
Math. Ann. (2017) 369:441–485
DOI 10.1007/s00208-016-1436-8 Mathematische Annalen

Well-posedness of hyperbolic systems with multiplicities
and smooth coefficients

Claudia Garetto1 · Christian Jäh1

Received: 10 March 2016 / Revised: 10 June 2016 / Published online: 22 June 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We study hyperbolic systemswithmultiplicities and smooth coefficients. In
the case of non-analytic, smooth coefficients, we prove well-posedness in any Gevrey
class and when the coefficients are analytic, we prove C∞ well-posedness. The proof
is based on a transformation to block Sylvester form introduced by D’Ancona and
Spagnolo (Boll UMI 8(1B):169–185, 1998) which increases the system size but does
not change the eigenvalues. This reduction introduces lower order terms for which
appropriate Levi-type conditions are found. These translate then into conditions on
the original coefficient matrix. This paper can be considered as a generalisation of
Garetto and Ruzhansky (Math Ann 357(2):401–440, 2013), where weakly hyperbolic
higher order equations with lower order terms were considered.
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1 Introduction

We consider the Cauchy problem

{
Dtu − A(t, Dx )u = 0, (t, x) ∈ [0, T ] × R

n,

u|t=0 = u0, x ∈ R
n,

(1)

where Dt = −i∂t , Dx = −i∂x , and A(t, Dx ) is an m × m matrix of first-order
differential operators with time-dependent coefficients and u is a column vector with
components u1, . . . , um . We assume that (1) is hyperbolic, whereby we mean that the
matrix A(t, ξ) has only real eigenvalues. These eigenvalues, rescaled to order 0 by
multiplying by 〈ξ 〉−1, will be denoted by λ1(t, ξ), . . . , λm(t, ξ). Following Kinoshita
and Spagnolo in [22], we assume throughout this paper that there exists a positive
constant C such that

λ2i (t, ξ) + λ2j (t, ξ) ≤ C(λi (t, ξ) − λ j (t, ξ))2, (t, ξ) ∈ [0, T ] × R
n (2)

for all 1 ≤ i < j ≤ m.
As observed in [14] combining the well-posedness results in [21,25] we already

know that the Cauchy problem (1) is well-posed in the Gevrey class γ s , with

1 ≤ s < 1 + 1

m

as well as in the corresponding spaces of (Gevrey–Beurling) ultradistributions. In this
paper we want to prove that when A(t, Dx ) has smooth coefficients and the condition
(2) on the eigenvalues holds, then the Gevrey well-posedness result above can be
extended to any s ≥ 1. Since, by the results of Kajitani and Yuzawa when s ≥ 1+ 1

m
at least an ultradistributional solution to the Cauchy problem (1) exists, we will prove
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that this solution does actually belong to the Gevrey class γ s . In the case of analytic
coefficients, we will prove instead that the Cauchy problem (1) is C∞ well-posed.

In this paper we assume that the Gevrey classes γ s(Rn) are well-known: these are
spaces of all f ∈ C∞(Rn) such that for every compact set K ⊂ R

n there exists a
constant C > 0 such that for all β ∈ N

n
0 we have the estimate

sup
x∈K

|∂β f (x)| ≤ C |β|+1(β!)s .

For s = 1, we obtain the class of analytic functions. We refer to [11] for a detailed
discussion and Fourier characterisations of Gevrey spaces of different types and the
definition of the corresponding spaces of ultradistributions.

The well-posedness of hyperbolic equations and systems with multiplicities has
been a challenging problem for a long time. In the last decades several results have
been obtained for scalar equations with t-dependent coefficients ([2–4,6,7,11–13,22],
to quote a few) but the research on hyperbolic systems with multiplicities has not been
as successful. We mention here the work of D’Ancona, Kinoshita and Spagnolo [8]
on weakly hyperbolic systems (i.e. systems with multiplicities) of size 2×2 and 3×3
with Hölder dependent coefficients later generalised to any matrix size by Yuzawa in
[25] and to (t, x)-dependent coefficients by Kajitani and Yuzawa in [21]. In all these
papers, well-posedness is obtained in Gevrey classes of a certain order depending on
the regularity of the coefficients and the system size. Systems of this type have recently
also been investigated in [10,14].

It is a natural question to ask if under stronger assumptions on the regularity of
the coefficients, for instance smooth or analytic coefficients, the well-posedness of
the corresponding Cauchy problem could be improved, in the sense if one could get
well-posedness in every Gevrey class or C∞–well-posedness. It is known that this
is possible for scalar equations under suitable assumptions on the multiple roots and
Levi conditions on the lower order terms, see [12,22] for Ck and C∞ coefficients and
[12,17,22] for analytic coefficients. This paper gives a positive answer to this question
by extending the results for scalar equations in [12,22] to systems with multiplicities.
This will require a transformation of the system in (1) into block-diagonal form with
Sylvester blocks which increases the system size fromm×m tom2 ×m2 but does not
change the eigenvalues, in the sense that every block will have the same eigenvalues
as A(t, ξ). Such a transformation, introduced by D’Ancona and Spagnolo in [9], has
the side effect to generate a matrix of lower order terms even when the original system
is homogeneous, i.e., (1) will be transformed into a Cauchy problem of the type

{
DtU = A(t, Dx )U + B(t, Dx )U,

U |t=0 = U0.

It becomes therefore crucial to understand how the lower order terms in B(t, ξ) are
related to the matrix A(t, ξ), which is in turn related to A(t, ξ), and which Levi-type
conditions have to be formulated on them to get the desired well-posedness. These
Levi-type conditions will then be expressed in terms of the matrix A(t, ξ). In the next
subsection we collect our main results and we give a scheme of the proof.
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1.1 Results and scheme of the proof

In the sequel, we denote the elementary symmetric polynomials σ
(m)
h (λ) by

σ
(m)
h (λ) = (−1)h

∑
1≤i1<···<ih≤m

λi1 . . . λih ,

for 1 ≤ h ≤ m and σ
(m)
0 (λ) = 1, where λ = (λ1, . . . , λm) is given by the rescaled

eigenvalues λi = λi (t, ξ) of A(t, ξ) and πiλ = (λ1, . . . , λi−1, λi+1, . . . , λm). More-
over, given f = f (t, ξ) and g(t, ξ) we use the notation f ≺ g, when it exists a
constant C > 0 such that f (t, ξ) ≤ Cg(t, ξ) for all t ∈ [0, T ] and ξ ∈ R

n . We will
also use (·) in the upper left corner of a symbol as in b(l)

i j . By that we will not denote
derivatives but use this as an index.

Theorem 1.1 Let A(t, Dx ), t ∈ [0, T ], x ∈ R
n, be an m ×m matrix of first order dif-

ferential operators with C∞-coefficients. Let A(t, ξ) have real eigenvalues satisfying
condition (2). Assume that the Cauchy problem

{
DtU = A(t, Dx )U + B(t, Dx )U,

U |t=0 = U0,

obtained from (1) by block Sylvester transformation has the lower order terms matrix
B(t, ξ) with entries b(l)

k j (t, ξ) fulfilling the Levi-type conditions

m∑
k=1

|b(l)
k j (t, ξ)|2 ≺

m∑
i=1

|σ (m−1)
m−l (πiλ)|2, (3)

for l = 1, . . . ,m−1 and j = 1, . . . ,m.Hence, for all s ≥ 1 and for all u0 ∈ γ s(Rn)m

there exists a unique solution u ∈ C1([0, T ], γ s(Rn))m of the Cauchy problem (1).

The formulation of the Levi-type conditions given above requires a precise knowl-
edge of the matrix B(t, ξ). For that see the Sect. 3.4. It is possible to state the previous
well-posedness result completely in terms of the matrix A(t, ξ) and the Cauchy prob-
lem (1). This means to introduce an additional hypothesis on the coefficients of A(t, ξ)

which implies the Levi-type conditions on B(t, ξ). In the final section of the paper we
will prove that in some cases, for instance when m = 2, this second formulation is
equivalent to the one given in Theorem 1.1.

Theorem 1.2 Let A(t, Dx ), t ∈ [0, T ], x ∈ R
n, be an m ×m matrix of first order dif-

ferential operators with C∞-coefficients. Let A(t, ξ) have real eigenvalues satisfying
condition (2) and let Q = (qi j ) be the symmetriser of A0 = 〈ξ 〉−1A. Assume that

max
k=1,...,m−1

‖Dk
t A0(t, ξ)‖2 ≺ q j, j (t, ξ) (4)
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for all j = 1, . . . ,m − 1 and all (t, ξ) ∈ [0, T ] ×R
n. Hence, for all s ≥ 1 and for all

u0 ∈ γ s(Rn)m there exists a unique solution u ∈ C1([0, T ], γ s(Rn))m of the Cauchy
problem (1). Here, ‖ · ‖ denotes the standard matrix norm.

Remark 1.3 For some more concrete examples in the cases m = 2 and 3, see the
remarks in Sect. 6.

Since the entries of the symmetriser are polynomials depending on the eigenvalues
of A(t, ξ), we require in Theorem 1.2 that the t-derivatives of A(t, ξ) up to orderm−1
are bounded by suitable polynomials of the eigenvalues λ1(t, ξ), . . . , λm(t, ξ). Note
that, as observed already in the appendix of [12], these polynomials can be expressed
in terms of the entries of A(t, ξ).

When the entries of A(t, ξ) are analytic, then we prove that the Cauchy problem
(1) is C∞ well-posed. The precise statements can be obtained by replacing γ s with
C∞ in Theorems 1.1 and 1.2.

We conclude this subsection by presenting the scheme of the proof of Theorem 1.1
which combines ideas from [9,12] .

Step 1 Compute the adjunctmatrix adj(Imτ−A(t, ξ)) = cof(Imτ−AT (t, ξ)), where
Im is the identity matrix of size m × m. We thus have the relation

adj(Imτ − A(t, ξ))(Imτ − A(t, ξ)) =
m∑

h=0

ch(t, ξ)Imτm−h,

where the ch(t, ξ) are homogeneous polynomials of order h in ξ and are given
by the coefficients of the characteristic polynomial of A(t, ξ). See Appendix.

Step 2 Apply the operator adj(ImDt−A(t, Dx )), associated to the symbol adj(Imτ −
A(t, ξ)), to the system (1) and obtain a set of scalar equations for u1 to um ,
where the operator acting on these is associated to det(Imτ − A(t, ξ)). Addi-
tionally, one gets some lower order terms which can be computed explicitly.

Step 3 Convert the resulting set of equations

det(ImDt − A(t, Dx ))u + l.o.t. = 0

to Sylvester block diagonal form following the method of Taylor in [23], i.e
by setting

U = (U1,U2, . . . ,Um)T , where

Uk = (〈Dx 〉m−1uk, Dt 〈Dx 〉m−2uk, . . . , D
m−1
t uk) (5)

for k = 1, . . . ,m. This transformation maps each equation to a system in
Sylvester formandglues those systems in block diagonal form together.Hence,
we achieve a block diagonal form with Sylvester blocks associated to the
characteristic polynomial of (1). This means that each block will have the
same eigenvalues as A(t, ξ). The initial data will be transformed in the same
way to obtain a new set of initial data U0 for the new system.
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Step 4 Consider the resulting system

{
DtU = A(t, Dx )U + B(t, Dx )U
U |t=0 = U0,

(6)

where A(t, Dx ) and B(t, Dx ) are matrices of size m2 × m2 with a special
structure. As explained above, A(t, Dx ) is a block diagonal matrix with m
identical blocks of Silvester matrices having the same eigenvalues as A(t, ξ)

and B(t, Dx ) is composed of m ×m2 blocks with only the last row not identi-
cally zero. Since the original homogeneous system has been transformed into
a system with lower order terms, to get well-posedness of the corresponding
Cauchy problem (6), we need to find some Levi-type conditions. These are
obtained by following the ideas for scalar equations in [12].

Step 5 We apply the partial Fourier transform with respect to x to (6) and we prove an
energy estimate fromwhich the assertions of the well-posedness theorems fol-
low in a standard way. A key point is the construction of the quasi-symmetriser
of the matrix A(t, ξ).

The remainder of the paper is organised as follows. In Sect. 2, we present a short
survey on the quasi-symmetriser which will be employed to formulate and prove the
energy estimate. The core of Sect. 3 is the transformation of A(t, ξ) from (1) to block
Sylvester form. An explicit description of adj(ImDt − A(t, Dx )) and the resulting
lower order terms is also given in Sect. 3, together with a detailed scheme of the proof
in the cases m = 2 and m = 3. Section 4 is devoted to the energy estimate and Sect.
5 to the estimates for the lower order terms. The paper ends with the well-posedness
results in Sect. 6 and theAppendix,wherewe collect some algebraic results concerning
adj(Imτ − A(t, ξ)).

