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Abstract A circle, centered at the origin and with radius chosen so that it has non-
empty intersection with the integer lattice Z

2, gives rise to a probability measure on
the unit circle in a natural way. Such measures, and their weak limits, are said to be
attainable from lattice points on circles. We investigate the set of attainable measures
and show that it contains all extreme points, in the sense of convex geometry, of the set
of all probability measures that are invariant under some natural symmetries. Further,
the set of attainable measures is closed under convolution, yet there exist symmetric
probability measures that are not attainable. To show this, we study the geometry of
projections onto a finite number of Fourier coefficients andfind that the set of attainable
measures has many singularities with a “fractal” structure. This complicated structure
in some sense arises from prime powers—singularities do not occur for circles of
radius

√
n if n is square free.

1 Introduction

Let S be the set of nonzero integers expressible as a sum of two integer squares. For
n ∈ S, let
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1058 P. Kurlberg, I. Wigman

�n := {�λ = a + bi ∈ Z[i] : a2 + b2 = n}

denote the intersection of the lattice Z[i] ⊂ C with a circle centered at the origin and
of radius

√
n. For n ∈ S, let r2(n) := |�n| denote the cardinality of �n ; for n /∈ S it is

convenient to define r2(n) = 0. We define a probability measure μn on the unit circle

S1 := {z ∈ C : |z| = 1}

by letting

μn := 1

r2(n)

∑

�λ∈�n

δ�λ/
√
n,

where δz denotes the Dirac delta function with support at z. The measures μn are
clearly invariant under multiplication by i and under complex conjugation. We say
that a measure on S1 is symmetric if it is invariant under these symmetries.

Definition 1.1 A probability measure ν is said to be attainable from lattice points
on circles, or simply just attainable, if ν is a weak limit point of the set {μn}n∈S .

We note that any attainable measure is automatically symmetric. Now, if two integers
m, n ∈ S are co-prime,

μmn = μm�μn, (1)

where � denotes convolution of measures on S1. Thus measures μn for n a prime
power are of particular interest. It turns out that the closure of the set of measures
given by μpe for p ranging over all primes p ≡ 1 mod 4 and exponents e ranging
over integers e ≥ 1 contains μ2k , as well as μq2k for any prime q ≡ 3 mod 4, and
any exponent k ≥ 0. (Note that ql ∈ S forces l to be even.)

Motivated by the above, we say that a measure μ is prime power attainable of μ is
a weak limit point of the set {μpe }p≡1 mod 4, e≥1. Similarly, we say that a measure μ

is prime attainable if μ is a weak limit point of the set {μp}p≡1 mod 4.

Proposition 1.2 The set of attainable measures is closed under convolution. Further,
it is the closure (in the weak topology) of the collection of all convolutions of finitely
many prime power attainable measures, i.e., it is topologically generated by the prime
power attainable measures.

Hence the set of attainable measures is the smallest closed (in the weak topology)
set containing all the prime power attainable measures and closed w.r.t. convolution
of probability measures. The set of all symmetric probability measures is clearly a
convex set, hence equals the convex hull of its extreme points. Quite interestingly, the
set of prime attainable measures is exactly the set of extreme points. Now, since the set
of attainable measures contains the extreme points, and is closed under convolution
one might wonder if all symmetric probability measures are attainable? By studying
Fourier coefficients of attainable measures we shall show that not all symmetric
measures are attainable.
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On probability measures arising from lattice points on circles 1059

Given a measure μ on S1 and k ∈ Z, define the k-th Fourier coefficient of μ by

μ̂(k) :=
∫

S1
z−kdμ(z).

If μ is symmetric it is straightforward to see that μ̂(k) = 0 unless 4|k. Since μ is a
probability measure, μ̂(0) = 1, hence the first two informative Fourier coefficients
are μ̂(4) and μ̂(8); note that μ̂(−k) = μ̂(k) for all k since μ is both real and even (i.e.
it is invariant under complex conjugation).

Theorem 1.3 If μ is attainable and |μ̂(4)| > 1/3 then

2μ̂(4)2 − 1 ≤ μ̂(8) ≤ M(μ̂(4)), (2)

where
M(x) = max

(
x4, (2|x | − 1)2

)
(3)

denotes the “max curve”. Conversely, given x, y such that |x | ≤ 1 and

2x2 − 1 ≤ y ≤ M(x),

there exists an attainable measure μ such that (μ̂(4), μ̂(8)) = (x, y).

For comparison, we note that the Fourier coefficients of the full set of symmetric
probability measures has the following quite simple description (see Sect. 3.2 below):

{(μ̂(4), μ̂(8)) : μ is symmetric} = {(x, y) : |x | ≤ 1, 2x2 − 1 ≤ y ≤ 1}.

AsFig. 1 illustrates, the discrepancybetween all symmetricmeasures and the attainable
ones is fairly large. In particular, note that the curves y = x4, y = 2x2 − 1, and
(2|x | − 1)2 all have the same tangent at the two points (±1, 1), consequently the set
of attainable measures has cusps near (±1, 1). However, there are attainable measures
corresponding to points above the red curve for |x | ≤ 1/3.

Fig. 1 Left: {(μ̂(4), μ̂(8)) : μ is symmetric}. Right: the region defined by the inequalities 2x2 − 1 ≤ y ≤
max(x4, (2|x | − 1)2)
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1060 P. Kurlberg, I. Wigman

Fig. 2 Left: (μ̂n(4), μ̂n(8)) for n ∈ S, n ≤ 1000. Right: (μ̂n(4), μ̂n(8)) for n ∈ S, n ≤ 10000

Fig. 3 Left: (μ̂n(4), μ̂n(8)) for n ∈ S, n ≤ 100000. Right: (μ̂n(4), μ̂n(8)) for n ∈ S, n ≤ 1000000

To give an indication of the rate at which the admissible region is “filled out”, as
well as illuminate what happens in the region |μ̂(4)| ≤ 1/3, we next present the results
of some numerical experiments in Figs. 2 and 3.

Note that points lying clearly above the red curve, but below the green one, are
quite rare. However, “spikes” in the region |μ̂(n)| ≤ 1/3 are clearly present.

1.1 Square free attainable measures

As we shall see, the spikes in the region |μ̂(4)| ≤ 1/3 are limits of measuresμn where
n is divisible by pe for e ≥ 2, but for measures arising from square free n ∈ S, the
structure is much simpler.

We say that a measure μ is square free attainable if μ is a limit point of the
set {μn : n ∈ S and n is square free}. The set of square free attainable measures is
also closed under convolution, and it is easy to see that it is generated by the set
{μp}p≡1 mod 4, whose closure is the set of prime attainable measures.

Theorem 1.4 If μ is square free attainable then

2μ̂(4)2 − 1 ≤ μ̂(8) ≤ M(μ̂(4)). (4)
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On probability measures arising from lattice points on circles 1061

Fig. 4 Prime power attainable measures attainable by pM , p ≡ 1(4) primes, M ≤ 19. Left picture: even
M . Right picture: odd M

Conversely, if 2x2 − 1 ≤ y ≤ M(x) there exists a square free attainable measure μ

such that (μ̂(4), μ̂(8)) = (x, y).

The proof of Theorem 1.4 is very similar to the proof of Proposition 1.2, cf.
Remark 4.2.

1.2 Prime power attainable measures

As mentioned before, the spikes in the region |μ̂(4)| ≤ 1/3 are due to measures μn

for which n is divisible by a prime power pe, for e large. Recall that a measure μ is
prime power attainable if μ is a weak limit point of the set {μpe }p≡1 mod 4,e≥1. If μ

is a prime power attainable measure, then the point (μ̂(4), μ̂(8)) can indeed lie above
the curve max(x4, (2|x | − 1)2) in the region |μ̂(4)| ≤ 1/3, though this phenomenon
only occurs for even exponents (see Fig. 4).

In fact, we will show that for every k ∈ Z
+ there exists prime power attainable μ

such that

(μ̂(4), μ̂(8)) =
(

1

2k + 1
, 1

)
.

1.3 Fractal structure for |µ̂(4)| ≤ 1
3

Let
A2 := {(μ̂(4), μ̂(8)) : μ is attainable} (5)

denote the projection of the set of attainable measures onto the first two non-trivial
Fourier coefficients. The intersection ofA2 with the vertical strip {(x, y) : |x | ≤ 1/3}
turns out to have a rather complicated fractal structure with infinitely many spikes—
see Fig. 5. SinceA2 is closed under multiplication and (−1, 1) ∈ A2 it implies that it
is invariant w.r.t.

(x, y) 
→ (−x, y), (6)
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1062 P. Kurlberg, I. Wigman

Fig. 5 Points (μ̂(4), μ̂(8)) for some attainable measures μ giving rise to spikes in the region |μ̂(4)| ≤ 1/3

and hence we may assume x ≥ 0.
To be able to give a complete description of A2 we need a definition.

Definition 1.5 Let x0 ∈ [0, 1] and a < x0.

(1) We say that a pair of continuous functions

f1, f2 : (a, x0] → [0, 1],

defines a cornered domain between a and x0 if for all x ∈ (a, x0] one has
f1(x) ≤ f2(x), and f1(x) = f2(x) if and only if x = x0, whence f1(x0) =
f2(x0) = 1.

(2) For a pair of functions f1, f2 as above the corresponding cornered domain
between a and x0 is

Da,x0( f1, f2) = {(x, y) ∈ R
2 : x ∈ (a, x0], f1(x) ≤ y ≤ f2(x)}.

The functions f1 and f2 will be referred to as the “lower and upper” bounds for
Da,x0( f1, f2) respectively.

Theorem 1.6 The intersection of the set A2 with the line y = 1 equals

{( ±1

2k + 1
, 1

)
: k ≥ 1

}
∪ {(0, 1)} ∪ {(±1, 1)}.

Further, for k ≥ 1, let xk = 1
2k+1 be the x-coordinate of a point of the intersection

described above. Then, for every k ≥ 1 there exists a pair of continuous piecewise
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On probability measures arising from lattice points on circles 1063

analytic functions f1;k, f2;k defining a cornered domain between 0 and xk, so thatA2
admits the following global description:

A2 ∩
{
0 < x ≤ 1

3

}
=
( ∞⋃

k=1

D0,xk ( f1;k, f2;k)
)

⋃{
(x, y) : 0 < x ≤ 1

3
, 2x2 − 1 ≤ y ≤ (2x − 1)2

}
. (7)

Theorem 1.6 is a rigorous explanation of the thin strips or “spikes” connecting
all the reciprocals of odd numbers on y = 1, and the curve y = (2|x | − 1)2, as in
Fig. 5. We remark that the functions f1;k and f2;k can with some effort be computed
explicitly. The lower bound f1;k is given as the (component-wise) product of (xk, 1) by
the parabola y = 2x2 −1 mapping (1, 1) 
→ (xk, 1); we re-parameterize the resulting
curve (x · xk, 2x2 − 1) so that it corresponds to the function

f1;k(x) = 2

x2k
x2 − 1, (8)

whose slope at xk is f ′
1;k(xk) = 4(2k + 1).

