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Abstract For any H € (0, %), we construct complete, non-proper, stable, simply-
connected surfaces embedded in H? x R with constant mean curvature H.

1 Introduction

In their ground breaking work [2], Colding and Minicozzi proved that complete mini-
mal surfaces embedded in R3 with finite topology are proper. Based on the techniques
in [2], Meeks and Rosenberg [5] then proved that complete minimal surfaces with
positive injectivity embedded in R are proper. More recently, Meeks and Tinaglia [7]
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proved that complete constant mean curvature surfaces embedded in R? are proper if
they have finite topology or have positive injectivity radius.

In contrast to the above results, in this paper we prove the following existence
theorem for non-proper, complete, simply-connected surfaces embedded in H? x R
with constant mean curvature H € (0, 1/2). The convention used here is that the mean
curvature function of an oriented surface M in an oriented Riemannian three-manifold
N is the pointwise average of its principal curvatures.

The catenoids in H? x R mentioned in the next theorem are defined at the beginning
of Sect. 2.1.

Theorem 1.1 Forany H € (0, 1/2) there exists a complete, stable, simply-connected
surface Ly embedded in H> x R with constant mean curvature H satisfying the
following properties:

(1) The closure of X is a lamination with three leaves, X g, C1 and Co, where C
and C, are stable catenoids of constant mean curvature H in H3 with the same
axis of revolution L. In particular, y is not properly embedded in H? x R.

(2) Let K| denote the Killing field generated by rotations around L. Every integral
curve of Ky, that lies in the region between C| and C» intersects X g transversely
in a single point. In particular, the closed region between Cy and C» is foliated
by surfaces of constant mean curvature H, where the leaves are Cy and C, and
the rotated images Xy (0) of X around L by angle 6 € [0, 2m).

When H = 0, Rodriguez and Tinaglia [10] constructed non-proper, complete
minimal planes embedded in H? x R. However, their construction does not generalize
to produce complete, non-proper planes embedded in H? x R with non-zero constant
mean curvature. Instead, the construction presented in this paper is related to the
techniques developed by the authors in [3] to obtain examples of non-proper, stable,
complete planes embedded in H with constant mean curvature H, forany H € [0, 1).

There is a general conjecture related to Theorem 1.1 and the previously stated

positive properness results. Given X a Riemannian three-manifold, let Ch(X) :=
infges \2;%(‘2(55)), where S is the set of all smooth compact domains in X. Note that
when the volume of X is infinite, Ch(X) is the Cheeger constant.
Conjecture 1.2 Let X be a simply-connected, homogeneous three-manifold. Then for
any H > %Ch(X ), every complete, connected H -surface embedded in X with positive
injectivity radius or finite topology is proper. On the other hand, if Ch(X) > 0, then
there exist non-proper complete H-planes in X for every H € [0, %Ch(X ).

By the work in [2], Conjecture 1.2 holds for X = R? and it holds in H* by work
in progress in [6]. Since the Cheeger constant of H? x R is 1, Conjecture 1.2 would
imply that Theorem 1.1 (together with the existence of complete non-proper minimal
planes embedded in H? x R found in [10]) is a sharp result.

2 Preliminaries

In this section, we will review the basic properties of H-surfaces, a concept that we
next define. We will call a smooth oriented surface £ in H? x R an H-surface if
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it is embedded and its mean curvature is constant equal to H; we will assume that
Yy is appropriately oriented so that H is non-negative. We will use the cylinder
model of H? x R with coordinates (p,0,1); here p is the hyperbolic distance from
the origin (a chosen base point) in H2, where H% denotes H2 x {t}. We next describe
the H-catenoids mentioned in the Introduction.

The following H-catenoids family will play a particularly important role in our
construction.

2.1 Rotationally invariant vertical H -catenoids C f

We begin this section by recalling several results in [8,9]. Given H € (0, %) and
de[-2H, 00), let

— cosh-! 2dH + V1 —4H? + d?
4 = | —4H?

and let A4: [ng, 00) — [0, 00) be the function defined as follows.

p d+2H coshr
rd(p) = dr. (D
na /sinh®r — (d + 2H cosh r)2

Note that A4 (p) is a strictly increasing function with lim,_, o Ag(p) = 00 and deriva-
tive 1/, (1) = oo whend € (=2H, 00).

In [8] Nelli, Sa Earp, Santos and Toubiana proved that there exists a 1-parameter
family of embedded H-catenoids {C 5’ | d € (=2H, 00)} obtained by rotating a gen-
erating curve A4 (o) about the ¢-axis. The generating curve A4 is obtained by doubling
the curve (0, 0, Ag(p)), p € [nag, 00), with its reflection (p, 0, —A4(p)), p € [n4, 00).
Note thatjzd is a smooth curve and that the necksize, 14, is a strictly increasing function
in d satisfying the properties that n_,y = 0 and limg_, 5, g = 00.

If d = —2H, then by rotating the curve (p, 0, A4(p)) around the #-axis one obtains
a simply-connected H -surface E g that is an entire graph over H(z). We denote by —Ey
the reflection of E g across H%.

We next recall the definition of the mean curvature vector.

Definition 2.1 Let M be an oriented surface in an oriented Riemannian three-manifold
and suppose that M has non-zero mean curvature H(p) at p. The mean curvature
vector at p is H(p) := H(p)N(p), where N (p) is its unit normal vector at p. The
mean curvature vector H(p) is independent of the orientation on M.

Note that the mean curvature vector H of C 51 points into the connected component
of H> x R — Cg’ that contains the ¢-axis. The mean curvature vector of Ey points
upward while the mean curvature vector of —E'y points downward.

In order to construct the examples described in Theorem 1.1, we first obtain certain
geometric properties satisfied by H-catenoids. For example, in the following lemma,
we show that for certain values of d; and d», the catenoids C g and C g are disjoint.
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1494 B. Coskunuzer et al.