2 The quasi-symmetriser

Here we recall some facts about the quasi-symmetriser that we will need throughout
the paper. For more details see [9,22]. Note that for m × m matrices A1 and A2 the
notation A1 ≤ A2 means (A1v, v) ≤ (A2v, v) for all v ∈ C

m with (·, ·) the scalar
product in Cm . Let M(λ) be a m × m Sylvester matrix with real eigenvalues λl , i.e.,

M(λ) =

⎛
⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . 1

−σ
(m)
m (λ) −σ

(m)
m−1(λ) . . . . . . −σ

(m)
1 (λ)

⎞
⎟⎟⎠ ,

where the σ
(m)
h (λ) are defined as

σ
(m)
h (λ) = (−1)h

∑
1≤i1<···<ih≤m

λi1 . . . λih (7)
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for all 1 ≤ h ≤ m. We further set σ (m)
0 (λ) = 1. In the sequel we make use of the fol-

lowing notations:Pm for the class of permutations of {1, . . . ,m}, λρ = (λρ1, . . . , λρm )

with λ ∈ R
m and ρ ∈ Pm , πiλ = (λ1, . . . , λi−1, λi+1, . . . , λm) and λ′ = πmλ =

(λ1, . . . , λm−1).
To construct the quasi-symmetriser, we follow [22] and define P(m)(λ) inductively

by P(1)(λ) = 1 and

P(m)(λ) =

⎛
⎜⎜⎜⎝

0

P(m−1)(λ′)
...

0
σ

(m−1)
m−1 (λ′) . . . . . . σ

(m−1)
1 (λ′) 1

⎞
⎟⎟⎟⎠ .

Further, we set, for ε ∈ (0, 1],

P(m)
ε (λ) = H (m)

ε P(m)(λ),

where H (m)
ε = diag{εm−1, . . . , ε, 1}. We remark that P(m)(λ) depends only on λ′.

Finally, the quasi-symmetriser is the Hermitian matrix

Q(m)
ε (λ) =

∑
ρ∈Pm

P(m)
ε (λρ)∗P(m)

ε (λρ).

To describe the properties of Q(m)
ε (λ) in more detail in the next proposition, we denote

by W (m)
i (λ) the row vector

(
σ

(m−1)
m−1 (πiλ), . . . , σ

(m−1)
1 (πiλ), 1

)
, 1 ≤ i ≤ m,

and let W (m)(λ) be the matrix with row vectors W (m)
i .

The following proposition collects the main properties of the quasi-symmetriser
Q(m)

ε (λ). For a detailed proof we refer the reader to Propositions 1 and 2 in [22] and
to Proposition 1 in [9].

Proposition 2.1 (i) The quasi-symmetriser Q(m)
ε (λ) can be written as

Q(m)
0 (λ) + ε2Q(m)

1 (λ) + · · · + ε2(m−1)Q(m)
m−1(λ),

where the matrices Q(m)
i (λ), i = 1, . . . ,m − 1, are non-negative and Hermitian

with entries being symmetric polynomials in λ1, . . . , λm.
(ii) There exists a function Cm(λ) bounded for bounded |λ| such that

Cm(λ)−1ε2(m−1) I ≤ Q(m)
ε (λ) ≤ Cm(λ)I.
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(iii) We have

−Cm(λ)εQ(m)
ε (λ) ≤ Q(m)

ε (λ)M(λ) − M(λ)∗Q(m)
ε (λ) ≤ Cm(λ)εQ(m)

ε (λ).

(iv) For any (m − 1) × (m − 1) matrix T let T � denote the m × m matrix

(
T 0
0 0

)
.

Then, Q(m)
ε (λ) = Q(m)

0 (λ) + ε2
∑m

i=1 Q
(m−1)
ε (πiλ)�.

(v) We have

Q(m)
0 (λ) = (m − 1)!W (m)(λ)∗W (m)(λ).

(vi) We have

det Q(m)
0 (λ) = (m − 1)!

∏
1≤i< j≤m

(λi − λ j )
2.

(vii) There exists a constant Cm such that

q(m)
0,11(λ) · · · q(m)

0,mm(λ) ≤ Cm

∏
1≤i< j≤m

(λ2i + λ2j ).

We finally recall that a family {Qα} of non-negative Hermitian matrices is called
nearly diagonal if there exists a positive constant c0 such that

Qα ≥ c0 diag Qα

for all α, with diag Qα = diag{qα,11, . . . , qα,mm}. The following linear algebra result
is proven in [22, Lemma1].

Lemma 2.2 Let {Qα} be a family of non-negative Hermitian m × m matrices such
that det Qα > 0 and

det Qα ≥ c qα,11qα,22 . . . qα,mm

for a certain constant c > 0 independent of α. Then,

Qα ≥ c m1−m diag Qα

for all α, i.e., the family {Qα} is nearly diagonal.
Lemma 2.2 is employed to prove that the family Q(m)

ε (λ) of quasi-symmetrisers
defined above is nearly diagonal when λ belongs to a suitable set. The following
statement is proven in [22, Proposition 3].

123



Well-posedness of hyperbolic systems with multiplicities and. . . 449

Proposition 2.3 For any M > 0 define the set

SM = {λ ∈ R
m : λ2i + λ2j ≤ M(λi − λ j )

2, 1 ≤ i < j ≤ m}.

Then the family of matrices {Q(m)
ε (λ) : 0 < ε ≤ 1, λ ∈ SM } is nearly diagonal.

We conclude this section with a result on nearly diagonal matrices depending on
three parameters, ε, t , and ξ which will be crucial in Sect. 4. Note that this is a
straightforward extension of Lemma 2 in [22] valid for matrices depending on two
parameters, ε and t .

Lemma 2.4 Let {Q(m)
ε (t, ξ) : 0 < ε ≤ 1, 0 ≤ t ≤ T, ξ ∈ R

n} be a nearly diagonal
family of coercive Hermitian matrices of class Ck in t , k ≥ 1. Then, there exists a
constant CT > 0 such that for any continuous function V : [0, T ] × R

n → C
m we

have

∫ T

0

|(∂t Q(m)
ε (t, ξ)V (t, ξ), V (t, ξ))|

(Q(m)
ε (t, ξ)V (t, ξ), V (t, ξ))1−1/k |V (t, ξ)|2/k

dt ≤ CT ‖Q(m)
ε (·, ξ)‖1/k

Ck ([0,T ])

for all ξ ∈ R
n .

Remark 2.5 All results of this section hold true in the when Q(m)
ε (t, ξ) is replaced by a

block diagonal matrixQ(m)
ε (t, ξ)withm identical matrices Q(m)

ε (t, ξ) on its diagonal.
The corresponding block diagonal matrix withWm(λ) blocks is denoted byW(m)(λ).
Proofs follow from a block-wise treatment and application of the results above.

2.1 The quasi-symmetriser in the case m = 2 and m = 3

For the advantage of the reader, we conclude this section by computing the quasi-
symmetrisers Q(2)

ε and Q(3)
ε . For m = 2, we obtain

W (2)(λ) =
(−λ2 1

−λ1 1

)

Q(2)
ε (λ) =

(
λ21 + λ22 −(λ1 + λ2)

−(λ1 + λ2) 2

)
+ 2ε2

(
1 0
0 0

)
.

Similarly, for m = 3, we obtain

W (3)(λ) =
⎛
⎝λ2λ3 −(λ2 + λ3) 1

λ3λ1 −(λ3 + λ1) 1
λ1λ2 −(λ1 + λ2) 1

⎞
⎠

Q(3)
ε (λ) = 2

∑
1≤i< j≤3

⎛
⎝ (λiλ j )

2 −λiλ j (λi + λ j ) λiλ j

−λiλ j (λi + λ j ) (λi + λ j )
2 −(λi + λ j )

λiλ j −(λi + λ j ) 1

⎞
⎠
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+ 2ε2
∑

1≤i≤3

⎛
⎝λ2i −λi 0

−λi 1 0
0 0 0

⎞
⎠ + 6ε4

⎛
⎝ 1 0 0
0 0 0
0 0 0

⎞
⎠ .

3 Sylvester block diagonal reduction

This section is devoted to the Sylvester block diagonal reduction that will be employed
on the system (1). This transformation has been introduced byD’Ancona andSpagnolo
in [9]. Here we give a detailed description of how this reduction works on the system
ImDt − A(t, Dx ) and we present explicit formulas for the matrix of lower order terms
generated by the procedure. Note that these results are obtained from general linear
algebra statements that are collected in the appendix at the end of the paper. We will
refer to Appendix throughout this section. The subsections refer to the steps of the
proof outlined in Sect. 1.1.

3.1 Step 1: The adjunct adj(ImDt − A(t, Dx))

A straightforward application of Lemma 7.4 leads us to the following proposition.

Proposition 3.1 Let ImDt − A(t, Dx ) be the operator in (1). Then,

adj(ImDt − A(t, Dx )) =
m−1∑
h=0

Ah(t, Dx )D
m−1−h
t

where

Ah(t, Dx ) =
h∑

h′=0

σ
(m)

h′ (λ)Ah−h′
(t, Dx ), (8)

λ = (λ1, . . . , λm) and σ
(m)
h (λ) as defined in (7). The differential operator adj(ImDt −

A(t, Dx )) is of orderm−1with respect to Dt and every differential operatorAh(t, Dx ),
1 ≤ h ≤ m, is of order h with respect to Dx . We set A0(t, Dx ) = Im.

Proposition 3.1 completes Step 1 of our proof as outlined in the scheme. We can
therefore proceed to Step 2.

3.2 Step 2: Computation of the lower order terms

Proposition 3.2 The lower order terms that arise after applying the adjunct
adj(ImDt − A(t, Dx )) to the original operator ImDt − A(t, Dx ) are given by

B(t, Dt , Dx )u = −
m−2∑
h=0

Ah(t, Dx )A′
h(t, Dt , Dx ), (9)
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where Ah(t, Dx ) is defined in (8) and

A′
h(t, Dt , Dx ) =

m−2∑
h′=h

(
m − 1 − h

h′ + 1 − h

)
(Dh′+1−h

t A)(t, Dx )D
m−2−h′
t u. (10)

Proof From Proposition 3.1 and Leibniz rule, we have

adj(ImDt − A(t, Dx ))(ImDtu − A(t, Dx )u)

=
m−1∑
h=0

Ah(t, Dx )D
m−1−h
t (ImDtu − A(t, Dx )u)

=
m−1∑
h=0

Ah(t, Dx )D
m−h
t u −

m−1∑
h=0

Ah(t, Dx )D
m−1−h
t (A(t, Dx )u)

=
m−1∑
h=0

Ah(t, Dx )D
m−h
t u

−
m−1∑
h=0

Ah(t, Dx )

m−1−h∑
h′=0

(
m − 1 − h

h′

)
(Dh′

t A)(t, Dx )D
m−1−h−h′
t u. (11)

Now we write the second summand in the last equation in (11) as Xu+Yu where Xu
contains all terms with h′ = 0 and

Yu = −
m−1∑
h=0

Ah(t, Dx )

m−1−h∑
h′=1

(
m − 1 − h

h′

)
(Dh′

t A)(t, Dx )D
m−1−h−h′
t u

= −
m−2∑
h=0

Ah(t, Dx )

m−1−h∑
h′=1

(
m − 1 − h

h′

)
(Dh′

t A)(t, Dx )D
m−1−h−h′
t u. (12)

By replacing h′ with h′ + 1 − h in the second sum in (12) we get

Yu = −
m−2∑
h=0

Ah(t, Dx )

m−2∑
h′=h

(
m − 1 − h

h′ + 1 − h

)
(Dh′+1−h

t A)(t, Dx )D
m−2−h′
t u

and then by (10) we conclude that Yu = B(t, Dt , Dx )u as desired. It remains to show
that

m−1∑
h=0

Ah(t, Dx )D
m−h
t u + Xu = det(ImDt − A(t, Dx ))u. (13)

By (8), we obtain

Ah(t, Dx )A(t, Dx ) = Ah+1(t, Dx ) − σ
(m)
h+1(λ)Im
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and, thus,

X = −
m−1∑
h=0

Ah(t, Dx )A(t, Dx )D
m−1−h
t

= −
m∑

h=1

Ah(t, Dx )D
m−h
t +

m∑
h=1

σ
(m)
h (λ)ImD

m−h
t

︸ ︷︷ ︸
=det(Im Dt−A(t,Dx ))−Im Dm

t (see (57))

.

Using that Am = 0 [thanks to the Cayley–Hamilton theorem, see (58)] and A0 = Im ,
we obtain (13) which concludes the proof. ��

It will be convenient for the description of some important matrices in this paper to
rewrite the lower order terms in a different way. More precisely, we have the following
corollary.

Corollary 3.3 We can write the lower order term in (9) as

B(t, Dt , Dx ) = −
m−2∑
h=0

Bh+1(t, Dx )D
h
t , (14)

where

Bh+1(t, Dx ) =
m−2−h∑
h′=0

(
m − 1 − h′

h

)
Ah′(t, Dx )(D

m−1−h−h′
t A)(t, Dx ) (15)

and Ah′(t, Dx ) is given by (8).

