρ

g
o , ρK

o )H∗( p̄, F, ρK
o , ρK

f (o))

·H∗(F( p̄), Id∂ D2 , ρ
K
f (o), ρ

g
f (o))H∗(F( p̄), Id∂ D2 , ρ

g
f (o), dCC). (5.1)

Start by observing that for any o ∈ D1 the pointed metric spaces (D1, dK , o) and
(D2, dK , f (o)) are isometric. Thus theygive rise to visual boundaries that are isometric
with respect to the induced distances ρK

o an ρK
f (o), as defined in (1.3). Consequently

the induced extension map F : (∂ D1, ρ
K
o ) → (∂ D2, ρ

K
f (o)) is an isometry, and hence

from (2.4)
H∗( p̄, F, ρK

o , ρK
f (o)) = 1. (5.2)

Regarding the first and last term in the right-hand side of (5.1), in view of Propo-
sition 1.4 we have that

H∗( p̄, Id∂ D1 , dCC, ρ
g
o ) = H∗(F( p̄), Id∂ D2 , ρ

g
f (o), dCC) = 1. (5.3)

We shall then prove that

H∗( p̄, Id∂ D1 , ρ
g
o , ρK

o ) ≤ 1 + ε̄ and H∗(F( p̄), Id∂ D2 , ρ
K
f (o), ρ

g
f (o)) ≤ 1 + ε̄, (5.4)

for some suitable choice of o. To prove this we will need to invoke Proposition 1.5
twice, in D1 and in D2, together with the observation (2.4). Namely, we shall prove
that for a suitable choice of o The maps considered in (5.4) are (1+ ε̄)-biLipschitz in
a neighborhood of the considered points.

First we apply Proposition 1.5 in a neighborhood of F( p̄) ∈ ∂ D2, thus yielding
r2 > 0 such that for all ω2 ∈ ∂ D2 ∩ B(F( p̄), r2)\{F( p̄)} there exists r ′

2 > 0 such
that for all o2 ∈ D2 ∩ B(ω2, r ′

2) one has that ρ
g
o2 and ρK

o2 are (1 + ε̄)-biLipschitz in
∂ D2 ∩ B(F( p̄), r ′

2). For the moment we do not choose any specific ω2 and o2, so r ′
2

is still to be determined.
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Next, we apply Proposition 1.5 to D1 in a neighborhood of p̄ and use it to choose
r1 > 0 such that for all ω1 ∈ ∂ D1 ∩ B( p̄, r1)\{ p̄} there exists r ′

1 > 0 such that
o1 ∈ D1 ∩ B(ω1, r ′

1) one has that ρ
g
o1 and ρK

o1 are (1 + ε̄)-biLipschitz in ∂ D1 ∩
B( p̄, r ′

1). By continuity of the map F we may have chosen r1 small enough that
F(B( p̄, r1) ∩ D1) ⊂ B(F( p̄), r2) ∩ D2.

We set ω2 := F(ω1), which is then in B(F( p̄), r2)∩ D2 and is different than F( p̄)

since F is a homeomorphism. Now we fix r ′
2 accordingly, as we explained above. If

neededwewill select a smaller value for r ′
1 so thatwe can assume F(B(ω1, r ′

1)∩D1) ⊂
B(F(ω1), r ′

2) ∩ D2.
To conclude, we can now select any base point o ∈ B(ω1, r ′

1) ∩ D1, so that f (o) ∈
B(ω2, r ′

2) ∩ D2 and and hence ρ
g
o1 and ρK

o1 are (1+ ε̄)-biLipschitz in ∂ D1 ∩ B( p̄, r ′
1)

and ρ
g
o2 and ρK

o2 are (1+ ε̄)-biLipschitz in ∂ D2 ∩ B(F( p̄), r ′
2). Thus, (2.4) gives (5.4).

Using the estimates (5.2), (5.3), and (5.4) in (5.1) we get H∗( p̄, F, dCC , dCC ) ≤
(1+ ε̄)2. By the arbitrariness of ε̄ we deduce H∗( p̄, F, dCC , dCC ) = 1. Finally, from
Lemma 2.2 we conclude. ��
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