Givend € (—2H, 00),letb,y(t) := A;l(t)fort > 0; note that b4 (0) = n4. Abusing
the notation let b;(t) := by (—t) fort < 0.

Lemma 2.1 (Disjoint H-catenoids) Given d; > 2, there exist dy > dy and §9 > 0
such that for any dy € [dy, 00), then

inf (ba, (1) — ba, (1)) = .
teR

In particular, the corresponding H -catenoids are disjoint, i.e. C g N Cg =0
Moreover; by, (t) — by, (1) is decreasing for t > 0 and increasing for t < 0. In
particular,

Sng(bdz (1) = bay (1)) = ba, (0) — by (0) = na, — Nay -
te

The proof of the above lemma requires a rather lengthy computation that is given in
the Appendix.
We next recall the well-known mean curvature comparison principle.

Proposition 2.2 (Mean curvature comparison principle) Let M| and My be two
complete, connected embedded surfaces in a three-dimensional Riemannian mani-
fold. Suppose that p € M| N M, satisfies that a neighborhood of p in M locally
lies on the side of a neighborhood of p in M3 into which Ho(p) is pointing. Then
|H1|(p) = |H2|(p). Furthermore, if M| and M, are constant mean curvature sur-
faces with |H{| = |H3|, then M1 = M.

3 The examples

For a fixed H € (0, 1/2), the outline of construction is as follows. First, we will
take two disjoint H-catenoids C; and C, whose existence is given in Lemma 2.1.
These catenoids Cy, C; bound a region Q in H? x R with fundamental group Z.
In the universal cover 2 of Q, we define a piecewise smooth compact exhaustion
Al C Ay C---CA, C---0f Q. Then, by solving the H-Plateau problem for
special curves I';, C dA,, we obtain minimizing H-surfaces X, in A, withd %, = [',.
In the limit set of these surfaces, we find an H-plane P whose projection to €2 is the
desired non-proper H-plane £y C H? x R.

3.1 Construction of

Fix H € (0, %) and di,dr € (2,00), d1 < dp, such that by Lemma 2.1, the related
H -catenoids C g and CZ are disjoint; note that in this case, C g lies in the interior of
the simply-connected component of H? x R — CH We will use the notation C; :=

C; 1 Recall that both catenoids have the same rotat10nal axis, namely the ¢-axis, and
recall that the mean curvature vector H; of C; points into the connected component of
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Fig. 1 The induced coordinates (p, 0. ,1)in Q

H? x R — C; that contains the r-axis. We emphasize here that H is fixed and so we
will omit describing it in future notations.

Let Q2 be the closed region in H2 x R between C; and Ca, i.e., dQ = C; UCa (Fig. 1-
left). Notice that the set of boundary points at infinity 0,2 is equal to Séo x {—oo}U
Sgo x {00}, i.e., the corner circles in oo H? x R in the product compactification, where
we view H? to be the open unit disk {(x, y) € R? | x2 + y? < 1} with base point the
origin 0.

By construction, €2 is topologically a solid torus. Let € be the universal cover of
Q. Then, Q2 = C e Cz (Fig. 1-right), where C1 Cg are the respective lifts to Q of
C1, Cy. Notice that Cl and C, are both H-planes, and the mean curvature vector H
points outside of Q along Cl while H points inside of Q along Cz We will use the
induced coordinates (p, 8, t) on Q where § € (—00, 00). In particular, if

n:Q—-Q (2)
is the covering map, then IT(p,, 50, to) = (po, 6y, t,) wWhere 6, = 9~0 mod 2.
Recalling the definition of b;(t), i = 1, 2, note that a point (p, 8, t) belongs to 2

if and only if p € [b1(¢), b2(¢)] and we can write

Q=1{(p.0,0)pelbi®),br(t)], 6 €R, t € R}.

3.2 Infinite bumps in Q
Let y be the geodesic through the origin in Hé obtained by intersecting H% with the
vertical plane {# = 0} U {# = rr}. For s € [0, 00), let ¢ be the orientation preserving
hyperbolic isometry of Hg that is the hyperbolic translation along the geodesic y with
¢5(0,0) = (s, 0). Let

@ H2 xR — H? xR, @(p,0,1) = (¢5(p, 0), 1) 3)

be the related extended isometry of H? x R.
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Let C; be an embedded H -catenoid as defined in Sect. 2.1. Notice that the rotation
axis of the H-catenoid @y,(Cy) is the vertical line {(so, 0, 7) | # € R}.

Let 6 := inf;cr(b2(t) — b1(¢)), which gives an upper bound estimate for the
asymptotic distance between the catenoids; recall that by our choices of Cy, C, given
in Lemma 2.1, we have § > 0. Let §; = %min{(S, N1} and let 5 = § — %‘ Let
C1 == 95,(C1) and C3 := @_5,(Ca). Note that 8; + 8, > 8.

Claim 3.1 The intersection Q2 N a, i = 1,2, is an infinite strip.

Proof Given t € R, let H? denote H? x {t}. Let 7/ := C; NH? and T} := G N H2.
Note that fori = 1, 2, 'l:f is a circle in H,z of radius b; (t) centered at (0, 0, r) while
7! is a circle in H? of radius b (¢) centered at p;, := (81,0, t) and 77 is a circle in
H,z of radius by () centered at py; := (=62, 0, t). We claim that for any ¢ € R, the
intersection 'f,’ N €2 is an arc with end points in ‘L’li, i = 1,2. This result would give
that 2 N a is an infinite strip. We next prove this claim.