The upper bound f2;k(x) is of a somewhat more complicated nature, see Definition
6.3; it is analytic around the corner with the slope f ′

2;k(xk) = 4
3 (2k+1) (see the proof

of Theorem 1.6 in Sect. 6), and it is plausible that it is (everywhere) analytic. It then
follows that the set A2 has a discontinuity, or a jump, at x = xk (this is a by-product
of the fact that the slopes of both f1;k and f2;k at xk are positive.)

1.4 Discussion

Our interest in attainable measures originates in the study [5] of zero sets (“nodal
lines”) of random Laplace eigenfunctions on the standard torus T := R

2/Z
2. More

precisely, for each n ∈ S there is an associated Laplace eigenvalue given by 4π2n,
with eigenspace dimension equal to r2(n). On each such eigenspace there is a natural
notion of a “random eigenfunction”, and the variance (appropriately normalized) of
the nodal line lengths of these random eigenfunctions equals (1+ μ̂n(4)2)/512+o(1)
as r2(n) → ∞. It was thus of particular interest to show that the accumulation points
of μ̂n(4)2, as n ∈ S tends to infinity in such a way that also the eigenspace dimension
r2(n) → ∞, is maximal—namely the full interval [0, 1]. This is indeed the case (cf.
[5, Section 1.4]), but a very natural question is: which measures are attainable?

In order to obtain asymptotics for the above variance it is essential to assume that the
eigenspace dimension grows, and onemight wonder if “fewer”measures are attainable
under this additional assumption. However, as the following shows, this is not the case
(the proof can be found in Sect. 4.4.)

Proposition 1.7 Ameasureμ ∈ P is attainable (i.e.μ ∈ A), if and only if there exists
a sequence {n j } such that μn j ⇒ μ with the additional property that r2(n j ) → ∞.
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1064 P. Kurlberg, I. Wigman

1.5 Outline

For the convenience of the reader we briefly outline the contents of the paper. In
Sect. 2 we give some explicit examples of attainable and non-attainable measures,
and describe our motivation for studying the set of attainable measures. In Sect. 3
we give a brief background on Fourier coefficients of probability measures, and in
Sect. 4 we recall some needed facts from number theory along with proving the
more basic results above. Section 5 contains the proof of Theorem 1.3 (a complete
classification of attainable measures in the region |μ̂(4)| > 1/3), and Sect. 6 contains
the proof of Theorem 1.6 (the complete classification of attainable measures in the
region |μ̂(4)| ≤ 1/3), postponing some required results of technical nature to the
appendix. Finally, in Sect. 7, we classify the set of square-free attainable measures.

2 Examples of attainable and unattainable measures

2.1 Some conventions

Let

δ̃0 := 1

4

3∑

k=0

δi k

be the atomic probability measure supported at the 4 symmetric points ±1, ±i
(“Cilleruelo measure”). Given an angle θ ∈ [0, π/4], let

δ̃θ := δ̃0�(δeiθ + δe−iθ )/2 = 1

8

3∑

k=0

(
δei(πk/2+θ) + δei(πk/2−θ)

); (9)

recall that � denotes convolution on S1. For θ = 0, π/4 the measure δ̃θ is supported
at 4 points whereas for all other values of θ the support consists of 8 points. Given an
integer m ≥ 1 and θ ∈ [0, π/4], let

δ̃θ,m := δ̃0�

⎛

⎝ 1

m + 1

m∑

j=0

δeiθ(m−2 j)

⎞

⎠ .

We note that δ̃θ = δ̃θ,1, and that a measure μ, a priori invariant under complex
conjugation, is symmetric if and only if μ is invariant under convolution with δ̃0; in
this case convolving with δ̃0 is a convenient way to ensure that a measure is symmetric.

2.2 Some examples of attainable and unattainable measures

Given θ ∈ [0, π/4] let τθ denote the symmetric probability measure with uniform
distribution on the four arcs given by

123



On probability measures arising from lattice points on circles 1065

{
z : |z| = 1, arg(z) ∈ ∪4

k=0[kπ/2 − θ, kπ/2 + θ ]
}

.

Using some well known number theory given below (cf. Sect. 4) it is straightforward
to show that τθ is attainable for all θ ∈ [0, π/4]. In particular, dμHaar = dτπ/4, the
Haar measure on S1 normalized to be a probability measure, is attainable. In fact, it
is well known (see e.g. [2]) that there exists a density one subsequence {n j } ⊆ S, for
which the corresponding lattice points �n j become equidistributed on the circle; this
gives another construction of dμHaar as an attainable measure.

It is also possible to construct other singular measures. In Sect. 4 we will outline a
construction of attainable measures, uniformly supported on Cantor sets. Moreover, if
q is a prime congruent to 3modulo 4 it is well known that the solutions to a2+b2 = q2

are given by (a, b) = (0,±q), or (±q, 0), thus δ̃0 is attainable. A subtler fact, due
to Cilleruelo, is that there exists sequences {n j } j≥1 for which �n j has very singular
angular distribution even though the number of points r2(n j ) tends to infinity. Namely,
it is possible to force all angles to be arbitrarily close to integer multiples of π/2,
hence 1

4

∑3
k=0 δi k is an accumulation point of dμn j as n j → ∞ in such a way that

r2(n j ) → ∞.
We may also construct some explicit unattainable probability measures on S1

satisfying all the symmetries; in fact the following corollary of Theorem 1.6 constructs
explicit unattainable measures, remarkably supported on 8 points only—the minimum
possible for symmetric unattainable measures.

Corollary 2.1 (Corollary from Theorem 1.6) The probability measure

ηa := aδ̃0 + (1 − a)δ̃π/4

is attainable, if and only if a = 0, 1
2 , 1 or a is of the form

a = 1

2
± 1

2(2k + 1)

for some k ≥ 1.

3 Fourier analysis of probability measures

3.1 Some notation and de-symmetrization of probability measures

It is convenient to work with two models: either with the unit circle embedded in C,
or

T
1 := R/2πZ.

Rather than working with {μn} and its weak partial limits, for notational convenience
we work with their de-symmetrized variants, i.e.
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1066 P. Kurlberg, I. Wigman

dνn(θ) = dμn

(
θ

4

)
, (10)

θ ∈ T
1. Themeasures νn are invariant under complex conjugation (recall thatS1 ⊆ C);

equivalently, for θ ∈ T
1,

dνn(−θ) = dνn(θ).

Notation 3.1 LetP be the set of all probabilitymeasuresμ onS1 satisfying for θ ∈ T
1

dμ(−θ) = dμ(θ). (11)

Further, let A ⊆ P be the set of all weak partial limits of {νn} i.e. all probability
measures μ ∈ P such that there exists a sequence {n j } with

νn j ⇒ μ.

The set A defined above is the de-symmetrization of the collection of attainable
measures via (10); by abuse of notation we will refer to the elements of A as attain-
able measures. One may restate Proposition 1.2 as stating that A is closed w.r.t.
convolutions; thus A is an abelian monoid with identity δ0 ∈ A. The effect of the
de-symmetrization (10) is that for all m ∈ Z

ν̂n(m) = μ̂n(4m);

since by the π/2-rotation invariance of μn , μ̂(k) = 0 unless k is divisible by 4, this
transformation preserves all the information.

3.2 Measure classification on the Fourier side

We would like to study the image of A under Fourier transform, or, rather, its projec-
tions into finite dimensional spaces. SinceA ⊆ P we first study the Fourier image of
the latter; a proper inclusion of the image ofA inside the image of P would automat-
ically imply the existence of unattainable measures μ ∈ P\A.

For θ ∈ (0, π) let υθ be the probability measure

υθ = 1

2
(δθ + δ−θ ), (12)

and for the limiting values θ = 0, π we denote υ0 = δ0 and υπ = δπ . As for
θ ∈ [0, π ], δθ are the de-symmetrizations of δ̃θ/4 in (9), attainable by Proposition 1.2
(see also Lemma 4.1 below), and it then follows that υθ ∈ A. Clearly (see e.g. [6,
Chapter 1]) the set P is the convex hull of

{υθ : θ ∈ [0, π ]}.

123



On probability measures arising from lattice points on circles 1067

Let Pk ⊆ R
k be the image of P under the projection Fk : P → R

k given by

Fk(μ) := (μ̂(1), . . . , μ̂(k)),

i.e. Pk = Fk(P) are the first k Fourier coefficients of the measure μ as μ varies in P .
Recalling the invariance (11) for μ ∈ P we may write

Fkμ = (μ̂(1), . . . , μ̂(k)) =
2π∫

0

γk(θ)dμ(θ),

where γk is the curve

γk(θ) = (cos(θ), cos(2θ), . . . , cos(kθ))

for θ ∈ [0, 2π ]. Thus Pk = Fk(P) could be regarded as a convex combination of
points lying on γk (corresponding to υθ ); it would be then reasonable to expect Pk to
be equal to the convex hull of γk .

This intuition was made rigorous in a more general scenario by F. Riesz [7] in a
classical theorem on the generalized moments problem (cf. [6], Chapter 1, Theorem
3.5 on p. 16). The sets Pk are the convex hulls of the curves γk in R

k indeed. Interest-
ingly, since cos(mθ) is a polynomial in cos(θ), the curve γk is algebraic. As a concrete
example, for k = 2 the image P2 of P under

F2 : μ 
→ (μ̂(1), μ̂(2))

is the convex hull of the parabola y = 2x2 − 1, x ∈ [−1, 1], i.e. the set
P2 = {(x, y) : x ∈ [−1, 1], 2x2 − 1 ≤ y ≤ 1}, (13)

as shown in Fig. 1, to the left.
Analogously to the above, define

Ak = Fk(A) ⊆ Pk,

(cf. (5), and bear in mind the de-symmetrization (10)). Since, by the definition, A is
closed in P (i.e. the weak limit set of A satisfies A′ ⊆ A), if follows that for every
k ≥ 2,Ak is closed in Pk in the usual sense. The shell y = 2x2 − 1 of the convex hull
P2 is (uniquely) attained by the family {υθ : θ ∈ [0, π ]} of measures as in (12) with
the Fourier coefficients

(υ̂θ (1), υ̂θ (2)) = (cos(θ), cos(2θ)). (14)

Finally, it is worth mentioning that the set A is not convex, as A2 contains the
parabola

{(x, 2x2 − 1) : x ∈ [−1, 1]} ⊆ A2,
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1068 P. Kurlberg, I. Wigman

whose points correspond to the measures (12), though not its convex hull. (In other
words, hadA been convex, that would force all symmetric measures to be attainable.)

4 Proofs of the basic results

4.1 Number theoretic background

We start by giving a brief summary on the structure of�n (equivalently,μn or their de-
symmetrized by (10) versions νn) given the prime decomposition of n. These results
follow from the (unique) prime factorization of Gaussian integers, see e.g. [1]. First,
for every “split” prime

p ≡ 1 mod 4,

there exists an angle θp ∈ [0, π ], such that the measure νp arising from p is given by

νp = υθp = (δθp + δ−θp )/2.

