

Non-properly embedded *H*-planes in $\mathbb{H}^2 \times \mathbb{R}$

Baris Coskunuzer 1 · William H. Meeks III 2 · Giuseppe Tinaglia 3

Received: 28 September 2016 / Revised: 14 March 2017 / Published online: 25 May 2017 © The Author(s) 2017. This article is an open access publication

Abstract For any $H \in (0, \frac{1}{2})$, we construct complete, non-proper, stable, simplyconnected surfaces embedded in $\mathbb{H}^2 \times \mathbb{R}$ with constant mean curvature H.

1 Introduction

In their ground breaking work [2], Colding and Minicozzi proved that complete minimal surfaces embedded in \mathbb{R}^3 with finite topology are proper. Based on the techniques in [2], Meeks and Rosenberg [5] then proved that complete minimal surfaces with positive injectivity embedded in \mathbb{R}^3 are proper. More recently, Meeks and Tinaglia [7]

The second author was supported in part by NSF Grant DMS - 1309236. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the NSF.

Baris Coskunuzer coskunuz@bc.edu

William H. Meeks III profmeeks@gmail.com

The first author is partially supported by BAGEP award of the Science Academy, and a Royal Society Newton Mobility Grant.

The third author was partially supported by EPSRC Grant No. EP/M024512/1, and a Royal Society Newton Mobility Grant.

Giuseppe Tinaglia giuseppe.tinaglia@kcl.ac.uk

¹ Department of Mathematics, Boston College, Chestnut Hill, MA 02467, USA

² Department of Mathematics, University of Massachusetts, Amherst, MA 01003, USA

³ Department of Mathematics, King's College London, London, UK

proved that complete constant mean curvature surfaces embedded in \mathbb{R}^3 are proper if they have finite topology or have positive injectivity radius.

In contrast to the above results, in this paper we prove the following existence theorem for non-proper, complete, simply-connected surfaces embedded in $\mathbb{H}^2 \times \mathbb{R}$ with constant mean curvature $H \in (0, 1/2)$. The convention used here is that the mean curvature function of an oriented surface M in an oriented Riemannian three-manifold N is the pointwise average of its principal curvatures.

The catenoids in $\mathbb{H}^2 \times \mathbb{R}$ mentioned in the next theorem are defined at the beginning of Sect. 2.1.

Theorem 1.1 For any $H \in (0, 1/2)$ there exists a complete, stable, simply-connected surface Σ_H embedded in $\mathbb{H}^2 \times \mathbb{R}$ with constant mean curvature H satisfying the following properties:

- (1) The closure of Σ_H is a lamination with three leaves, Σ_H , C_1 and C_2 , where C_1 and C_2 are stable catenoids of constant mean curvature H in \mathbb{H}^3 with the same axis of revolution L. In particular, Σ_H is not properly embedded in $\mathbb{H}^2 \times \mathbb{R}$.
- (2) Let K_L denote the Killing field generated by rotations around L. Every integral curve of K_L that lies in the region between C_1 and C_2 intersects Σ_H transversely in a single point. In particular, the closed region between C_1 and C_2 is foliated by surfaces of constant mean curvature H, where the leaves are C_1 and C_2 and the rotated images $\Sigma_H(\theta)$ of Σ around L by angle $\theta \in [0, 2\pi)$.

When H = 0, Rodríguez and Tinaglia [10] constructed non-proper, complete minimal planes embedded in $\mathbb{H}^2 \times \mathbb{R}$. However, their construction does not generalize to produce complete, non-proper planes embedded in $\mathbb{H}^2 \times \mathbb{R}$ with non-zero constant mean curvature. Instead, the construction presented in this paper is related to the techniques developed by the authors in [3] to obtain examples of non-proper, stable, complete planes embedded in \mathbb{H}^3 with constant mean curvature H, for any $H \in [0, 1)$.

There is a general conjecture related to Theorem 1.1 and the previously stated positive properness results. Given X a Riemannian three-manifold, let $Ch(X) := \inf_{S \in S} \frac{Area(\partial S)}{Volume(S)}$, where S is the set of all smooth compact domains in X. Note that when the volume of X is infinite, Ch(X) is the Cheeger constant.

Conjecture 1.2 Let X be a simply-connected, homogeneous three-manifold. Then for any $H \ge \frac{1}{2}Ch(X)$, every complete, connected H-surface embedded in X with positive injectivity radius or finite topology is proper. On the other hand, if Ch(X) > 0, then there exist non-proper complete H-planes in X for every $H \in [0, \frac{1}{2}Ch(X))$.

By the work in [2], Conjecture 1.2 holds for $X = \mathbb{R}^3$ and it holds in \mathbb{H}^3 by work in progress in [6]. Since the Cheeger constant of $\mathbb{H}^2 \times \mathbb{R}$ is 1, Conjecture 1.2 would imply that Theorem 1.1 (together with the existence of complete non-proper minimal planes embedded in $\mathbb{H}^2 \times \mathbb{R}$ found in [10]) is a sharp result.

2 Preliminaries

In this section, we will review the basic properties of *H*-surfaces, a concept that we next define. We will call a smooth oriented surface Σ_H in $\mathbb{H}^2 \times \mathbb{R}$ an *H*-surface if

it is embedded and its mean curvature is constant equal to H; we will assume that Σ_H is appropriately oriented so that H is non-negative. We will use the cylinder model of $\mathbb{H}^2 \times \mathbb{R}$ with coordinates (ρ, θ, t) ; here ρ is the hyperbolic distance from the origin (a chosen base point) in \mathbb{H}^2_0 , where \mathbb{H}^2_t denotes $\mathbb{H}^2 \times \{t\}$. We next describe the H-catenoids mentioned in the Introduction.

The following *H*-catenoids family will play a particularly important role in our construction.

2.1 Rotationally invariant vertical *H*-catenoids C_d^H

We begin this section by recalling several results in [8,9]. Given $H \in (0, \frac{1}{2})$ and $d \in [-2H, \infty)$, let

$$\eta_d = \cosh^{-1}\left(\frac{2dH + \sqrt{1 - 4H^2 + d^2}}{1 - 4H^2}\right)$$

and let $\lambda_d \colon [\eta_d, \infty) \to [0, \infty)$ be the function defined as follows.

$$\lambda_d(\rho) = \int_{\eta_d}^{\rho} \frac{d + 2H\cosh r}{\sqrt{\sinh^2 r - (d + 2H\cosh r)^2}} dr.$$
 (1)

Note that $\lambda_d(\rho)$ is a strictly increasing function with $\lim_{\rho \to \infty} \lambda_d(\rho) = \infty$ and derivative $\lambda'_d(\eta_d) = \infty$ when $d \in (-2H, \infty)$.

In [8] Nelli, Sa Earp, Santos and Toubiana proved that there exists a 1-parameter family of embedded *H*-catenoids $\{C_d^H \mid d \in (-2H, \infty)\}$ obtained by rotating a generating curve $\lambda_d(\rho)$ about the *t*-axis. The generating curve $\hat{\lambda}_d$ is obtained by doubling the curve $(\rho, 0, \lambda_d(\rho)), \rho \in [\eta_d, \infty)$, with its reflection $(\rho, 0, -\lambda_d(\rho)), \rho \in [\eta_d, \infty)$. Note that $\hat{\lambda}_d$ is a smooth curve and that the necksize, η_d , is a strictly increasing function in *d* satisfying the properties that $\eta_{-2H} = 0$ and $\lim_{d\to\infty} \eta_d = \infty$.

If d = -2H, then by rotating the curve $(\rho, 0, \lambda_d(\rho))$ around the *t*-axis one obtains a simply-connected *H*-surface E_H that is an entire graph over \mathbb{H}_0^2 . We denote by $-E_H$ the reflection of E_H across \mathbb{H}_0^2 .

We next recall the definition of the mean curvature vector.

Definition 2.1 Let *M* be an oriented surface in an oriented Riemannian three-manifold and suppose that *M* has non-zero mean curvature H(p) at *p*. The **mean curvature vector at** *p* is $\mathbf{H}(p) := H(p)N(p)$, where N(p) is its unit normal vector at *p*. The mean curvature vector $\mathbf{H}(p)$ is independent of the orientation on *M*.

Note that the mean curvature vector **H** of C_d^H points into the connected component of $\mathbb{H}^2 \times \mathbb{R} - C_d^H$ that contains the *t*-axis. The mean curvature vector of E_H points upward while the mean curvature vector of $-E_H$ points downward.

In order to construct the examples described in Theorem 1.1, we first obtain certain geometric properties satisfied by *H*-catenoids. For example, in the following lemma, we show that for certain values of d_1 and d_2 , the catenoids $C_{d_1}^H$ and $C_{d_2}^H$ are disjoint.

Given $d \in (-2H, \infty)$, let $b_d(t) := \lambda_d^{-1}(t)$ for $t \ge 0$; note that $b_d(0) = \eta_d$. Abusing the notation let $b_d(t) := b_d(-t)$ for $t \le 0$.

Lemma 2.1 (*Disjoint H-catenoids*) Given $d_1 > 2$, there exist $d_0 > d_1$ and $\delta_0 > 0$ such that for any $d_2 \in [d_0, \infty)$, then

$$\inf_{t\in\mathbb{R}}(b_{d_2}(t)-b_{d_1}(t))\geq\delta_0.$$

In particular, the corresponding *H*-catenoids are disjoint, i.e. $C_{d_1}^H \cap C_{d_2}^H = \emptyset$.

Moreover, $b_{d_2}(t) - b_{d_1}(t)$ is decreasing for t > 0 and increasing for t < 0. In particular,

$$\sup_{t \in \mathbb{R}} (b_{d_2}(t) - b_{d_1}(t)) = b_{d_2}(0) - b_{d_1}(0) = \eta_{d_2} - \eta_{d_1}.$$

The proof of the above lemma requires a rather lengthy computation that is given in the Appendix.

We next recall the well-known mean curvature comparison principle.