Consider the case i = 1 first. Since §; < n1 < b1(¢), the center p; ; is inside the
disk in H? bounded by 7,'. Since the radii of 7! and 7! are both equal to b1 (¢), then
the intersection 7! N7,! is nonempty. It remains to show that 7, N 7> = ¢, namely that

b1(t) + &1 < by(t). This follows because

61 < § = inf(ba(t) — b1(2)).
teR

This argument shows that & N 51 is an infinite strip.

Consider now the case i = 2. Since §, < 6 < ba(t), the center p;; is inside the
disk in H? bounded by 7. Since the radii of 72 and 77 are both equal to b5 (), then
the intersection 7> N7 is nonempty. It remains to show that 7! N> = ¥, namely that
by(t) — 6> > by(t). This follows because

ba(t) — b1 (1) > inﬂg(bz(t) —bi(1)=86>&
te
This completes the proof that 2 N C> is an infinite strip and finishes the proof of the
claim. O

Now, let YT :=QnN 52 andlet Y :=QnN 51 In light of Claim 3.1 and its proof,
weknow that YT NCy =Pand Y~ NC, = 0.

Fig. 2 The position of the bumps BT in Q is shown in the picture. The small arrows show the mean
curvature vector direction. The H-surfaces ¥, are disjoint from the infinite strips B* by construction
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Remark 3.2 Note that by construction, any rotational surface contained in 2 must
intersect 81 U 52 In particular, YT U Y~ intersects all H-catenoids C; ford € (dy, dy)
as the circles C; N H? intersect either the circle T or the circle 7, for some ¢ > 0
since 81 + 8, > 4.

In 2, let B be the lift of YT in & which intersects the slice {§ = —107}. Similarly,
let B~ be the lift of Y~ in §2 which intersects the slice {# = 107 }. Note that each lift
of YT or Y ~is contained in a region where the 6 values of their points lie in ranges of
the form (8y — 7, 6y + ) and so BT N B~ = @. See Fig. 2.

The H -surfaces B* near the top and bottom of Q will act as barriers (infinite bumps)
in the next section, ensuring that the limit H-plane of a certain sequence of compact
H -surfaces does not collapse to an H -lamination of € all of whose leaves are invariant
under translations in the 6-direction.

Next we modify €2 as follows. Consider the component of Q—(BTUB™) containing
the slice {9 = 0}. From now on we will call the closure of this region Q.

3.3 The compact exhaustion of Q*

Consider the rotationally invariant H-planes Ep, —Epy described in Sect. 2. Recall
that Ey is a graph over the horizontal slice H% and it is also tangent to H% at the
origin. Given ¢t € R, let Et = —Ey +(0,0,¢) and — EH = Eyg — (0,0,1). Both
families {E }ter and {—E H}teR foliate H2 x R. Moreover, there exists ng € N such
that for any n > ng, n € N, the following holds. The highest (lowest) component of
the intersection S, := E%; N Q (S, := —E}, N Q) is a rotationally invariant annulus
with boundary components contained in C; and C,. The annulus S,'f lies “above” S,
and their intersection is empty. The region U, in 2 between S, and S, is a solid torus,
see Fig. 3-left, and the mean curvature vectors of S, Fand S, point into Uj,.

LetU C Qbe the universal coverofl/ln,seeFlg 3-right. Then E)Z/{n A = S+US’
where can view SﬂE as a lift to U, of the universal cover of the annulus SjE Hence,

Fig.3 U, =QnN 17,, and ﬁn denotes its universal cover. Note that 3ﬁn C C~1 U 52 U §,'," U §n_
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©

Fig. 4 r,i =C N le is a round circle of radius b; (¢) with center O. ?,3 = 53 N H,z is a round circle of
radius b (¢) with center C = (12,0, t)

Si is an infinite H-strip in €, and the mean curvature vectors of the surfaces S S
point into L{n along S;, S%. Note that each Z/l,, has bounded #-coordinate. Furthermore we
can view L{ as (Un N Po) x R, where Py is the half-plane {6 = 0} and the second
coordinate is 6. Abusing the notation, we redefine U, to be U, N Q*, that is we have
removed the infinite bumps B* from Z/In

Now, we will perform a sequence of modifications of Z/{n so that for each of these
modifications, the 6-coordinate in I, is bounded and so that we obtain a compact
exhaustion of *. In order to do this, we will use arguments that are similar to those
in Claim 3.1. Recall that the necksize of C is 2 = b(0). Let 53 = ¢, (C2), see
equation (3) for the definition of @;,. Then, @ is a rotationally invariant catenoid
whose rotational axis is the line (12, 0) x R (Fig. 4-left).

Lemma 3.3 The intersection C3 N Q2 is a pair of infinite strips.

Proof 1t suffices to show that (?3 N C; and 53 ﬂ Cs each consists of a pair of infinite
lines. Now, consider the horizontal circles t!, 72, and T} in the intersection of H? and
C1, Cy, and C; respectively, where H2 H? x {t}. For any € R, rl is a crrcle of
radius b; (t) in ]Hlt2 with center (0, O, t). Similarly, ?,3 is a circle of radius b, (¢) in th
with center (172, 0, t), see Fig. 4-right. Hence, it suffices to show that for any r € R
each of the intersection t! N7} and rtz N ’ff consists of two points.

By construction, it is easy to see T> N7, consists of two points. This is because 7
and T; r, have the same radius, by (1) and 772 + bo(t) > by(t) and ny — by (t) > —by(1).
Therefore, it remains to show that 7,/ N7}’ consists of two points. By construction, this
would be the case if np — b2 (t) < b1(t) and ny — ba(t) > —b1(¢). The first inequality
follows because 1 = inf;cr b2(¢). The second inequality follows from Lemma 2.1
because

n2 > m2 — N1 = sup(ba(t) — b1(1)).
teR
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Now, let 53 NQ =T"TUT™, where T is the infinite strip with 0 € (0, 7r), and
T~ is the infinite strip with @ € (—, 0). Note that T* is a 6-graph over the infinite
strip 7/50 = Q N Py where Py is the half plane {# = 0}. Let VV be the component of
Q—C; containing Po. Notice that the mean curvature vector H of 9V points into V
onboth TF and T™.