Proof Formula (14) follows from (9) by interchanging the order of the sums appro-
priately. Indeed, we have, using (8) and (10), that

B(t, Dt , Dx )

= −
m−2∑
h=0

Ah(t, Dx )

m−2∑
h′=h

(
m − 1 − h

h′ + 1 − h

)
(Dh′+1−h

t A)(t, Dx )D
m−2−h′
t

= −
m−2∑
h′=0

h′∑
h=0

Ah(t, Dx )

(
m − 1 − h

h′ + 1 − h

)
(Dh′+1−h

t A)(t, Dx )

︸ ︷︷ ︸
=:Bm−1−h′ (t,Dx )

Dm−2−h′
t

= −
m−2∑
h=0

Bh+1(t, Dx )D
h
t , (16)
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with

Bh+1(t, Dx ) =
m−2−h∑
h′=0

(
m − 1 − h′

h

)
Ah′(t, Dx )(D

m−1−h−h′
t A)(t, Dx ).

Note that in computing Bh+1 in the last line of (16), we use the binomial identity( m−1−h
m−1−h−k

) = (m−1−h
k

)
and reorder the summation. This completes the proof after

relabelling summation indices. ��
Note that by rewriting the lower order terms as in Corollary 3.3 we clearly see

that B(t, Dt , Dx ) is of order m − 2 in Dt rather than of order m − 1. As explanatory
examples we give a closer look to the operator B(t, Dt , Dx ) in the cases m = 2 and
m = 3.

Example 3.4 Consider m = 2: The sum in (14) has only one term. We have

B1(t, Dx ) = A0(t, Dx )(Dt A)(t, Dx )

with A0(t, Dx ) = σ
(2)
0 (λ)A0(t, Dx ) = I2 (see Lemma 7.4).

Example 3.5 Consider m = 3. The sum in (14) has two terms. We have

B1(t, Dx ) =
1∑

h′=0

(
2 − h′

0

)
Ah′(t, Dx )(D

2−h′
t A)(t, Dx ),

= A0(t, Dx )(D
2
t A)(t, Dx ) + A1(t, Dx )(Dt A)(t, Dx ),

= (D2
t A)(t, Dx ) + (A(t, Dx ) − tr(A)(t, Dx )I3)(Dt A)(t, Dx ),

and

B2(t, Dx ) = 2A0(t, Dx )(Dt A)(t, Dx ) = 2(Dt A)(t, Dx ).

Here we used the fact that A0(t, Dx ) = σ
(3)
0 (λ)A0(t, Dx ) = I3 and σ

(3)
1 (λ) =

− tr(A)(t, Dx ) (see Lemma 7.4).

Corollary 3.3 completes Step 2 of our proof and allows us to transform (1) into

adj(ImDt − A(t, Dx ))(ImDt − A(t, Dx ))u

= δ(t, Dt , Dx )Imu + B(t, Dt , Dx )u = 0, (17)

where δ(t, Dt , Dx ) has symbol det(Imτ − A(t, ξ)) and B(t, Dt , Dx ) is given by (14).
Note that δ(t, Dt , Dx ) is the scalar operator

Dm
t +

m∑
h=1

ch(t, Dx )D
m−h
t ,
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with ch(t, ξ) homogeneous polynomial of order h with respect to ξ and therefore
δ(t, Dt , Dx )Im is a decoupled system of m identical scalar differential operators of
order m while B(t, Dt , Dx ) is a system of differential operators of order m − 1. As
mentioned before, the ch(t, ξ) are the coefficients of the characteristic polynomial of
A(t, ξ), see Appendix.

3.3 Step 3: Reduction to a first order system of pseudodifferential equations

We now transform the system in (17) into a system of pseudodifferential equations by
following Taylor in [23].More precisely, we transform eachm-th order scalar equation
in δ(t, Dt , Dx )Im into a first order pseudodifferential system in Sylvester form. In this
way we obtain m systems with identical Sylvester matrix which can be put together
in block-diagonal form obtaining a block-diagonal m2 × m2 matrix with m identical
Sylvester blocks. The precise structure of the lower order terms will be worked out in
the next subsection. To carry out this transformation, we set

U = (U1, . . . ,Um)T ∈ R
m2

Ui :=
(
D j−1
t 〈Dx 〉m− j ui

)
j=1,...,m

∈ R
m, i = 1, . . . ,m, (18)

where the ui are the components of the original vector u in (1). We can rewrite the
Cauchy problem for (17) as

{
DtU = A(t, Dx )U + B(t, Dx )U,

U |t=0 = U0 = (U0,1, . . . ,U0,m)T ,
(19)

where the components U0,i of the m2-column vector U0 are given by

U0,i =
(
D j−1
t 〈Dx 〉m− j ui (0, x)

)
j=1,...,m

,

and u is the solution of the Cauchy problem (1) with u(0, x) = u0. Passing now to
analyse the matrices A(t, Dx ) and B(t, Dx ), we have that A(t, Dx ) is an m2 × m2

block diagonal matrix of m identical blocks of size m × m of the type

〈Dx 〉

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 0
...

...
... · · · 1

−cm(t, Dx )〈Dx 〉−m −cm−1(t, Dx )〈Dx 〉−m+1 . . . . . . −c1(t, Dx )〈Dx 〉−1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(20)
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and the matrix B(t, Dx ) is composed of m matrices of size m × m2 as follows:

⎛
⎜⎜⎜⎝

0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

...
...

...

li,1(t, Dx ) li,2(t, Dx ) . . . . . . li,m2−1(t, Dx ) li,m2(t, Dx ),

⎞
⎟⎟⎟⎠ (21)

i = 1, . . . ,m. Note that the entries of the matrices A(t, Dx ) and B(t, Dx ) are
pseudodifferential operators of order 1 and 0, respectively.

3.4 Step 4: Structure of the matrix B(t, Dx) of the lower order terms

To analyse the structure of the m2 × m2 matrix B(t, Dx ) we recall that it is obtained
from the m × m matrix B(t, Dt , Dx ) in (17) via the transformation (18).

From Corollary 3.3 we have that

B(t, Dt , Dx )u =
⎛
⎝−

m−2∑
h=0

m∑
j=1

b(h+1)
i j (t, Dx )D

h
t u j

⎞
⎠

i=1,...,m

, (22)

where the b(h+1)
i j (t, Dx ) denote the (i, j)-element of Bh+1(t, Dx ) in (14). By the

previously described transform (18), we obtain that

Dm
t ui = −

m−1∑
h=0

cm−h(t, Dx )D
h
t ui +

m∑
j=1

m−2∑
h=0

b(h+1)
i j (t, Dx )D

h
t u j

and, thus, see that the coefficients b(1)
i j (t, Dx ) in (22) will be associated to

li,1+( j−1)m(t, Dx ) for j = 1, . . . ,m, the coefficients b(2)
i j (t, Dx ) to li,2+( j−1)m(t, Dx )

for j = 1, . . . ,m and so forth. In particular, we get that li,m+( j−1)m(t, Dx ) ≡ 0 for
j = 1, . . . ,m which is due to the fact that (1) is homogeneous. As a general formula
for the non-zero elements of B(t, Dx ), we can write

li,h+1+( j−1)m(t, Dx ) = b(h+1)
i j (t, Dx )〈Dx 〉1−m+h (23)

for j = 1, . . . ,m and h = 0, . . . ,m − 2.
To avoid further complication of the notation, we consider the b(l)

i j (t, ξ) from now

on as the by 〈ξ 〉l−m scaled elements in (23) if referenced as elements of B(t, ξ).
For the convenience of the reader, we conclude this section by illustrating the Steps

1-4 in the case m = 2 and m = 3. For simplicity, we take x ∈ R.

123



456 C. Garetto, C. Jäh

3.5 Steps 1–4 for m = 2

We consider the system

Dtu − A(t)Dxu = Dt

(
u1
u2

)
−

(
a11(t) a12(t)
a21(t) a22(t)

)
Dx

(
u1
u2

)
= 0 (24)

for (t, x) ∈ [0, T ] × R. Computing the adjunct of I2τ − A(t)ξ we obtain

adj(I2τ − A(t)ξ) =
(

τ 0
0 τ

)
−

(
a22(t) −a12(t)
−a21(t) a11(t)

)
ξ = I2τ − adj(A)(t)ξ.

Applying the corresponding operator to (24), we obtain

(I2Dt − adj(A)Dx ) (I2Dt − A(t)Dxu) = δ(t, Dt , Dx )u − (Dt A)(t)Dxu

= δ(t, Dt , Dx )u − B1(t, Dx )u, (25)

where B1(t, Dx ) is given by (15) with h = 0.
Now we set

U = (U1,U2,U3,U4)
T = (〈Dx 〉u1, Dtu1, 〈Dx 〉u2, Dtu2)

T

DtU = (〈Dx 〉U2, D
2
t u1, 〈Dx 〉U4, D

2
t u2)

T .

and, thus, get the system

DtU = A(t, Dx )U + B(t, Dx )U,

where A(t, Dx ) is a 4 × 4 block diagonal matrix, as in (20), with the block

〈Dx 〉
(

0 1
−det(A)(t)D2

x 〈Dx 〉−2 tr(A)(t)Dx 〈Dx 〉−1

)

and B(t, Dx ) is a 4 × 4 matrix of two 2 × 4 blocks

Bi (t, Dx ) =
(

0 0 0 0
Dta1i (t)Dx 〈Dx 〉−1 0 Dta2i (t)Dx 〈Dx 〉−1 0

)
, i = 1, 2.

Note that the entries of the matrix Bi (t, Dx ) can be obtained from (23) by setting
h = 0 and j = 1, 2.
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3.6 Steps 1–4 for m = 3

We consider

Dt

⎛
⎝u1
u2
u3

⎞
⎠ −

⎛
⎝a11(t) a12(t) a13(t)
a21(t) a22(t) a23(t)
a31(t) a32(t) a33(t)

⎞
⎠ Dx

⎛
⎝u1
u2
u3

⎞
⎠ = 0

for (t, x) ∈ [0, T ] × R. We have

adj(I3τ − A(t)ξ) = I3τ
2 + (A(t) − tr(A)(t)I3)ξτ + adj(A)(t)ξ2

and therefore

adj(I3Dt − A(t)Dx ) = I3D
2
t + (A(t) − tr(A)(t))I3Dt Dx + adj(A)(t)D2

x .

Applying this operator to the original system, we obtain

adj(I3Dt − A(t)Dx )(I3Dt − A(t)Dx )u = δ(t, Dt , Dx )u + B(t, Dt , Dx )u,

where we used the fact that adj(A) = A2 + c1A + c2 I3 (see example Example 7.6)
and set

B(t, Dt , Dx ) = −(D2
t A)(t)Dx − 2(Dt A)(t)Dx Dt + tr(A)(t)(Dt A)(t)D2

x

−A(t)(Dt A)(t)D2
x , (26)

= −B1(t, Dx ) − B2(t, Dx )Dt ,

corresponding to (14). Now we introduce

U = (U1,U2,U3)
T ∈ R

9 with

Uj = (〈Dx 〉2u j , Dt 〈Dx 〉u j , D
2
t u j ), j = 1, 2, 3.

Thus, we obtain

DtU = A(t, Dx )U + B(t, Dx )U,

where A(t, Dx ) is a block diagonal matrix with three blocks of the type

〈Dx 〉
⎛
⎝ 0 1 0

0 0 1
−c3(t, Dx )〈Dx 〉−3 −c2(t, Dx )〈Dx 〉−2 −c1(t, Dx )〈Dx 〉−1

⎞
⎠ .
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By direct computation (see Appendix), we get that ch(t, Dx ) = σ
(3)
h (λ), where

σ
(3)
1 (λ) = − tr(A)(t, Dx )

σ
(3)
2 (λ) = a11(t)a22(t)D

2
x + a11(t)a33(t)D

2
x + a22(t)a33(t)D

2
x

−a23(t)a32(t)D
2
x − a12(t)a21(t)D

2
x − a31(t)a13(t)D

2
x

σ
(3)
3 (λ) = − det(A)(t, Dx ).

Indeed, since

det(I3τ − A) =
3∏

h=1

(τ − λi ) =
3∑

h=0

σ
(3)
h (λ)τ 3−h,

it follows that

det(I3τ − A)

= τ 3 + (−a11 − a22 − a33)︸ ︷︷ ︸
σ

(3)
1 (λ)=− tr(A)

τ 2

+ (a11a22 − a12a21 + a11a33 − a13a31 + a22a33 − a23a32)︸ ︷︷ ︸
σ

(3)
2 (λ)

τ

+ (−a11a22a33 + a11a23a32+a12a21a33 − a11a23a31 − a13a21a32+a13a22a31)︸ ︷︷ ︸
σ

(3)
3 (λ)=− det(A)

.