Proposition 2.2 (Mean curvature comparison principle) Let M_1 and M_2 be two complete, connected embedded surfaces in a three-dimensional Riemannian manifold. Suppose that $p \in M_1 \cap M_2$ satisfies that a neighborhood of p in M_1 locally lies on the side of a neighborhood of p in M_2 into which $\mathbf{H}_2(p)$ is pointing. Then $|H_1|(p) \ge |H_2|(p)$. Furthermore, if M_1 and M_2 are constant mean curvature surfaces with $|H_1| = |H_2|$, then $M_1 = M_2$.

3 The examples

For a fixed $H \in (0, 1/2)$, the outline of construction is as follows. First, we will take two disjoint *H*-catenoids C_1 and C_2 whose existence is given in Lemma 2.1. These catenoids C_1 , C_2 bound a region Ω in $\mathbb{H}^2 \times \mathbb{R}$ with fundamental group \mathbb{Z} . In the universal cover $\widetilde{\Omega}$ of Ω , we define a piecewise smooth compact exhaustion $\Delta_1 \subset \Delta_2 \subset \cdots \subset \Delta_n \subset \cdots$ of $\widetilde{\Omega}$. Then, by solving the *H*-Plateau problem for special curves $\Gamma_n \subset \partial \Delta_n$, we obtain minimizing *H*-surfaces Σ_n in Δ_n with $\partial \Sigma_n = \Gamma_n$. In the limit set of these surfaces, we find an *H*-plane \mathcal{P} whose projection to Ω is the desired non-proper *H*-plane $\Sigma_H \subset \mathbb{H}^2 \times \mathbb{R}$.

3.1 Construction of $\tilde{\Omega}$

Fix $H \in (0, \frac{1}{2})$ and $d_1, d_2 \in (2, \infty)$, $d_1 < d_2$, such that by Lemma 2.1, the related *H*-catenoids $C_{d_1}^H$ and $C_{d_2}^H$ are disjoint; note that in this case, $C_{d_1}^H$ lies in the interior of the simply-connected component of $\mathbb{H}^2 \times \mathbb{R} - C_{d_2}^H$. We will use the notation $C_i := C_{d_i}^H$. Recall that both catenoids have the same rotational axis, namely the *t*-axis, and recall that the mean curvature vector \mathbf{H}_i of C_i points into the connected component of

Fig. 1 The induced coordinates $(\rho, \tilde{\theta}, t)$ in $\tilde{\Omega}$

 $\mathbb{H}^2 \times \mathbb{R} - C_i$ that contains the *t*-axis. We emphasize here that *H* is *fixed* and so we will omit describing it in future notations.

Let Ω be the closed region in $\mathbb{H}^2 \times \mathbb{R}$ between C_1 and C_2 , i.e., $\partial \Omega = C_1 \cup C_2$ (Fig. 1-left). Notice that the set of boundary points at infinity $\partial_{\infty} \Omega$ is equal to $S^1_{\infty} \times \{-\infty\} \cup S^1_{\infty} \times \{\infty\}$, i.e., the corner circles in $\partial_{\infty} \mathbb{H}^2 \times \mathbb{R}$ in the product compactification, where we view \mathbb{H}^2 to be the open unit disk $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ with base point the origin $\vec{0}$.

By construction, Ω is topologically a solid torus. Let $\widetilde{\Omega}$ be the universal cover of Ω . Then, $\partial \widetilde{\Omega} = \widetilde{C}_1 \cup \widetilde{C}_2$ (Fig. 1-right), where $\widetilde{C}_1, \widetilde{C}_2$ are the respective lifts to $\widetilde{\Omega}$ of C_1, C_2 . Notice that \widetilde{C}_1 and \widetilde{C}_2 are both *H*-planes, and the mean curvature vector **H** points outside of $\widetilde{\Omega}$ along \widetilde{C}_1 while **H** points inside of $\widetilde{\Omega}$ along \widetilde{C}_2 . We will use the induced coordinates $(\rho, \tilde{\theta}, t)$ on $\widetilde{\Omega}$ where $\tilde{\theta} \in (-\infty, \infty)$. In particular, if

$$\Pi: \tilde{\Omega} \to \Omega \tag{2}$$

is the covering map, then $\Pi(\rho_o, \tilde{\theta}_o, t_o) = (\rho_o, \theta_o, t_o)$ where $\theta_o \equiv \tilde{\theta}_o \mod 2\pi$.

Recalling the definition of $b_i(t)$, i = 1, 2, note that a point (ρ, θ, t) belongs to Ω if and only if $\rho \in [b_1(t), b_2(t)]$ and we can write

$$\widehat{\Omega} = \{ (\rho, \overline{\theta}, t) \mid \rho \in [b_1(t), b_2(t)], \ \overline{\theta} \in \mathbb{R}, \ t \in \mathbb{R} \}.$$

3.2 Infinite bumps in $\tilde{\Omega}$

Let γ be the geodesic through the origin in \mathbb{H}_0^2 obtained by intersecting \mathbb{H}_0^2 with the vertical plane $\{\theta = 0\} \cup \{\theta = \pi\}$. For $s \in [0, \infty)$, let φ_s be the orientation preserving hyperbolic isometry of \mathbb{H}_0^2 that is the hyperbolic translation along the geodesic γ with $\varphi_s(0, 0) = (s, 0)$. Let

$$\widehat{\varphi}_s \colon \mathbb{H}^2 \times \mathbb{R} \to \mathbb{H}^2 \times \mathbb{R}, \quad \widehat{\varphi}_s(\rho, \theta, t) = (\varphi_s(\rho, \theta), t) \tag{3}$$

be the related extended isometry of $\mathbb{H}^2 \times \mathbb{R}$.

Deringer

Let C_d be an embedded *H*-catenoid as defined in Sect. 2.1. Notice that the rotation axis of the *H*-catenoid $\widehat{\varphi}_{s_0}(C_d)$ is the vertical line $\{(s_0, 0, t) \mid t \in \mathbb{R}\}$.

Let $\delta := \inf_{t \in \mathbb{R}} (b_2(t) - b_1(t))$, which gives an upper bound estimate for the asymptotic distance between the catenoids; recall that by our choices of C_1 , C_2 given in Lemma 2.1, we have $\delta > 0$. Let $\delta_1 = \frac{1}{2} \min\{\delta, \eta_1\}$ and let $\delta_2 = \delta - \frac{\delta_1}{2}$. Let $\widehat{C}_1 := \widehat{\varphi}_{\delta_1}(C_1)$ and $\widehat{C}_2 := \widehat{\varphi}_{-\delta_2}(C_2)$. Note that $\delta_1 + \delta_2 > \delta$.

Claim 3.1 The intersection $\Omega \cap \widehat{C}_i$, i = 1, 2, is an infinite strip.

Proof Given $t \in \mathbb{R}$, let \mathbb{H}_t^2 denote $\mathbb{H}^2 \times \{t\}$. Let $\tau_t^i := \mathcal{C}_i \cap \mathbb{H}_t^2$ and $\widehat{\tau}_t^i := \widehat{\mathcal{C}}_i \cap \mathbb{H}_t^2$. Note that for $i = 1, 2, \tau_t^i$ is a circle in \mathbb{H}_t^2 of radius $b_i(t)$ centered at (0, 0, t) while $\widehat{\tau}_t^{-1}$ is a circle in \mathbb{H}_t^2 of radius $b_1(t)$ centered at $p_{1,t} := (\delta_1, 0, t)$ and $\widehat{\tau}_t^2$ is a circle in \mathbb{H}_t^2 of radius $b_2(t)$ centered at $p_{2,t} := (-\delta_2, 0, t)$. We claim that for any $t \in \mathbb{R}$, the intersection $\widehat{\tau}_t^i \cap \Omega$ is an arc with end points in τ_t^i , i = 1, 2. This result would give that $\Omega \cap \widehat{\mathcal{C}}_i$ is an infinite strip. We next prove this claim.

Consider the case i = 1 first. Since $\delta_1 < \eta_1 \le b_1(t)$, the center $p_{1,t}$ is inside the disk in \mathbb{H}^2_t bounded by τ_t^1 . Since the radii of τ_t^1 and $\hat{\tau}_t^1$ are both equal to $b_1(t)$, then the intersection $\tau_t^1 \cap \hat{\tau}_t^1$ is nonempty. It remains to show that $\hat{\tau}_t^1 \cap \tau_t^2 = \emptyset$, namely that $b_1(t) + \delta_1 < b_2(t)$. This follows because

$$\delta_1 < \delta = \inf_{t \in \mathbb{R}} (b_2(t) - b_1(t)).$$

This argument shows that $\Omega \cap \widehat{\mathcal{C}}_1$ is an infinite strip.

Consider now the case i = 2. Since $\delta_2 < \delta < b_2(t)$, the center $p_{2,t}$ is inside the disk in \mathbb{H}_t^2 bounded by τ_t^2 . Since the radii of τ_t^2 and $\hat{\tau}_t^2$ are both equal to $b_2(t)$, then the intersection $\tau_t^2 \cap \hat{\tau}_t^2$ is nonempty. It remains to show that $\tau_t^1 \cap \hat{\tau}_t^2 = \emptyset$, namely that $b_2(t) - \delta_2 > b_1(t)$. This follows because

$$b_2(t) - b_1(t) \ge \inf_{t \in \mathbb{R}} (b_2(t) - b_1(t)) = \delta > \delta_2$$

This completes the proof that $\Omega \cap \widehat{\mathcal{C}}_2$ is an infinite strip and finishes the proof of the claim.

Now, let $Y^+ := \Omega \cap \widehat{\mathcal{C}}_2$ and let $Y^- := \Omega \cap \widehat{\mathcal{C}}_1$. In light of Claim 3.1 and its proof, we know that $Y^+ \cap \mathcal{C}_1 = \emptyset$ and $Y^- \cap \mathcal{C}_2 = \emptyset$.

