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Abstract Markov’s inequality is a certain estimate for the norm of the derivative of
a polynomial in terms of the degree and the norm of this polynomial. It has many
interesting applications in approximation theory, constructive function theory and in
analysis (for instance, to Sobolev inequalities or Whitney-type extension problems).
One of the purposes of this paper is to give a solution to an old problem, studied
among others by Baran and Pleśniak, and concerning the invariance of Markov’s
inequality under polynomialmappings (polynomial images).We also address the issue
of preservingMarkov’s inequality when taking polynomial preimages. Lastly, we give
a sufficient condition for a subset of a Markov set to be a Markov set.

1 Introduction

Throughout the paper, K = R or C and R
N will be treated as a subspace of CN . If

∅ �= A ⊂ C
N and f : A −→ C

N ′
, then we put ‖ f ‖A := supz∈A | f (z)|, where | |

denotes the maximum norm. Moreover, N := {1, 2, 3, . . .} and N0 := {0} ∪ N. We
will also use the following notation: for each set ∅ �= A ⊂ C

N and each λ > 0, we
put

A(λ) :=
{
z ∈ C

N : dist(z, A) ≤ λ
}

, Aλ :=
{
z ∈ C

N : dist(z, A) < λ
}

.
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58 R. Pierzchała

One of the most important polynomial inequalities is the following Markov’s
inequality (cf. [42]).

Theorem 1.1 (Markov) If P is a polynomial of one variable, then

‖P ′‖[−1, 1] ≤ (deg P)2‖P‖[−1, 1].

Moreover, this inequality is optimal, because for the Chebyshev polynomials Tn (n ∈
N0), we have T ′

n(1) = n2 and ‖Tn‖[−1, 1] = 1.

Recall that

Tn(u) = 1

2

[(
u +

√
u2 − 1

)n + (
u −

√
u2 − 1

)n]
.

In fact, the above inequality for quadratic polynomialswas discoveredby the celebrated
chemist Mendeleev. Markov’s inequality and its various generalizations found many
applications in approximation theory, analysis, constructive function theory, but also
in other branches of science (for example, in physics or chemistry). There is now such
extensive literature onMarkov type inequalities that it is beyond the scope of this paper
to give a complete bibliography. Let us mention only certain works which are most
closely related to our paper (with emphasis on those dealing with generalizations of
Markov’s inequality on sets admitting cusps), for example [1–7,11–31,35,36,39,43,
44,46,48,50,51,57,58]. We should stress here that the present paper owes a great debt
particularly to Pawłucki and Pleśniak’s work, because in [43] they laid the foundations
for the theory of polynomial inequalities on “tame” (for example, semialgebraic) sets
with cusps.

From the point of view of applications, it is important that the constant (deg P)2

in Markov’s inequality grows not too fast (that is, polynomially) with respect to the
degree of the polynomial P . This is the reason why the concept of a Markov set is
widely investigated.

Definition 1.2 We say that a compact set ∅ �= E ⊂ C
N satisfies Markov’s inequal-

ity (or: is a Markov set) if there exist ε,C > 0 such that, for each polynomial
P ∈ C[z1, . . . , zN ] and each α = (α1, . . . , αN ) ∈ N

N
0 ,

‖DαP‖E ≤ (
C(deg P)ε

)|α|‖P‖E ,

where DαP := ∂ |α|P
∂zα11 . . . ∂zαN

N

and |α| := α1 + · · · + αN .

Clearly, by iteration, it is enough to consider in the above definition multi–indices
α with |α| = 1. We begin by giving some examples.

• Obviously, if ∅ �= E1, . . . , Ep ⊂ C
N are compact sets satisfyingMarkov’s inequal-

ity, then the union E1 ∪ · · · ∪ Ep satisfies Markov’s inequality as well. In general,
this is no longer so for the intersection E1 ∩ · · · ∩ Ep.
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Markov’s inequality and polynomial mappings 59

• It is straightforward to show that the Cartesian product of Markov sets is a Markov
set. More precisely, if ∅ �= E j ⊂ C

N j (N j ∈ N) is a compact set satisfying
Definition 1.2 with ε j ,C j > 0 ( j = 1, . . . , p), then E1 × · · · × Ep ⊂ C

N1+···+Np

satisfies this definition with ε := max{ε1, . . . , εp} and C := max{C1, . . . ,Cp}.
• In Sect. 5, we give a sufficient condition for a subset of a Markov set to be aMarkov
set—see Theorem 5.1 and Corollary 5.2.