Finally, the matrix B(t, Dx ) is made of three blocks of 3 × 9 matrices

Bk(t, Dx ) =
⎛
⎝ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
b(1)
k1 b(2)

k1 0 b(1)
k2 b(2)

k2 0 b(1)
k3 b(2)

k3 0

⎞
⎠ ,

k = 1, 2, 3 which correspond to (21) via formula (23). More precisely, we get

b(1)
k j = (D2

t ak j + 2Dtak j − tr(A0)Dtak j )Dx 〈Dx 〉−1,

b(2)
k j = (ak1Dta1 j + ak2Dta2 j + ak3Dta3 j )D

2
x 〈Dx 〉−2, (27)

for k = 1, 2, 3 and j = 1, 2. The elements b(1)
k j and b(2)

k j can are the scaled (k, j)-
elements of the matrices B1(t, Dx ) and B2(t, Dx ) from (26) respectively.
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4 Energy estimate

Now we apply the Fourier transform with respect to x to the Cauchy problem in (19)
and set Fx→ξ (U )(t, ξ) =: V (t, ξ). We then obtain

{
DtV = A(t, ξ)V + B(t, ξ)V,

V |t=0 = V0,
(28)

where V0 = Û0. From now on, we will concentrate on (28) and the matrix

A0(t, ξ) := 〈ξ 〉−1A(t, ξ).

Note that by construction of A(t, ξ), the matrix A0(t, ξ) is made of m identical
Sylvester type blocks with eigenvalues λl(t, ξ), l = 1, . . . ,m, where λl(t, ξ)〈ξ 〉,
l = 1, . . . ,m are the rescaled eigenvalues of the original matrix A(t, ξ) in (1).

4.1 Step 5: Computing the energy estimate

Let Q(m)
ε (t, ξ) be the quasi-symmetriser of the matrix A0(t, ξ). By Remark 2.5 it

will be a m2 × m2 block diagonal matrix with m identical blocks given by the quasi-
symmetriser Q(m)

ε (t, ξ) of the defining block of A0(t, ξ) (see Sect. 2 for definition
and properties). Hence, we define the energy

Eε(V )(t, ξ) = (Q(m)
ε (t, ξ)V (t, ξ)|V (t, ξ)

)

where (·|·) denotes the scalar product in R
m2
. To improve the readability, we drop

the dependencies on t and ξ in the following unless we find it important to stress. By
direct computations we have

∂t Eε = (∂tQ(m)
ε V |V ) + i(Q(m)

ε DtV |V ) − i(Q(m)
ε V |DtV )

= (∂tQ(m)
ε V |V ) + i(Q(m)

ε (AV + BV)|V ) − i(Q(m)
ε V |AV + BV )

= (∂tQ(m)
ε V |V ) + i〈ξ 〉((Q(m)

ε A0 − A∗
0Q(m)

ε )V |V )

+ i((Q(m)
ε B − B∗Q(m)

ε )V |V ).

It follows that

∂t Eε ≤ |(∂tQ(m)
ε V |V )|Eε

(Q(m)
ε V |V )

+ |〈ξ 〉((Q(m)
ε A0 − A∗

0Q(m)
ε )V |V )|

+ |((Q(m)
ε B − B∗Q(m)

ε )V |V )|. (29)

By Proposition 2.1 it follows thatQ(m)
ε (t, ξ) is a family of C∞, non-negative Her-

mitian matrices such that
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Q(m)
ε (t, ξ) = Q(m)

0 (t, ξ) + ε2Q(m)
1 (t, ξ) + · · · + ε2(m−1)Q(m)

m−1(t, ξ).

In addition, by the same proposition, there exists a constant Cm > 0 such that for all
t ∈ [0, T ], ξ ∈ R

n and ε ∈ (0, 1] the following estimates hold uniformly in V ∈ R
m2
:

C−1
m ε2(m−1)|V |2 ≤ (Q(m)

ε V |V ) ≤ Cm |V |2, (30)

|((Q(m)
ε A0 − A∗

0Q(m)
ε )V |V )| ≤ Cmε(Q(m)

ε V |V ) (31)

Finally, the hypothesis (2) on the eigenvalues and Proposition 2.3 ensure that the
family

{Q(m)
ε (t, ξ) : ε ∈ (0, 1], t ∈ [0, T ], ξ ∈ R

n}

is nearly diagonal.
Note that since the entries of the matrix A(t, ξ) in (1) are C∞ with respect to t , the

matricesA(t, ξ) andB(t, ξ) as well as the quasi-symmetriser have the same regularity
properties.

We now proceed by estimating the three summands in the right-hand side of (29).
Due to the block diagonal structure of the matrices involved we can make use of the
proof strategy adopted for the scalar case in [12, Subsections 4.1, 4.2, 4.3].

4.2 First term

Let k ≥ 1. We write |(∂tQ(m)
ε V |V )|

(Q(m)
ε V |V )

as

|(∂tQ(m)
ε V, V )|

(Q(m)
ε V |V )1−1/k(Q(m)

ε V, V )1/k
.

From (30) we have

|(∂tQ(m)
ε V |V )|

(Q(m)
ε V |V )

≤ |(∂tQ(m)
ε V |V )|

(Q(m)
ε V |V )1−1/k(C−1

m ε2(m−1)|V |2)1/k

≤ C1/k
m ε−2(m−1)/k |(∂tQ(m)

ε V |V )|
(Q(m)

ε V |V )1−1/k |V |2/k
.

A block-wise application of Lemma 2.4 yields the estimate

∫ T

0

|(∂tQ(m)
ε V |V )|

(Q(m)
ε V |V )

dt ≤ C1/k
m ε−2(m−1)/kCT sup

ξ∈Rn
‖Qε(·, ξ)‖1/k

Ck ([0,T ])

≤ C1ε
−2(m−1)/k,
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for all ε ∈ (0, 1]. Setting |(∂tQ(m)
ε V |V )|

(Q(m)
ε V |V )

=: Kε(t, ξ), we can conclude that

|(∂tQ(m)
ε V |V )|Eε

(Q(m)
ε V |V )

= Kε(t, ξ)Eε,

with

∫ T

0
Kε(t, ξ) dt ≤ C1ε

−2(m−1)/k .

4.3 Second term

From the property (31) we immediately have that

|〈ξ 〉((Q(m)
ε A0 − A∗

0Q(m)
ε )V |V )| ≤ Cmε〈ξ 〉(Q(m)

ε V |V ) ≤ C2ε〈ξ 〉Eε.

4.4 Third term

In this subsection, we treat the third term on the right-hand side of (29). By Proposition
2.1(iv) and the definition of the matrix B(t, ξ) we have that

((Q(m)
ε B − B∗Q(m)

ε )V |V ) = ((Q(m)
0 B − B∗Q(m)

0 )V |V )

+ ε2
m∑
i=1

((Q(m−1)
ε (πiλ)�B − B∗Q(m−1)

ε (πiλ)�)V |V ),

with Q(m−1)
ε (πiλ)� block diagonal matrix with m blocks Q(m−1)

ε (πiλ)� as defined in
Proposition 2.1(iv). Note that

(Q(m−1)
ε (πiλ)�B − B∗Q(m−1)

ε (πiλ)�) = 0,

for all i = 1, . . . ,m, due to the structure of zeros in B and in Q(m−1)
ε (πiλ)�. Thus,

((Q(m)
ε B − B∗Q(m)

ε )V |V ) = ((Q(m)
0 B − B∗Q(m)

0 )V |V ).

Since from Proposition 2.1(i) the quasi-symmetriser is made of non-negative matrices
we have that

(Q(m)
0 V, V ) ≤ Eε.

It is purpose of the next section to find suitable Levi conditions on B(t, ξ) such that

|((Q(m)
0 B − B∗Q(m)

0 )V |V )| ≤ C3(Q(m)
0 V |V ) ≤ C3Eε (32)
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holds for some constant C3 > 0 independent of t ∈ [0, T ], ξ ∈ R
n and V ∈ C

m2
. We

will then formulate these Levi-type conditions in terms of the matrix A in (1).

5 Estimates for the lower order terms

We remind the reader of the fact that the b(l)
i j (t, ξ), if referenced as elements ofB(t, ξ),

are the by 〈ξ 〉l−m scaled (i, j)-elements ofBl(t, ξ) in (14). See alsoSect. 3.4 for details.
To start, we rewrite ((Q(m)

0 B −B∗Q(m)
0 )V |V ) in terms of the matrixW(m). Recall

that from Sect. 2,W(m) is them2 ×m2 block diagonal matrix withm identical blocks

W (m) =
⎛
⎜⎝
W (m)

1 (λ)
...

W (m)
m (λ)

⎞
⎟⎠ ,

with

W (m)
i (λ) = (σ

(m−1)
m−1 (πiλ), ldots, σ (m−1)

1 (πiλ), 1), 1 ≤ i ≤ m.

From Proposition 2.1(v) we have

((Q(m)
0 B − B∗Q(m)

0 )V |V ) = (m − 1)!((W(m)BV |W(m)V ) − (W(m)V |W(m)BV ))

= 2i(m − 1)! Im(W(m)BV |W(m)V ).

It follows that

|((Q(m)
0 B − B∗Q(m)

0 )V |V )| ≤ 2(m − 1)!|W(m)BV ||W(m)V |.

Since

(Q(m)
0 V |V ) = (m − 1)!|W(m)V |2,

we have that if

|W(m)BV | ≤ C |W(m)V | (33)

holds true for some constant C > 0, independent of t , ξ and V , then estimate (32)
will hold true as well.

In the sequel, for the sake of simplicity we will make use of the following notation:
given f and g two real valued functions in the variable y, f (y) ≺ g(y) if there exists
a constant C > 0 such that f (y) ≤ Cg(y) for all y. More precisely, we will set
y = (t, ξ) or y = (t, ξ, V ). Thus, (33) can be rewritten as
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|W(m)BV | ≺ |W(m)V |.

In analogy to the scalar case in [12] we will now focus on (33). Before proceeding
with our general result, for advantage of the reader we will illustrate the main ideas
leading to the Levi-type conditions on B in the case m = 2 and m = 3.

5.1 The case m = 2

For simplicity we take n = 1. From Sects. 3.5 and 2.1 we have that

B(t, ξ) =

⎛
⎜⎜⎝
0 0 0 0
Dta11(t) 0 Dta21(t) 0
0 0 0 0
Dta12(t) 0 Dta22(t) 0

⎞
⎟⎟⎠ ξ 〈ξ 〉−1

and

W(2)(t, ξ) =

⎛
⎜⎜⎝

−λ2 1 0 0
−λ1 1 0 0
0 0 −λ2 1
0 0 −λ1 1

⎞
⎟⎟⎠ ,

respectively. We have

W(2)BV =

⎛
⎜⎜⎝

−λ2 1 0 0
−λ1 1 0 0
0 0 −λ1 1
0 0 −λ2 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
0 0 0 0
Dta11(t) 0 Dta21(t) 0
0 0 0 0
Dta12(t) 0 Dta22(t) 0

⎞
⎟⎟⎠ ξ 〈ξ 〉−1

⎛
⎜⎜⎝
V1
V2
V3
V4

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

Dta11(t) 0 Dta21(t) 0
Dta11(t) 0 Dta21(t) 0
Dta12(t) 0 Dta22(t) 0
Dta12(t) 0 Dta22(t) 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
V1
V2
V3
V4

⎞
⎟⎟⎠ ξ 〈ξ 〉−1

=

⎛
⎜⎜⎝

Dta11(t)V1 + Dta21(t)V3
Dta11(t)V1 + Dta21(t)V3
Dta12(t)V1 + Dta22(t)V3
Dta12(t)V1 + Dta22(t)V3

⎞
⎟⎟⎠ ξ 〈ξ 〉−1

and

W(2)V =

⎛
⎜⎜⎝

−λ2 1 0 0
−λ1 1 0 0
0 0 −λ2 1
0 0 −λ1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
V1
V2
V3
V4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−λ2V1 + V2
−λ1V1 + V2
−λ2V3 + V4
−λ1V3 + V4

⎞
⎟⎟⎠ .
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Thus, we obtain that |W(2)BV |2 ≺ |W(2)V |2 is equivalent to

|Dta11(t)V1 + Dta21(t)V3|2ξ 〈ξ 〉−1 + |Dta12(t)V1 + Dta22(t)V3|2ξ 〈ξ 〉−1

≺ | − λ2V1 + V2|2 + | − λ1V1 + V2|2 + | − λ2V3 + V4|2 + | − λ1V3 + V4|2.
(34)

We now estimate the left-hand side of (34) from above and the right-hand side from
below. We get

|Dta11(t)V1 + Dta21(t)V3|2 + |Dta12(t)V1 + Dta22(t)V3|2
≺ (|Dta11(t)|2 + |Dta12(t)|2)|V1|2 + (|Dta21(t)|2 + |Dta22(t)|2)|V3|2

and, by using the inequality |z1|2 + |z2|2 ≥ 1
2 |z1 − z2|2, z1, z2 ∈ C, and the condition

(2) on the eigenvalues,

| − λ2V1 + V2|2 + | − λ1V1 + V2|2 + | − λ2V3 + V4|2 + | − λ1V3 + V4|2
� (λ2 − λ1)

2|V1|2 + (λ2 − λ1)
2|V3|2

� (λ21 + λ22)|V1|2 + (λ21 + λ22)|V2|2.