Consider the lifts of 7 and 7~ in Q.Forn € Z, let T+ be the lift of 7+ which
belongs to the region 0 € (2nm, (2n + 1)m). Similarly, let T be the lift of T~ which
belongs to the reglon g e ((2n — Dm, 2nm). Let V, be the closed region in € between
the infinite strips 7_,, and T+ Notice that for n sufﬁ(nently large, B¥ C V,.

Next we define the compact exhaustion A, of Q* as follows: A, = Z/In NY,.
Furthermore, the absolute value of the mean curvature of A, is equ~al to H and the
mean curvature vector H of dA,, points into A, on dA, — [(dA, NC) UB™].

3.4 The sequence of H -surfaces

We next define a sequence of compact H -surfaces {Z, },,eny Where ¥, C A,. For each
n sufficiently large, we define a simple closed curve I, in dA,,, and then we solve the
H -Plateau problem for I';, in A,,. This will provide an embedded H -surface ¥, in A,
with 0%, = T',, for each n.

The Construction of T, in 0A,, :

First, cons1der the annulus A, =0A, (Cl U C2 UBtuU B )in 0A,,. Let lJr =
Cl N T+ and l = Cg N T ,, be the palr of infinite lines in €. Let li = ljE N .An
Let u, be an arc in S, Stn An, whose 6 and p coordinates are strictly increasing as a
function of the parameter and whose endpoints are ;7 N StandI; NS (Fig. 5-left).
Similarly, define i, to be a monotone arc in S NA, whose endpomts are ;"N S and
I, NS, . Note that these arcs ;" and ., are by construction disjoint from the 1nﬁn1te
bumps BE. Then, I, = wULE U, Ul is asimple closed curve in A, C dA,
(Fig. 5-right).

Next, consider the following variational problem (H -Plateau problem): Given the
simple closed curve '), in A, let M be a smooth compact embedded surface in A,
with M = I'y. Since A, is simply-connected, M separates A, into two regions. Let
Q be the region in A, — ¥ with Q N Cy # @, the “upper” region. Then define the
functional Zy = Area(M) + 2H Volume(Q).

Fig. 5 In the left, u/} is pictured in §n+ . On the right, the curve I'j, is described in A,
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By working with integral currents, it is known that there exists a smooth (except
at the 4 corners of I';;), compact, embedded H-surface ¥, C A, with Int(%,) C
Int(AnN) and 0%, = I',,. Note that in our setting, A, is not H-mean convex along
A, N C;. However, the mean curvature vector along 3, p0i~nts outside Q because of
the construction of the variational problem. Therefore A, NC is still a good barrier for
solving the H-Plateau problem. In fact, X,, can be chosen to be, and we will assume
it is, a minimizer for this variational problem, i.e., I (X,) < I (M) forany M C A,
with dM = TI'y;; see for instance [12, Theorem 2.1] and [1, Theorem 1]. In particular,
the fact that Int(%,) C Int(A,) is proven in Lemma 3 of [4]. Moreover, X, separates
A, into two regions.

Similarly to Lemma 4.1 in [3], in the following lemma we show that for any such
I';,, the minimizer surface %, is a 5—graph.

Lemma 3.4 Let E, := A, N Tj. The minimizer surface ¥, is a 5—graph over the
compact disk E,. In particular, the related Jacobi function J, on ¥, induced by the
inner product of the unit normal field to X, with the Killing field 9y is positive in the
interior of Xy,.

Proof The proof is almost identical to the proof of Lemma 4.1 in [3], and for the sake
of completeness, we give it here. Let T, be the isometry of €2 which is a translation
by « in the 6 direction, i.e.,

Ty(p,0,1) = (p,0 +a,1). 4)

Let T, (2,) = XY and T, (') = I'y. We claim that X3 N X, = @ forany o € R\ {0}
which implies that ¥, is a 5—graph; we will use that I}y is disjoint from X, for any
a € R\ {0}

Arguing by contradiction, suppose that X% N X, # § for a certain « # 0. By
compactness of ¥, there exists a largest positive number «’ such that Z;‘l‘, Nnx, 0.
Let p € ¢ N X,. Since 82,‘;‘/ N 3%, = ¥ and the interior of X, respectively EZ‘/,
lie in the interior of A, respectively T,/ (A,), then p € Int(Z;l“/) N Int(X,). Since
the surfaces Int(E;‘l‘,), Int(X,) lie on one side of each other and intersect tangentially
at the point p with the same mean curvature vector, then we obtain a contradiction
to the mean curvature comparison principle for constant mean curvature surfaces, see
Proposition 2.2. This proves that X, is graphical over its g-projection to E,.

Since by construction every integral curve, (p, s, f) with p, 7 fixed and (0, 59, 7) €
E,, for a certain sq, of the Killing field 97 has non-zero intersection number with any
compact surface bounded by I';;, we conclude that every such integral curve intersects
both the disk £, and %, in single points. This means that ¥, is a g-graph over E,
and thus the related Jacobi function J,, on %, induced by the inner product of the
unit normal field to X,, with the Killing field 95 is non-negative in the interior of X,,.
Since J, is a non-negative Jacobi function, then either J,, = 0 or J, > 0. Since by
construction J,, is positive somewhere in the interior, then J, is positive everywhere
in the interior. This finishes the proof of the lemma. O
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4 The proof of Theorem 1.1

With I, as previously described, we have so far constructed a sequence of compact
stable H-disks ¥, with 0%, =T, C dA,. Let J,, be the related non-negative Jacobi
function described in Lemma 3.4.