More generally, if a split prime p occurs to a power pe, we find that the resulting
measure is given by

νpe = υθp,e,

where

υθ;M = 1

M + 1

M∑

k=0

δ(M−2k)θ , (15)

and hence, in particular,

r2(p
e) = 4(e + 1)

(recall the de-symmetrization (10)). Both the {νn} and 1
4r2(n) are multiplicative in the

sense that for n1, n2 co-prime numbers (n1, n2) = 1,

νn1·n2 = νn1�νn2 , (16)

and

r2(n1)r2(n2) = 4r2(n1n2).

In particular, r2(n) = 0 unless n is of the form

n = 2a pe11 · . . . · pekk q2r11 · . . . · q2rll ,
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On probability measures arising from lattice points on circles 1069

for pi ≡ 1 mod 4, q j ≡ 3 mod 4 primes (in particular, all the exponents of primes
≡ 3 mod 4 are even); in this case

νn = �k
i=1νp

ei
i
,

and

r2(n) = 4
k∏

i=1

(ei + 1).

By Hecke’s celebrated result [3,4] the angles θp are equidistributed in [0, π/4]:
for every 0 ≤ α < β ≤ π ,

#{p ≤ X, p ≡ 1(4) : θp ∈ [α, β]} ∼ (β − α)

π/4
· X

2 log X

In particular, the following lemma is an immediate consequence.

Lemma 4.1 For every θ ∈ [0, π ] and ε > 0 there exist a split prime p with

|θp − θ | < ε.

4.2 Proof of Proposition 1.2

Proof We will prove the equivalent de-symmetrized version of the statement, i.e. that
if γ1, γ2 ∈ A then

γ1�γ2 ∈ A.

Let {mk}, {nk} ⊆ S be two sequences so that νmk ⇒ γ1, νnk ⇒ γ2. We would like
to invoke the multiplicativity (16) of {νn}; we cannot apply it directly, as nk and mk

may fail to be co-prime. To this end rather than using νmk we are going to substitute
1

it with νm′
k
chosen to approximate νmk , so that m′

k is co-prime to nk , via Lemma 4.1.
In the remaining part of the proof we shall argue that

νm′
k ·nk = νm′

k
�νnk ⇒ γ1�γ2, (17)

provided we care to choose m′
k so that νm′

k
approximates νmk sufficiently well.

To this end it is more convenient to work with the space of Fourier coefficients; the
weak convergence of probability measures corresponds to point-wise convergence of

1 One may think about this procedure as a number theoretical analogue of choosing an independent iden-
tically distributed copy of a given random variable.
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1070 P. Kurlberg, I. Wigman

the Fourier coefficients. By Lemma 4.1 we may replace mk with m′
k co-prime to nk

that satisfies for every j ≤ k

∣∣∣ν̂mk ( j) − ν̂m′
k
( j)
∣∣∣ <

1

k
.

It then readily follows that νm′
k

⇒ γ1, and hence we establish (17), which in turn
implies that γ1 � γ2 ∈ A, finally yielding the closedness of A w.r.t. convolutions.

As for the second assertion, if μ ∈ A, then μ is a weak limit of a sequence νn j for

some {n j } ⊆ S. Factoring n j = p
e j;1
j;1 · . . . · pe j;rj;r we have

νn j = ν
p
e j;1
j;1

� . . . �ν
p
e j;r
j;r

and thus μ indeed lies in the closure of finite convolutions of prime power attainable
measures of the form νpe . ��
Remark 4.2 The proof of Theorem 1.4 is similar—replacing prime power attainable
measures with prime attainablemeasures in the above argument yields the correspond-
ing result for square-free attainable measures.

4.3 Cantor sets are attainable

By Proposition 1.2, A is closed under convolution, it contains [5] uniform measures
supported on symmetric intervals [−θ, θ ], as well as symmetric sums (δθ + δ−θ )/2
for all θ > 0. Thus, by using an “additive” construction of Cantor sets, we easily see
that uniform measures supported on Cantor sets are attainable.

Namely, given θ > 0, let Cn,θ be the n-th level Cantor set obtained by starting with
the interval [−θ, θ ] and deleting the middle third part of the interval: C0,θ consists
of one closed interval [−θ, θ ], and Cn+1,θ ⊂ Cn,θ is the union of the 2n+1 intervals
obtained by removing the middle third in each of the 2n intervals that Cn,θ consists
of. Now,

Cn+1,θ = (Cn,θ/3 − 2θ/3) � (Cn,θ/3 + 2θ/3), (18)

where � denotes disjoint union, and Cn+1,θ/3 + α denotes the translation of the set
Cn+1,θ/3 by α.

Since C0,θ is a symmetric interval, the measure corresponding to its characteristic
function is attainable, as mentioned above. Further, since convolving (δθ + δ−θ )/2
with a uniform measure having support on some set D yields a measure with support
on (D+θ)∪(D−θ), uniformmeasures supported onCn,θ are attainable by induction,
via (18). Letting n → ∞ we find that measures with uniform support on Cantor sets
are attainable.

4.4 Proof of Proposition 1.7

Proof We are going to make use of a (de-symmetrized) Cilleruelo sequence n j , i.e.
νn j ⇒ δ0 and r2(n j ) → ∞. Let μ ∈ A be an attainable measure and assume that
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νm j ⇒ μ. Using the same idea as in the course of proof of Proposition 1.2 above we
may assume with no loss of generality that (n j ,m j ) = 1 are co-prime (recall that {n j }
is a Cilleruelo sequence of our choice). Then

νm j ·n j = νm j �νn j ⇒ μ�δ0 = μ,

and

r2(m j · n j )/4 = r2(m j ) · r2(n j ) → ∞,

so that the sequence {n j · m j } is as required. ��

5 Proof of Theorem 1.3: measure classification for x > 1
3

5.1 Some conventions related to Fourier analysis

We adapt the following conventions. The k-th Fourier coefficient of a measure μ ∈ P
is given by

μ̂(k) =
∫

T1

cos(kθ)dμ(θ);

clearly |μ̂(k)| ≤ 1. The convolution of two probability measures μ,μ′ ∈ P is the
probability measure μ�μ′ defined as

d(μ�μ′)(θ) =
∫

T1

dμ(θ ′)dμ′(θ − θ ′).

With the above conventions we have

μ̂�μ′(k) = μ̂(k) · μ̂′(k).

It is easy to compute the Fourier coefficients of υθ;M as in (15) to be

υ̂θ;M (k) = 1

M + 1

M∑

j=0

cos((M − 2 j)kθ) = GM+1(kθ),

where

GA(θ) := sin(Aθ)

A sin θ
; (19)

for M = 1, G2(θ) = cos(θ) is consistent with (14).
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1072 P. Kurlberg, I. Wigman

By the definition ofA andAk = Fk(A) and in light of Lemma 4.1, we can describe
Ak geometrically as the smallest multiplicative set, closed in Pk , containing all the
curves2

{
γk;A(θ) := (GA(θ), . . . ,GA(kθ)) : θ ∈ [0, π ]}A≥2 ,

i.e. Ak is the closed multiplicative subset of Pk generated by the above curves. Simi-
larly, the set corresponding to the square-free attainable measures A0

k is the smallest
closed multiplicative set containing the single curve

γk;2(θ) = (cos(θ), . . . , cos(kθ)),

θ ∈ [0, π ].
From this point on we will fix k = 2 and suppress the k-dependence in the various

notation, e.g. γA will stand for γ2;A. The curves

γA(θ) := (GA(θ),GA(2θ)) (20)

for 2 ≤ A ≤ 20 are displayed in Fig. 4, separately for odd and even M = A − 1.

5.2 Proof of Theorem 1.3

The two statements of Theorem 1.3 are claimed in Propositions 5.1 and 5.2, and proved
in Sects. 5.3 and 5.6 respectively. Note that Proposition 5.2 yields attainable measures
with the relevant Fourier coefficients regardless whether x > 1

3 or x ≤ 1
3 .

Proposition 5.1 Points (x, y) with x > 1
3 corresponding to attainable measures lie

under the max curve, i.e. if (x, y) ∈ A2 then

y ≤ M(x), (21)

where M(x) is given by (3).

Proposition 5.2 Given x, y such that |x | ≤ 1 and

2x2 − 1 ≤ y ≤ M(x),

there exists an attainable measure μ such that (μ̂(4), μ̂(8)) = (x, y).

2 Since GA is even we have γk;2(−θ) = γk;2(θ), and hence it is enough to consider θ ∈ [0, π ] (rather
than θ ∈ [0, 2π ].)
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5.3 Proof of Proposition 5.1: attainable measures lie under the max curve for
x > 1/3

In what follows, by componentwise product we will mean

(x1, y1) · (x2, y2) = (x1 · x2, y1 · y2). (22)

Definition 5.3 (Totally positive and mixed sign points) Let A+
2 ⊆ A2 be the set of

totally positive attainable points admitting a representation as finite componentwise
products

(x, y) =
K∏

i=1

(xi , yi ) (23)

of points (xi , yi ) = γ2;Ai (θi ) for some Ai ≥ 2, θi ∈ [0, π ], so that for all i ≤ K we
have yi > 0. Similarly,A−

2 ⊆ A2 is the set of mixed sign attainable points admitting
representation (23) with at least one yi < 0.

Note that a point in A2 may be both totally positive and of mixed sign, i.e. A+
2

may intersectA−
2 . Furthermore, a priori it may be in neither of these. However, by the

definition of A2, it is the closure of the union of the sets defined:

A+
2 ∪ A−

2 = A2. (24)

Therefore to prove the inequality (21) onA2 it is sufficient to prove the same for points
in A+

2 and A−
2 separately. These are established in Lemma 5.4 and Proposition 5.5,

proved in Sects. 5.4 and 5.5 respectively.

Lemma 5.4 If (x, y) ∈ A−
2 is a mixed sign attainable point then

y ≤ (2|x | − 1)2.

Proposition 5.5 Let (x, y) = γA(θ) for some A ≥ 2 and θ ∈ [0, π ] such that x > 1
3 .

Then y ≤ x4.

We are now in a position to prove Proposition 5.1.

Proof of Proposition 5.1 assuming Lemma 5.4 and Proposition 5.5 If the point (x, y)
∈ A−

2 is of mixed sign, Lemma 5.4 applies and hence y ≤ (2|x | − 1)2. Otherwise, if
the point is totally positive,

(x, y) =
(
∏

i

xi ,
∏

i

yi

)

where (xi , yi ) are prime power attainable, and yi ≥ 0 for all i .
Now, |xi | ≤ 1 for all i since xi is a Fourier coefficient of a probability measure, so

if |x | > 1/3 we must have |xi | > 1/3 for all i . By Proposition 5.5, yi ≤ x4i for all i ,
and thus y ≤ x4. Thus it follows that the statement (21) of Proposition 5.1 holds on
A+

2 ∪ A−
2 and thus on its closure, A2 (cf. (24)). ��
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5.4 Proof of Lemma 5.4: the mixed sign points A−
2 lie under the max curve

To pursue the proof of Lemma 5.4 we will need some further notation.