Combining the last two inequalities, we finally obtain that |W(2)BV |2 ≺ |WV |2
provided that

(|Dta11(t)|2 + |Dta21(t)|2)ξ 〈ξ 〉−1 ≺ λ21(t, ξ) + λ22(t, ξ),

(|Dta12(t)|2 + |Dta22(t)|2)ξ 〈ξ 〉−1 ≺ λ21(t, ξ) + λ22(t, ξ). (35)

This is a Levi-type condition on the matrix of the lower order terms B written in
terms of the entries of the original matrix A in (1). Note that by adopting the notations
introduced in Sect. 3.6 for the matrix B in the case m = 2 as well, i.e.,

B =

⎛
⎜⎜⎝
0 0 0 0
b(1)
11 (t) 0 b(1)

12 (t) 0
0 0 0 0
b(1)
21 (t) 0 b(1)

22 (t) 0

⎞
⎟⎟⎠

the Levi-type conditions above can be written as

|b(1)
11 |2 + |b(1)

21 |2 ≺ λ21 + λ22

|b(1)
12 |2 + |b(1)

22 |2 ≺ λ21 + λ22,

where λ21 + λ22 is the entry q11 of the symmetriser of the matrix A0 = A〈ξ 〉−1.
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5.2 The case m = 3

We begin by recalling that from Sect. 3.6 the 9×9 matrix B(t, ξ) is given by the 3×9
matrices Bk(t, ξ), k = 1, 2, 3, as follows:

B =
⎛
⎝B1
B2
B3

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
b(1)
11 (t) b(2)

11 (t) 0 b(1)
12 (t) b(2)

12 (t) 0 b(1)
13 (t) b(2)

13 (t) 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
b(1)
21 (t) b(2)

21 (t) 0 b(1)
22 (t) b(2)

22 (t) 0 b(1)
23 (t) b(2)

23 (t) 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
b(1)
31 (t) b(2)

31 (t) 0 b(1)
32 (t) b(2)

32 (t) 0 b(1)
33 (t) b(2)

33 (t) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence,

W(3)B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1)
11 b(2)

11 0 b(1)
12 b(2)

12 0 b(1)
13 b(2)

13 0

b(1)
11 b(2)

11 0 b(1)
12 b(2)

12 0 b(1)
13 b(2)

13 0

b(1)
11 b(2)

11 0 b(1)
12 b(2)

12 0 b(1)
13 b(2)

13 0

b(1)
21 b(2)

21 0 b(1)
22 b(2)

22 0 b(1)
23 b(2)

23 0

b(1)
21 b(2)

21 0 b(1)
22 b(2)

22 0 b(1)
23 b(2)

23 0

b(1)
21 b(2)

21 0 b(1)
22 b(2)

22 0 b(1)
23 b(2)

23 0

b(1)
31 b(2)

31 0 b(1)
32 b(2)

32 0 b(1)
33 b(2)

33 0

b(1)
31 b(2)

31 0 b(1)
32 b(2)

32 0 b(1)
33 b(2)

33 0

b(1)
31 b(2)

31 0 b(1)
32 b(2)

32 0 b(1)
33 b(2)

33 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (36)

and

W(3)V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ2λ3V1 − (λ2 + λ3)V2 + V3
λ3λ1V1 − (λ3 + λ1)V2 + V3
λ1λ2V1 − (λ1 + λ2)V2 + V3
λ2λ3V4 − (λ2 + λ3)V5 + V6
λ3λ1V4 − (λ3 + λ1)V5 + V6
λ1λ2V4 − (λ1 + λ2)V5 + V6
λ2λ3V7 − (λ2 + λ3)V8 + V9
λ3λ1V7 − (λ3 + λ1)V8 + V9
λ1λ2V7 − (λ1 + λ2)V8 + V9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

Note thatW(3)B is a 9×9 matrix with three blocks of three identical rows andW(3)V
is a 9× 1 matrix with three blocks of rows having the same structure in λ1, λ2 and λ3.
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From (36), we deduce that

|WBV |2 ≺
(
|b(1)

11 |2 + |b(1)
21 |2 + |b(1)

31 |2
)

|V1|2
(
|b(2)

11 |2 + |b(2)
21 |2 + |b(2)

31 |2
)

|V2|2

+
(
|b(1)

12 |2 + |b(1)
22 |2 + |b(1)

32 |2
)

|V4|2 +
(
|b(2)

12 |2 + |b(2)
22 |2 + |b(21)

32 |2
)

|V5|2

+
(
|b(1)

13 |2 + |b(1)
23 |2+|b(1)

33 |2
)

|V7|2+
(
|b(2)

13 |2+|b(2)
23 |2+|b(21)

33 |2
)

|V8|2.

Taking inspiration from the Levi conditions in [12] and in analogy with the casem = 2
we set

|b(1)
11 |2 + |b(1)

21 |2 + |b(1)
31 |2 ≺ λ21λ

2
2 + λ21λ

2
3 + λ22λ

2
3

|b(1)
12 |2 + |b(1)

22 |2 + |b(1)
32 |2 ≺ λ21λ

2
2 + λ21λ

2
3 + λ22λ

2
3

|b(1)
13 |2 + |b(1)

23 |2 + |b(1)
33 |2 ≺ λ21λ

2
2 + λ21λ

2
3 + λ22λ

2
3 (38)

|b(2)
11 |2 + |b(2)

21 |2 + |b(2)
31 |2 ≺ (λ1 + λ2)

2 + (λ1 + λ3)
2 + (λ2 + λ3)

2

|b(2)
12 |2 + |b(2)

22 |2 + |b(2)
32 |2 ≺ (λ1 + λ2)

2 + (λ1 + λ3)
2 + (λ2 + λ3)

2

|b(2)
13 |2 + |b(2)

23 |2 + |b(2)
33 |2 ≺ (λ1 + λ2)

2 + (λ1 + λ3)
2 + (λ2 + λ3)

2.

Note that λ21λ
2
2 + λ21λ

2
3 + λ22λ

2
3 and (λ1 + λ2)

2 + (λ1 + λ3)
2 + (λ2 + λ3)

2 are the
entries q11 and q22 of the symmetriser of A0 = 〈ξ 〉−1A, respectively. By imposing
these conditions on the lower order terms we have that

|W(3)BV |2 ≺
(
λ21λ

2
2 + λ21λ

2
3 + λ22λ

2
3

)
(|V1|2 + |V4|2 + |V7|2)

+
(
(λ1 + λ2)

2 + (λ1 + λ3)
2 + (λ2 + λ3)

2
)

(|V2|2 + |V5|2 + |V8|2).
(39)

Making a comparison with [12], we observe that V1, V4, and V7 play the role of V1 in
[12] and V2, V5 and V8 play the role of V2 in [12]. Finally, from (37), we obtain that

|W(3)V |2 = |λ2λ3V1 − (λ2 + λ3)V2 + V3|2 + |λ3λ1V1 − (λ3 + λ1)V2 + V3|2
+ |λ1λ2V1 − (λ1 + λ2)V2 + V3|2 + |λ2λ3V4 − (λ2 + λ3)V5 + V6|2
+ |λ3λ1V4 − (λ3 + λ1)V5 + V6|2 + |λ1λ2V4 − (λ1 + λ2)V5 + V6|2
+ |λ2λ3V7 − (λ2 + λ3)V8 + V9|2 + |λ3λ1V7 − (λ3 + λ1)V8 + V9|2
+ |λ1λ2V7 − (λ1 + λ2)V8 + V9|2.

It is our aim to prove that |W(3)BV |2 ≺ |W(3)V |2. We do this by estimating
|W(3)BV |2 and |W(3)V |2 in different zones. More precisely, inspired by [12] we
decompose R9 as

�
δ1
1 ∪ (�

δ1
1 )c,
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where

�
δ1
1 :=

{
V ∈ R

9 :
∑

1≤i< j≤3

(λi + λ j )
2(|V2|2 + |V5|2 + |V8|2)

≤ δ1
∑

1≤i< j≤3

λ2i λ
2
j (|V1|2 + |V4|2 + |V7|2)

}

for some δ1 > 0.
Estimate on �

δ1
1 . By definition of the zone, we obtain from (39)

|W(3)BV |2 ≺
(
λ21λ

2
2 + λ22λ

2
3 + λ21λ

2
3

)
(|V1|2 + |V4|2 + |V7|2).

Thanks to the hypothesis (2) on the eigenvalues, we have the following estimates1

|W(3)V |2 � |(λ2λ3 − λ3λ1)V1 − (λ2 − λ1)V2|2
+|(λ2λ3 − λ1λ2)V1 − (λ3 − λ1)V2|2
+|(λ3λ1 − λ1λ2)V1 − (λ3 − λ2)V2|2

� (λ21 + λ22)|λ3V1 − V2|2 + (λ23 + λ21)|λ2V1 − V2|2
+(λ22 + λ23)|λ1V1 − V2|2

� λ21|(λ3 − λ2)V1|2 + λ23|(λ2 − λ1)V1|2
�

(
λ21λ

2
2 + λ22λ

2
3 + λ21λ

2
3

)
|V1|2.

Note that in the previous bound from below we have taken in considerations only the
terms with V1, V2 and V3. Repeating the same arguments for the groups of terms with
V4, V5, V6 and V7, V8, V9, respectively, we get that

|W(3)V |2 �
(
λ21λ

2
2 + λ22λ

2
3 + λ21λ

2
3

)
|V4|2

and

|W(3)V |2 �
(
λ21λ

2
2 + λ22λ

2
3 + λ21λ

2
3

)
|V7|2.

Hence,

|W(3)V |2 �
⎛
⎝ ∑

1≤i< j≤3

λ2i λ
2
j

⎞
⎠ (|V1|2 + |V4|2 + |V7|2).

Thus, combining the last estimate with (39), we obtain |W(3)BV | ≺ |W(3)V | for all
V ∈ �

δ1
1 . No assumptions have been made on δ1 > 0.

1 Using |z1|2 + |z2|2 + |z3|2 ≥ 1
2 (|z1 − z2|2 + |z1 − z3|2 + |z2 − z3|2), z1, z2, z3 ∈ C.
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Estimate on (�
δ1
1 )c. By definition of the zone (�

δ1
1 )c, we obtain from (39) that

|W(3)BV |2 ≺ (
1 + 1

δ1

) ⎛
⎝ ∑

1≤i< j≤3

(λi + λ j )
2

⎞
⎠ (|V2|2 + |V5|2 + |V8|2). (40)

Further, by taking into considerations only the terms with V1, V2 and V3 in |W(3)V |2
we have

|W(3)V |2 = |λ2λ3V1 − (λ2 + λ3)V2 + V3|2 + |λ3λ1V1 − (λ3 + λ1)V2 + V3|2
+|λ1λ2V1 − (λ1 + λ2)V2 + V3|2

� γ1
(|(λ2 + λ3)V2 − V3|2 + |(λ3 + λ1)V2 − V3|2

+|(λ1 + λ2)V2 − V3|2
) − γ2

(
λ21λ

2
2 + λ21λ

2
3 + λ22λ

2
3

)|V1|2 (41)

for some constant γ1, γ2 > 0 suitably chosen.2 The hypothesis (2) implies

(λ2 − λ1)
2 + (λ3 − λ2)

2 + (λ3 − λ1)
2 ≥ 2

C
(λ21 + λ22 + λ23)

≥ 1

2C

(
(λ1 + λ2)

2 + (λ1 + λ3)
2 + (λ2 + λ3)

2).
Applying the last inequality to (41), we obtain

|W(3)V |2 � γ1
(|(λ2 + λ3)V2 − V3|2 + |(λ3 + λ1)V2 − V3|2

+|(λ1 + λ2)V2 − V3|2
) − γ2

(
λ21λ

2
2 + λ21λ

2
3 + λ22λ

2
3

)|V1|2
� γ1((λ2 − λ1)

2 + (λ3 − λ2)
2 + (λ3 − λ1)

2)|V2|2
−γ2

(
λ21λ

2
2 + λ21λ

2
3 + λ22λ

2
3

)|V1|2
� γ ′

1((λ1 + λ2)
2 + (λ1 + λ3)

2 + (λ2 + λ3)
2)|V2|2

−γ2
(
λ21λ

2
2 + λ21λ

2
3 + λ22λ

2
3

)|V1|2.
Now, repeating the same argument for the terms involving V4, V5, V6 and V7, V8, V9,
respectively, we get

|W(3)V |2 � γ ′
1((λ1 + λ2)

2 + (λ1 + λ3)
2 + (λ2 + λ3)

2)|V5|2
− γ2

(
λ21λ

2
2 + λ21λ

2
3 + λ22λ

2
3

)|V4|2
and

|W(3)V |2 � γ ′
1((λ1 + λ2)

2 + (λ1 + λ3)
2 + (λ2 + λ3)

2)|V8|2
− γ2

(
λ21λ

2
2 + λ21λ

2
3 + λ22λ

2
3

)|V7|2.
2 Using |z1 − z2|2 ≥ γ1|z1|2 − γ2|z2|2 with γ1 = 1

2 , γ2 = 1.
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It follows that for all V ∈ (�
δ1
1 )c the bound from below

|W(3)V |2 � (
γ ′
1 − γ2

δ1

) ⎛
⎝ ∑

1≤i< j≤3

(λi + λ j )
2

⎞
⎠ (|V2|2 + |V5|2 + |V8|2)

holds, provided that δ1 is chosen large enough. Combining this with (40), we get
|W(3)BV | ≺ |WV | on (�

δ1
1 )c and, thus, on R

9.