By the curvature estimates for stable H-surfaces given in [11], the norms of the
second fundamental forms of the X, are uniformly bounded from above at points
which are at intrinsic distance at least one from their boundaries. Since the boundaries
of the ¥, leave every compact subset of Q*, for each compact set of €*, the norms
of the second fundamental forms of the ¥, are uniformly bounded for values n suffi-
ciently large and such a bound does not depend on the chosen compact set. Standard
compactness arguments give that, after passing to a subsequence, ¥, converges to a
(weak) H-lamination L of &* and the leaves of £ are complete and have uniformly
bounded norm of their second fundamental forms, see for instance [5].

Let B8 be a compact embedded arc contained in €* such that its end points py and
p_ are contained respectively in B+ and B, and such that these are the only points
in the intersection [B+ U B~] N B. Then, for n-sufficiently large, the linking number
between I';, and g is one, which gives that, for n sufficiently large, ¥, intersects 8 in
an odd number of points. In particular X, N 8 # @ which implies that the lamination
L is not empty.

Remark 4.1 By Remark 3.2, a leaf of L that is invariant with respect to 6-translations
cannot be contained in $2*. Therefore none of the leaves of £ are invariant with respect
to f-translations.

Let L be a leaf of £ and let J; 7 be the Jacobi function induced by taking the inner
product of dz with the unit normal of L. Then, by the nature of the convergence,
J; = 0 and therefore since it is a Jacobi field, it is either positive or identically zero.
In the latter case, £ would be invariant with respect to 6-translations, contradicting
Remark 4.1. Thus, by Remark 4.1, we have that J3 is positive and therefore Lisa
Killing graph with respect to 3.

Claim 4.2 Each leaf L of L is properly embedded in Q*.

Prgof Arguing by contradiction, suppose there exists a leaf L of £ that is NOT proper
in . Then, since the leaf L has uniformly bounded norm of its second fundamental
form, the closure of L in ©* is a lamination of Q* with a limit leaf A, namely A C

L—TL.LetJ A be the Jacobi function induced by taking the inner product of dz with
the unit normal of A.

Just like in the previous discussion, by the nature of the convergence, J5 > 0 and
therefore, since it is a Jacobi field, it is either positive or identically zero. In the latter
case, A would be invariant with respect to 6-translations and thus, by Remark 4.1, A
cannot be contained in *. However, since A is contained in the closure of L, this
would imply that L is not contained in $2, giving a contradiction. Thus, J4 must be
positive and therefore, A is a Killing graph with respect to d;. However, this implies
that L cannot be a Killing graph with respect to d3. This follows because if we fix a
point p in A and let U, C A be neighborhood of such point, then by the nature of
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the convergence, U), is the limit of a sequence of disjoint domains Up, in L where
Pn € Lisa sequence of points converging to p and U, C Lisa neighborhood of
pn- While each domain U, is a Killing graph with respect to dp, the convergence to
U, implies that their union is not. This gives a contradiction and proves that A cannot
be a Killing graph with respect to d;. Since we have already shown that A must be a
Killing graph with respect to dg, this gives a contradiction. Thus A cannot exist and
each leaf L of £ is properly embedded in Q*. O

Arguing similarly to the proof of the previous claim, it follows that a small pertur-
bation of B, which we still denote by B intersects %, and L transversally in a finite
number of points. Note that £ is obtained as the limit of X,,. Indeed, since X, separates
Bt and B~ in Q*, the algebraic intersection number of B and ¥, must be one, which
implies that 8 intersects %, in an odd number of points. Then g intersects £ in an odd
number of points and the claim below follows.

Claim 4.3 The curve B intersects L in an odd number of points.

In particular 8 intersects only a finite collection of leaves in £ and we let F denote
the non-empty finite collection of leaves that intersect .

Deﬁmtlon 4 1 Let (pq, 90, tp) be a fixed point in C 1 and let p (0(), to) > p1 such that
(,02(90, 1), 90, tp) is in Cz Then we call the arc in Q given by

(p1 +5(p2 = p1). 6o t0). 5 €0, 1]. )
the vertical line segment based at (o1, 50, 10).

Claim 4.4 There exists at least one leaf L g in F that intersects B in an odd number
of points and the leaf L g must intersect each vertical line segment at least once.

Proof The existence of L g follows because otherwise, if all the leaves in F intersected
B in an even number of points, then the number of points in the intersection g N F
would be even. Given L g a leaf in F that intersects 8 in an odd nun~1ber of points,
suppose there exists a vertical line segment which does not intersect Lg. Then since
by Claim 4.2 Lg is properly embedded, using elementary separation arguments would
give that the number of points of intersection in 8 N Lg must be zero mod 2, that is
even, contradicting the previous statement. O

Let IT be the covering map defined in equation (2) and let Py = n(Z g). The
previous discussion and the fact that IT is a local diffeomorphism, implies that Pg
is a stable complete H-surface embedded in 2. Indeed, Py is a graph over its 6-
projection to Int(2) N {(p,0,7) | p > 0, ¢t € R}, which we denote by 6(Ppg).
Abusing the notation, let Jp, be the Jacobi function induced by taking the inner
product of dy with the unit normal of Pp, then Jp,, is positive. Finally, since the norm
of the second fundamental form of Pg is uniformly bounded, standard compactness
arguments imply that its closure Py is an H-lamination £ of €, see for instance [5].

Claim 4.5 The closure of Py is an H-lamination of Q2 consisting of itself and two
H-catenoids Ly, Ly C 2 that form the limit set of Ppy.
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Remark 4.6 Note that these two H -catenoids are not necessarily the ones which deter-
mine 9€2.