Notation 5.6 Let B1 ⊆ [−1, 1] × [−1, 1] be the set

B1 = {(x, y) : x ∈ [−1/2, 1/2], 0 ≤ y ≤ (2|x | − 1)2},

and B ⊆ [−1, 1] × [−1, 1] be the domain

B2 = {(x, y) : x ∈ [−1/
√
2, 1/

√
2], 2x2 − 1 ≤ y ≤ 0}.

Recall the Definition 5.3 of totally positive attainable points A+
2 , and componen-

twise product of points (22). It is obvious that the points of either B1 and B2 are all
lying under the max curve, i.e. if

(x, y) ∈ B1 ∪ B2,

then

y ≤ M(x).

Therefore the following lemma implies Lemma 5.4.

Lemma 5.7 If (x, y) ∈ A−
2 is a mixed sign attainable point then

(x, y) ∈ B1 ∪ B2.

To prove Lemma 5.7 we establish the following two auxiliary lemmas whose proof
is postponed until immediately after the proof of Lemma 5.7.

Lemma 5.8 If (x, y) = (μ̂(1), μ̂(2)) for μ some probability measure on S1 and
y ≤ 0, then (x, y) ∈ B2.

Lemma 5.9 If p1, p2 ∈ B2, then p1 · p2 ∈ B1.

Proof of Lemma 5.7 assuming the auxiliary lemmas. Let

(x, y) ∈ A−
2

be given. First, if (x, y) ∈ A−
2 with y ≤ 0, then (x, y) ∈ B2 by Lemma 5.8; hence we

may assume y > 0. Let (xi , yi ) be as in (23), which according to the Definition 5.3
have mixed signs. Since y ≥ 0 we can in fact find i �= j for which yi , y j < 0, and
without loss of generality we may assume that (i, j) = (1, 2). Letting

(x̃, ỹ) =
⎛

⎝
∏

k �=1,2

xk,
∏

k �=1,2

yk

⎞

⎠
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we find that

(x, y) = (x1, y1) · (x2, y2) · (x̃, ỹ),

where ỹ ∈ [0, 1] and x̃ ∈ [−1, 1].
We further note that both (x1, y1) and (x2, y2) lie in B2. Thus by Lemma 5.9,

(x1, y1) · (x2, y2) ∈ B1.

Since |x̃ |, ỹ ≤ 1, the result follows on noting that B1 is mapped into itself by any map
of the form

(x, y) → (αx, βy),

provided that

0 ≤ |α|, β ≤ 1.

��

5.4.1 Proofs of the auxiliary Lemmas 5.8 and 5.9

Proof of Lemma 5.8 The assumptions are equivalent to (x, y) ∈ P2 with y ≤ 0. The
statement follows immediately upon using the explicit description (13) of P2:

P2 ∩ {y ≤ 0} = B2.

��
Proof of Lemma 5.9 The case of either point having zero y-coordinate is trivial, so
we may assume that both p1, p2 have negative y-coordinates, and it suffices to prove
the statement for points p1, p2 having minimal y-coordinates, i.e.,

p1 = (a, 2a2 − 1), p2 = (b, 2b2 − 1),

and we may further assume ab �= 0 as otherwise the statement is trivial.
By symmetry it suffices to consider the case a, b ∈ (0, 1/

√
2). Thus, if we fix

c ∈ (0, 1/2) it suffices to determine the maximum of

(2a2 − 1)(2b2 − 1)

subject to the constraint ab = c. Taking logs we find that the constraint is given by

log a + log b = log c
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and we wish to maximize

log(1 − 2a2) + log(1 − 2b2).

Using Lagrange multipliers we find that all internal maxima satisfies

(1/a, 1/b) = λ

(
4a

1 − 2a2
,

4b

1 − 2b2

)

for some λ ∈ R. If c = ab �= 0 we find that

(1, 1) = λ

(
4a2

1 − 2a2
,

4b2

1 − 2b2

)

and thus 4a2

1−2a2
= 4b2

1−2b2
which implies that a2 = b2, and hence, recalling that we

assumed a, b ≥ 0, it yields a = b. In particular, any internal maximum gives a point
(a2, (2a2 − 1)2) = (c, (2|c| − 1)2), which lies on the boundary of B1. As mentioned
earlier, for points on the boundary, the inequality holds trivially. ��

5.5 Proof of Proposition 5.5: totally positive points A+
2 corresponding to prime

powers

Lemma 5.10 The function sin t
t is decreasing and is ≥ 0 on [0, π ].

Proof Taking derivatives, this amounts to the fact that tan t > t on (0, π/2). ��
Lemma 5.11 If A ≥ 4 and |GA(t)| ≥ 1/3 for t ∈ [0, π/2], then t ≤ π

A . For A = 3,
we have the further possibility that t = 3π/(2A) = π/2.

Proof The inequality sin t ≥ 2t/π , valid for t ∈ [0, π/2], and strict except at the end
points, gives that

|GA(t)| =
∣∣∣∣
sin(At)

A sin t

∣∣∣∣ ≤ 1

A sin t
≤ 1

A · 2
π
t

and hence |GA(t)| < 1/3 for t > 3π/(2A), for any A > 0. It thus suffices to consider
t ∈ [0, 3π/(2A)].

Consider first the case A = 3. We begin by showing that G3(t) is decreasing on
[0, π/2]. Taking derivatives, this amounts to the fact that

3 tan t �= tan 3t

on (0, π/2) (note that the derivative is negative for t = π/6). Now, sinceG3(π/3) = 0
and G3(π/2) = −1/3 and G3 is decreasing, we find that the only possibility for
|G3(t)| = 1/3 and t ∈ [π/3, π/2] is t = π/2. Thus, any other solution must lie in
[0, π/3] = [0, π/A].
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For A ≥ 4, note that

∣∣∣∣
sin At

A sin t

∣∣∣∣ =
∣∣∣∣
sin(At)/(At)

sin(t)/t

∣∣∣∣ <

∣∣∣∣
sin(At)/(At)

sin(At/3)/(At/3)

∣∣∣∣ (25)

(for t ≤ 3π/(2A) we have At/3 ≤ π/2, hence

| sin(At/3)/(At/3)| ≤ | sin(t)/t |,

since (sin x)/x is decreasing on the interval [0, π ] by Lemma 5.10.)
Taking s = At/3, the RHS of (25) becomes

(sin 3s)/3s

(sin s)/s
= sin 3s

3 sin s

and t ≤ 3π/(2A) implies that s ≤ π/2. For this range of s, by the first part of the
lemma, we find that

∣∣ sin 3s
3 sin s

∣∣ ≥ 1/3 implies that either s = π/2 or s ≤ π/3, which in
turn implies that t = 3π/(2A) or t ≤ π/A. Noting that the first possibility is ruled
out by the strict inequality in (25), the proof is concluded. ��

We proceed to characterize points lying on curves {(x, y) = γA(t)}A≥2, for which
x > 1/3 and y ≥ 0, showing that any such point satisfies y ≤ x4. We begin with the
following key Lemma.

Lemma 5.12 For t ∈ (0, π/2], define

h(t) := t3 cos t

sin3 t
(26)

and extend h to [0, π/2] by continuity. Then h(t) is decreasing on [0, π/2].
Proof We have

h′(t) = t2 sin2(t)
(
sin(t) cos(t) − t sin2(t) − 3t cos2(t)

)

sin6 t
,

and it is enough to show that

sin(t) cos(t) − t sin2(t) − 3t cos2(t) < 0 (27)

for t ∈ (0, π/2). Since for t = 0 the expression on the left hand side of (27) vanishes
it is sufficient to show that its derivative is strictly negative on

(
0, π

2

)
. We find that

(
sin(t) cos(t) − t sin2(t) − 3t cos2(t)

)′

= 4 sin(t)(t cos(t) − sin(t)) = 4 sin(t) cos(t)(t − tan t) < 0

since tan(t) > t on
(
0, π

2

)
. ��
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Proof of Proposition 5.5. If A = 2, the points lying on the curve γ2 are of the form

(x, y) = γ2(t) = (t, 2t2 − 1),

and it is straightforward to check that 2t2 − 1 ≤ t4. For A ≥ 3, since we assume that
x > 1/3 and

(x, y) = (GA(t),GA(2t)),

Lemma 5.11 implies that t ≤ π/A. In fact, t ≤ π/(2A), as we assume that y ≥ 0.
Hence it is sufficient to show that

sin 2At

A sin 2t
≤
(
sin At

A sin t

)4

holds for t ∈ [0, π/(2A)].
This in turn is equivalent (note that all individual trigonometric terms are non-

negative since t ∈ [0, π/(2A)]) to

A3 cos At sin3 t ≤ sin3 At cos t

which is equivalent to

(At)3 cos At

sin3 At
≤ t3 cos t

sin3 t
.

Setting

s = At ∈ [0, π/2],

we find that this is equivalent to

s3 cos s

sin3 s
≤ (s/A)3 cos s/A

sin3 s/A
,

or, equivalently on recalling (26), that

h(s) ≤ h(s/A).

which, as A > 1, follows from Lemma 5.12. ��

5.6 Proof of Proposition 5.2: all points under the max curve are attainable

Lemma 5.13 The curve {(x, x4) : x ∈ [0, 1]} is square-free attainable, i.e. all the
points on this curve correspond to at least one attainable measure.
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Proof of Proposition 5.2 assuming Lemma 5.13 By the definition of the max curve
(3) it is sufficient to prove that if (x0, y0) is lying under one of the curves y = x4 and
y = (2|x | − 1)2 then (x0, y0) ∈ A2 is attainable; with no loss of generality we may
assume that x0 ≥ 0. Now we know that the parabola {(t, 2t2 − 1)}t∈[0,1] is attainable,
and from Lemma 5.13 so is the curve {(x, x4)}x∈[0,1].

It then follows by multiplicativity of A2 that all the points of the form

(x0, y0) = (x, x4) · (t, 2t2 − 1)

are attainable (recalling the notation (22) for componentwise multiplication). On the
other hand it is clear that the union of the family of the parabolas

{(xt, x4(2t2 − 1)) : t ∈ [0, 1]},

as x ranges over [0, 1], is exactly the set

{(x, y) : x ∈ [0, 1], 2x2 − 1 ≤ y ≤ x4}.