• Let ∅ �= E ⊂ C be a compact set such that, for each connected component K of
E , we have diam(K ) ≥ η with some η > 0 being independent of K . Then E is a
Markov set—see Lemma 3.1 in [56] and Sect. 3.

• By Theorem 3.1 in [43], each compact UPC set satisfiesMarkov’s inequality. Recall
that a set E ⊂ R

N is UPC (uniformly polynomially cuspidal) if there exist υ, θ > 0
and d∈N such that, for each x ∈E , we can choose a polynomial map Sx : R−→R

N

with deg Sx ≤ d satisfying the following conditions:
– Sx (0) = x ,
– dist

(
Sx (t), R

N\E) ≥ θ tυ for each t ∈ [0, 1].
Note that a UPC set is in particular fat, that is E = IntE . In [43,44,46], some
large classes of UPC sets (and hence Markov sets) are given. These classes include
for example all compact, fat and semialgebraic subsets of RN (see Sect. 2 for the
definition).

The following result is due to Baran and Pleśniak (cf. [3]).

Theorem 1.3 (Baran, Pleśniak) Let E ⊂ R
N be a compact UPC set. Suppose that

h : RN −→ R
N is a polynomial map such that Jac h(ζ ) �= 0 for each ζ ∈ IntE. Then

h(E) satisfies Markov’s inequality.

Since each compact UPC set satisfies Markov’s inequality, the Baran–Pleśniak
theorem says that, under a certain assumption on a Markov set E ⊂ R

N and under
a certain assumption on a polynomial map h : RN −→ R

N , the image h(E) also
satisfies Markov’s inequality.

Our aim is among others to show that in Theorem 1.3:

• Very strong UPC assumption on the Markov set E is superfluous.
• The assumption that Jac h(ζ ) �= 0 for each ζ ∈ IntE can be replaced by much
weaker assumption that h : RN −→ R

N ′
and

rank h := max
{
rank dζ h : ζ ∈ R

N
}

= N ′.

Moreover, the latter assumption is the weakest possible condition on the polynomial
map h that must be assumed (see Lemma 2.3).

More precisely, we will prove the following result in Sect. 2.

Theorem 1.4 Suppose that ∅ �= E ⊂ K
N is a compact set satisfying Markov’s

inequality and h : KN −→ K
N ′

is a polynomial map such that

rank h := max
{
rank dζ h : ζ ∈ K

N
}

= N ′

(N , N ′ ∈ N). Then h(E) also satisfies Markov’s inequality.
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60 R. Pierzchała

It is worth noting that there is a holomorphic version of Theorem 1.3 in [3], which
reads as follows. Suppose that E ⊂ C

N is a compact, polynomially convex set satisfy-
ing Markov’s inequality. If h : U −→ C

N is a holomorphic map in a neighbourhood
U of E such that h(E) is nonpluripolar and Jac h(ζ ) �= 0 for each ζ ∈ E , then h(E)

also satisfies Markov’s inequality. (The notion of a polynomially convex set and the
notion of a nonpluripolar set are defined in Sect. 3.)

In connection with Theorem 1.4, the following question naturally arises.

Question 1.5 Suppose that ∅ �= E ⊂ K
N ′

is a compact set satisfying Markov’s
inequality and g : K

N −→ K
N ′

is a polynomial map (N , N ′ ∈ N). Under what
conditions is it true that g−1(E) satisfies Markov’s inequality?

The precise answer is not known to us. However, we will address this issue in
Sects. 3 and 4. In particular, we will give some specific examples to show a variety of
situations that we encounter exploring this problem. Eventually, we will give a result
(Theorem 3.8) being a partial answer to Question 1.5.

2 A proof of Theorem 1.4

We will need the notion of a semialgebraic set and the notion of a semialgebraic
map.

Definition 2.1 A subset of RN is said to be semialgebraic if it is a finite union of sets
of the form

{
x ∈ R

N : ξ(x) = 0, ξ1(x) > 0, . . . , ξq(x) > 0
}

,

where ξ, ξ1, . . . , ξq ∈ R[x1, . . . , xN ] (cf. [9,59]).

Definition 2.2 A map f : A −→ R
N ′
, where A ⊂ R

N , is said to be semialgebraic if
its graph is a semialgebraic subset of RN+N ′

.

All semialgebraic sets constitute the simplest polynomially bounded o-minimal
structure (see [59,60] for the definition and properties of o-minimal structures). How-
ever, the knowledge of o-minimal structures is not necessary to follow the present
paper.Whenever we say “a set (amap) definable in a polynomially bounded o-minimal
structure”, the reader who is not familiar with the basic notions of o-minimality can
just think of a semialgebraic set (map).