Fig. 2 The position of the bumps \mathcal{B}^{\pm} in $\widetilde{\Omega}$ is shown in the picture. The *small arrows* show the mean curvature vector direction. The *H*-surfaces Σ_n are disjoint from the infinite strips \mathcal{B}^{\pm} by construction

Remark 3.2 Note that by construction, any rotational surface contained in Ω must intersect $\widehat{C}_1 \cup \widehat{C}_2$. In particular, $Y^+ \cup Y^-$ intersects all *H*-catenoids C_d for $d \in (d_1, d_2)$ as the circles $C_d \cap \mathbb{H}^2_t$ intersect either the circle $\widehat{\tau}^2_t$ or the circle $\widehat{\tau}^1_t$ for some t > 0 since $\delta_1 + \delta_2 > \delta$.

In $\widetilde{\Omega}$, let \mathcal{B}^+ be the lift of Y^+ in $\widetilde{\Omega}$ which intersects the slice { $\widetilde{\theta} = -10\pi$ }. Similarly, let \mathcal{B}^- be the lift of Y^- in $\widetilde{\Omega}$ which intersects the slice { $\widetilde{\theta} = 10\pi$ }. Note that each lift of Y^+ or Y^- is contained in a region where the $\widetilde{\theta}$ values of their points lie in ranges of the form ($\theta_0 - \pi, \theta_0 + \pi$) and so $\mathcal{B}^+ \cap \mathcal{B}^- = \emptyset$. See Fig. 2.

The *H*-surfaces \mathcal{B}^{\pm} near the top and bottom of $\widetilde{\Omega}$ will act as barriers (infinite bumps) in the next section, ensuring that the limit *H*-plane of a certain sequence of compact *H*-surfaces does not collapse to an *H*-lamination of $\widetilde{\Omega}$ all of whose leaves are invariant under translations in the $\tilde{\theta}$ -direction.

Next we modify $\widetilde{\Omega}$ as follows. Consider the component of $\widetilde{\Omega} - (\mathcal{B}^+ \cup \mathcal{B}^-)$ containing the slice { $\widetilde{\theta} = 0$ }. From now on we will call the **closure** of this region $\widetilde{\Omega}^*$.

3.3 The compact exhaustion of $\widetilde{\Omega}^*$

Consider the rotationally invariant *H*-planes E_H , $-E_H$ described in Sect. 2. Recall that E_H is a graph over the horizontal slice \mathbb{H}_0^2 and it is also tangent to \mathbb{H}_0^2 at the origin. Given $t \in \mathbb{R}$, let $E_H^t = -E_H + (0, 0, t)$ and $-E_H^t = E_H - (0, 0, t)$. Both families $\{E_H^t\}_{t\in\mathbb{R}}$ and $\{-E_H^t\}_{t\in\mathbb{R}}$ foliate $\mathbb{H}^2 \times \mathbb{R}$. Moreover, there exists $n_0 \in \mathbb{N}$ such that for any $n > n_0$, $n \in \mathbb{N}$, the following holds. The highest (lowest) component of the intersection $S_n^+ := E_H^n \cap \Omega$ ($S_n^- := -E_H^n \cap \Omega$) is a rotationally invariant annulus with boundary components contained in C_1 and C_2 . The annulus S_n^+ lies "above" $S_n^$ and their intersection is empty. The region \mathcal{U}_n in Ω between S_n^+ and S_n^- is a solid torus, see Fig. 3-left, and the mean curvature vectors of S_n^+ and S_n^- point into \mathcal{U}_n .

Let $\widetilde{\mathcal{U}}_n \subset \widetilde{\Omega}$ be the universal cover of \mathcal{U}_n , see Fig. 3-right. Then, $\partial \widetilde{\mathcal{U}}_n - \partial \widetilde{\Omega} = \widetilde{S}_n^+ \cup \widetilde{S}_n^$ where can view \widetilde{S}_n^{\pm} as a lift to $\widetilde{\mathcal{U}}_n$ of the universal cover of the annulus S_n^{\pm} . Hence,

Fig. 3 $U_n = \Omega \cap \widehat{U}_n$ and \widetilde{U}_n denotes its universal cover. Note that $\partial \widetilde{U}_n \subset \widetilde{C}_1 \cup \widetilde{C}_2 \cup \widetilde{S}_n^+ \cup \widetilde{S}_n^-$

Fig. 4 $\tau_t^i = C_i \cap \mathbb{H}_t^2$ is a round circle of radius $b_i(t)$ with center O. $\hat{\tau}_t^3 = \hat{C}_3 \cap \mathbb{H}_t^2$ is a round circle of radius $b_2(t)$ with center $C = (\eta_2, 0, t)$

 \widetilde{S}_n^{\pm} is an infinite *H*-strip in $\widetilde{\Omega}$, and the mean curvature vectors of the surfaces \widetilde{S}_n^+ , \widetilde{S}_n^- point into $\widetilde{\mathcal{U}}_n$ along \widetilde{S}_n^{\pm} . Note that each $\widetilde{\mathcal{U}}_n$ has bounded *t*-coordinate. Furthermore, we can view $\widetilde{\mathcal{U}}_n$ as $(\mathcal{U}_n \cap \mathcal{P}_0) \times \mathbb{R}$, where \mathcal{P}_0 is the half-plane $\{\theta = 0\}$ and the second coordinate is $\widetilde{\theta}$. Abusing the notation, we **redefine** $\widetilde{\mathcal{U}}_n$ to be $\widetilde{\mathcal{U}}_n \cap \widetilde{\Omega}^*$, that is we have removed the infinite bumps \mathcal{B}^{\pm} from $\widetilde{\mathcal{U}}_n$.

Now, we will perform a sequence of modifications of $\widetilde{\mathcal{U}}_n$ so that for each of these modifications, the $\widetilde{\theta}$ -coordinate in $\widetilde{\mathcal{U}}_n$ is bounded and so that we obtain a compact exhaustion of $\widetilde{\Omega}^*$. In order to do this, we will use arguments that are similar to those in Claim 3.1. Recall that the necksize of \mathcal{C}_2 is $\eta_2 = b_2(0)$. Let $\widehat{\mathcal{C}}_3 = \widehat{\varphi}_{\eta_2}(\mathcal{C}_2)$, see equation (3) for the definition of $\widehat{\varphi}_{\eta_2}$. Then, $\widehat{\mathcal{C}}_3$ is a rotationally invariant catenoid whose rotational axis is the line $(\eta_2, 0) \times \mathbb{R}$ (Fig. 4-left).

Lemma 3.3 The intersection $\widehat{C}_3 \cap \Omega$ is a pair of infinite strips.

Proof It suffices to show that $\widehat{C}_3 \cap C_1$ and $\widehat{C}_3 \cap C_2$ each consists of a pair of infinite lines. Now, consider the horizontal circles τ_t^1, τ_t^2 , and $\widehat{\tau}_t^3$ in the intersection of \mathbb{H}_t^2 and C_1, C_2 , and \widehat{C}_3 respectively, where $\mathbb{H}_t^2 = \mathbb{H}^2 \times \{t\}$. For any $t \in \mathbb{R}, \tau_t^i$ is a circle of radius $b_i(t)$ in \mathbb{H}_t^2 with center (0, 0, t). Similarly, $\widehat{\tau}_t^3$ is a circle of radius $b_2(t)$ in \mathbb{H}_t^2 with center $(\eta_2, 0, t)$, see Fig. 4-right. Hence, it suffices to show that for any $t \in \mathbb{R}$ each of the intersection $\tau_t^1 \cap \widehat{\tau}_t^3$ and $\tau_t^2 \cap \widehat{\tau}_t^3$ consists of two points. By construction, it is easy to see $\tau_t^2 \cap \widehat{\tau}_t^3$ consists of two points. This is because τ_t^2

By construction, it is easy to see $\tau_t^2 \cap \hat{\tau}_t^3$ consists of two points. This is because τ_t^2 and $\hat{\tau}_t^3$ have the same radius, $b_2(t)$ and $\eta_2 + b_2(t) > b_2(t)$ and $\eta_2 - b_2(t) > -b_2(t)$. Therefore, it remains to show that $\tau_t^1 \cap \hat{\tau}_t^3$ consists of two points. By construction, this would be the case if $\eta_2 - b_2(t) < b_1(t)$ and $\eta_2 - b_2(t) > -b_1(t)$. The first inequality follows because $\eta_2 = \inf_{t \in \mathbb{R}} b_2(t)$. The second inequality follows from Lemma 2.1 because

$$\eta_2 > \eta_2 - \eta_1 = \sup_{t \in \mathbb{R}} (b_2(t) - b_1(t)).$$

Now, let $\widehat{\mathcal{C}}_3 \cap \Omega = T^+ \cup T^-$, where T^+ is the infinite strip with $\theta \in (0, \pi)$, and T^- is the infinite strip with $\theta \in (-\pi, 0)$. Note that T^{\pm} is a θ -graph over the infinite strip $\widehat{\mathcal{P}}_0 = \Omega \cap \mathcal{P}_0$ where \mathcal{P}_0 is the half plane $\{\theta = 0\}$. Let \mathcal{V} be the component of $\Omega - \widehat{\mathcal{C}}_3$ containing $\widehat{\mathcal{P}}_0$. Notice that the mean curvature vector **H** of $\partial \mathcal{V}$ points into \mathcal{V} on both T^+ and T^- .

Consider the lifts of T^+ and T^- in $\tilde{\Omega}$. For $n \in \mathbb{Z}$, let \tilde{T}_n^+ be the lift of T^+ which belongs to the region $\tilde{\theta} \in (2n\pi, (2n+1)\pi)$. Similarly, let \tilde{T}_n^- be the lift of T^- which belongs to the region $\tilde{\theta} \in ((2n-1)\pi, 2n\pi)$. Let \mathcal{V}_n be the closed region in $\tilde{\Omega}$ between the infinite strips \tilde{T}_{-n}^- and \tilde{T}_n^+ . Notice that for *n* sufficiently large, $\mathcal{B}^{\pm} \subset \mathcal{V}_n$.