Concerning points under the other curve y = (2x − 1)2 we may employ the
multiplicativity of A2 again to yield that the curve

{(x2, (2x2 − 1)2)}x∈[0,1]

is attainable; this curve in turn can be re-parameterized as {(t, (2t − 1)2)}t∈[0,1]. A
similar argument to the above shows that function

(x, t) 
→ (x, (2x − 1)2) · (t, 2t2 − 1)

maps [0, 1]2 onto the domain

{(x, y) : x ∈ [0, 1], 2x2 − 1 ≤ y ≤ (2x − 1)2},

i.e. as the parameter x varies along [0, 1] the parabolas

{(xt, (2x − 1)2 · (2t2 − 1))}

tessellate the domain under the curve y = (2x − 1)2, x ∈ [0, 1]. Hence all the points
under the latter curve are attainable, as claimed. ��
Proof of Lemma 5.13 We start with the case x ≥ 0.We know that the curve {(x, 2x2−
1)}x∈[−1,1] is attainable as a re-parametrization of (cos θ, cos 2θ) (i.e. all the points on
that curve correspond to attainable measures), hence for n ≥ 1 the curve {(xn, (2x2 −
1)n)} is attainable by the multiplicativity (cf. Proposition 1.2). Fix α > 0, and take
x = xn = e−α/n . Thus

(e−α, (2e−2α/n − 1)n)

is attainable for every α > 0 and n ≥ 1.
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Upon using Taylor series, we find that, as n → ∞,

(2e−2α/n − 1)n =
(
2

(
1 − 2α

n
+ O

(
1

n2

))
− 1

)n

=
(
1 − 4α

n
+ O

(
1

n2

))n

= e−4α + o(1).

Since this holds for any fixed α > 0, bearing in mind thatA is closed in P (and hence
the set A2 ⊆ [−1, 1]2 is closed in the usual sense), we indeed find that the curve
(x, x4) lies in the attainable set for every x ∈ (0, 1). It is easy to see that also (0, 0)
and (1, 1) are attainable. By reflecting the curve (x, x4) (for x ≥ 0) in the x-axis
(using that (−1, 1) is attainable and multiplying) we find that (x, x4) is attainable for
x ∈ [−1, 1]. ��

6 Proof of Theorem 1.6: fractal structure for x < 1
3

It is obvious that the second assertion of Theorem 1.6 implies the first part, so we
only need to prove the second one. However, since the proof of the second assertion
is fairly complicated we give a brief outline of how the first assertion can be deduced,
and then indicate how to augment the argument to give the second assertion.

We are to understand the closure of all the points (x, y) of the form

(x, y) =
K∏

i=1

(GAi (ti ),GAi (2ti )) (28)

with Ai ≥ 2 arbitrary integers.Using thatGA(π/2+t) is either even or odd (depending
on the parity of A) and thatGA(2(π/2+t)) is even, togetherwith signs of x-coordinates
being irrelevant (since (x, y) is attainable if and only if (−x, y) is attainable) we may
assume that ti ∈ [0, π

2

]
for all i . A curve (x0, y0) = (GA0(t0),GA0(2t0)) turns out to

intersect the line y = 1 with |x | ≤ 1
3 only for A0 odd, and further forces t0 = π

2 , and
x = ± 1

A . Hence the point (x, y) as in (28) satisfies y = 1 only for Ai odd and ti = π
2

for all i ≤ K , whence (x, y) = (± 1
A , 1) with A = ∏K

i=1 Ai .
To prove the second assertion we investigate a (fairly large) neighborhood of the

point ( 1
A , 1); given an odd A we consider all finite products (28) with A = ∏K

i=1 Ai

and ti ≈ π
2 (and Ai ≥ 3.) We will prove that all products (x, y) of this form will

stay between two curves defined below; after taking logarithms this will amount to the
fortunate log-convexity of the curves (GA0(t),GA0(2t)), A0 ≥ 3 odd, in the suitable
range (see Lemma 6.8 below). We argue that this property is invariant with respect to
multiplying by curves (GA1(t),GA1(2t)) for A1 ≥ 2 even, and also for odd A1 ≥ 3
for t near π/2.

6.1 Proof of the second assertion of Theorem 1.6

To prove the main result of the present section we will need the following results. (The
proofs of Propositions 6.1 and 6.2 are postponed to Appendices 1 and 2, respectively.)
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Proposition 6.1 Let {Ai }i be a finite collection of integers Ai ≥ 2, and consider a
point (x, y) of the form

(x, y) =
(
∏

i

G Ai (ti ),
∏

i

G Ai (2ti )

)
, (29)

where all ti ∈ [0, π/2]. Assume that one of the following is satisfied:

• There exists i such that Ai ≥ 3 is odd and ti ∈ [π/(2Ai ), π/2 − π/(2Ai )].
• There exists i such that Ai is even and ti ≥ π/(2Ai ).

Then necessarily

y ≤ (2|x | − 1)2.

Proposition 6.2 Let A ≥ 3 be an odd number, and

A =
K∏

i=1

Ai

an arbitrary (fixed) factorization of A into (not necessarily co-prime) integers Ai ≥ 3.
For x ≤ 1

A define

g{Ai }(x) = sup
(ti )i∈X{Ai }(x)

K∏

i=1

GAi (2ti ), (30)

the supremum taken w.r.t. all (ti )i≤K lying in

X{Ai }(x) :=
{

(ti )i : ∀i ≤ K , ti ∈
[
π

2
− π

2Ai
, π/2

]
,

∣∣∣∣∣

K∏

i=1

GAi (ti )

∣∣∣∣∣ = x

}
. (31)

Then for every 0 < x < 1
A there exists an index i0 = i0(x) ≤ K and t ∈ [π

2 −
π

2Ai0
, π/2] such that3

(x, g{Ai }(x)) =
(
Ai0

A
|GAi0

(t)|,GAi0
(2t)

)
,

and moreover the map x 
→ i0(x) is piecewise constant. In particular, the function
g{Ai }(x) is continuous, analytic in some (left) neighbourhood of x = 1

A , and piecewise
analytic on (0, 1

A ].
We may finally define the function f2;k introduced in Theorem 1.6.

3 The reason for
Ai0
A |GAi0

(t)| appearing is that the supremum is attained by having ti = π
2 for i �= i0 and

hence
∏

i �=i0
GAi (0) = ∏

i �=i0
1/Ai = Ai0/A.
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Definition 6.3 Given k ≥ 1, 0 < x ≤ 1
2k+1 , define

f2;k(x) = max
K∏
i=1

Ai=2k+1

g{Ai }(x),

the maximum taken w.r.t. all non-trivial factorizations of 2k + 1, i.e., all sets of (odd)
integers {Ai }Ki=1 ⊆ Z≥3, whose product is 2k + 1.

Remark 6.4 (1) For A ≥ 3 odd, t ∈ [π
2 − π

2A , π/2
]
we have

|GA(t)| ≤ 1

A
. (32)

(2) By the definition of g{Ai } and f2;k , if (x, y) is of the form

(x, y) =
K∏

i=1

(|GAi (ti )|,GAi (2ti ))

with all Ai ≥ 3 odd, x > 0, and if in addition for all i we have

ti ∈
[
π

2
− π

2Ai
, π/2

]

(whence x ≤ 1
2k+1 via (32)), then necessarily

y ≤ g{Ai }i≤K (x) ≤ f2;k(x), (33)

where k is defined as in

K∏

i=1

Ai = 2k + 1.

(3) Proposition 6.2 implies that for k ≥ 1 and x < 1
2k+1 ,

f2;k(x) = max
1<A|2k+1

max{
t∈[ π

2 − π
2A ,π/2

]:
∣∣∣ A
2k+1GA(t)

∣∣∣=x
}GA(2t),

a maximum w.r.t. all (odd) divisors A > 1 of 2k + 1; the latter yields an algorithm
for computing f2;k(x), reducing the original problem into maximizing a finite set
of numbers.

The following 3 results will be proven in Appendix 2.
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Lemma 6.5 Let A ≥ 3 be an odd integer, and ηA be the parametric curve in R
2

defined by

ηA(t) = (ηA;1(t), ηA;2(t)) = (log(A · |GA(t)|), log(GA(2t))), (34)

for t ∈ (π
2 − π

2A , π
2 ]. Then we may re-parameterize η as (z, hA(z)) for some analytic

function h : (−∞, 0) → R≤0with h(0) = 0, andmoreover0 < h′(z) ≤ 4
3 everywhere

in the above range.

Corollary 6.6 Let {Ai }Ki=1 ⊆ Z≥3 be a set of odd integers, A = ∏K
i=1 Ai , and (x, y)

of the form

(x, y) =
K∏

i=1

(GAi (ti ),GAi (2ti )),

such that for all i ≤ K we have ti ∈ [π
2 − π

2Ai
, π
2 ]. Then necessarily

y ≥ (Ax)4/3.

Lemma 6.7 For every x1, x2 ∈ [0, 1] the following inequality holds:

(2x21 − 1) · (2x22 − 1) ≥ (2(x1x2)
2 − 1). (35)

We are finally in a position to prove Theorem 1.6 (with the first assertion following
from the second.)

Proof of the second assertion of Theorem 1.6 assuming the results above We first
prove that any point (x, y) ∈ A2 with 0 < x ≤ 1

3 either satisfies y ≤ (2x − 1)2

or (x, y) ∈ D0,xk ( f1;k, f2;k) for some k ≥ 1, i.e. establish the inclusion ⊆ of (7).
Since A2 is the closure (in R

2) of the set of finite products

(x, y) =
K∏

i=1

(GAi (ti ),GAi (2ti )), (36)

with some Ai ≥ 2, ti ∈ [0, π ], and the set on the r.h.s. of (7) is closed in {x > 0}, it
is sufficient to prove it for the finite products (36).

Thus let (x, y) be given by a finite product (36); by the invariance of A2 w.r.t.
x 
→ −x we may assume that all ti , i ≤ K satisfy ti ∈ [0, π/2]. If there exists either
an odd Ai such that ti ∈ [ π

2Ai
, π
2 − π

2Ai
], or an even Ai such that ti ∈ [ π

2Ai
, π
2 ], then one

of the sufficient conditions of Proposition 6.1 is satisfied, implying that y ≤ (2x−1)2,
so that our present statement holds.