Before going to the proof of Theorem 1.4, it is worth noting that the assumption
that rank h = N ′ is necessary in this theorem, as is seen by the following lemma.

Lemma 2.3 Suppose that h : KN −→ K
N ′

is a polynomial map such that rank h <

N ′ (N , N ′ ∈ N). Then for each compact set ∅ �= E ⊂ K
N the image h(E) does not

satisfy Markov’s inequality.

Proof By Sard’s theorem, the set h(KN ) has Lebesgue measure zero.
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Markov’s inequality and polynomial mappings 61

Case 1: K = R. By the Tarski–Seidenberg theorem (cf. [8,9,40]), the set h(RN )

is semialgebraic. Therefore h(RN ) = ⋃s
j=1 Hj , where s ∈ N and

Hj :=
{
w ∈ R

N ′ : Pj (w) = 0, P1, j (w) > 0, . . . , Pq j , j (w) > 0
}

with some Pj , Pi, j ∈ R[w1, . . . , wN ′ ]. We can clearly assume that each Hj is non-
empty. Put P := P1 · . . . · Ps . Note that P �≡ 01 and P|h(RN ) ≡ 0. Take a point

a ∈ h(E). For each w ∈ R
N ′
, we have

P(w) =
∑

α∈NN ′
0

DαP(a)

α! (w − a)α

and therefore DαP(a) �= 0 for some α ∈ N
N ′
0 . Since ‖P‖h(E) = 0, it follows that

h(E) does not satisfy Markov’s inequality.
Case 2: K = C. By Chevalley’s theorem, the set h(CN ) is constructible (see [41,

pp. 393–396], for the definition and details). Moreover, h(CN ) �= C
N ′2 and h(CN )

is a complex algebraic set (see [41, p. 394]), that is the set of common zeros of some
collection of complex polynomials. In particular, there exists P ∈ C[w1, . . . , wN ′ ]
such that P �≡ 0 and P|h(CN ) ≡ 0. Arguing as in Case 1 we see that h(E) does not
satisfy Markov’s inequality.3 ��

Wewill try to keep the exposition as self-contained as possible. It should be stressed,
however, that our proof of Theorem 1.4 is influenced by ideas from the original proof
of Theorem 1.3 by Baran and Pleśniak.

Proof of Theorem 1.4. Clearly, it suffices to consider the case K = C. Put

χ : R2N � (u1, v1, . . . , uN , vN ) �−→ (u1 + iv1, . . . , uN + ivN ) ∈ C
N .

Take an open and bounded set I ⊂ C
N such that E ⊂ I and χ−1(I ) is semialgebraic

(for example, a sufficiently large open polydisk).
Put A := I\T , where

T :=
{
ζ ∈ C

N : rank dζ h < rank h
}

=
{
ζ ∈ C

N : rank dζ h < N ′} .

Since the set T is (complex) algebraic and nowhere dense (see [41, p. 158]), it follows
that χ−1(A) ⊂ R

2N is open, semialgebraic and χ−1(A) = χ−1(I ). Consequently,
by Corollary 6.6 in [43], χ−1(A) is UPC. Therefore there exist υ, θ > 0 and d ∈ N

1 Because otherwise ∅ �= Hj ⊂ Int h(RN ) for some j ≤ s.
2 We have dim h(CN ) = dim h(CN ) < N ′—see [41, pp. 393–394]. The complex dimension of a set
A ⊂ C

n (dim A) is defined in Sect. 4.
3 In fact, we could first consider the caseK = C and then notice that the real case follows from the complex
case.
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62 R. Pierzchała

such that, for each x ∈ χ−1(A), we can choose a polynomial map Sx : R −→ R
2N

satisfying the following conditions:

(i) deg Sx ≤ d,
(ii) Sx (0) = x ,
(iii) dist

(
Sx (t), R

2N\χ−1(A)
) ≥ θ tυ for each t ∈ [0, 1].

By Lemma 3.1 in [44], the maps G0,G1, . . . ,Gd : χ−1(A) −→ R
2N , defined by

Sx (t) = G0(x) + G1(x)t + · · · + Gd(x)t
d ,

are bounded. Thus there exists C1 > 0 such that, for each z ∈ A and t ∈ [0, 1],

|Pz(t) − z| ≤ C1t, (1)

where
Pz(t) := χ

(
Sχ−1(z)(t)

)
. (2)

(Use the fact that Sχ−1(z)(0) = χ−1(z).)