5.3 The general case

Recall from Sect. 3.4 that the m2 × m2 matrix B(t, ξ) is made up of m matrices of
dimension m × m2 that contain only in the last line non-zero elements, see (21). To
not further complicate the notation, we will in what follows denote W(m) simply by
W and will also assume that the b(l)

i j (t, ξ) in B(t, ξ) are properly scaled by 〈ξ 〉l−m .
For that see Sect. 3.4, specifically formula (23). Thus, we have

B(t, ξ) =
⎛
⎜⎝
B1(t, ξ)
...

Bm(t, ξ)

⎞
⎟⎠ , Bi (t, ξ) =

(
0 0 · · · 0
B(1)
i (t, ξ) B(2)

i (t, ξ) · · · B(m)
i (t, ξ)

)
.

The Bi (t, ξ) are then given by

Bi (t, ξ) =
(
b(1)
i j (t, ξ), b(2)

i j (t, ξ), · · · , b(m−1)
i j (t, ξ), 0

)

for 1 ≤ i ≤ m. Thus, we obtain

WB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(1)
11 · · · b(m−1)

11 0 · · · b(1)
1m · · · b(m−1)

1m 0
...

...
...

...
...

b(1)
11 · · · b(m−1)

11 0 · · · b(1)
1m · · · b(m−1)

1m 0

b(1)
21 · · · b(m−1)

21 0 · · · b(1)
2m · · · b(m−1)

2m 0
...

...
...

...
...

...

b(1)
21 · · · b(m−1)

21 0 · · · b(1)
2m · · · b(m−1)

2m 0
...

...
...

...
...

...

b(1)
m1 · · · b(m−1)

m1 0 · · · b(1)
mm · · · b(m−1)

mm 0
...

...
...

...
...

...

b(1)
m1 · · · b(m−1)

m1 0 · · · b(1)
mm · · · b(m−1)

mm 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (42)

We are now ready to prove the following theorem.

123



470 C. Garetto, C. Jäh

Theorem 5.1 Let the entries of the matrix B(t, ξ) fulfill the conditions

m∑
k=1

|b(l)
k j (t, ξ)|2 ≺

m∑
i=1

|σ (m−1)
m−l (πiλ)|2 (43)

for any l = 1, . . . ,m − 1 and j = 1, . . . ,m. Then we have

|WBV | ≺ |WV |

for all V ∈ C
m2
. More precisely, we define

�
δh
h :=

{
V ∈ C

m2 :
m−1∑
j=h+1

m∑
i=1

|σ (m−1)
m− j (πiλ)|2

m−1∑
l=0

|Vj+lm |2

≤ δh

m∑
i=1

|σ (m−1)
m−h (πiλ)|2

m−1∑
l=0

|Vh+lm |2
}

(44)

for h = 1, . . . ,m − 2. There exist suitable δh, h = 1, . . . ,m − 2 such that

|WBV |2 ≺
m∑
i=1

|σ (m−1)
m−1 (πiλ)|2

m−1∑
l=0

|V1+lm |2

|WV |2 �
m∑
i=1

|σ (m−1)
m−1 (πiλ)|2

m−1∑
l=0

|V1+lm |2

on �
δ1
1 and

|WBV |2 ≺
m∑
i=1

|σ (m−1)
m−h (πiλ)|2

m−1∑
l=0

|Vh+lm |2

|WV |2 �
m∑
i=1

|σ (m−1)
m−h (πiλ)|2

m−1∑
l=0

|Vh+lm |2

on
(
�

δ1
1

)c ∩ (
�

δ2
2

)c ∩ · · · ∩ (
�

δh−1
h−1

)c ∩ �
δh
h for 2 ≤ h ≤ m − 2. Finally,

|WBV |2 ≺
m∑
i=1

|σ (m−1)
1 (πiλ)|2

m−1∑
l=0

|Vm−1+lm |2

|WV |2 �
m∑
i=1

|σ (m−1)
1 (πiλ)|2

m−1∑
l=0

|Vm−1+lm |2

on
(
�

δ1
1

)c ∩ (
�

δ2
2

)c ∩ · · · ∩ (
�

δm−2
m−2

)c
.
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Note that if m = 2 no zone argument is needed to prove the theorem above (see
Sect. 5.1) and when m = 3 just one zone is needed (see Sect. 5.2). The proof of
Theorem 5.1 has the same structure as the proof of Theorem 5 in [12] and requires
some auxiliary lemmas.

Lemma 5.2 For all i and j with 1 ≤ i, j ≤ m and k = 1, ...,m − 1, one has

σ
(m−1)
m−k (πiλ) − σ

(m−1)
m−k (π jλ)

= (−1)m−k(λ j − λi )
∑

ih �=i, ih �= j
1≤i1<i2<···<im−k−1≤m

λi1λi2 · · · λim−k−1 (45)

Proof The proof can be found in [12, Lemma3]. ��
Lemma 5.3 For all k = 1, . . . ,m, we have

m−1∑
l=0

m∑
i=1

∣∣∣∣∣∣
m∑
j=k

σ
(m−1)
m− j (πiλ)Vj+lm

∣∣∣∣∣∣
2

�
m∑
i=1

|σ (m−1)
m−k (πiλ)|2

m−1∑
l=0

|Vk+lm |2. (46)

Proof The proof of this lemma follows by induction by applying Lemma 5.2 and can
also be obtained by repeated application of Lemma 4 in [12] to the respective groups
of Vi . ��
Proof of Theorem 5.1. By the definition of B, we have that |WBV |2 ≺ |WV |2 is
equivalent to

m∑
i=1

∣∣∣∣∣∣
m−1∑
j=1

m∑
l=1

b( j)
il V j+(l−1)m

∣∣∣∣∣∣
2

≺
m−1∑
l=0

m∑
i=1

∣∣∣∣∣∣
m∑
j=1

σ
(m−1)
m− j (πiλ)Vj+lm

∣∣∣∣∣∣
2

. (47)

Making use of the Levi-type conditions (43), we obtain

m∑
i=1

∣∣∣∣∣∣
m−1∑
j=1

m∑
l=1

b( j)
il V j+(l−1)m

∣∣∣∣∣∣
2

≺
m∑
l=1

m−1∑
j=1

(
m∑
i=1

|b( j)
il |2

)
|Vj+(l−1)m |2

≺
m−1∑
j=1

m∑
i=1

|σ (m−1)
m− j (πiλ)|2

m−1∑
l=0

|Vj+lm |2. (48)

On �
δ1
1 , we further obtain the estimate

m∑
i=1

∣∣∣∣∣∣
m−1∑
j=1

m∑
l=1

b( j)
il V j+(l−1)m

∣∣∣∣∣∣
2

≺ (1 + δ1)

m∑
i=1

|σ (m−1)
m−1 (πiλ)|2

m−1∑
l=0

|V1+lm |2.
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Lemma 5.3 gives, setting k = 1 in (46) that

m−1∑
l=0

m∑
i=1

∣∣∣∣∣∣
m∑
j=1

σ
(m−1)
m− j (πiλ)Vj+lm

∣∣∣∣∣∣
2

�
m∑
i=1

|σ (m−1)
m−1 (πiλ)|2

m−1∑
l=0

|V1+lm |2.

This proves inequality (47) in�
δ1
1 . Now,we assume that V ∈ (�

δ1
1 )c∩(�

δ2
2 )c∩· · ·∩

(�
δh−1
h−1 )c ∩�

δh
h for 2 ≤ h ≤ m−2. From the definition of the zones for 1 ≤ k ≤ h−1

and δk ≥ 1, we obtain

m∑
i=1

|σ (m−1)
m−(h−1)(πiλ)|2

m−1∑
l=0

|Vh−1+lm |2

<
1

δh−1

( m−1∑
j=h+1

m∑
i=1

|σ (m−1)
m− j (πiλ)|2

m−1∑
l=0

|Vj+lm |2

+
m∑
i=1

|σ (m−1)
m−h (πiλ)|2

m−1∑
l=0

|Vh+lm |2
)

≤ 1

δh−1
(1 + δh)

m∑
i=1

|σ (m−1)
m−h (πiλ)|2

m−1∑
l=0

|Vh+lm |2,

as well as

m∑
i=1

|σ (m−1)
m−(h−2)(πiλ)|2

m−1∑
l=0

|Vh−2+lm |2

<
1

δh−2

( m−1∑
j=h+1

m∑
i=1

|σ (m−1)
m− j (πiλ)|2

m−1∑
l=0

|Vj+lm |2

+
m∑
i=1

|σ (m−1)
m−h (πiλ)|2

m−1∑
l=0

|Vh+lm |2

+
m∑
i=1

|σ (m−1)
m−(h−1)(πiλ)|2

m−1∑
l=0

|Vh−1+lm |2
)

≤ 1

δh−2

(
1 + δh + 1

δh−1
(1 + δh)

) m∑
i=1

|σ (m−1)
m−h (πiλ)|2

m−1∑
l=0

|Vh+lm |2

≤ (1 + δh)
( 1

δh−1
+ 1

δh−2
)

m∑
i=1

|σ (m−1)
m−h (πiλ)|2

m−1∑
l=0

|Vh+lm |2.
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Continuing these estimates recursively, we obtain that

m∑
i=1

|σ (m−1)
m− j (πiλ)|2

m−1∑
l=0

|Vj+lm |2

≺ (1 + δh)

h−1∑
k=1

1

δk

m∑
i=1

|σ (m−1)
m−h (πiλ)|2

m−1∑
l=0

|Vh+lm |2 (49)

for all j with 1 ≤ j ≤ h−1 is valid on the zone
(
�

δ1
1

)c∩(
�

δ2
2

)c∩· · ·∩(
�

δh−1
h−1

)c∩�
δh
h .

From (48), the estimate (49) and the definition of the zone
(
�

δ1
1

)c ∩ (
�

δ2
2

)c ∩ · · · ∩(
�

δh−1
h−1

)c ∩ �
δh
h we get the following estimate of the left-hand side of (47):

m∑
i=1

∣∣∣∣∣∣
m−1∑
j=1

m∑
l=1

b( j)
il V j+(l−1)m

∣∣∣∣∣∣
2

≺
m−1∑
j=1

m∑
i=1

|σ (m−1)
m− j (πiλ)|2

m−1∑
l=0

|Vj+lm |2

≺
m−1∑
j=h+1

m∑
i=1

|σ (m−1)
m− j (πiλ)|2

m−1∑
l=0

|Vh+lm |2

+
m∑
i=1

|σ (m−1)
m−h (πiλ)|2

m−1∑
l=0

|Vh+lm |2

+
h−1∑
j=1

m∑
i=1

|σ (m−1)
m− j (πiλ)|2

m−1∑
l=0

|Vj+lm |2

≺
m∑
i=1

|σ (m−1)
m−h (πiλ)|2

m−1∑
l=0

|Vh+lm |2.