Proof Given (p1, 90, ty) € C1, let ¥ be the ﬁxed vertical line segment in Q based at
(p1, 90, to), let po be a point in the intersection L g N y (recall that by Claim 4.4 such
intersection is not empty) and let pg = I1(pp) € II(Y) N Pp. Then, by Claim 4.4,
for any i € N, the vertical line segment T, (¥) intersects L g in at least a point Di>
and Di+1 1s above p,, where T is the translation defined in equatlon (4). Namely,

(ro, 90, to), pi = (ri, 90 + 2mi, tg) and r; < ritl < ,02(00, tp). The point
p, € Lﬂ corresponds to the pomt pi = H(p;) = (ry, 90 mod 2w, t9) € Py. Let
r(2) :=1lim; . rithenr(2) < pp (90, to) and note that since lim; _, oo (ri41 — 1) = 0,
then the value of the Jacobi function Jp, at p; must be going to zero as i goes to
infinity. Clearly, the point Q := (r(2), §p mod 27, ty) € Q2 isin the closure of Py, that
is L. Let L be the leaf of £ containing Q. By the previous discussion Jr,(Q) = 0.
Since by the nature of the convergence, either Jy, is positive or L is rotational, then
L, is rotational, namely an H -catenoid.

Arguing similarly but considering the intersection of Zﬁ with the vertical line
segments T_»,;(¥), i € N, one obtains another H-catenoid L, different from L,, in
the lamination £. This shows that the closure of Px contains the two H-catenoids L
and L.

Let 2, be the rotationally invariant, connected region of € — [L; U L] whose
boundary contains L U L,. Note that since Pp is connected and L U L, is contained
in its closure, then Py C 2. It remains to show that £ = Py U L1 U Lo, ie.
Py —Py =L UL, If Py — Py # L1 U L then there would be another leaf
L3 € £N Qg and by previous argument, L3 would be an H-catenoid. Thus L3 would
separate $2, into two regions, contradicting that fact that Py is connected and L1 U Lo
are contained in its closure. This finishes the proof of the claim. O

Note that by the previous claim, Pp is properly embedded in €2,.

Claim 4.7 The H-surface Py is simply-connected and every integral curve of 9y that
lies in Qg intersects Py in exactly one point.

Proof Let Dy := Int(22¢) N {(p,0,%) | p > 0, t € R}, then Py is a graph over its
O-projection to Dy, that is 6(Ppg). Since 6: Q¢ — D, is a proper submersion and
Py is properly embedded in §2,, then 6 (Py) = D, which implies that every integral
curve of dg that lies in €2 intersects Py in exactly one point. Moreover, since Dy is
simply-connected, this gives that Py is also simply-connected. This finishes the proof
of the claim. O

From this claim, it clearly follows that 2, is foliated by H-surfaces, where the
leaves of this foliation are L, L, and the rotated images Py (6) of Py around the
t-axis by angles 6 € [0, 2). The existence of the examples Xy in the statement of
Theorem 1.1 can easily be proven by using Py. We set £y = Py, and C; = L; for
i = 1, 2. This finishes the proof of Theorem 1.1.
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Appendix: Disjoint H -catenoids

In this section, we will show the existence of disjoint H-catenoids in H? x R. In
particular, we will prove Lemma 2.1. Given H € (0, %) and d € [-2H, 00), recall

1(2dH+m) and that A4 [n4,

that ny = cosh™ o0) — [0, 00) is the function

defined as follows.

p d+2H coshr
Aa(p) = dr. (6)
na /sinh®r — (d + 2H cosh r)2

Recall that A4 (p) is a monotone increasing function with lim,_, oo Ag(p) = 0o and
that )J (ng) = oo whend € (—2H, oo) The H-catenoid C¥, d € (—2H, c0), is
obtalned by rotating a generating curve Ad (p) about the ¢-axis. The generating curve
Ad is obtained by doubling the curve (p, 0, 17(p)), p € [n4, 00), with its reflection
(0,0, =24(p)), p € [na, 00).

Finally, recall that by (t) := k;l (t) for t > 0, hence b;(0) = ng4, and that abusing
the notation by (t) := by(—t) fort < 0.

Lemma 2.1 (Disjoint H-catenoids) Given d; > 2 there exist dy > dj and §p > 0 such
that for any d» € [dy, 00) and ¢ > 0O then

inf (bg, (1) — ba, (1)) = .
teR

In particular, the corresponding H -catenoids are disjoint, i.e., Cg n C}Z = 0.
Moreover, bg, (t) — bg, (t) is decreasing for ¢+ > 0 and increasing for t+ < 0. In
particular,

Suﬂlg(bdz(t) - bd] (t)) = bdz (O) - bd] (O) = r)dz - 77d| .
te

Proof We begin by introducing the following notations that will be used for the com-
putations in the proof of this lemma,

e’ +e " . e —e "
c:=coshr = —, s :=sinhr = ——
2 2

Recall thatc? —s2 =landc—s =e". Using these notations,

p d + 2H coshr
ra(p) = dr (7N
na /sinh®r — (d + 2H cosh r)2

can be rewritten as

P d+2H -r
Ad(m:/ F2HSHTED 4 pp) + Jalo), ®)
Nd

Vs2 —(d +2Hc)?
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where
P 2Hs P d+2He™ ™"
Ja(p) =/ dr and Js(p) :/ dr
na \/s2—(d+2Hc)? na v/s2—(d+2Hc)?

First, by using a series of substitutions, we will get an explicit description of f;(p).
Then, we will show that for d > 2, J;(p) is bounded independently of p and d.

Claim 4.8

Ja(p) =

1—4H?%) coshp —2dH
( ) cosh p > ©)

2H
—— COSh_1 (
V1 —4H? Vd? +1—4H?