By [41, p. 243], there exist C2, κ > 0 such that, for each ζ ∈ I ,

max

{∣∣∣∣∣
∂(h1, . . . , hN ′)

∂(z j1, . . . , z jN ′ )
(ζ )

∣∣∣∣∣ : 1≤ j1 < · · · < jN ′ ≤N

}
≥C2

(
dist(ζ, CN\A)

)κ

.

(3)
(Use the fact that T ⊂ C

N\A and consider two cases: T = ∅ and T �= ∅.)
Take ε,C > 0 such that, for each polynomial P ∈ C[z1, . . . , zN ] and eachα ∈ N

N
0 ,

‖DαP‖E ≤ (
C(deg P)ε

)|α|‖P‖E (4)

(see Definition 1.2). Put

σ := max

{
1

2
, κυ

}
,

C3 := max

{∥∥∥∥
∂hν

∂z j

∥∥∥∥
A

: 1 ≤ ν ≤ N ′, 1 ≤ j ≤ N

}
,

C4 := (N ′)
N ′
2
CN ′−1
3 Ckε

C2
,

C5 := 4σ

θκ
C4 exp(NCC1k

ε),

where k := deg h ≥ 1.
Letw1, . . . , wN ′ denote the variables inCN ′

.Wewill show that, for eachpolynomial
Q ∈ C[w1, . . . , wN ′ ] with deg Q ≤ n (n ∈ N), each l ∈ {1, . . . , N ′} and each a ∈ E ,
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Markov’s inequality and polynomial mappings 63

∣∣∣∣
∂Q

∂wl
(h(a))

∣∣∣∣ ≤ C5n
ε(σ+1)(dk(n − 1) + 1

)2σ ‖Q‖h(E). (5)

Obviously, the above estimate proves the required assertion that h(E) satisfies
Markov’s inequality.

Fix therefore Q, l, a as above. First, we will show that, for each ζ ∈ C
N and each

j ∈ {1, . . . , N },
∣∣∣∣
∂(Q ◦ h)

∂z j
(ζ )

∣∣∣∣ ≤ C(kn)ε exp
(
NC(kn)ε|ζ − a|)‖Q‖h(E). (6)

By Taylor’s formula and (4),

∣∣∣∣
∂(Q ◦ h)

∂z j
(ζ )

∣∣∣∣ =

∣∣∣∣∣∣∣∣

∑

α∈NN
0

Dα

(
∂(Q ◦ h)

∂z j

)
(a)

α! (ζ − a)α

∣∣∣∣∣∣∣∣

≤
∑

α∈NN
0

(
C(kn)ε

)|α|+1‖Q ◦ h‖E
α! |ζ − a||α|

=
∑

α∈NN
0

C(kn)ε

(
C(kn)ε|ζ − a|)|α|

α! ‖Q ◦ h‖E

= C(kn)ε exp
(
NC(kn)ε|ζ − a|)‖Q‖h(E),

which completes the proof of (6).
We will show moreover that, for each ζ ∈ A,

∣∣∣∣
∂Q

∂wl
(h(ζ ))

∣∣∣∣ ≤ C4n
ε
exp

(
NC(kn)ε|ζ − a|)(

dist(ζ, CN\A)
)κ ‖Q‖h(E). (7)

To this end, take the integers j1 = j1(ζ ), . . . , jN ′ = jN ′(ζ ) such that 1 ≤ j1 < · · · <

jN ′ ≤ N and ∣∣∣∣∣
∂(h1, . . . , hN ′)

∂(z j1, . . . , z jN ′ )
(ζ )

∣∣∣∣∣ ≥ C2

(
dist(ζ, CN\A)

)κ

(8)

(see (3)). Consider the system of equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂(Q ◦ h)

∂z j1
(ζ ) = ∂Q

∂w1
(h(ζ )) · ∂h1

∂z j1
(ζ ) + · · · + ∂Q

∂wN ′
(h(ζ )) · ∂hN ′

∂z j1
(ζ )

...
∂(Q ◦ h)

∂z jN ′
(ζ ) = ∂Q

∂w1
(h(ζ )) · ∂h1

∂z jN ′
(ζ ) + · · · + ∂Q

∂wN ′
(h(ζ )) · ∂hN ′

∂z jN ′
(ζ ).
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64 R. Pierzchała

Now it is enough to apply Cramer’s rule, Hadamard’s inequality4 and the estimates
(6) and (8).