Next we define the compact exhaustion Δ_n of $\widetilde{\Omega}^*$ as follows: $\Delta_n := \widetilde{\mathcal{U}}_n \cap \mathcal{V}_n$. Furthermore, the absolute value of the mean curvature of $\partial \Delta_n$ is equal to H and the mean curvature vector **H** of $\partial \Delta_n$ points into Δ_n on $\partial \Delta_n - [(\partial \Delta_n \cap \widetilde{\mathcal{C}}_1) \cup \mathcal{B}^-]$.

3.4 The sequence of *H*-surfaces

We next define a sequence of compact *H*-surfaces $\{\Sigma_n\}_{n \in \mathbb{N}}$ where $\Sigma_n \subset \Delta_n$. For each *n* sufficiently large, we define a simple closed curve Γ_n in $\partial \Delta_n$, and then we solve the *H*-Plateau problem for Γ_n in Δ_n . This will provide an embedded *H*-surface Σ_n in Δ_n with $\partial \Sigma_n = \Gamma_n$ for each *n*.

The Construction of Γ_n *in* $\partial \Delta_n$:

First, consider the annulus $\mathcal{A}_n = \partial \Delta_n - (\widetilde{C}_1 \cup \widetilde{C}_2 \cup \mathcal{B}^+ \cup \mathcal{B}^-)$ in $\partial \Delta_n$. Let $\widehat{l}_n^+ = \widetilde{C}_1 \cap \widetilde{T}_n^+$, and $\widehat{l}_n^- = \widetilde{C}_2 \cap \widetilde{T}_{-n}^-$ be the pair of infinite lines in $\widetilde{\Omega}$. Let $l_n^{\pm} = \widehat{l}_n^{\pm} \cap \mathcal{A}_n$. Let μ_n^+ be an arc in $\widetilde{S}_n^+ \cap \mathcal{A}_n$, whose $\widetilde{\theta}$ and ρ coordinates are strictly increasing as a function of the parameter and whose endpoints are $l_n^+ \cap \widetilde{S}_n^+$ and $l_n^- \cap \widetilde{S}_n^+$ (Fig. 5-left). Similarly, define μ_n^- to be a monotone arc in $\widetilde{S}_n^- \cap \mathcal{A}_n$ whose endpoints are $l_n^+ \cap \widetilde{S}_n^-$ and $l_n^- \cap \widetilde{S}_n^-$. Note that these arcs μ_n^+ and μ_n^- are by construction disjoint from the infinite bumps \mathcal{B}^{\pm} . Then, $\Gamma_n = \mu_n^+ \cup l_n^+ \cup \mu_n^- \cup l_n^-$ is a simple closed curve in $\mathcal{A}_n \subset \partial \Delta_n$ (Fig. 5-right).

Next, consider the following variational problem (*H*-Plateau problem): Given the simple closed curve Γ_n in \mathcal{A}_n , let M be a smooth compact embedded surface in Δ_n with $\partial M = \Gamma_n$. Since Δ_n is simply-connected, M separates Δ_n into two regions. Let Q be the region in $\Delta_n - \Sigma$ with $Q \cap \widetilde{C}_2 \neq \emptyset$, the "upper" region. Then define the functional $\mathcal{I}_H = \operatorname{Area}(M) + 2H$ Volume(Q).

Fig. 5 In the *left*, μ_{+}^{n} is pictured in \widetilde{S}_{n}^{+} . On the *right*, the curve Γ_{n} is described in $\partial \Delta_{n}$

By working with integral currents, it is known that there exists a smooth (except at the 4 corners of Γ_n), compact, embedded *H*-surface $\Sigma_n \subset \Delta_n$ with $\operatorname{Int}(\Sigma_n) \subset$ $\operatorname{Int}(\Delta_n)$ and $\partial \Sigma_n = \Gamma_n$. Note that in our setting, Δ_n is not *H*-mean convex along $\Delta_n \cap \widetilde{C}_1$. However, the mean curvature vector along Σ_n points outside *Q* because of the construction of the variational problem. Therefore $\Delta_n \cap \widetilde{C}_1$ is still a good barrier for solving the *H*-Plateau problem. In fact, Σ_n can be chosen to be, and we will assume it is, a minimizer for this variational problem, i.e., $I(\Sigma_n) \leq I(M)$ for any $M \subset \Delta_n$ with $\partial M = \Gamma_n$; see for instance [12, Theorem 2.1] and [1, Theorem 1]. In particular, the fact that $\operatorname{Int}(\Sigma_n) \subset \operatorname{Int}(\Delta_n)$ is proven in Lemma 3 of [4]. Moreover, Σ_n separates Δ_n into two regions.

Similarly to Lemma 4.1 in [3], in the following lemma we show that for any such Γ_n , the minimizer surface Σ_n is a $\tilde{\theta}$ -graph.

Lemma 3.4 Let $E_n := \mathcal{A}_n \cap \widetilde{T}_n^+$. The minimizer surface Σ_n is a $\widetilde{\theta}$ -graph over the compact disk E_n . In particular, the related Jacobi function J_n on Σ_n induced by the inner product of the unit normal field to Σ_n with the Killing field $\partial_{\widetilde{\theta}}$ is positive in the interior of Σ_n .

Proof The proof is almost identical to the proof of Lemma 4.1 in [3], and for the sake of completeness, we give it here. Let T_{α} be the isometry of $\tilde{\Omega}$ which is a translation by α in the $\tilde{\theta}$ direction, i.e.,

$$T_{\alpha}(\rho, \widetilde{\theta}, t) = (\rho, \widetilde{\theta} + \alpha, t).$$
(4)

Let $T_{\alpha}(\Sigma_n) = \Sigma_n^{\alpha}$ and $T_{\alpha}(\Gamma_n) = \Gamma_n^{\alpha}$. We claim that $\Sigma_n^{\alpha} \cap \Sigma_n = \emptyset$ for any $\alpha \in \mathbb{R} \setminus \{0\}$ which implies that Σ_n is a $\tilde{\theta}$ -graph; we will use that Γ_n^{α} is disjoint from Σ_n for any $\alpha \in \mathbb{R} \setminus \{0\}$.

Arguing by contradiction, suppose that $\Sigma_n^{\alpha} \cap \Sigma_n \neq \emptyset$ for a certain $\alpha \neq 0$. By compactness of Σ_n , there exists a largest positive number α' such that $\Sigma_n^{\alpha'} \cap \Sigma_n \neq \emptyset$. Let $p \in \Sigma_n^{\alpha'} \cap \Sigma_n$. Since $\partial \Sigma_n^{\alpha'} \cap \partial \Sigma_n = \emptyset$ and the interior of Σ_n , respectively $\Sigma_n^{\alpha'}$, lie in the interior of Δ_n , respectively $T_{\alpha'}(\Delta_n)$, then $p \in \text{Int}(\Sigma_n^{\alpha'}) \cap \text{Int}(\Sigma_n)$. Since the surfaces $\text{Int}(\Sigma_n^{\alpha'})$, $\text{Int}(\Sigma_n)$ lie on one side of each other and intersect tangentially at the point p with the same mean curvature vector, then we obtain a contradiction to the mean curvature comparison principle for constant mean curvature surfaces, see Proposition 2.2. This proves that Σ_n is graphical over its $\tilde{\theta}$ -projection to E_n .

Since by construction every integral curve, $(\overline{\rho}, s, \overline{t})$ with $\overline{\rho}, \overline{t}$ fixed and $(\overline{\rho}, s_0, \overline{t}) \in E_n$ for a certain s_0 , of the Killing field $\partial_{\widetilde{\theta}}$ has non-zero intersection number with any compact surface bounded by Γ_n , we conclude that every such integral curve intersects both the disk E_n and Σ_n in single points. This means that Σ_n is a $\widetilde{\theta}$ -graph over E_n and thus the related Jacobi function J_n on Σ_n induced by the inner product of the unit normal field to Σ_n with the Killing field $\partial_{\widetilde{\theta}}$ is non-negative in the interior of Σ_n . Since J_n is a non-negative Jacobi function, then either $J_n \equiv 0$ or $J_n > 0$. Since by construction J_n is positive somewhere in the interior, then J_n is positive everywhere in the interior. This finishes the proof of the lemma.

4 The proof of Theorem 1.1

With Γ_n as previously described, we have so far constructed a sequence of compact stable *H*-disks Σ_n with $\partial \Sigma_n = \Gamma_n \subset \partial \Delta_n$. Let J_n be the related non-negative Jacobi function described in Lemma 3.4.

By the curvature estimates for stable *H*-surfaces given in [11], the norms of the second fundamental forms of the Σ_n are uniformly bounded from above at points which are at intrinsic distance at least one from their boundaries. Since the boundaries of the Σ_n leave every compact subset of $\tilde{\Omega}^*$, for each compact set of $\tilde{\Omega}^*$, the norms of the second fundamental forms of the Σ_n are uniformly bounded for values *n* sufficiently large and such a bound does not depend on the chosen compact set. Standard compactness arguments give that, after passing to a subsequence, Σ_n converges to a (weak) *H*-lamination $\tilde{\mathcal{L}}$ of $\tilde{\Omega}^*$ and the leaves of $\tilde{\mathcal{L}}$ are complete and have uniformly bounded norm of their second fundamental forms, see for instance [5].

Let β be a compact embedded arc contained in $\widehat{\Omega}^*$ such that its end points p_+ and p_- are contained respectively in \mathcal{B}^+ and \mathcal{B}^- , and such that these are the only points in the intersection $[\mathcal{B}^+ \cup \mathcal{B}^-] \cap \beta$. Then, for *n*-sufficiently large, the linking number between Γ_n and β is one, which gives that, for *n* sufficiently large, Σ_n intersects β in an odd number of points. In particular $\Sigma_n \cap \beta \neq \emptyset$ which implies that the lamination $\widetilde{\mathcal{L}}$ is not empty.