Remark 4.9 After finding f;(p), we used Wolfram Alpha to compute the derivative
of f4(p) and verify our claim. For the sake of completeness, we give a proof.

Proof of Claim 4.8 The proof is a computation with requires several integrations by
substitution. Consider

2Hs
/ dr
Vs —(d+2Hc)?

By using the fact that s> = ¢> — 1 and applying the substitution {# = ¢, du = Zfdr =
sdr} we obtain that

2H

f 2Hs
dr =
Vs2 —(d+2Hc)? Vu? —1—(d+2Hu)?

Note that

du.

u? —1—(d+2Hu)? =u® — 1 — (d*+ 4dHu + 4H*u?)
=(1—4H)u?> —4dHu — d* — 1

— - am?) (- 4dH 4d*H? 4d’>H? 2o
- T a2 T A —4EY? ) T 1—4H?
(1 — 4 I 2dH \? 4d>H? N >+ 1
=(1—- u—
(1—4H?) (1—4H%)? " 1—4H?

_ _ 2
= (1 -4H7) (1 —4H?) (1 —4H?2)?2

2 /d?+1—4H?
( (1—4H?)? ) '

(1 —4H?)

+
(u dH )2 <4d2H2+(1 —4H?)(d? + 1))]

) ( 2dH
=1 —4HY | (u-
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Therefore, by applying a second substitution, {w = u — m, dw = du}, and

letting a* = (m—m)z) we get that
2H 2H

du = dw
Vu? —1—(d+2Hu)? V1 —4H2Vw? —a?

By using the fact that sec? x — 1 = tan® x and applying a third substitution, {w =
asect,dw = asecttantdt}, we obtain that

/ 2Hasecttant di — 2H sect dr
V1 —4H?2Va?sec?t — a? V1 —4H?
21 In | t +tant|
= ——1In|sec an
V1 —4H?

Therefore

2H p 2H | |w+ w? I

w=—+—1In|— — —
V1 =4H2Jw? =42 VI—4H? a a?

= % cosh™! (%)

Sincew = u — m then

__2dH
2H du — 2—H COSh71 u(l—_41-12)
Vu? —1—(d +2Hu)? V1 —4H? a
2dH

-2 cosh™! L a-um
1 —4H2 Vd?>+1-4H?
(1—4H?)
2H cosh-! ((1 —4HYu — 2dH>

V1 —4H? Jd?+1—4H?

Finally, since u = coshr

P 2Hs 2H ol ((1 —4H?*) coshr — 2dH> P
= COS
n v/s2—(d+2Hc)?2  1—4H? Vd?+1—4H? e
__2H (CO - <(1 —4H?*) cosh p — 2dH>
V1 —4H? Vd?+1—4H?

- ((1 —4H?)coshng — 2dH))
— COS

Vd*+1—4H?
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Recall that n; = cosh™! (Mﬂ— W) and thus

— 2 2
(1 —4HY coshny —2dH (1 —4H})(CHRARHEEE) —2dH

VAT ¥ 1= 4H? VAT ¥ 1—4H? B

This implies that

(1 —4H?)coshp — ZdH)

falo) = ——=2 h—l(
7(p) = ——=cos
1 —4H? Vd?+1—4H?

By Claim 4.8 we have that

2H 1 —4H?%) coshp — 2dH
fa(p) = —— (cosh1 ( ) coshp )
1 —4H2 Vd?+1—4H?
_ 2H o L4
= Ui P am ) TR

where lim,,_, o0 g4(p) = 0.
Recall that Az(p) = fi(p) + Ja(p) where

P d+2He" p d+2He™"
Ja(p) = dr = dr.
na /$2 — (d + 2Hc)? na V2 —1—(d+2Hc)?
Claim 4.10

sup Ja(p) <m/1—-2H.

de(2,00),p€(nq,00)

Proof of Claim 4.10 Let

2dH + /1 —4H? + d? 2dH — 1 —4H? + d?
o = an =

d
1—4H? p 1 —4H?
be the roots of ¢ — 1 — (d + 2Hc¢)?, i.e.
4dH 1+d?
2 2 _ o [ 2
¢cc—1—(d+2Hc)" =1 —-4H )<c — 1—4H2€_ 1—4H2>

=(1—4H*(c —a)(c — p).
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Note that « = cosh n; and that as H € (0, %), B < 0 < «a. Furthermore, 2He™" <
2H < 1 < d. Thus we have,

p d+2He™ ™"

J =
a(e) nd v1—4H «/(c—ot)(c—

«/1 —4H /nd v(c—a)(c —ﬂ)

<mm "

where the last inequality holds because for r > r/d, coshr > « and thus Vo — 8 <

Ve —a. Notice that @ — g = 2 ]1*_‘;7122”2 > 24 Therefore
2d 2d V1 —4H? _

JI—alJa—B JI_am® ad

and

®©dr
Ja(p) @f .
dip) = w Je—a

Applying the substitution {¢ = ¢ — «, du = sdr = /(u + «)? — 1dr}, we obtain

that
©  dr © du
Y (10)
7

. VC—a 0 Juy(u+a)r—1

Let w = o — 1. Note that since d > 1 then @ > 1 and we have that (u + «)? — 1 >
(u + w)* as u > 0. This gives that

© u © du
/0 \/ﬁ\/(u+a)2—l</0 Vuu + w)

d
Applying the substitution {v = \/u, dv = _u} we get

2J/u

0]

/"O du /“X’ 2dv .
_— = —_— arC an ——
0 Vulu+ o) 0 Yto

2d
Ja(p) < —m.
w

and thus
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Note that

2dH + /1 —4H? + 42
w=a—1= _

1 — 4H2
(1+2H)d d
1= —1.
1 — 4H2 1—2H

Since d > 2, we have 2w >

d d [2d
Hand—<2(1—2H).Then — <241 —-2H.
1) w

Finally, this gives that

Ja(p) <2m/1 —2H

independently on d > 2 and p > ny. This finishes the proof of the claim. O
Using Claims 4.8 and 4.10, we can now prove the next claim.