For each t ∈ [0, 1], we have by (iii) and (2)

dist
(
Pa(t), C

N\A) ≥ θ tυ.

Combining this with (1) and (7), we get for each t ∈ (0, 1] the following estimate:

∣∣∣∣
∂Q

∂wl

(
h(Pa(t))

)∣∣∣∣ ≤ C4

θκ tκυ
nε exp

(
NCC1(kn)εt

)‖Q‖h(E). (9)

Note that
∂Q

∂wl
◦ h ◦ Pa is the restriction to R of a polynomial ϒ : C −→ C of

degree ≤ dk(n − 1). Put δ := n−ε and

ϕ : [−1, 1] � τ �−→ δ(τ + 1)

2
∈ [0, δ].

By Schur’s inequality,5

‖ϒ ◦ ϕ‖[−1, 1] ≤ (
dk(n − 1) + 1

)∥∥√1 − τ 2ϒ(ϕ(τ))
∥∥[−1, 1]. (10)

4 If B = [bi j ] is a q × q matrix of complex numbers, then

| det B|2 ≤
q∏

i=1

q∑
j=1

|bi j |2.

5 Schur’s inequality: For each polynomial R of one variable,

‖R‖[−1, 1] ≤ (deg R + 1)
∥∥√1 − τ2R(τ )

∥∥[−1, 1] (♦)

—see [10, p. 233], where this inequality is stated for real polynomials. If however R ∈ C[τ ] and R =
R1 + i R2 with R1, R2 ∈ R[τ ], then for τ0 ∈ [−1, 1] such that ‖R‖[−1, 1] = |R(τ0)|, we have

|R(τ0)|2 ≤ ‖R1(τ0)R1 + R2(τ0)R2‖[−1, 1]
≤ (deg R + 1)

∥∥√1 − τ2
(
R1(τ0)R1(τ ) + R2(τ0)R2(τ )

)∥∥[−1, 1]
≤ |R(τ0)| (deg R + 1)

∥∥√1 − τ2R(τ )
∥∥[−1, 1],

which proves (♦).

123
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Therefore either

∣∣∣∣
∂Q

∂wl
(h(a))

∣∣∣∣ = 0, or

∣∣∣∣
∂Q

∂wl
(h(a))

∣∣∣∣ > 0 and then

∣∣∣∣
∂Q

∂wl
(h(a))

∣∣∣∣ =

by (ii) and (2)︷ ︸︸ ︷∣∣∣∣
∂Q

∂wl

(
h(Pa(0))

)∣∣∣∣ = |ϒ(0)| ≤ ‖ϒ ◦ ϕ‖2σ[−1, 1]
‖ϒ‖2σ−1

[0, δ]

≤ 1

‖ϒ‖2σ−1
[0, δ]

by (10)︷ ︸︸ ︷(
dk(n − 1) + 1

)2σ∥∥√1 − τ 2ϒ(ϕ(τ))
∥∥2σ[−1, 1]

≤ 1

‖ϒ‖2σ−1
[0, δ]

(
dk(n − 1) + 1

)2σ (
4

δ

)σ ∥∥√ϕ(τ)ϒ(ϕ(τ))
∥∥2σ[−1, 1]

= 1

‖ϒ‖2σ−1
[0, δ]

(
dk(n − 1) + 1

)2σ (
4

δ

)σ

‖√tϒ(t)‖2σ[0, δ]

≤ (
dk(n − 1) + 1

)2σ (
4

δ

)σ

‖tσ ϒ(t)‖[0, δ]

≤ (
dk(n − 1) + 1

)2σ (
4

δ

)σ

by (9)︷ ︸︸ ︷
C4

θκ
nε exp

(
NCC1(kn)εδ

)‖Q‖h(E)

= C5n
ε(σ+1)(dk(n − 1) + 1

)2σ ‖Q‖h(E),

which establishes the estimate (5) and hence completes the proof of the theorem. ��

3 Markov’s inequality and polynomial preimages

In this section,wewill look atMarkov’s inequality from thepoint of viewof polynomial
preimages.

We begin by a brief discussion of another concept, called the HCP property, which
is related to Markov’s inequality. For a compact set ∅ �= E ⊂ C

N , the following
function

�E (z) := sup
{
|Q(z)|1/deg Q : Q ∈ C[z1, . . . , zN ], deg Q > 0 and ‖Q‖E ≤ 1

}

(z ∈ C
N ) is called the Siciak extremal function (cf. [34,37,38,49,54,55]). It is an

elementary check that �E ≥ 1 in C
N , �E ≡ 1 in E and �E ≤ �K provided that

∅ �= K ⊂ E and K is compact. However, except for some very special cases, no
explicit expression for �E is known.