We may then assume that for all odd Ai we have either ti ∈ [0, π
2Ai

) or ti ∈
(π
2 − π

2Ai
, π
2 ], and for all even Ai we have ti ∈ [0, π

2Ai
). Up to reordering the indexes,
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1084 P. Kurlberg, I. Wigman

we may assume that K = K1 + K2 with K1 > 0, and where all the Ai with i ≤ K1
are odd and ti ∈ [π

2 − π
2Ai

, π
2 ], and for all K1 + 1 ≤ i ≤ K2 we have

ti ∈
[
0,

π

2Ai

]
, (37)

whether the corresponding Ai is odd or even. Let

A =
K1∏

i=1

Ai = 2k + 1. (38)

be the product of the first K1 odd Ai . We claim that, with k as defined in (38),
necessarily

f1;k(x) ≤ y ≤ f2;k(x). (39)

Define

(x0, y0) =
K1∏

i=1

(GAi (ti ),GAi (2ti ))

and

(x1, y1) =
K1+K2∏

i=K1+1

(GAi (ti ),GAi (2ti )), (40)

so that
(x, y) = (x0, y0) · (x1, y1). (41)

Since by the above, (x0, y0) satisfies the assumptions of (33), we have y0 ≤
g{Ai }i≤K1

(x0), and by Proposition 6.2 there exists i0 ≤ K1 and t0 ∈ (π
2 − π

2Ai0
, π
2 ], so

that

x0 = Ai0

A
|GAi0

(t0)| (42)

and g{Ai }i≤K1
(x0) = GAi0

(2t0); we then have

y0 ≤ GAi0
(2t0). (43)

For the sake of brevity of notation we assume with no loss of generality that i0 = 1,
and consider the curve ηA1 inR

2
>0 as in Lemma6.5; by the virtue of the latter lemmawe

may re-parameterizeηA1 as (z, hA1(z)) in the range z ∈ (−∞, 0], and 0 < h′
A1

(x) ≤ 4
3

everywhere. Hence, on noting that all the logarithms involved are negative, the mean
value theorem gives that

hA1(log(Ax0x1)) = hA1(log(Ax0) + log(x1))

≥ hA1(log(Ax0)) + 4

3
log(x1). (44)
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Note that by (42) and the definition of hA1 as a re-parametrization of (34), we have

hA1(log(Ax0)) = hA1(log(A1|GA1(t0)|) = logGA1(2t0)

(recall that we assumed that i0 = 1).

Substituting the latter into (44) implies that there exist a number θ1 ∈
(

π
2 − π

2A1
, π
2

]

satisfying A1|GA1(θ1)| = Ax0x1 (note that x0 ∈ (0, 1/A]) and

log(GA1(2θ1)) ≥ logGA1(2t0) + 4

3
log(x1).

Equivalently,

|GA1(θ1)| = A

A1
x0x1 (45)

and
GA1(2θ1) ≥ GA1(2t0) · x4/31 ≥ y0 · x4/31 , (46)

by (43).
Note that for the choice t1 = θ1 and ti = π

2 for 2 ≤ i ≤ K1, we have

∣∣∣∣∣

K1∏

i=1

GAi (ti )

∣∣∣∣∣ = A

A1
x0x1 ·

K1∏

i=2

1

Ai
= x0x1, (47)

by (45) and (38). Now, bearing in mind (41), as g{Ai }i≤K1
(x) is defined to be the supre-

mum of all the expressions (30) with {ti }i≤K1 satisfying (47), and recalling Definition
6.3 of f2;k(x), (46) implies that

f2;k(x) ≥ g{Ai }i≤K1
(x) ≥ y0 · x4/31 . (48)

On the other hand, (37) implies that for every K1 + 1 ≤ i ≤ K1 + K2 we have
GAi (ti ) > 1

3 (for A fixed, GA(t) is decreasing for t ∈ [0, π/A] and it is enough
to show that GA(π/(2A)) = (A sin(π/(2A)))−1 > 1/3; this in turn follows from
sin(x)/x being decreasing on [0, π ].) Hence Proposition 5.5 is applicable for each of
the terms on the r.h.s. of (40), and therefore their product (x1, y1) satisfies

y1 ≤ x41 . (49)

The inequality (49) together with (48) and the fact that x4/3 > x4 for x < 1 yield that

f2;k(x) ≥ y0 · x4/31 ≥ y0 · x41 ≥ y0 · y1 = y,

as in (41), which is the second inequality of (39).
To prove the first inequality of (39) we use Corollary 6.6 to yield y0 ≥ (Ax0)4/3

with A as in (38). These combined imply
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y = y0 · y1 ≥ (Ax0)
4/3 · (2x21 − 1) ≥ (Ax0)

4 · (2x21 − 1)

≥ (2(Ax0)
2 − 1) · (2x21 − 1)

where we used the obvious inequality x4 ≥ 2x2 − 1, valid on [−1, 1]. Finally, an
application of the inequality (35) of Lemma 6.7 yields

y ≥ 2(Ax0x1)
2 − 1 = 2A2 · x2 − 1 = f1;k(x),

by the definition (8) of f1;k , and recalling that xk = 1
2k+1 .

Conversely, we need to prove that any point (x, y) satisfying

f1;k(x) ≤ y ≤ f2;k(x)

necessarily lies inA2. To this end fix a number k ≥ 1 and consider all the points (x, y)
of the form

(x, y) = (s, f2;k(s)) · (t, 2t2 − 1) (50)

with s ∈ (0, 1
2k+1 ], t ∈ (0, 1] (recalling the notation (22) for componentwise multi-

plication). Note that by the multiplicativity of A2 (Proposition 1.2) all the points of
the form (50) are attainable, i.e., (x, y) ∈ A2. Since f2;k( 1

2k+1 ) = 1, for s = 1
2k+1

fixed, t varying in (0, 1], (x, y) attains all the curve (x, y) = (x, f1;k(x)); for t = 1
fixed, s varying in (0, 1

2k+1 ), (x, y) attains the curve (x, y) = (x, f2;k(x)).
We claim that for every (x, y) with f1;k(x) ≤ y ≤ f2;k(x) there exists s, t in the

range as above, satisfying (50). To show the latter statement, given such a point (x, y)
consider s ∈ [x, 1

2k+1 ] and t = x
s . We are then to solve the equation

y = f2;k(s) ·
(
2x2

s2
− 1

)

for the given y, s ∈ [x, 1
2k+1 ]; as the r.h.s. of the latter equation attains the values

f1;k(x) and f2;k(x) for s = 1
2k+1 and s = x respectively, we are guaranteed a solution

by the intermediate value theorem. Geometrically, the above argument shows that as
s varies, the family of parabolas

t 
→ (s, f2;k(s)) · (t, 2t2 − 1)

tesselates the domain D0,xk ( f1;k, f2;k) (cf. the proof of Proposition 5.2 in Sect. 5.6).
��

6.2 Proof of Proposition 6.2 by convexity

The convexity of the component-wise logarithm of a curve implies that finite products
of points lying on that curve would stay below it. We aim at eventually proving that
all the curves γA = (GA(t),GA(2t)), A ≥ 3 odd, t ∈ [π

2 − π
2A , π

2

]
, satisfy the above

property (see Lemma 6.8 below). We exploit their convexity in Lemma 6.9, which,
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after taking logarithm, is equivalent to the statement of Proposition 6.2 (see the proof
of Proposition 6.2 below); the latter follow from finite products of points on a curve,
with the property above, staying below that curve.

Lemma 6.8 Let ηA be the curve

ηA(t) = (log(A · |GA(t)|), log(GA(2t))),

t ∈ (π
2 − π

2A , π
2 ] with A ≥ 3 odd. Then in the above domain of t both components of

ηA = (ηA;1, ηA;2) are strictly increasing, and moreover ηA may be re-parametrized
as (z, hA(z)) with hA : (−∞, 0] → R convex analytic, increasing, and h(0) = 0.

The somewhat technical proof of Lemma 6.8 is postponed to Appendix 2.

Lemma 6.9 Let {hi : (−∞, 0] → R}i≤K be a finite collection of continuous convex
functions such that for all i ≤ K we have hi (0) = 0. Define h : (−∞, 0] → R by

h(z) = sup
zi≤0:∑K

i=1 zi=z

{
K∑

i=1

hi (zi )

}
. (51)

Then for every z ∈ (−∞, 0] there exists an index i0 = i0(z) so that h(z) = hi0(z).

Before giving a proof for Lemma 6.9 we may finally prove Proposition 6.2.

Proof of Proposition 6.2 assuming Lemmas 6.8 and 6.9 Let A = 2k + 1 ≥ 3 be odd,
and (38) be an arbitrary factorization of A into integers Ai ≥ 3. Consider the curves
{ηAi (t) : t ∈ [π

2 − π
2Ai

, π
2 ]}i≤K as defined in (34). By Lemma 6.8 all of the ηAi can be

re-parametrized as (zi , hAi (zi )) on (−∞, 0], with hAi convex analytic, and h(0) = 0.
Hence, by Lemma 6.9 for every z ∈ (0, 1

A ] there exists i0 = i0(x), so that

h(z) := sup
zi≤0:∑K

i=1 zi=z

{
K∑

i=1

hAi (zi )

}
= hAi0

(z),

Note that, after taking logarithms, maximizing
∏K

i=1 GA(2ti ) under the constraint
(ti )i≤K ∈ X{Ai }(x) with X{Ai }(x) as in (31), 0 < x ≤ 1

A is equivalent to maximizing

K∑

i=1

logGA(2ti ) =
K∑

i=1

hAi (zi )

under the constraint
∑K

i=1 zi = z, where z = log Ax ∈ (−∞, 0]. More formally,
recalling the definition (34) of ηAi and (zi , hAi (zi )) being a re-parametrization of ηAi ,
the function h(z) defined as in (51), on noting that z = log Ax , satisfies

h(log(Ax)) = log sup
(ti )i≤K∈Y{Ai }(x)

{
K∏

i=1

GAi (2ti )

}
, (52)
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where

Y{Ai }(x) =
{

(ti )i≤K : ∀i.ti ∈
[
π

2
− π

2Ai
,
π

2

]
,

K∑

i=1

log(Ai |GAi (ti )|) = log(Ax)

}
.

Since
∑K

i=1 log(Ai |GAi (ti )|) = log(Ax) is equivalent to
∑K

i=1 log(|GAi (ti )|) =
log(x) via (38), we have Y{Ai }(x) = X{Ai }(x) (as in (31)), and hence (52) is

h(log(Ax)) = log
(
g{Ai }(x)

)
.

The latter equality together with Lemma 6.9 then imply that we have

hi0(log(Ax)) = log
(
g{Ai }i≤K (x)

)

for some i0 ≤ K ; since hi0 is a re-parametrization of ηAi0
, this is equivalent to

(log(Ai0 |GAi0
(ti0)|), log(GAi0

(2ti0))) = (log(Ax), log g{Ai }i≤K (x))

for some ti0 ∈ [π
2 − π

2Ai0
, π
2 ], i.e.

(
Ai0

A
|GAi0

(ti0)|,GAi0
(2ti0)

)
= (x, g{Ai }i≤K (x)),

which is the first statement of the present proposition, at least for x > 0. For x = 0 it
is sufficient to notice that for all i ≤ K ,

(GAi (t),GAi (2t))|t= π
2 − π

2Ai
= (0, 0),

so that in particular g{Ai }i≤K (x) = 0, whatever {Ai }i≤K are.
To see that the map x 
→ i0(x) is in fact piecewise constant on [0, 1

A ] (with finitely
many pieces), we note that it is readily shown that on (0, 1

A ], g{Ai }i≤K is a maximum

of finitely many analytic curves (namely, ( Ai
A |GAi (t)|,GAi (2t))), and vanishes at 0,

which happens to lye on all of them. Since such a collection of analytic curves may
only intersect in finitely many points for x ∈ [0, 1

A ], it follows that i0(x) is uniquely
determined as the maximum of these outside of finitely many points (that include
(0, 0)), and i0 is constant between any two such consecutive points. ��
Proof of Lemma 6.9 It is easy to check thatwith the assumptions of the present lemma,
the function H : (−∞, 0]K → R defined by

H(t1, . . . , tK ) =
K∑

i=1

hi (ti )
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is a convex function. Now fix t < 0 and consider the set

�(t) :=
{

(ti )i≤K :
K∑

i=1

ti = t, ti ≤ 0 for 1 ≤ i ≤ K

}
⊆ (−∞, 0]K ;

�(t) is a compact convex domain, and it is evident that

h(t) = max
(ti )∈�(t)

H(t1, . . . , tk).