Remark 4.1 By Remark 3.2, a leaf of $\widetilde{\mathcal{L}}$ that is invariant with respect to $\widetilde{\theta}$ -translations cannot be contained in $\widetilde{\Omega}^*$. Therefore none of the leaves of $\widetilde{\mathcal{L}}$ are invariant with respect to $\widetilde{\theta}$ -translations.

Let \widetilde{L} be a leaf of $\widetilde{\mathcal{L}}$ and let $J_{\widetilde{L}}$ be the Jacobi function induced by taking the inner product of $\partial_{\widetilde{\theta}}$ with the unit normal of \widetilde{L} . Then, by the nature of the convergence, $J_{\widetilde{L}} \geq 0$ and therefore since it is a Jacobi field, it is either positive or identically zero. In the latter case, $\widetilde{\mathcal{L}}$ would be invariant with respect to $\widetilde{\theta}$ -translations, contradicting Remark 4.1. Thus, by Remark 4.1, we have that $J_{\widetilde{L}}$ is positive and therefore \widetilde{L} is a Killing graph with respect to $\partial_{\widetilde{\theta}}$.

Claim 4.2 Each leaf \widetilde{L} of $\widetilde{\mathcal{L}}$ is properly embedded in $\widetilde{\Omega}^*$.

Proof Arguing by contradiction, suppose there exists a leaf \widetilde{L} of $\widetilde{\mathcal{L}}$ that is NOT proper in $\widetilde{\Omega}^*$. Then, since the leaf \widetilde{L} has uniformly bounded norm of its second fundamental form, the closure of \widetilde{L} in $\widetilde{\Omega}^*$ is a lamination of $\widetilde{\Omega}^*$ with a limit leaf Λ , namely $\Lambda \subset \widetilde{\widetilde{L}} - \widetilde{L}$. Let J_{Λ} be the Jacobi function induced by taking the inner product of $\partial_{\widetilde{\theta}}$ with the unit normal of Λ .

Just like in the previous discussion, by the nature of the convergence, $J_{\Lambda} \ge 0$ and therefore, since it is a Jacobi field, it is either positive or identically zero. In the latter case, Λ would be invariant with respect to $\tilde{\theta}$ -translations and thus, by Remark 4.1, Λ cannot be contained in $\tilde{\Omega}^*$. However, since Λ is contained in the closure of \tilde{L} , this would imply that \tilde{L} is not contained in $\tilde{\Omega}^*$, giving a contradiction. Thus, J_{Λ} must be positive and therefore, Λ is a Killing graph with respect to $\partial_{\tilde{\theta}}$. However, this implies that \tilde{L} cannot be a Killing graph with respect to $\partial_{\tilde{\theta}}$. This follows because if we fix a point p in Λ and let $U_p \subset \Lambda$ be neighborhood of such point, then by the nature of the convergence, U_p is the limit of a sequence of disjoint domains U_{p_n} in \widetilde{L} where $p_n \in \widetilde{L}$ is a sequence of points converging to p and $U_{p_n} \subset \widetilde{L}$ is a neighborhood of p_n . While each domain U_{p_n} is a Killing graph with respect to $\partial_{\widetilde{\theta}}$, the convergence to U_p implies that their union is not. This gives a contradiction and proves that Λ cannot be a Killing graph with respect to $\partial_{\widetilde{\theta}}$. Since we have already shown that Λ must be a Killing graph with respect to $\partial_{\widetilde{\theta}}$, this gives a contradiction. Thus Λ cannot exist and each leaf \widetilde{L} of $\widetilde{\mathcal{L}}$ is properly embedded in $\widetilde{\Omega}^*$.

Arguing similarly to the proof of the previous claim, it follows that a small perturbation of β , which we still denote by β intersects Σ_n and $\widetilde{\mathcal{L}}$ transversally in a finite number of points. Note that $\widetilde{\mathcal{L}}$ is obtained as the limit of Σ_n . Indeed, since Σ_n separates \mathcal{B}^+ and \mathcal{B}^- in $\widetilde{\Omega}^*$, the algebraic intersection number of β and Σ_n must be one, which implies that β intersects Σ_n in an odd number of points. Then β intersects $\widetilde{\mathcal{L}}$ in an odd number of points and the claim below follows.

Claim 4.3 The curve β intersects $\widetilde{\mathcal{L}}$ in an odd number of points.

In particular β intersects only a finite collection of leaves in $\widetilde{\mathcal{L}}$ and we let \mathcal{F} denote the non-empty finite collection of leaves that intersect β .

Definition 4.1 Let $(\rho_1, \tilde{\theta}_0, t_0)$ be a fixed point in \tilde{C}_1 and let $\rho_2(\tilde{\theta}_0, t_0) > \rho_1$ such that $(\rho_2(\tilde{\theta}_0, t_0), \tilde{\theta}_0, t_0)$ is in \tilde{C}_2 . Then we call the arc in $\tilde{\Omega}$ given by

$$(\rho_1 + s(\rho_2 - \rho_1), \tilde{\theta}_0, t_0), \quad s \in [0, 1].$$
 (5)

the vertical line segment based at $(\rho_1, \tilde{\theta}_0, t_0)$.

Claim 4.4 There exists at least one leaf \tilde{L}_{β} in \mathcal{F} that intersects β in an odd number of points and the leaf \tilde{L}_{β} must intersect each vertical line segment at least once.

Proof The existence of \widetilde{L}_{β} follows because otherwise, if all the leaves in \mathcal{F} intersected β in an even number of points, then the number of points in the intersection $\beta \cap \mathcal{F}$ would be even. Given \widetilde{L}_{β} a leaf in \mathcal{F} that intersects β in an odd number of points, suppose there exists a vertical line segment which does not intersect \widetilde{L}_{β} . Then since by Claim 4.2 \widetilde{L}_{β} is properly embedded, using elementary separation arguments would give that the number of points of intersection in $\beta \cap \widetilde{L}_{\beta}$ must be zero mod 2, that is even, contradicting the previous statement.

Let Π be the covering map defined in equation (2) and let $\mathcal{P}_H := \Pi(\widetilde{L}_\beta)$. The previous discussion and the fact that Π is a local diffeomorphism, implies that \mathcal{P}_H is a stable complete *H*-surface embedded in Ω . Indeed, \mathcal{P}_H is a graph over its θ projection to $\operatorname{Int}(\Omega) \cap \{(\rho, 0, t) \mid \rho > 0, t \in \mathbb{R}\}$, which we denote by $\theta(\mathcal{P}_H)$. Abusing the notation, let $J_{\mathcal{P}_H}$ be the Jacobi function induced by taking the inner product of ∂_{θ} with the unit normal of \mathcal{P}_H , then $J_{\mathcal{P}_H}$ is positive. Finally, since the norm of the second fundamental form of \mathcal{P}_H is uniformly bounded, standard compactness arguments imply that its closure $\overline{\mathcal{P}}_H$ is an *H*-lamination \mathcal{L} of Ω , see for instance [5].

Claim 4.5 The closure of \mathcal{P}_H is an *H*-lamination of Ω consisting of itself and two *H*-catenoids $L_1, L_2 \subset \Omega$ that form the limit set of \mathcal{P}_H .

Remark 4.6 Note that these two *H*-catenoids are not necessarily the ones which determine $\partial \Omega$.

Proof Given $(\rho_1, \tilde{\theta}_0, t_0) \in \tilde{C}_1$, let $\tilde{\gamma}$ be the fixed vertical line segment in $\tilde{\Omega}$ based at $(\rho_1, \tilde{\theta}_0, t_0)$, let $\tilde{\rho}_0$ be a point in the intersection $\tilde{L}_\beta \cap \tilde{\gamma}$ (recall that by Claim 4.4 such intersection is not empty) and let $p_0 = \Pi(\tilde{p}_0) \in \Pi(\tilde{\gamma}) \cap \mathcal{P}_H$. Then, by Claim 4.4, for any $i \in \mathbb{N}$, the vertical line segment $T_{2\pi i}(\tilde{\gamma})$ intersects \tilde{L}_β in at least a point \tilde{p}_i , and \tilde{p}_{i+1} is above \tilde{p}_i , where T is the translation defined in equation (4). Namely, $\tilde{p}_0 = (r_0, \tilde{\theta}_0, t_0)$, $\tilde{p}_i = (r_i, \tilde{\theta}_0 + 2\pi i, t_0)$ and $r_i < r_{i+1} < \rho_2(\tilde{\theta}_0, t_0)$. The point $\tilde{p}_i \in \tilde{L}_\beta$ corresponds to the point $p_i = \Pi(\tilde{p}_i) = (r_i, \tilde{\theta}_0 \mod 2\pi, t_0) \in \mathcal{P}_H$. Let $r(2) := \lim_{i \to \infty} r_i$ then $r(2) \leq \rho_2(\tilde{\theta}_0, t_0)$ and note that since $\lim_{i \to \infty} (r_{i+1} - r_i) = 0$, then the value of the Jacobi function $J_{\mathcal{P}_H}$ at p_i must be going to zero as i goes to infinity. Clearly, the point $Q := (r(2), \tilde{\theta}_0 \mod 2\pi, t_0) \in \Omega$ is in the closure of \mathcal{P}_H , that is \mathcal{L} . Let L_2 be the leaf of \mathcal{L} containing Q. By the previous discussion $J_{L_2}(Q) = 0$. Since by the nature of the convergence, either J_{L_2} is positive or L_2 is rotational, then L_2 is rotational, namely an H-catenoid.

Arguing similarly but considering the intersection of \widetilde{L}_{β} with the vertical line segments $T_{-2\pi i}(\widetilde{\gamma})$, $i \in \mathbb{N}$, one obtains another *H*-catenoid L_1 , different from L_2 , in the lamination \mathcal{L} . This shows that the closure of \mathcal{P}_H contains the two *H*-catenoids L_1 and L_2 .