We have a very simple formula (yet with nontrivial proof) connecting the function
�E with potential and pluripotential theory: log�E = VE , where

VE (z) := sup
{
φ(z) : φ ∈ L(CN ), φ ≤ 0 on E

}
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66 R. Pierzchała

and L(CN ) denotes the class of plurisubharmonic6 functions φ in C
N satisfying the

condition

sup
z∈CN

[
φ(z) − log(1 + |z|)] < ∞

(cf. Theorem 4.12 in [55] or Theorem 5.1.7 in [34]). The upper semicontinuous reg-
ularization V ∗

E of VE is often called the pluricomplex Green function, because for a
compact set E ⊂ C with positive logarithmic capacity V ∗

E is the Green function with
pole at infinity of the unbounded component of C\E .

If ∅ �= E ⊂ C
N is a compact set and �E is continuous at every point of E , then

�E is continuous in CN , in other words, the set E is L-regular (cf. Proposition 6.1 in
[55] or Corollary 5.1.4 in [34]).

Definition 3.1 We say that a compact set ∅ �= E ⊂ C
N has the HCP property if �E

is Hölder continuous in the following sense: there exist �,μ > 0 such that

�E (z) ≤ 1 + � (dist(z, E))μ as z ∈ E(1).

We will also need the notion of a pluripolar set.

Definition 3.2 (see [34]) A set A ⊂ C
N is said to be pluripolar if one of the following

two equivalent conditions holds:

(i) For each point a ∈ A, there exists an open neighbourhood U of a such that
A ∩U ⊂ {z ∈ U : u(z) = −∞} for some plurisubharmonic function u : U −→
[−∞,+∞).

(ii) There exists a plurisubharmonic function ψ in C
N such that A ⊂ {z ∈ C

N :
ψ(z) = −∞}.

Let us add that the implication (i) �⇒ (ii) is the content of Josefson’s theorem
(saying that every locally pluripolar set inCN is globally pluripolar).Wehavemoreover
the following characterization of pluripolar sets in terms of the pluricomplex Green
function: for each set ∅ �= A ⊂ C

N ,

A is pluripolar ⇐⇒ V ∗
A ≡ +∞ ⇐⇒ V ∗

A /∈ L(CN ) (11)

(cf. Corollary 3.9 and Theorem 3.10 in [55]). Recall also that pluripolar sets have
Lebesguemeasure zero (cf.Corollary 2.9.10 in [34]) and countable unions of pluripolar
sets are pluripolar (cf. Corollary 4.7.7 in [34]).

There is a close relation between Markov’s inequality and HCP property. Namely,

• HCP �⇒ Markov’s inequality (see [43]).
• The validity of the reverse implication still remains open (see [48], where this
problem is posed by Pleśniak).

6 See [34] for the definition and basic properties of plurisubharmonic functions.
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Furthermore, it is worth noting that, for each compact subset of RN , UPC �⇒ HCP
(see [43]), yet the implication cannot be reversed.

It should come as no surprise that the inverse image of a Markov set under a
polynomial map need not be a Markov set, even if it is a compact set. Consider for
example the map

h : R � w �−→ w2 ∈ R

and the set E := [−1, 0]. Then h−1(E) = {0} does not satisfy Markov’s inequality.
Clearly, the inverse image of an interval under any polynomial map h : R −→ R

is a finite union of intervals (with infinite endpoints allowed) and points. Markov’s
inequality for sets consisting of finitely many intervals was deeply investigated by
Totik in [57].

The situation is quite different if we consider the complex case (K = C). But also
in this case the claim that the polynomial preimage of a Markov set is a Markov set is
still far from being valid.

Example 3.3 Consider the polynomial map

g : C2 � (w1, w2) �−→ (w1, w1w2) ∈ C
2

and the set E := � ∪ {(α, β)}, where � := {
z ∈ C

2 : |z1| = |z2| = 1
}
, α, β ∈ C and

0 < |α| < |β| ≤ 1. Recall that:

• The Shilov boundary of the open polydisc DN := {z ∈ C
N : |z| < 1}7 is its

skeleton, that is the set {z ∈ C
N : |z1| = · · · = |zN | = 1} (see [53, p. 22]).