Now, a convex function cannot attain a maximum in the interior of a convex domain
(all the local extrema of a convex function are necessarily minima). Hence there exists
an index i1 ≤ K so that

h(t) =
K∑

i=1

hi (ti )

for some (ti ) ∈ �(t) with ti1 = 0, i.e. one of the elements of (ti ) must vanish. By
induction, we find that all but one element of (ti ) vanish, say ti = 0 for i �= i0, whence
ti0 = t , and h(t) = hi0(t), as hi (0) = 0 for i �= i0 by the assumptions of the present
lemma. ��

7 Proof of Theorem 1.4: square-free attainable measures

Proof Recall that we de-symmetrized all the probability measures by an analogue of
(10). First we show that (4) holds for any square-free attainable measure; as the first
inequality in (4) holds for every probability measure (13) it only remains to show that
every point (x, y) = (μ̂(1), μ̂(2)) corresponding to a square-free attainableμ satisfies
(21).

By the definition of square-free attainable measures, if μ is square-free attainable
then (x, y) is lying in the closure of the set of finite products

(x̃, ỹ) =
{

K∏

i=1

(cos(θi ), cos(2θi )) : θi ∈ [0, π ]
}

=
{

K∏

i=1

(xi , yi ) : xi ∈ [−1, 1]
}

, (53)

where for all i ≤ K , yi = 2x2i − 1. Now if ỹ > 0 and yi0 < 0 for some i0 ≤ K ,
then (x̃, ỹ) ∈ A−

2 is a mixed sign attainable point, and (upon recalling Notation 5.6)
Lemma 5.7 implies that (x̃, ỹ) ∈ B1, i.e., |x̃ | ≤ 1/2 and ỹ ≤ (2|x̃ | − 1)2.

If ỹ > 0 and yi ≥ 0 for all i , then yi = 2x2i − 1 ≤ x4i for all i as it is easy to
check the latter inequality explicitly, consequently ỹ ≤ x̃4. Since (21) holds on the
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collection of all products (53), it also holds on its closure, namely for square-free
attainable measures. This concludes the proof of the necessity of the inequality (4).

It then remains to show the sufficiency, i.e. any point (x, y) satisfying (4) corre-
sponds to a square-free attainable measure. We claim that the attainable measures
constructed by Proposition 5.2 are in fact square-free attainable. To this end recall
that the collection of all square-free attainable measures is closed under convolutions,
so that the products of points corresponding to square-free attainable measures corre-
spond to square-free attainable measures. It is then crucial to notice that the measures
corresponding to points lying on the curves

{(x, x4) : x ∈ [0, 1]}

(constructed by Lemma 5.13), and

{(x, (2x − 1)2) : x ∈ [0, 1]}

(a re-parameterized product of the parabola y = 2x2 − 1 by itself) exploited in
the course of the proof of Proposition 5.2 are both square-free attainable. Hence the
tessellation argument used in the proof of Proposition 5.2 works in this case too.
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Appendix 1: Proof of Proposition 6.1: below the “mixed signs” curve y =
(2x − 1)2

By the assumptions of Proposition 6.1 there exists i such that ti ∈ [π/(2Ai ), π/2 −
π/(2Ai )] (for Ai odd), or ti ∈ [π/(2Ai ), π/2] (for Ai even.) The following lemma
exploits this property to yieldmore information about (at least) one point in the product.

Lemma 8.1 Let A ≥ 3 and (x, y) = (GA(t),GA(2t)). If A is odd and t ∈ [ π
2A , π

2 −
π
2A ], or A is even and t ∈ [ π

2A , π
2 ], then either y ≤ 0, or y ≤ (2|x | − 1)2 and |x | < 1

3 .
If A = 2 and t ∈ [π

4 , π
2

]
, then y = G2(2t) ≤ 0.
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Proof of Proposition 6.1 assuming Lemma 8.1 Assumewith no loss of generality that
the postulated index is i = 1, i.e.

(x1, y1) = (GA1(t1),GA1(2t1))

with either A1 ≥ 3 being odd and t ∈ [ π
2A1

, π
2 − π

2A1
], or A1 ≥ 2 being even and

t ∈ [ π
2A1

, π
2 ]. Suppose first that y1 ≤ 0. In this case the point (x, y) is “mixed sign

attainable” (cf. Definition 5.3), so that Lemma 5.4 implies that y ≤ (2|x | − 1)2.
Otherwise we assume that y1 > 0 and y > 0. Then Lemma 8.1 implies that A ≥ 3,

and |x1| < 1
3 , whence

0 < y ≤ y1 ≤ (2|x1| − 1)2 ≤ (2|x | − 1)2,

since |x | ≤ |x1| and the function x 
→ (2x − 1)2 is decreasing on
[
0, 1

2

]
. ��

Proof of Lemma 8.1 First, upon recalling that for A = 2 we have G2(t) = cos(t), the
second statement of Lemma 8.1 is obvious.We are left with proving the first statement.
For A = 3 if t ∈ [π

6 , π
3

]
, then

y = sin(6t)

3 sin(2t)
≤ 0

again. We may thus assume that A ≥ 4.
Next, we would like to consolidate the even and the odd A cases, by showing that

if A is even and t ∈ [π
2 − π

2A , π
2 ], then the statement of the present lemma holds. To

do this we note that in this range 2At ∈ [(A − 1)π, Aπ ], so that

GA(2t) = sin(2At)

A sin(2t)
≤ 0

once more.
Hence we may assume that t ∈ [ π

2A , π
2 − π

2A ], whether A is even or odd. We would
like to further cut out the short intervals [ π

2A , π
A ] and [π

2 − π
A , π

2 − π
2A ], i.e. establish

the validity of the present lemma in these intervals. If t ∈ [ π
2A , π

A ] whether A is even
or odd, then 2At ∈ [π, 2π ], so that y = GA(2t) ≤ 0 in this regime too.

If t ∈ [π
2 − π

A , π
2 − π

2A ], then 2At ∈ [(A − 2)π, (A − 1)π ], so that if A is odd

then y = GA(2t) = sin(2At)
A sin(2t) ≤ 0. In the remaining case A even, for the same range

t ∈ [π
2 − π

A , π
2 − π

2A ], we write A = 2B for B ∈ Z, and note that

(x, y) = (GA(t),GA(2t)) =
(
sin(Bt) cos(Bt)

B sin(t)
,
sin(2Bt) cos(2Bt)

B sin(2t)

)

= (GB(t),GB(2t)) · (G2(t),G2(2t)).

Hence if in turn B is even, then GB(2t) = sin(2Bt)
B sin(2t) ≤ 0, since 2Bt ∈ [(B−1)π, (B −

1)π + π
2 ]. Hence (x, y) is mixed sign attainable, and therefore by Lemma 5.4, y ≤

(2|x | − 1)2, and, in addition, |x | ≤ 1
3 by Lemma 5.11.
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Otherwise, if B is odd, we may assume that A ≥ 6 is even (in the same range t ∈
[π
2 − π

A , π
2 − π

2A ]); in this casewe claim that |x | = |GA(t)| ≤ 1
5 and y = |GA(2t)| ≤ 1

3 .
As 1

3 ≤ (2/5 − 1)2, and x 
→ (2x − 1)2 is decreasing on [0, 1
2 ] this is sufficient to

yield y ≤ (2|x | − 1)2. To show this, we first note that GA(2t) = ±GA(2(π/2 − t));
hence Lemma 5.11 implies that y ≤ 1

3 indeed. Concerning the value of |x |, we have
for t in the range as above (bearing in mind that A ≥ 6):

|GA(t)| ≤ 1

A sin(t)
≤ 1

A sin(π/2 − π/A)
= 1

A cos(π/A)

≤ 1

6 cos(π/6)
= 0.19 . . . <

1

5
,

since A 
→ A · cos(π/A) is strictly increasing for A ≥ 6.
Finally, we take care of the case A ≥ 4, whether A is even or odd, and the remaining

range

t ∈
[π

A
,
π

2
− π

A

]
, (54)

and (x, y) = (GA(t),GA(2t)). Noting that sin(t) ≥ 2
π
t everywhere on [0, π

2 ], we
find that for t ∈ [ 2πA , π

2 ],

|GA(t)| ≤ 1

A sin(t)
≤ π

2

1

A · 2π/A
= 1

4
.

Hence (under the assumption (54) on t), if t > 2π
A , |x | = |GA(t)| ≤ 1

4 , and (using the
natural symmetry GA(t) = ±GA(π − t)), y ≤ |y| = |GA(2t)| ≤ 1

4 .
If both |x | ≤ 1

4 and y ≤ 1
4 , then y ≤ (2|x | − 1)2, as x 
→ (2x − 1)2 is decreasing

on [0, 1
2 ]. Hence we are left with taking care of the range t ∈ [π

A , 2π
A ], where we still

have y ≤ 1
4 , and we may assume x > 1

4 . Moreover, if t ∈ [ 3π2A , 2π
A ], 2At ∈ [3π, 4π ],

so that y = GA(2t) ≤ 0, hence it is enough to prove the statement for t ∈ [π
A , 3π

2A ].
Now, recall that by Lemma 5.10 the function t 
→ sin t

t is decreasing on [0, π ], so
that, bearing in mind that A ≥ 4,

sin t

t
≥ sin(At/4)

At/4
,

and thus

|x | = |GA(t)| = | sin(At)|/(At)
| sin(t)|/t ≤ | sin(At)|/(At)

sin(At/4)/(At/4)

= | sin(At)|
4 sin(At/4)

= |G4(s)| =: |x ′|, (55)

where we rescale by letting s = At
4 ∈ [π

4 , 3π
8 ]. Arguing along the same lines we obtain

|y| = |GA(2t)| ≤ |G4(2s)| =: |y′| (56)
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(note that 2At/4 = At/2 < π , so that Lemma 5.10 is valid in this range).
Since

G4(s) = sin(4s)

4 sin(s)
= cos(s) cos(2s) = G2(s) · G2(2s),

we have that

(x ′, y′) = (G4(s),G4(2s)) = (G2(s),G2(2s)) · (G2(2s),G2(4s)),

is a product of two attainable points, and moreover, since s ∈ [π
4 , 3π

8 ], G2(2s) =
cos(2s) ≤ 0 (and alsoG2(4s) ≤ 0). That means that (x ′, y′) is “mixed sign attainable”
(cf. Definition 5.3), and hence Lemma 5.4 implies that y′ ≤ (2|x ′| − 1)2. Finally,
bearing in mind (55) and (56), as well as x 
→ (2x − 1)2 decreasing on [0, 1

2 ], we
have

y ≤ |y′| ≤ (2x ′ − 1)2 ≤ (2x − 1)2.