Now, we have to estimate the right-hand side of (47) on
(
�

δ1
1

)c ∩ (
�

δ2
2

)c ∩ · · · ∩(
�

δh−1
h−1

)c ∩ �
δh
h . We make use of Lemma 5.3 and of the bound (49). We obtain

m−1∑
l=0

m∑
i=1

∣∣∣∣∣∣
m∑
j=1

σ
(m−1)
m− j (πiλ)Vj+lm

∣∣∣∣∣∣
2

� γ1

m−1∑
l=0

m∑
i=1

∣∣∣∣∣∣
m∑
j=h

σ
(m−1)
m− j (πiλ)Vj+lm

∣∣∣∣∣∣
2

− γ2

m−1∑
l=0

m∑
i=1

∣∣∣∣∣∣
h−1∑
j=1

σ
(m−1)
m− j (πiλ)Vj+lm

∣∣∣∣∣∣
2
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� γ1

m−1∑
l=0

m∑
i=1

∣∣∣∣∣∣
m∑
j=h

σ
(m−1)
m− j (πiλ)Vj+lm

∣∣∣∣∣∣
2

− γ2

m∑
i=1

h−1∑
j=1

|σ (m−1)
m− j (πiλ)|2

m−1∑
l=0

|Vj+lm |2

� γ1

m∑
i=1

|σ (m−1)
m−h (πiλ)|2

m−1∑
l=0

|Vh+lm |2

− γ2(1 + δh)

h−1∑
k=1

1

δk

m∑
i=1

|σ (m−1)
m−h (πiλ)|2

m−1∑
l=0

|Vh+lm |2

=
(

γ1 − γ2(1 + δh)

h−1∑
k=1

1

δk

)
m∑
i=1

|σ (m−1)
m−h (πiλ)|2

m−1∑
l=0

|Vh+lm |2,

where the second inequality follows from

m−1∑
l=0

m∑
i=1

∣∣∣∣∣∣
h−1∑
j=1

σ
(m−1)
m− j (πiλ)Vj+lm

∣∣∣∣∣∣
2

≤ (h − 1)
m∑
i=1

h−1∑
j=1

|σ (m−1)
m− j (πiλ)|2

m−1∑
l=0

|Vj+lm |2

which follows from |z1 + · · · + zk | ≤ k
∑k

i=1 |zi |2. This yields estimate (47) on the

zone
(
�

δ1
1

)c ∩ (
�

δ2
2

)c ∩ · · · ∩ (
�

δh−1
h−1

)c ∩ �
δh
h for any δh > 0 provided that δ1, . . . ,

δh−1 are chosen large enough.
The last step is assuming that V ∈ (

�
δ1
1

)c ∩ (
�

δ2
2

)c ∩ · · · ∩ (
�

δm−2
m−2

)c. Thus, from
the definition of the �δh , we have

m−1∑
j=h+1

m−1∑
i=1

|σ (m−1)
m− j (πiλ)|2

m−1∑
l=0

|Vj+lm |2

> δh

m∑
i=1

|σ (m−1)
m−h (πiλ)|2

m−1∑
l=0

|Vh+lm |2 (50)

for 1 ≤ h ≤ m − 2. More precisely from the previous estimate we obtain m − 2
inequalities starting with

m∑
i=1

|σ (m−1)
m−1 (πiλ)|2

m−1∑
l=0

|V1+lm |2

<
1

δ1

m−1∑
j=2

m−1∑
i=1

|σ (m−1)
m− j (πiλ)|2

m−1∑
l=0

|Vj+lm |2, (51)
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(where we put h = 1 in (50)) and ending with

m∑
i=1

|σ (m−1)
2 (πiλ)|2

m−1∑
l=0

|V(m−2)+lm |2

<
1

δm−2

m−1∑
i=1

|σ (m−1)
1 (πiλ)|2

m−1∑
l=0

|V(m−1)+lm |2,

[where h = m − 2 in (50)]. Using now the second of the inequalities, i.e. h = 2 in
(50), on the right hand side of (51), we get

1

δ1

m−1∑
j=3

m−1∑
i=1

|σ (m−1)
m− j (πiλ)|2

m−1∑
l=0

|Vj+lm |2 + 1

δ1

m∑
i=1

|σ (m−1)
m−2 (πiλ)|2

m−1∑
l=0

|V2+lm |2

≤
(
1

δ1
+ 1

δ1

1

δ2

) m−1∑
j=3

m−1∑
i=1

|σ (m−1)
m− j (πiλ)|2

m−1∑
l=0

|Vj+lm |2.

Then using the remaining estimates for h = 3 to h = m − 2 recursively, we finally
arrive at

m∑
i=1

|σ (m−1)
m− j (πiλ)|2

m−1∑
l=0

|Vj+lm |2

≤
m−2∑
h=1

1

δh

m∑
i=1

|σ (m−1)
1 (πiλ)|2

m−1∑
l=0

|Vm−1+lm |2 (52)

for any 1 ≤ j ≤ m − 2, δh ≥ 1. From (52) and the Levi-type conditions we deduce
that

m∑
i=1

∣∣∣∣∣∣
m−1∑
j=1

m∑
l=1

b( j)
il V j+(l−1)m

∣∣∣∣∣∣
2

≺
m∑
i=1

|σ (m−1)
1 (πiλ)|2

m−1∑
l=0

|Vm−1+lm |2

in
(
�

δ1
1

)c ∩ (
�

δ2
2

)c ∩ · · · ∩ (
�

δm−2
m−2

)c.
Using Lemma 5.3, we get

m−1∑
l=0

m∑
i=1

∣∣∣∣∣∣
m∑
j=1

σ
(m−1)
m− j (πiλ)Vj+lm

∣∣∣∣∣∣
2

=
m−1∑
l=0

m∑
i=1

∣∣∣∣∣∣
m−2∑
j=1

σ
(m−1)
m− j (πiλ)Vj+lm +

m∑
j=m−1

σ
(m−1)
m− j (πiλ)Vj+lm

∣∣∣∣∣∣
2
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� γ1

m−1∑
l=0

m∑
i=1

∣∣∣∣∣∣
m∑

j=m−1

σ
(m−1)
m− j (πiλ)Vj+lm

∣∣∣∣∣∣
2

− γ2

m−1∑
l=0

m∑
i=1

∣∣∣∣∣∣
m−2∑
j=1

σ
(m−1)
m− j (πiλ)Vj+lm

∣∣∣∣∣∣
2

� γ1

m∑
i=1

|σ (m−1)
1 (πiλ)|2

m−1∑
l=0

|Vm−1+lm |2

− γ2

m−1∑
l=0

m∑
i=1

∣∣∣∣∣∣
m−2∑
j=1

σ
(m−1)
m− j (πiλ)Vj+lm

∣∣∣∣∣∣
2

.

The second term on the right-hand side of the last inequality can be estimated with
(52) and we obtain

m−1∑
l=0

m∑
i=1

∣∣∣∣∣∣
m∑
j=1

σ
(m−1)
m− j (πiλ)Vj+lm

∣∣∣∣∣∣
2

�
m∑
i=1

|σ (m−1)
1 (πiλ)|2

m−1∑
l=0

|Vm−1+lm |2

provided that the δh , 1 ≤ h ≤ m − 2 are chosen large enough. Thus (47) holds on the
zone

(
�

δ1
1

)c ∩ (
�

δ2
2

)c ∩ · · · ∩ (
�

δm−2
m−2

)c and the proof of Theorem 5.1 is complete.

6 Well-posedness results

In this section we prove our main result: the well-posedness of the Cauchy problem
(1). We formulate the following theorem by adopting the language and the notations
of the previous sections concerning the lower order terms. A different formulation will
be given in Theorem 6.2. Note that Theorems 6.1 and 6.2 correspond to Theorems 1.1
and 1.2, respectively.

Theorem 6.1 Let A(t, Dx ), t ∈ [0, T ], x ∈ R
n, be an m ×m matrix of first order dif-

ferential operators with C∞-coefficients. Let A(t, ξ) have real eigenvalues satisfying
condition (2). Let

{
Dtu − A(t, Dx )u = 0, (t, x) ∈ [0, T ] × R

n

u|t=0 = u0, x ∈ R
n

be the Cauchy problem (1). Assume that the Cauchy problem (19),

{
DtU = A(t, Dx )U + B(t, Dx )U,

U |t=0 = U0 = (U0,1, . . . ,U0,m)T ,

obtained from (1) by block Sylvester reduction as in Sect. 3 has the lower order terms
matrixB(t, Dx ) fulfilling the Levi-type conditions (43). Hence, for all s ≥ 1 and for all
u0 ∈ γ s(Rn)m there exists a unique solution u ∈ C1([0, T ], γ s(Rn))m of the Cauchy
problem (1).
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Proof We assume s > 1 since the case s = 1 is known thanks to see [18,20]. By the
finite propagation speed for hyperbolic equations it is not restrictive to take compactly
supported initial data and, therefore, to have the solution u compactly supported in
x . Note that if u0 ∈ γ s

c (Rn)m then by deriving the system in (1) with respect to t we

immediately have that D j
t u(0, x) ∈ γ s

c (Rn)m for j = 1, . . . ,m − 1. It follows that if
u solves (1) then U defined in (18) solves the Cauchy problem (19) with initial data
U0 ∈ γ s

c (Rn)m
2
. We now prove that U ∈ C1([0, T ], γ s(Rn))m

2
. This will allow us

to conclude that u ∈ C1([0, T ], γ s(Rn))m . We recall that the Cauchy problem (19) is
given by the system

DtU = A(t, Dx )U + B(t, Dx )U,

where A(t, ξ) is a block Sylvester matrix with m identical blocks having the same
eigenvalues of A(t, ξ). We make use of the energy Eε defined via the quasi-
symmetriser in Sect. 4. Combining the energy estimate (29) with the estimates of
the first, second and third term in Sects. 4.2, 4.3 and 4.4, respectively, we get

∂t Eε(t, ξ) ≤ (Kε(t, ξ) + C2ε〈ξ 〉 + C3)Eε(t, ξ), (53)

where Kε(t, ξ) is defined in Sect. 4.2, the bound from above

∫ T

0
Kε(t, ξ) dt ≤ C1ε

−2(m−1)/k,

holds for all k ≥ 1 andC1,C2,C3 are positive constants. Note that in the estimate (53)
we have used both the condition (2) on the eigenvalues and the Levi-type conditions
(43). Thanks to the reduction to block Sylvester form that we have applied to obtain
the Cauchy problem (19), we deal here with the same kind of energy employed in [12]
for the scalar weakly hyperbolic equations of order m. The proof therefore continues
as the proof of Theorem 6 in [12] with the only difference that k can be taken arbitrary.
This is due to the fact that the coefficients of thematrix A(t, ξ) areC∞ with respect to t .
It follows, by working on the Fourier transform level, thatU ∈ C1([0, T ], γ s(Rn))m

2

and therefore u ∈ C1([0, T ], γ s(Rn))m . ��
We now formulate Theorem 6.1 with an additional condition on the matrix A(t, ξ)

which implies the Levi-type conditions (43).

Theorem 6.2 Let A(t, Dx ), t ∈ [0, T ], x ∈ R
n, be an m × m matrix of first order

differential operators with C∞-coefficients. Let A have real eigenvalues satisfying
condition (2) and let Q = (qi j ) be the symmetriser of A0 = 〈ξ 〉−1A. Assume that

max
k=1,...,m−1

‖Dk
t A0(t, ξ)‖2 ≺ q j, j (t, ξ) (54)

for all (t, ξ) ∈ [0, T ] × R
n and j = 1, . . . ,m − 1. Hence, for all s ≥ 1 and for all

u0 ∈ γ s(Rn)m there exists a unique solution u ∈ C1([0, T ], γ s(Rn))m of the Cauchy
problem (1).
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Proof From Proposition 3.2 and Corollary 3.3 we have that

m∑
k=1

|b(l)
k j (t, ξ)|2 ≺ max

k=1,...,m−1
‖Dk

t A0(t, ξ)‖2

for all (t, ξ) ∈ [0, T ] × R
n and l = 1, . . . ,m − 1 and j = 1, . . . ,m. It follows that

(54) implies the Levi-type conditions (43) and therefore Theorem 6.2 follows from
Theorem 6.1. ��

It is clear that the hypothesis (54) on the matrix A0 = A〈ξ 〉−1 is in general stronger
than the Levi-type conditions (43). However, in some cases (43) and (54) coincide as
illustrated by the following examples.

Example 6.3 In the special case D2
t u − a(t)D2

xu = 0 with a(t) ≥ 0 and appropriate
Cauchy data, the Levy-type condition is automatically satisfied for a ∈ C2[0, T ].
Indeed, with a11 = 0, a12 = 1, a21 = a(t), and a22 = 0, condition (35) becomes
|Dta(t)| ≤ Ca(t) which is satisfied by Glaeser’s inequality [15].

Example 6.4 When m = 2, the Levi-type conditions (43) imply (54) (and therefore
coincide with it). Indeed, as observed in Sect. 5.1, the Levi-type conditions are for-
mulated as

(|Dta11(t)|2 + |Dta21(t)|2)〈ξ 〉−2 ≺ λ21(t, ξ) + λ22(t, ξ),

(|Dta12(t)|2 + |Dta22(t)|2)〈ξ 〉−2 ≺ λ21(t, ξ) + λ22(t, ξ).

This implies

‖Dt A0‖2 ≺ q1,1

which is condition (54).

Example 6.5 Let us now take a 3 × 3 matrix A with trace zero. For simplicity let us
assume that n = 1 and that the eigenvalues of the corresponding A0 are λ1(t, ξ) =
−√

a(t)ξ 〈ξ 〉−1, λ2(t, ξ) = 0 and λ3(t, ξ) = √
a(t)ξ 〈ξ 〉−1 with a(t) ≥ 0 for t ∈

[0, T ]. It follows that the hypothesis (2) on the eigenvalues is satisfied. By direct
computations we get

q1,1 = λ21λ
2
2 + λ21λ

2
3 + λ22λ

2
3 = a(t)ξ2〈ξ 〉−2,

q2,2 = (λ1 + λ2)
2 + (λ1 + λ3)

2 + (λ2 + λ3)
2 = 2a(t)ξ2〈ξ 〉−2.

It follows that both q1,1 and q2,2 are comparable to a and therefore combining (38)
with (27) we conclude that

|b(1)
k j |2 = |D2

t ak j + 2Dtak j |2 ≺ a(t),

|b(2)
k j |2 = |ak1Dta1 j + ak2Dta2 j + ak3Dta3 j |2 ≺ a(t),
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for k = 1, 2, 3 and j = 1, 2. We can easily see on the matrix

A(t, ξ) =
⎛
⎝0 a(t) 0
1 0 0
0 1 0

⎞
⎠ ξ

that the conditions above on the entries of A entail

|Dk
t a(t)|2 ≺ a(t)

for all t ∈ [0, T ] and k = 1, 2, i.e. condition (54) .