• The closed polydisk DN satisfies Markov’s inequality. Indeed, for N = 1, this the
content of Bernstein’s theorem: for each complex polynomial Q of one variable,

‖Q′‖
D

≤ (deg Q) ‖Q‖
D
,

where D := D1 (see [10, p. 233]). For N > 1, it is enough to use the fact that the
Cartesian product of Markov sets is a Markov set (see Sect.1).

It follows that the set E satisfies Markov’s inequality. However, the set g−1(E) =
� ∪ {(α, β/α)} does not satisfy Markov’s inequality. Indeed, suppose otherwise and
take ε,C of Definition 1.2. Then, for polynomials �n ∈ C[w1, w2] (n ∈ N) defined
by �n(w1, w2) := (β − αw2)w

n
2 , we have

7 That is, a closed set S ⊂ ∂DN such that:
(i) for each continuous function f : DN −→ C, holomorphic in DN ,

‖ f ‖
DN

= ‖ f ‖S ,

(ii) any closed set S̃ ⊂ ∂DN satisfying (i) contains S.
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|α| (|β|/|α|)n =
∣∣∣∣
∂�n

∂w2
(α, β/α)

∣∣∣∣ ≤
∥∥∥∥
∂�n

∂w2

∥∥∥∥
g−1(E)

≤ C(n + 1)ε‖�n‖g−1(E)

= C(n + 1)ε‖�n‖� ≤ C(n + 1)ε(|α| + |β|),

which is impossible. ��
The situation described in the above example is particular, because the set g−1(E)

is not L-regular.8 This is no longer the case in the next example (Example 3.6).
It will be convenient to state beforehand, for easy reference, two results. The first

one gives a sufficient and necessary condition for a bounded set A ⊂ R
2 definable in

some polynomially bounded o-minimal structure to be UPC (cf. [44], Theorem B).

Theorem 3.4 Let A ⊂ R
2 be bounded and definable in some polynomially bounded

o-minimal structure (for example, semialgebraic). Then the following two statements
are equivalent:

• A is UPC.
• A is fat and, for each a ∈ A, ρ > 0 and any connected component S of the set
IntA ∩ B(a, ρ) such that a ∈ S, there is a polynomial arc γ : (0, 1) −→ S such
that lim

t→0
γ (t) = a, where B(a, ρ) = {x ∈ R

2 : |x − a| < ρ}.
The second result is a special case of the (semi)analytic accessibility criterion due

to Pleśniak (cf. [47]).9

Theorem 3.5 Let K ⊂ K
N be a compact set. Suppose that there exists a polynomial

mapping γ : K −→ K
N such that γ ((0, 1]) ⊂ IntK. Then K is L-regular at γ (0),

i.e., �K is continuous at γ (0).

Example 3.6 Suppose that a continuous function f : [0, R] −→ [0,+∞), where
R > 0, has the following properties:

• f > 0 in (0, R],
• lim

t→0

f (t)

tr
= 0 for each r > 0,

• there exists R0 ∈ (0, R] such that f is nondecreasing in [0, R0],
• there exists R1 ∈ [0, R0) such that f |[R1, R] is definable in a certain polynomi-

ally bounded o-minimal structure (for simplicity, f |[R1, R] can be thought of as a
semialgebraic map).

Consider the map

F : K2 � (w1, w2) �−→ (w1, w
2
2) ∈ K

2

8 For the polynomial Q(w1, w2) := w2, we have ‖Q‖� = 1 and |Q (α, β/α)| > 1. Consequently,
�� (α, β/α) > 1 and combining this with Corollary 5.2.5 in [34] we obtain

�∗
g−1(E)

(α, β/α) = �∗
� (α, β/α) ≥ �� (α, β/α) > 1 = �g−1(E) (α, β/α)

(recall that φ∗ denotes the upper semicontinuous regularization of φ). Since �∗
g−1(E)

(α, β/α) >

�g−1(E) (α, β/α), it follows that �g−1(E) is not continuous at the point (α, β/α).
9 An alternative proof can also be found in [45, Corollary 2.8]
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and the set

E := {
(x1, x2) ∈ [0, R] × R : −1 ≤ x2 ≤ f (x1)

} ⊂ K
2.

Note that F−1(E) is compact. We will show that:

• E satisfies Markov’s inequality,
• F−1(E) is L-regular,
• F−1(E) does not satisfy Markov’s inequality forK = R but does satisfy Markov’s

inequality for K = C.

To this end, put

E1 := {
(x1, x2) ∈ [0, R1] × R : 0 ≤ x2 ≤ f (x1)

}
,

E2 := {
(x1, x2) ∈ [R1, R] × R : 0 ≤ x2 ≤ f (x1)

} ∪ ([0, R] × [−1, 0]).