Claim 4.11 Given dy > dy > 2 there exists T € R such for anyt > T, we have that

2H -1 -1
ﬁ()\@ (1) =2y (D)

1 d?+1—4H2
>-In ;gi—————-—znvl—zH.
2\ dl4+1—-4H?

Proof of Claim 4.11 Recall that A4(p) = fa(p) + Ji(p) and that by Claims 4.8
and 4.10 we have that

fa(p) 21 ( +1 |- 4H >+ (p) (11)
1(p) = —F—= |+ I ——m7—— a(p),
V1 —4H? Jd?+1—4H? 8
where lim,_, o g4(p) = 0, and that
sup Ju(p) <271 —2H. (12)

de(2,00),p€(n4,00)

Let p; (¢) := k[;il(t), i = 1, 2. Using this notation, since t = A1(p1(t)) = A2(p2(?))
we obtain that

0 =22(02(t)) — A1(p1(1))
= far, (02(1)) + Ja, (2(2)) — fa, (01(1)) — Ja, (p1(2))

2H 1 —4H?

=—— |0 +h—(—
H Jd3 +1—4H?

2H 1 —4H?

- —— | () It —F/——
Jd? +1—4H2

+ 84, (p2(1)) + Ja, (p2(1))

— 8a,(p1(1)) — Ja, (01(2))
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Recall that lim;_, » ;i (t) = 00,1 = 1, 2, therefore given ¢ > 0 there exists T, € R
such that for any 1 > T, |g4; (pi (t))| < &. Taking

2
de < 1In M
d? +1—4H?

for t > T, we get that

2H
W(pz(ﬂ — p1(1))
dy+1—4H?
>In [z I (P 0) — Jay(e2(0) = 26
>

L d22+1_4H2—|—J( (1)) — Jay (p2(1))
>—-In | S5——— — .
) d12+1—4H2 d, (P1 dy (P2

Notice that Jy, (01(¢)) > 0 and that Claim 4.10 gives that

sup  Jg,(p) <2nv1—2H.

PE(dy»00)
Therefore
2H
ﬁ(pz(ﬂ — p1(1)
[ 2 42
> %ln H —27+/1-2H.
This finishes the proof of the claim. O

We can now use Claim 4.11 to finish the proof of the lemma. Given d; > 2 fix
do > d; such that

V1 —4H? | d3+1—4H2
n
4H d? +1—4H?2

—471\/1—2H) =1

Then, by Claim 4.11, given d» > d there exists T > 0 such that ka_,zl () — )L;ll (1) >1
for any # > T'. Notice that since for any p € (172, 00), Ay, (p) > Ay (p), then there
exists at most one 7y > 0 such that A;zl (tg) — )L;ll(to) = 0. Therefore, since there
exists 7 > 0 such that )\;21 (t) — )»;Il(t) > | forany t > T and )»;21 ) — )\;]1 0 =
na, — Na; > 0, this implies that there exists a constant §(d2) > 0 such that for any
t >0,

a6 =gl (0) > 8(da).
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A priori it could happen that limg, . o §(d2) = 0. The fact that limg, .« §(d2) > 0
follows easy by noticing that by applying Claim 4.11 and using the same arguments
as in the previous paragraph there exists d3 > dp such that for any d > d3 and ¢ > 0,

IR GEPI GRS
Therefore, for any d > dz and ¢ > 0,
gty = agt @0 > 05 () = ag' (1) > 8(do)
which implies that

lim 8(dy) > 8(dpy) > O.
dy)— o0
Setting 8¢ = infye[dy,00) 6(d2) > O gives that
. —1 -1
telﬁig()hdz () — )\'dl (t)) = do.
By definition of b, (¢) then

inf (ba, (1) — bay () = inf (' (1) = Ay (1) = do.
reR teRsy 42 1

It remains to prove that b, (¢) — b1 (¢) is decreasing for ¢t > 0 and increasing for r < 0.
By definition of b, (1), it suffices to show that b>(¢) — b1 (¢) is decreasing for t > 0.
We are going to show %(bz(t) —bi(t)) < Owhent > 0.

By definition of b;, for > 0 we have that A; (b; (t)) = ¢ and thus bl/. (1) =

By definition of A4(¢) for t > 0 the following holds,

1
PACIODR

1 - 1 - 1 _
M) — Aba) A (ba(1))

b (1) = by (1).

The first inequality is due to the convexity of the function A;(#) and the second
inequality is due to the fact that | (p) < A}(p) for any p > n,. This proves that
%(bz (t) = b1(1)) = b/2 (t) — b’1 (t) < O for ¢ > 0 and finishes the proof of the claim.
O
Note that if d is sufficiently close to —2H then C 5’ must be unstable. This follows
because as d approaches —2H, the norm of the second fundamental form of C f
becomes arbitrarily large at points that approach the “origin” of H? x R and a simple
rescaling argument gives that a sequence of subdomains of C f converge to a catenoid,
which is an unstable minimal surface. This observation, together with our previous
lemma suggests the following conjecture.

Conjecture: Given H € (0, %) there exists dg > —2H such that the following holds.
Forany d > d' > dy, Cf N Cg{ = ¢, and the family {Cf | d € [dy, 00)} gives a
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1512 B. Coskunuzer et al.

foliation of the closure of the non-simply-connected component of H> x R — C CZI .
The H-catenoid Cf is unstable if d € (—2H, dy) and stable if d € (dy, 00). The
H-catenoid C (Z{ is a stable-unstable catenoid.
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