We now assume that the coefficients of the matrix A(t, ξ) are analytic with respect
to t . We will prove that in this case the Cauchy problem (1) with the same Levi-type
conditions employed above is C∞ well-posed.

The proof of the C∞ well-posedness follows very closely the arguments in [12].
Thus, we will only give a sketch with the differences and refer the reader to the cited
work for more details. We begin by recalling a lemma on analytic functions whose
proof can be found in [12] (see Lemma 5 in [12]).

Lemma 6.6 Let f (t, ξ) be an analytic function in t ∈ [0, T ], continuous and homo-
geneous of order 0 in ξ ∈ R

n. Then,

(i) for all ξ there exists a finite partition (τh(ξ)) of the interval [0, T ] such that

0 = τ0 < τ1 < · · · < τh(ξ) < · · · < τN (ξ) = T

with supξ �=0 N (ξ) < +∞, such that f (t, ξ) �= 0 in each open interval
(τh(ξ), τ(h+1)(ξ));

(ii) there exists a positive constant C such that

|∂t f (t, ξ)| ≤ C

(
1

t − τh(ξ)

+ 1

τ(h+1)(ξ) − t

)
| f (t, ξ)|

for all t ∈ (τh(ξ), τ(h+1)(ξ)), ξ ∈ R
n \ {0} and 0 ≤ h(ξ) ≤ N (ξ) − 1.

Theorem 6.7 If all entries of A(t, Dx ) in (1) are analytic on [0, T ], the eigenvalues
satisfy (2) and the entries of the matrix B(t, ξ) in (19) satisfy the Levi conditions
(43) for ξ away from 0, then the Cauchy problem (1) is C∞ well-posed, i.e., for
all u0 ∈ C∞(Rn)m there exists a unique solution u ∈ C1([0, T ],C∞(Rn))m of the
Cauchy problem (1).

Proof Thanks to the finite propagation speed property it is not restrictive to assume
that the initial data have compact support. By Remark 2.5, the entries of the quasi-
symmetriser Q(m)

ε (t, ξ) are analytic in t ∈ [0, T ] and, using Proposition 2.1, can be
written as

qε,i j (t, ξ) = q0,i j (t, ξ) + ε2q1,i j (t, ξ) + · · · + ε2(m−1)qm−1,i j (t, ξ). (55)
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We note that qε,(i+hm)( j+hm) = qε,i j , h = 0, . . . ,m − 1 due to the block-diagonal

structure ofQ(m)
ε (t, ξ). Since all functions on the right hand side of (55) are analytic,

we can use Lemma 6.6 on each of them. Note that the partition (τh(ξ)) in Lemma 6.6
can be chosen independent from ε.

Now, following [12,22], we use a Kovalevskayan-type energy near the points τh(ξ)

and a hyperbolic-type energy on the rest of the interval [0, T ] (see also [19]). We start
with the interval [0, τ1] (τ1 = τ1(ξ)), setting

Eε(t, ξ) =
{ |V (t, ξ)|2 for t ∈ [0, ε] ∪ [τ1 − ε, τ1],

〈Q(m)
ε (t, ξ)V (t, ξ)|V (t, ξ)〉 for t ∈ [ε, τ1 − ε].

The estimate on [0, ε] ∪ [τ1 − ε, τ1] is standard and the details are left to the reader.
We obtain, as in [12],

Eε(t, ξ) ≤
{
e2Cε〈ξ〉Eε(0, ξ) for t ∈ [0, ε]
e2Cε〈ξ〉Eε(τ1 − ε, ξ) for t ∈ [τ1 − ε]. (56)

On [ε, τ1 − ε], we get

∂t E(t, ξ) ≤
(

|(∂tQ(m)
ε V, V )|

(Q(m)
ε V |V )

+ C2ε〈ξ 〉 + C3

)
Eε(t, ξ),

where we used (31) [see (iii) in Proposition 2.1] and the Levi-type conditions (43) for
|ξ | ≥ R to ensure that we have

|((Q(m)
0 B − B∗Q(m)

0 )V |V )| ≤ C |W(m)V |2 = (Q(m)
0 V |V ),

see also (32) in Sect. 4.4. Thanks to Proposition 2.3, the family {Q(m)
ε } is nearly

diagonal, when the eigenvalues λl , l = 1, . . . ,m of A satisfy (2). Thus, we have
Qε ≥ c0 diag(Q(m)

ε ), i.e,

(Q(m)
ε V |V ) ≥ c0

m∑
h=1

qε,hh

m−1∑
l=0

|Vh+lm |2 = c0

m2∑
h=1

qε,hh |Vh |2.

Using Proposition 2.1 and the Cauchy–Schwarz inequality, we obtain

|qε,i j ||Vi ||Vj | ≤
m2∑
h=1

qε,hh |Vh |2.

Together with Lemma 6.6, using the last two inequalities, we conclude that

τ1−ε∫
ε

|(∂tQ(m)
ε V, V )|

(Q(m)
ε V |V )

dt ≤ 1

c0

τ1−ε∫
ε

m2∑
i, j=1

|∂t qi j (t, ξ)|
|qi j (t, ξ)| dt ≤ C log

(
T

ε

)
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for a certain positive constantC not depending on t and ξ . Thanks to the block diagonal
form of the quasi-symmetriser, the proof now continues as the proof of Theorem 7 in
[12]. This leads to the inequality

|V (t, ξ)| ≤ c〈ξ 〉N (ξ)(m−1)eN (ξ)CT 〈ξ 〉N (ξ)CT ,

obtained by setting ε = 〈ξ 〉−1. Lemma 6.6 guarantees that the function N (ξ) is
bounded in ξ . Therefore, we can conclude that there exists a κ ∈ N, depending only
on n, m, and T as well as a positive constant C > 0 such that

|V (t, ξ)| ≤ C〈ξ 〉κ |V (0, ξ)|

for all t ∈ [0, T ] and |ξ | ≥ R. Clearly this estimate implies the C∞ well-posedness
of the Cauchy problem (1). ��
Remark 6.8 Since the entries of the matrix A are at least C∞ with respect to t in both
Theorems 6.1 and 6.7, from the system itself in (1) we obtain that the dependence in
t of the solution u is actually not only C1 but C∞.

Remark 6.9 In this paper we have studied homogeneous systems. Our method,
described in the previous sections, can be generalised to non-homogeneous systems
with some technical work on the lower order terms. Key point is to investigate the
relation of the matrix of the lower order terms in the original system with the matrix
B obtained after reduction to block Sylvester form.
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Appendix: Some linear algebra auxiliary results

This appendix contains some general linear algebra results which have been employed
throughout the paper. We start with the following definition.

Definition 7.1 (Adjunct/classical adjoint) Let A ∈ R
m×m . Then, the adjunct (or

classical adjoint) of A, denoted adj(A), is defined as the matrix consisting of the
elements

adj(A)i j = (−1)i+ j det(A ĵî ),

where det(A ĵ î ) is the determinant of the (m − 1) × (m − 1) sub-matrix of A obtained
by deletion of row j and column i . The adjunct matrix of A is the transpose of the
so-called cofactor matrix cof(A) of A.
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Further information about the adjunct may be found in [16]. By a straightforward
application of the Laplace expansion formula for determinants [16], one can prove the
following proposition.

Proposition 7.2 Let A ∈ R
m×m, then, with the above definition, we have

(i) adj(A)A = Aadj(A) = det(A)Im,
(ii) adj(−A) = (−1)m−1adj(A),
(iii) adj(AT ) = adj(A)T = cof(A).

Remark 7.3 We note that the adjunct/cofactor of a matrix is not uniquely determined
if the matrix is singular. Since we use only the relation (i), we mean by adj(A) a
matrix associated to A that satisfies (i), specified by (59). For further details we refer
to [1,24].

We recall that the elementary symmetric polynomials σ
(m)
h (λ), λ = (λ1, . . . , λm),

are defined by the formula

σ
(m)
h (λ) = (−1)h

∑
1≤i1<i2<···<ih≤m

λi1 · · · · · λih

for 1 ≤ h ≤ m and σ
(m)
0 (λ) = 1. Using the definition of σ

(m)
h (λ), we get

m∏
h=1

(τ − λh) =
m∑

h=0

σ
(m)
h (λ)τm−h = det(Imτ − A) =

m∑
h=0

chτ
m−h, (57)

where λ1, …, λm are the eigenvalues of A and ch = σ
(m)
h (λ) for 0 ≤ h ≤ m. It is clear

that

σ
(m)
1 (λ) = c1 = − tr(A), σ (m)

m (λ) = cm = (−1)m det(A).

The next lemma plays a key role in Sect. 3.

Lemma 7.4 Let A ∈ R
m×m, then the following formulas hold true

det(A − A) = Am + c1A
m−1 + · · · + cm−1A + cm Im = 0, (58)

adj(A) = (−1)m−1(Am−1 + c1A
m−2 + c2A

m−3 + · · · + cm−1 Im), (59)

adj(Imτ − A) =
m∑

h=1

[
h−1∑
h′=0

ch′ Ah−h′−1

]
τm−h . (60)

Note that formula (58) is just the well known Cayley-Hamilton theorem (see for
instance [16]). The other two formulas follow from a variant of its proof.

Proof We consider the product adj(Imτ − A)(Imτ − A). By Proposition 7.2, we have

adj(Imτ − A)(Imτ − A) = det(Imτ − A)Im (61)
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Since the entries of adj(Imτ − A) are, bey Definition 7.1, all polynomials of order
≤ m − 1 in τ , we can collect the coefficients in matrices and write

adj(Imτ − A) =
m∑

h=1

Bm−hτ
m−h .

Plugging this into the left-hand-side of (61), we get

m∑
h=1

Bm−hτ
m−h+1 −

m∑
h=1

Bm−h Aτm−h =
m∑

h=0

ch Imτm−h,

where we use (57). Thus,

τmBm−1 +
m−1∑
h=1

τm−h(Bm−h−1 − Bm−h A) − B0A =
m∑

h=0

ch Imτm−h . (62)

A comparison of the coefficients leads to:

Coeff. left-hand side (62) Coeff. right-hand side (62)

τm Bm−1 c0 Im
τm−h Bm−h−1 − Bm−h A ch Im , 1 ≤ h ≤ m − 1
τ0 −B0A cm Im

If one multiplies the coefficients of τm−h with Am−h for 0 ≤ h ≤ m and sums
them up for h from 0 to m, the sum over the middle column telescopes and adds up
to zero which proves (58). If we multiply the coefficients of τm−h by Am−1−h for
0 ≤ h ≤ m − 1, we get, summing up over h from 0 to m − 1 that the middle column
telescopes and leaves B0. With the sum over the right column, we obtain

B0 =
m−1∑
h=0

ch A
m−1−h .

By the comparison of coefficients, we obtained −B0A = −AB0 = cm Im =
(−1)m det(A)Im , where the second equal sign can be proven by reversing the order of
multiplication in (61). Thus, we have

adj(A) = (−1)m−1B0 = (−1)m−1
m−1∑
h=0

ch A
m−1−h .

Hence, (59) is proven. Now we can obtain the Bi , i = 1, . . . ,m by multiplying the
coefficients of τm−h by Am−(i+1)−h for 0 ≤ h ≤ m−(i+1) and summing the equated
middle and right column from 0 to m − (i + 1), we obtain
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Bi =
m−(i+1)∑

h=0

ch A
m−(i+1)−h,

and, thus,

adj(Imτ − A) =
m∑

h=1

[
h−1∑
h′=0

ch′ Ah−h′−1

]
τm−h

Hence we get (60) and the lemma is proven. ��
Example 7.5 We consider m = 2. From (60), we have

adj(I2τ − A(t, ξ)) =
2∑

h=1

[
h−1∑
h′=0

ch′ Ah−h′−1

]
τ 2−h

= c0τ + (c0A + c1 I2)τ
0 = I2τ − adj(A),

where we used the representation adj(A) = −(A − tr(A)I2) from formula (59) and
c1 = σ

(2)
1 (λ) = − tr(A), c0 = σ

(2)
0 (λ) = 1. This also coincideswith our computations

in Sect. 3.5.

Example 7.6 We consider m = 3. Now we get

adj(I3τ − A(t, ξ)) =
3∑

h=1

[
h−1∑
h′=0

ch′ Ah−h′−1

]
τ 3−h

= c0 I3τ
2 + (c0A + c1 I3)τ + (c0A

2 + c1A + c2 I3)τ
0

= I3τ2 + (A − tr(A)I3)τ + adj(A),

where we used adj(A) = A2 + c1A + c2 I3 from (59) and the coefficients of the
characteristic polynomial of A

c0 = 1, c1 = − tr(A), c2 = a11a22 + a11a33 + a22a33 − a12a21 − a13a31 − a23a32.

This result coincides with our computations in Sect. 3.6.
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