��

Appendix 2: Proof of auxiliary technical lemmas

Proof of Lemma 6.8 First, byusing some simple trigonometric identities (in particular,
that sin(π/2 − t) = cos(t)), we may re-parametrize ηA(t) as

ηA(t) = (x(t), y(t)) =
(
log

(
A
cos(At)

A cos(t)

)
, log

(
cos(At)

cos(t)
· sin(At)
A sin(t)

))

=
(
log cos(At) − log(cos(t)),

× log(cos(At)) − log(cos(t)) + log(sin(At)) − log(A sin(t))

)
,

for t ∈ [0, π
2A ]. By taking the derivatives, it is easy to see that both x(t) and y(t) are

strictly decreasing, thus, by the inverse function theorem, the curve (x(t), y(t)) can
be re-parametrized as (x, hA(x)) with hA : (−∞, 0] → R real analytic and strictly
increasing. Hence to prove that ηA is convex (or equivalently, that hA is convex), it is
sufficient to show that the slope

dy

dx
= y′(t)

x ′(t)
= 1 + (log(sin(At)) − log(A sin t))′

(log(cos(At)) − log(cos t))′

is decreasing on (0, π
2A ), which in turn is equivalent to the function

t 
→ (log(sin(At)) − log(sin t))′

(log(cos(At)) − log(cos t))′
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being decreasing on the same domain. We rescale by setting s = At and let α := 1
A ∈

(0, 1
3 ], g(s) := − log(sin(s)), f (s) := − log(cos(s)); we are then to prove that

s 
→ (g(s) − g(αs))′

( f (s) − f (αs))′

is decreasing on (0, π
2 ).

Recall the product expansion formulas

sin(x) = x
∞∏

k=1

(
1 − x2

k2π2

)
, cos(x) =

∞∏

k=1

(
1 − 4x2

(2k − 1)2π2

)

of the sine and cosine respectively, and the Taylor series expansion − log(1 − x) =∑∞
k=1

xk
k . Under the above notation we have

f (s) =
∞∑

i=1

ai s
2i , h(s) := g(s) + log(s) =

∞∑

j=1

b j s
2 j ,

with

ai = 22iζ ∗(2i)
iπ2i > 0; b j = ζ(2 j)

jπ2 j > 0,

where ζ is the usual Riemann Zeta function, and ζ ∗(r) := ∑∞
k=1

1
(2k−1)r , for r > 1.

We then have

F(s) := f (s) − f (αs) =
∞∑

i=1

ai (1 − α2i )s2i ,

and

G(s) := g(s) + log(s) − (g(αs) + log(αs)) = g(s) − g(αs) − log(α)

=
∞∑

j=1

b j (1 − α2 j )s2 j − log(α).

Further, since (g(s) − g(αs))′ = G ′(s) and ( f (s) − f (αs))′ = F ′(s) it is enough to
prove that

G ′′(s)F ′(s) − G ′(s)F ′′(s) < 0

on s ∈ (0, π
2 ); note thatG ′′ · F ′ −G ′ · F ′′ is defined and analytic on the interval (0, π

2 ).
Now, we have
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G ′′(s)F ′(s) =
∞∑

j=1

b j · 2 j (2 j − 1)(1 − α2 j )s2 j−2 ·
∞∑

i=1

ai · 2i(1 − α2i )s2i−1

= 4(1 − α2)2a1b1s +
∞∑

k=1

cks
2k+1,

and

G ′(s)F ′′(s) =
∞∑

j=1

b j · 2 j (1 − α2 j )s2 j−1 ·
∞∑

i=1

ai · 2i(2i − 1)(1 − α2i )s2i−2

= 4(1 − α2)2a1b1s +
∞∑

k=1

dks
2k+1,

and similarly

h′′(s) f ′(s) = 1

3
s +

∞∑

k=1

γks
2k+1

and

h′(s) f ′′(s) = 1

3
s +

∞∑

k=1

δks
2k+1,

where for k ≥ 1 we have 0 < ck < γk , and (since ai , b j ≥ 0 together with α ≤ 1/3)

dk ≥ (1 − α2)2δk >
3

4
δk > 0

(say).
Hence

G ′′(s)F ′(s) − 4(1 − α2)2a1b1s <

(
h′′(s) f ′(s) − 1

3
s

)
(57)

and

G ′(s)F ′′(s) − 4(1 − α2)2a1b1s >
3

4

(
h′(s) f ′′(s) − 1

3
s

)
. (58)

In a moment we are going to show that the inequality

K (s) := h′(s) f ′′(s) − s
3

h′′(s) f ′(s) − s
3

≥ 2 (59)

holds for s ∈ (0, π
2 ). Assuming (59), use (57) and (58) to finally obtain (note that

γk > 0 for all k and hence h′′(s) f ′(s) − s/3 > 0 for s ∈ (0, π/2)) that
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G ′′(s)F ′(s) − G ′(s)F ′′(s) <

(
h′′(s) f ′(s) − 1

3
s

)
− 3

4

(
h′(s) f ′′(s) − 1

3
s

)

< −1

2

(
h′′(s) f ′(s) − 1

3
s

)
< 0.

Now we turn to showing (59). We may compute explicitly K (s) to be

K (s) = −s
(
cos(s)2 · sin(s) · s2 + 3 · cos(s) · s − 3 · sin(s))

cos(s) · (− cos(s) · sin(s) · s3 + 3 · cos(s)2 + 3 · s2 − 3
) ,

with both numerator and denominator non-negative; hence (59) is equivalent to

q(s) := −s(cos(s)2 · sin(s) · s2 + 3 · cos(s) · s − 3 · sin(s))
−2 cos(s)

(
− cos(s) · sin(s) · s3 + 3 · cos(s)2 + 3 · s2 − 3

)
≥ 0,

and we may simplify

q(s) = s3 cos(s)2 sin(s) − 9s2 cos(s) + 3s sin(s) + 6 cos(s) sin(s)2 (60)

That q(s) ≥ 0 on
[
0, π

2

]
is the content of Lemma 9.1. ��

Lemma 9.1 The function q(s), defined by (60), satisfies q(s) ≥ 0 on s ∈ [0, π
2

]
.

Proof of Lemma 6.8 The result of the lemma is evident fromplottingq(s)numerically,
but a formal argument can be given along the following lines. We have

q(s) = s3

2
cos(s) sin(2s) − 9s2 cos(s) + 3s sin(s) + 3 sin(2s) sin(s)

= s3

4
(sin(3s) + sin(s)) − 9s2 cos(s) + 3s sin(s)

+3

2
(cos(s) − cos(3s))

thus we may Taylor expand q around s = 0 (we caution the reader that dk is not the
same as in the proof of the previous Lemma):

q(s) =
∞∑

k=4

dks
2k, (61)

where

dk = (−1)k
(

9

(2k − 2)! + 32k−3 + 1

4 · (2k − 3)!
)

+(−1)k+1
(
32k+1 − 3

2 · (2k)! + 3

(2k − 1)!
)

(62)
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in particular d4 = 29
105 , d5 = − 797

9450 . The general formula (62) clearly implies that as

k → ∞, dk ∼ (−1)k 32k−3

4(2k−3)! , and moreover, a crude estimate (using that |(32k+1 −
3)/(2 · 2k(2k − 1)(2k − 2))| < 32k−3 · 34/(16(k − 1)3) and |9/(2k − 2) − 3/((2k −
1)(2k − 2))| < 9/(2k − 2)) shows that for k ≥ 4,

dk = (−1)k
32k−3

4(2k − 3)!
(
1 + θ

(
1

32k−7(2k − 2)
+ 1

32k−3 + 21

(k − 1)3

))
,

where4 |θ | ≤ 1. For k ≥ 6 we then have

dk = (−1)k
32k−3

4(2k − 3)!
(
1 + 1

5
θ

)
; (63)

it is evident that the signs of dk are alternating.
Now separate the summands of (61) corresponding to k ≤ 5 from the rest; the

remaining summands are united into pairs, i.e. write

q(s) = s8q0(s) +
∞∑

r=3

(
d2r s

4r + d2r+1s
4r+2

)
, (64)

where

q0(s) = d4 + d5s
2 = 29

105
− 797

9450
s2 ≥ 0

on [0, π
2 ], using the explicit Taylor coefficients mentioned above.

For the remaining terms, note that by the above, for r ≥ 3 we have d2r > 0 and
d2r+1 < 0, and upon employing (63) with k = 2r and k = 2r + 1, we obtain

|d2r+1| <
6

5

34r−1

4(4r − 1)! <
6

5
· 9 · 1

(4r − 2)2
34r−3

4(4r − 3)!
≤ 6

5
· 9 · 1

(4r − 2)2
· 5
4
|d2r | < 0.2|d2r |.

Hence each of the summands in (64), for s ∈ [0, π
2 ], satisfies:

d2r s
4r + d2r+1s

4r+2 > d2r s
4r − 0.2d2r s

4r+2 ≥ 0

as 0.2
(

π
2

)2
< 1. Finally q(s) ≥ 0, since all the summands in (64) are nonnegative. ��

Proof of Lemma 6.5 By Lemma 6.8 (note that the proof of Lemma 6.8 does not use
Lemma 6.5) we may re-parametrize ηA as (x, hA(x)) on x ∈ (−∞, 0]. Since both

4 In writing this way we follow Vinogradov: the exact value of θ might change, but the inequality |θ | ≤ 1
always holds.
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components ηA;1 and ηA;2 are strictly increasing, it follows that h′
A(x) > 0 every-

where, and h′
A(x) ≤ 4

3 follows from the convexity of hA, and the explicit computation
h′
A(0) = 4

3 . ��
Proof of Corollary 6.6 By the multiplicativity, it is sufficient to prove the statement
for a single Ai , i.e. that if

(x, y) = (GA(t),GA(2t))

with A odd and t ∈ [π
2 − π

2A , π
2 ], then

y ≥ (Ax)4/3.

As we may assume with no loss of generality that x > 0 (note that y > 0 by the
assumption of ti being near π/2) the latter is equivalent to

log y ≥ 4

3
log(Ax). (65)

Note that, with ηA defined as in Lemma 6.5, ηA(t) = (z, hA(z)) = (log(Ax), log(y)),
with hA analytic convex, hA(0) = 0, and a straightforward computation shows that
h′
A(0) = 4

3 . By the convexity of ηA then the curve lies above its tangent line at the
origin, i.e. (65) follows. ��
Proof of Lemma 6.7 The claimed inequality follows from the identity

(2x21 − 1)(2x22 − 1) − (2(x1x2)
2 − 1) = 2(x21 − 1)(x22 − 1).

��
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