Let Ω_g be the rotationally invariant, connected region of $\Omega - [L_1 \cup L_2]$ whose boundary contains $L_1 \cup L_2$. Note that since \mathcal{P}_H is connected and $L_1 \cup L_2$ is contained in its closure, then $\mathcal{P}_H \subset \Omega_g$. It remains to show that $\mathcal{L} = \mathcal{P}_H \cup L_1 \cup L_2$, i.e. $\overline{\mathcal{P}}_H - \mathcal{P}_H = L_1 \cup L_2$. If $\overline{\mathcal{P}}_H - \mathcal{P}_H \neq L_1 \cup L_2$ then there would be another leaf $L_3 \in \mathcal{L} \cap \Omega_g$ and by previous argument, L_3 would be an *H*-catenoid. Thus L_3 would separate Ω_g into two regions, contradicting that fact that \mathcal{P}_H is connected and $L_1 \cup L_2$ are contained in its closure. This finishes the proof of the claim.

Note that by the previous claim, \mathcal{P}_H is properly embedded in Ω_g .

Claim 4.7 The *H*-surface \mathcal{P}_H is simply-connected and every integral curve of ∂_{θ} that lies in Ω_g intersects \mathcal{P}_H in exactly one point.

Proof Let $D_g := \text{Int}(\Omega_g) \cap \{(\rho, 0, t) \mid \rho > 0, t \in \mathbb{R}\}$, then \mathcal{P}_H is a graph over its θ -projection to D_g , that is $\theta(\mathcal{P}_H)$. Since $\theta : \Omega_g \to D_g$ is a proper submersion and \mathcal{P}_H is properly embedded in Ω_g , then $\theta(\mathcal{P}_H) = D_g$, which implies that every integral curve of ∂_{θ} that lies in Ω_g intersects \mathcal{P}_H in exactly one point. Moreover, since D_g is simply-connected, this gives that \mathcal{P}_H is also simply-connected. This finishes the proof of the claim.

From this claim, it clearly follows that Ω_g is foliated by *H*-surfaces, where the leaves of this foliation are L_1 , L_2 and the rotated images $\mathcal{P}_H(\theta)$ of \mathcal{P}_H around the *t*-axis by angles $\theta \in [0, 2\pi)$. The existence of the examples Σ_H in the statement of Theorem 1.1 can easily be proven by using \mathcal{P}_H . We set $\Sigma_H = \mathcal{P}_H$, and $C_i = L_i$ for i = 1, 2. This finishes the proof of Theorem 1.1.

Appendix: Disjoint *H*-catenoids

In this section, we will show the existence of disjoint *H*-catenoids in $\mathbb{H}^2 \times \mathbb{R}$. In particular, we will prove Lemma 2.1. Given $H \in (0, \frac{1}{2})$ and $d \in [-2H, \infty)$, recall that $\eta_d = \cosh^{-1}(\frac{2dH + \sqrt{1 - 4H^2 + d^2}}{1 - 4H^2})$ and that $\lambda_d : [\eta_d, \infty) \to [0, \infty)$ is the function defined as follows.

$$\lambda_d(\rho) = \int_{\eta_d}^{\rho} \frac{d + 2H\cosh r}{\sqrt{\sinh^2 r - (d + 2H\cosh r)^2}} dr.$$
 (6)

Recall that $\lambda_d(\rho)$ is a monotone increasing function with $\lim_{\rho\to\infty}\lambda_d(\rho) = \infty$ and that $\lambda'_d(\eta_d) = \infty$ when $d \in (-2H, \infty)$. The *H*-catenoid \mathcal{C}^H_d , $d \in (-2H, \infty)$, is obtained by rotating a generating curve $\hat{\lambda}_d(\rho)$ about the *t*-axis. The generating curve $\hat{\lambda}_d$ is obtained by doubling the curve $(\rho, 0, \lambda_d(\rho)), \rho \in [\eta_d, \infty)$, with its reflection $(\rho, 0, -\lambda_d(\rho)), \rho \in [\eta_d, \infty)$.

Finally, recall that $b_d(t) := \lambda_d^{-1}(t)$ for $t \ge 0$, hence $b_d(0) = \eta_d$, and that abusing the notation $b_d(t) := b_d(-t)$ for $t \le 0$.

Lemma 2.1 (Disjoint *H*-catenoids) Given $d_1 > 2$ there exist $d_0 > d_1$ and $\delta_0 > 0$ such that for any $d_2 \in [d_0, \infty)$ and t > 0 then

$$\inf_{t\in\mathbb{R}}(b_{d_2}(t)-b_{d_1}(t))\geq\delta_0.$$

In particular, the corresponding *H*-catenoids are disjoint, i.e., $C_{d_1}^H \cap C_{d_2}^H = \emptyset$.

Moreover, $b_{d_2}(t) - b_{d_1}(t)$ is decreasing for t > 0 and increasing for t < 0. In particular,

$$\sup_{t\in\mathbb{R}}(b_{d_2}(t)-b_{d_1}(t))=b_{d_2}(0)-b_{d_1}(0)=\eta_{d_2}-\eta_{d_1}.$$

Proof We begin by introducing the following notations that will be used for the computations in the proof of this lemma,

$$c := \cosh r = \frac{e^r + e^{-r}}{2}, \ s := \sinh r = \frac{e^r - e^{-r}}{2}.$$

Recall that $c^2 - s^2 = 1$ and $c - s = e^{-r}$. Using these notations,

$$\lambda_d(\rho) = \int_{\eta_d}^{\rho} \frac{d+2H\cosh r}{\sqrt{\sinh^2 r - (d+2H\cosh r)^2}} \, dr \tag{7}$$

can be rewritten as

$$\lambda_d(\rho) = \int_{\eta_d}^{\rho} \frac{d + 2H(s + e^{-r})}{\sqrt{s^2 - (d + 2Hc)^2}} \, dr = f_d(\rho) + J_d(\rho),\tag{8}$$

Deringer

where

$$f_d(\rho) = \int_{\eta_d}^{\rho} \frac{2Hs}{\sqrt{s^2 - (d + 2Hc)^2}} \, dr \text{ and } J_d(\rho) = \int_{\eta_d}^{\rho} \frac{d + 2He^{-r}}{\sqrt{s^2 - (d + 2Hc)^2}} \, dr$$

First, by using a series of substitutions, we will get an explicit description of $f_d(\rho)$. Then, we will show that for d > 2, $J_d(\rho)$ is bounded independently of ρ and d.

Claim 4.8

$$f_d(\rho) = \frac{2H}{\sqrt{1 - 4H^2}} \cosh^{-1}\left(\frac{(1 - 4H^2)\cosh\rho - 2dH}{\sqrt{d^2 + 1 - 4H^2}}\right).$$
 (9)

Remark 4.9 After finding $f_d(\rho)$, we used Wolfram Alpha to compute the derivative of $f_d(\rho)$ and verify our claim. For the sake of completeness, we give a proof.

Proof of Claim 4.8 The proof is a computation with requires several integrations by substitution. Consider

$$\int \frac{2Hs}{\sqrt{s^2 - (d + 2Hc)^2}} \, dr$$

By using the fact that $s^2 = c^2 - 1$ and applying the substitution $\{u = c, du = \frac{dc}{dr}dr = sdr\}$ we obtain that

$$\int \frac{2Hs}{\sqrt{s^2 - (d + 2Hc)^2}} \, dr = \int \frac{2H}{\sqrt{u^2 - 1 - (d + 2Hu)^2}} \, du$$

Note that

$$\begin{split} u^{2} &-1 - (d+2Hu)^{2} = u^{2} - 1 - (d^{2} + 4dHu + 4H^{2}u^{2}) \\ &= (1 - 4H^{2})u^{2} - 4dHu - d^{2} - 1 \\ &= (1 - 4H^{2})\left(u^{2} - \frac{4dH}{1 - 4H^{2}}u + \frac{4d^{2}H^{2}}{(1 - 4H^{2})^{2}}\right) - \frac{4d^{2}H^{2}}{1 - 4H^{2}} - d^{2} - 1 \\ &= (1 - 4H^{2})\left[\left(u - \frac{2dH}{(1 - 4H^{2})}\right)^{2} - \left(\frac{4d^{2}H^{2}}{(1 - 4H^{2})^{2}} + \frac{d^{2} + 1}{1 - 4H^{2}}\right)\right] \\ &= (1 - 4H^{2})\left[\left(u - \frac{2dH}{(1 - 4H^{2})}\right)^{2} - \left(\frac{4d^{2}H^{2} + (1 - 4H^{2})(d^{2} + 1)}{(1 - 4H^{2})^{2}}\right)\right] \\ &= (1 - 4H^{2})\left[\left(u - \frac{2dH}{(1 - 4H^{2})}\right)^{2} - \left(\frac{d^{2} + 1 - 4H^{2}}{(1 - 4H^{2})^{2}}\right)\right]. \end{split}$$

🖄 Springer

Therefore, by applying a second substitution, $\{w = u - \frac{2dH}{(1-4H^2)}, dw = du\}$, and letting $a^2 = (\frac{d^2+1-4H^2}{(1-4H^2)^2})$ we get that

$$\int \frac{2H}{\sqrt{u^2 - 1 - (d + 2Hu)^2}} \, du = \int \frac{2H}{\sqrt{1 - 4H^2}\sqrt{w^2 - a^2}} \, dw$$

By using the fact that $\sec^2 x - 1 = \tan^2 x$ and applying a third substitution, $\{w = a \sec t, dw = a \sec t \tan t dt\}$, we obtain that

$$\int \frac{2Ha \sec t \tan t}{\sqrt{1-4H^2}\sqrt{a^2 \sec^2 t - a^2}} dt = \int \frac{2H \sec t}{\sqrt{1-4H^2}} dt$$
$$= \frac{2H}{\sqrt{1-4H^2}} \ln|\sec t + \tan t|$$

Therefore

$$\int \frac{2H}{\sqrt{1 - 4H^2}\sqrt{w^2 - a^2}} \, dw = \frac{2H}{\sqrt{1 - 4H^2}} \ln|\frac{w}{a} + \sqrt{\frac{w^2}{a^2} - 1}|$$
$$= \frac{2H}{\sqrt{1 - 4H^2}} \cosh^{-1}\left(\frac{w}{a}\right)$$

Since $w = u - \frac{2dH}{(1-4H^2)}$ then

$$\int \frac{2H}{\sqrt{u^2 - 1 - (d + 2Hu)^2}} \, du = \frac{2H}{\sqrt{1 - 4H^2}} \cosh^{-1} \left(\frac{u - \frac{2dH}{(1 - 4H^2)}}{a} \right)$$
$$= \frac{2H}{\sqrt{1 - 4H^2}} \cosh^{-1} \left(\frac{u - \frac{2dH}{(1 - 4H^2)}}{\frac{\sqrt{d^2 + 1 - 4H^2}}{(1 - 4H^2)}} \right)$$
$$= \frac{2H}{\sqrt{1 - 4H^2}} \cosh^{-1} \left(\frac{(1 - 4H^2)u - 2dH}{\sqrt{d^2 + 1 - 4H^2}} \right)$$

Finally, since $u = \cosh r$

$$\begin{split} \int_{\eta_d}^{\rho} \frac{2Hs}{\sqrt{s^2 - (d+2Hc)^2}} &= \frac{2H}{\sqrt{1 - 4H^2}} \cosh^{-1} \left(\frac{(1 - 4H^2)\cosh r - 2dH}{\sqrt{d^2 + 1 - 4H^2}} \right) \Big|_{\eta_d}^{\rho} \\ &= \frac{2H}{\sqrt{1 - 4H^2}} \left(\cosh^{-1} \left(\frac{(1 - 4H^2)\cosh \rho - 2dH}{\sqrt{d^2 + 1 - 4H^2}} \right) \right) \\ &- \cosh^{-1} \left(\frac{(1 - 4H^2)\cosh \eta_d - 2dH}{\sqrt{d^2 + 1 - 4H^2}} \right) \end{split}$$

Deringer

Recall that $\eta_d = \cosh^{-1}(\frac{2dH + \sqrt{1 - 4H^2 + d^2}}{1 - 4H^2})$ and thus

$$\frac{(1-4H^2)\cosh\eta_d - 2dH}{\sqrt{d^2 + 1 - 4H^2}} = \frac{(1-4H^2)(\frac{2dH + \sqrt{1-4H^2 + d^2}}{1-4H^2}) - 2dH}{\sqrt{d^2 + 1 - 4H^2}} = 1.$$

This implies that

$$f_d(\rho) = \frac{2H}{\sqrt{1 - 4H^2}} \cosh^{-1}\left(\frac{(1 - 4H^2)\cosh\rho - 2dH}{\sqrt{d^2 + 1 - 4H^2}}\right).$$

By Claim 4.8 we have that

$$f_d(\rho) = \frac{2H}{\sqrt{1-4H^2}} \left(\cosh^{-1} \frac{(1-4H^2)\cosh\rho - 2dH}{\sqrt{d^2+1-4H^2}} \right)$$
$$= \frac{2H}{\sqrt{1-4H^2}} \left(\rho + \ln \frac{1-4H^2}{\sqrt{d^2+1-4H^2}} \right) + g_d(\rho),$$

where $\lim_{\rho \to \infty} g_d(\rho) = 0$.

Recall that $\lambda_d(\rho) = f_d(\rho) + J_d(\rho)$ where

$$J_d(\rho) = \int_{\eta_d}^{\rho} \frac{d + 2He^{-r}}{\sqrt{s^2 - (d + 2Hc)^2}} \, dr = \int_{\eta_d}^{\rho} \frac{d + 2He^{-r}}{\sqrt{c^2 - 1 - (d + 2Hc)^2}} \, dr.$$

Claim 4.10

$$\sup_{d\in(2,\infty),\rho\in(\eta_d,\infty)}J_d(\rho)\leq \pi\sqrt{1-2H}.$$

Proof of Claim 4.10 Let

$$\alpha = \frac{2dH + \sqrt{1 - 4H^2 + d^2}}{1 - 4H^2} \text{ and } \beta = \frac{2dH - \sqrt{1 - 4H^2 + d^2}}{1 - 4H^2}$$

be the roots of $c^2 - 1 - (d + 2Hc)^2$, i.e.

$$c^{2} - 1 - (d + 2Hc)^{2} = (1 - 4H^{2}) \left(c^{2} - \frac{4dH}{1 - 4H^{2}}c - \frac{1 + d^{2}}{1 - 4H^{2}} \right)$$
$$= (1 - 4H^{2})(c - \alpha)(c - \beta).$$

Deringer

Note that $\alpha = \cosh \eta_d$ and that as $H \in (0, \frac{1}{2}), \beta < 0 < \alpha$. Furthermore, $2He^{-r} < 2H < 1 < d$. Thus we have,

$$J_d(\rho) = \int_{\eta_d}^{\rho} \frac{d + 2He^{-r}}{\sqrt{1 - 4H^2}\sqrt{(c - \alpha)(c - \beta)}} dr$$
$$< \frac{2d}{\sqrt{1 - 4H^2}} \int_{\eta_d}^{\infty} \frac{dr}{\sqrt{(c - \alpha)(c - \beta)}}$$
$$< \frac{2d}{\sqrt{1 - 4H^2}\sqrt{\alpha - \beta}} \int_{\eta_d}^{\infty} \frac{dr}{\sqrt{c - \alpha}},$$

where the last inequality holds because for $r > \eta_d$, $\cosh r > \alpha$ and thus $\sqrt{\alpha - \beta} < \sqrt{c - \alpha}$. Notice that $\alpha - \beta = \frac{2\sqrt{1 - 4H^2 + d^2}}{1 - 4H^2} > \frac{2d}{1 - 4H^2}$. Therefore

$$\frac{2d}{\sqrt{1-4H^2}\sqrt{\alpha-\beta}} < \frac{2d}{\sqrt{1-4H^2}} \frac{\sqrt{1-4H^2}}{\sqrt{2d}} = \sqrt{2d}$$

and

$$J_d(\rho) < \sqrt{2d} \int_{\eta_d}^\infty \frac{dr}{\sqrt{c-\alpha}}$$

Applying the substitution $\{u = c - \alpha, du = sdr = \sqrt{(u + \alpha)^2 - 1}dr\}$, we obtain that

$$\int_{\eta_d}^{\infty} \frac{dr}{\sqrt{c-\alpha}} = \int_0^{\infty} \frac{du}{\sqrt{u}\sqrt{(u+\alpha)^2 - 1}}$$
(10)

Let $\omega = \alpha - 1$. Note that since $d \ge 1$ then $\alpha > 1$ and we have that $(u + \alpha)^2 - 1 > (u + \omega)^2$ as u > 0. This gives that

$$\int_0^\infty \frac{du}{\sqrt{u}\sqrt{(u+\alpha)^2-1}} < \int_0^\infty \frac{du}{\sqrt{u}(u+\omega)}$$

Applying the substitution $\{v = \sqrt{u}, dv = \frac{du}{2\sqrt{u}}\}$ we get

$$\int_0^\infty \frac{du}{\sqrt{u}(u+\omega)} = \int_0^\infty \frac{2dv}{v^2 + \omega} = \left. \frac{2}{\sqrt{\omega}} \arctan \frac{w}{\sqrt{\omega}} \right|_0^\infty < \frac{\pi}{\sqrt{\omega}}$$

and thus

$$J_d(\rho) < \sqrt{\frac{2d}{\omega}}\pi.$$

Deringer

Note that

$$\omega = \alpha - 1 = \frac{2dH + \sqrt{1 - 4H^2 + d^2}}{1 - 4H^2} - 1$$

> $\frac{(1 + 2H)d}{1 - 4H^2} - 1 = \frac{d}{1 - 2H} - 1.$

Since d > 2, we have $2\omega > \frac{d}{1-2H}$ and $\frac{d}{\omega} < 2(1-2H)$. Then $\sqrt{\frac{2d}{\omega}} < 2\sqrt{1-2H}$. Finally, this gives that

$$J_d(\rho) < 2\pi\sqrt{1 - 2H}$$

independently on d > 2 and $\rho > \eta_d$. This finishes the proof of the claim.

Using Claims 4.8 and 4.10, we can now prove the next claim.

Claim 4.11 Given $d_2 > d_1 > 2$ there exists $T \in \mathbb{R}$ such for any t > T, we have that

$$\frac{2H}{\sqrt{1-4H^2}} (\lambda_{d_2}^{-1}(t) - \lambda_{d_1}^{-1}(t)) \\ > \frac{1}{2} \ln \sqrt{\frac{d_2^2 + 1 - 4H^2}{d_1^2 + 1 - 4H^2}} - 2\pi \sqrt{1-2H}.$$

Proof of Claim 4.11 Recall that $\lambda_d(\rho) = f_d(\rho) + J_d(\rho)$ and that by Claims 4.8 and 4.10 we have that

$$f_d(\rho) = \frac{2H}{\sqrt{1 - 4H^2}} \left(\rho + \ln \frac{1 - 4H^2}{\sqrt{d^2 + 1 - 4H^2}}\right) + g_d(\rho), \tag{11}$$

where $\lim_{\rho \to \infty} g_d(\rho) = 0$, and that

$$\sup_{d \in (2,\infty), \rho \in (\eta_d,\infty)} J_d(\rho) \le 2\pi\sqrt{1-2H}.$$
(12)

Let $\rho_i(t) := \lambda_{d_i}^{-1}(t)$, i = 1, 2. Using this notation, since $t = \lambda_1(\rho_1(t)) = \lambda_2(\rho_2(t))$ we obtain that

$$\begin{split} 0 &= \lambda_2(\rho_2(t)) - \lambda_1(\rho_1(t)) \\ &= f_{d_2}(\rho_2(t)) + J_{d_2}(\rho_2(t)) - f_{d_1}(\rho_1(t)) - J_{d_1}(\rho_1(t)) \\ &= \frac{2H}{\sqrt{1 - 4H^2}} \left(\rho_2(t) + \ln \frac{1 - 4H^2}{\sqrt{d_2^2 + 1 - 4H^2}} \right) + g_{d_2}(\rho_2(t)) + J_{d_2}(\rho_2(t)) \\ &- \frac{2H}{\sqrt{1 - 4H^2}} \left(\rho_1(t) - \ln \frac{1 - 4H^2}{\sqrt{d_1^2 + 1 - 4H^2}} \right) - g_{d_1}(\rho_1(t)) - J_{d_1}(\rho_1(t)) \end{split}$$

Recall that $\lim_{t\to\infty} \rho_i(t) = \infty$, i = 1, 2, therefore given $\varepsilon > 0$ there exists $T_{\varepsilon} \in \mathbb{R}$ such that for any $t > T_{\varepsilon}$, $|g_{d_i}(\rho_i(t))| \le \varepsilon$. Taking

$$4\varepsilon < \ln \sqrt{\frac{d_2^2 + 1 - 4H^2}{d_1^2 + 1 - 4H^2}}$$

for $t > T_{\varepsilon}$ we get that

$$\frac{2H}{\sqrt{1-4H^2}}(\rho_2(t)-\rho_1(t))$$

$$> \ln\sqrt{\frac{d_2^2+1-4H^2}{d_1^2+1-4H^2}} + J_{d_1}(\rho_1(t)) - J_{d_2}(\rho_2(t)) - 2\varepsilon$$

$$> \frac{1}{2}\ln\sqrt{\frac{d_2^2+1-4H^2}{d_1^2+1-4H^2}} + J_{d_1}(\rho_1(t)) - J_{d_2}(\rho_2(t)).$$

Notice that $J_{d_1}(\rho_1(t)) > 0$ and that Claim 4.10 gives that

$$\sup_{\rho \in (\eta_{d_2},\infty)} J_{d_2}(\rho) \le 2\pi\sqrt{1-2H}.$$

Therefore

$$\frac{2H}{\sqrt{1-4H^2}}(\rho_2(t)-\rho_1(t))$$

> $\frac{1}{2}\ln\sqrt{\frac{d_2^2+1-4H^2}{d_1^2+1-4H^2}}-2\pi\sqrt{1-2H}.$

This finishes the proof of the claim.

We can now use Claim 4.11 to finish the proof of the lemma. Given $d_1 > 2$ fix $d_0 > d_1$ such that

$$\frac{\sqrt{1-4H^2}}{4H} \left(\ln \sqrt{\frac{d_0^2 + 1 - 4H^2}{d_1^2 + 1 - 4H^2}} - 4\pi\sqrt{1-2H} \right) = 1$$

Then, by Claim 4.11, given $d_2 \ge d_0$ there exists T > 0 such that $\lambda_{d_2}^{-1}(t) - \lambda_{d_1}^{-1}(t) > 1$ for any t > T. Notice that since for any $\rho \in (\eta_2, \infty)$, $\lambda'_{d_2}(\rho) > \lambda'_{d_1}(\rho)$, then there exists at most one $t_0 > 0$ such that $\lambda_{d_2}^{-1}(t_0) - \lambda_{d_1}^{-1}(t_0) = 0$. Therefore, since there exists T > 0 such that $\lambda_{d_2}^{-1}(t) - \lambda_{d_1}^{-1}(t) > 1$ for any t > T and $\lambda_{d_2}^{-1}(0) - \lambda_{d_1}^{-1}(0) =$ $\eta_{d_2} - \eta_{d_1} > 0$, this implies that there exists a constant $\delta(d_2) > 0$ such that for any t > 0,

$$\lambda_{d_2}^{-1}(t) - \lambda_{d_1}^{-1}(t) > \delta(d_2).$$

A priori it could happen that $\lim_{d_2\to\infty} \delta(d_2) = 0$. The fact that $\lim_{d_2\to\infty} \delta(d_2) > 0$ follows easy by noticing that by applying Claim 4.11 and using the same arguments as in the previous paragraph there exists $d_3 > d_0$ such that for any $d \ge d_3$ and t > 0,

$$\lambda_d^{-1}(t) - \lambda_{d_0}^{-1}(t) > 0.$$

Therefore, for any $d \ge d_3$ and t > 0,

$$\lambda_d^{-1}(t) - \lambda_{d_1}^{-1}(t) > \lambda_{d_0}^{-1}(t) - \lambda_{d_1}^{-1}(t) > \delta(d_0)$$

which implies that

$$\lim_{d_2\to\infty}\delta(d_2)\geq\delta(d_0)>0.$$

Setting $\delta_0 = \inf_{d \in [d_0,\infty)} \delta(d_2) > 0$ gives that

$$\inf_{t\in\mathbb{R}_{\geq 0}}(\lambda_{d_2}^{-1}(t)-\lambda_{d_1}^{-1}(t))\geq\delta_0.$$

By definition of $b_d(t)$ then

$$\inf_{t \in \mathbb{R}} (b_{d_2}(t) - b_{d_1}(t)) = \inf_{t \in \mathbb{R}_{\ge 0}} (\lambda_{d_2}^{-1}(t) - \lambda_{d_1}^{-1}(t)) \ge \delta_0.$$

It remains to prove that $b_2(t) - b_1(t)$ is decreasing for t > 0 and increasing for t < 0. By definition of $b_d(t)$, it suffices to show that $b_2(t) - b_1(t)$ is decreasing for t > 0. We are going to show $\frac{d}{dt}(b_2(t) - b_1(t)) < 0$ when t > 0.

By definition of b_i , for t > 0 we have that $\lambda_i(b_i(t)) = t$ and thus $b'_i(t) = \frac{1}{\lambda'_i(b_i(t))}$. By definition of $\lambda_d(t)$ for t > 0 the following holds,

$$b_1'(t) = \frac{1}{\lambda_1'(b_1(t))} > \frac{1}{\lambda_1'(b_2(t))} > \frac{1}{\lambda_2'(b_2(t))} = b_2'(t).$$

The first inequality is due to the convexity of the function $\lambda_1(t)$ and the second inequality is due to the fact that $\lambda'_1(\rho) < \lambda'_2(\rho)$ for any $\rho > \eta_2$. This proves that $\frac{d}{dt}(b_2(t) - b_1(t)) = b'_2(t) - b'_1(t) < 0$ for t > 0 and finishes the proof of the claim.

Note that if *d* is sufficiently close to -2H then C_d^H must be unstable. This follows because as *d* approaches -2H, the norm of the second fundamental form of C_d^H becomes arbitrarily large at points that approach the "origin" of $\mathbb{H}^2 \times \mathbb{R}$ and a simple rescaling argument gives that a sequence of subdomains of C_d^H converge to a catenoid, which is an unstable minimal surface. This observation, together with our previous lemma suggests the following conjecture.

Conjecture: Given $H \in (0, \frac{1}{2})$ there exists $d_H > -2H$ such that the following holds. For any $d > d' > d_H$, $C_d^H \cap C_{d'}^H = \emptyset$, and the family $\{C_d^H \mid d \in [d_H, \infty)\}$ gives a foliation of the closure of the non-simply-connected component of $\mathbb{H}^2 \times \mathbb{R} - \mathcal{C}_{d_H}^H$. The *H*-catenoid $\mathcal{C}_{d_H}^H$ is unstable if $d \in (-2H, d_H)$ and stable if $d \in (d_H, \infty)$. The *H*-catenoid $\mathcal{C}_{d_H}^H$ is a stable-unstable catenoid.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Alencar, H., Rosenberg, H.: Some remarks on the existence of hypersurfaces of constant mean curvature with a given boundary, or asymptotic boundary in hyperbolic space. Bull. Sci. Math. 121(1), 61–69 (1997)
- Colding, T.H., Minicozzi II, W.P.: The Calabi–Yau conjectures for embedded surfaces. Ann. Math. 167, 211–243 (2008)
- Coskunuzer, B., Meeks III, W.H., Tinaglia, G.: Non-properly embedded H-planes in ℍ³. J. Differ. 105(3), 405–425 (2017). http://arxiv.org/pdf/1503.04641.pdf
- Gulliver, R.: The Plateau problem for surfaces of prescribed mean curvature in a Riemannian manifold. J. Differ. Geom. 8, 317–330 (1973)
- Meeks III, W.H., Rosenberg, H.: The minimal lamination closure theorem. Duke Math. J. 133(3), 467–497 (2006)
- Meeks III, W.H., Tinaglia, G.: Embedded Calabi–Yau problem in hyperbolic 3-manifolds. Work in progress
- Meeks III, W.H., Tinaglia, G.: The geometry of constant mean curvature surfaces in R³. Preprint available at http://arxiv.org/pdf/1609.08032v1.pdf
- 8. Nelli, B., Sa Earp, R., Santos, W., Toubiana, E., Toubiana, E.: Uniqueness of *H*-surfaces in $\mathbb{H}^2 \times \mathbb{R}$, $|H| \leq 1/2$, with boundary one or two parallel horizontal circles. Ann. Glob. Anal. Geom. **33**(4), 307–321 (2008)
- Nelli, B., Rosenberg, H.: Global properties of constant mean curvature surfaces in H² × ℝ. Pac. J. Math. 226(1), 137–152 (2006)
- Rodríguez, M.M., Tinaglia, G.: Non-proper complete minimal surfaces embedded in H² × R. Int. Math. Res. Not. 2015(12), 2015. http://arxiv.org/pdf/1211.5692
- Rosenberg, H., Souam, R., Toubiana, E.: General curvature estimates for stable *H*-surfaces in 3manifolds and applications. J. Differ. Geom. 84(3), 623–648 (2010)
- Tonegawa, Y.: Existence and regularity of constant mean curvature hypersurfaces in hyperbolic space. Math. Z. 221, 591–615 (1996)