For each x = (x1, x2) ∈ E1, denote by Hx the rectangle with the vertices at (x1, x2),
(R0, x2), (x1,−1), (R0,−1). Moreover, define Sx : R −→ R

2 by

Sx (t) := x + t

(
R0 − x1

2
,
−x2 − 1

2

)
.

Note that [0, 1] � t �−→ Sx (t) ∈ R
2 is a parametrization of the line segment linking

the point x and the midpoint of the diagonals of Hx . Since Hx ⊂ E , it follows that,
for each t ∈ [0, 1],

dist
(
Sx (t), R

2\E) ≥ dist
(
Sx (t), R

2\Hx
) = min

{
(R0 − x1)t

2
,
(x2 + 1)t

2

}

≥ min{R0 − R1, 1}
2

t.

On the other hand, by Theorem 3.4, the set E2 is UPC.10 Therefore, there exist
υ, θ > 0 and d ∈ N such that, for each x ∈ E2, we can choose a polynomial map
S̃x : R −→ R

2 with deg S̃x ≤ d satisfying the following conditions:

• S̃x (0) = x ,
• dist

(
S̃x (t), R

2\E2
) ≥ θ tυ for each t ∈ [0, 1].

Note that, for each x ∈ E2 and each t ∈ [0, 1],

dist
(
S̃x (t), R

2\E) ≥ dist
(
S̃x (t), R

2\E2
) ≥ θ tυ.

10 The assumption that f |[R1, R] is definable in a certain polynomially bounded o-minimal structure is used
here to guarantee definability of E2 in a polynomially bounded o-minimal structure and to guarantee the
existence of a polynomial arc γ : (0, 1) −→ IntE such that lim

t→0
γ (t) = (R, f (R)). An explicit example

of such an arc is γ : (0, 1) � t �−→ (
R − (ηt)m , f (R) − ηt

) ∈ R
2, where η > 0 is sufficiently small

and m ∈ N is sufficiently large, which follows from the definition of a polynomially bounded o-minimal
structure.
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Upon combining the above estimates for the sets E1 and E2, it is straightforward to
show that E = E1 ∪ E2 is UPC and hence, by Theorem 3.1 in [43], is a Markov set.

Case 1: K = R. Note first that

F−1(E) =
{
(w1, w2) ∈ [0, R] × R : |w2| ≤ √

f (w1)
}

.

By Theorem 3.5, the set F−1(E) is L-regular.11 Suppose, to derive a contradiction,
that F−1(E) is a Markov set. In particular, there exist ε,C > 0 such that, for each
polynomial P ∈ C[w1, w2],

∥∥∥∥
∂P

∂w2

∥∥∥∥
F−1(E)

≤ C(deg P)ε‖P‖F−1(E). (12)

For each n ∈ N, put

Pn(w1, w2) := w2

(
1 − w1

R

)n
.

Moreover, take r > ε and set

Cr := sup
t∈(0, R]

√
f (t)

tr
< +∞.

Note that

‖Pn‖F−1(E) = max
t∈[0, R]

√
f (t)

(
1 − t

R

)n

≤ Cr max
t∈[0, R] t

r
(
1 − t

R

)n

= Cr

(
r R

r + n

)r ( n

r + n

)n

.

Combining this with (12), we get

1 =
∥∥∥∥

∂Pn
∂w2

∥∥∥∥
F−1(E)

≤ C(n + 1)εCr

(
r R

r + n

)r ( n

r + n

)n

,

which is impossible, because the right–hand side tends to zero as n → ∞.
Case 2: K = C. Note that, for each w ∈ C

2,

|w| ≥ 1 �⇒ |F(w)|
|w| ≥ 1.

11 The only problem here is to see that there exists a polynomial arc ϕ : (0, 1) −→ IntF−1(E) such
that lim

t→0
ϕ(t) = (

R,
√

f (R)
)
. However, this immediately follows from the assumption that f |[R1, R] is

definable in a certain polynomially bounded o-minimal structure.
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Therefore

lim inf|w|→+∞
|F(w)|

|w| > 0.

By Theorem 5.3.1 in [34], for each w ∈ C
2,

�F−1(E)(w) ≤ �E (F(w)). (13)

Since E is UPC, it has the HCP property: there exist M1, μ > 0 such that, for each
z ∈ E(1),

�E (z) ≤ 1 + M1 (dist(z, E))μ . (14)

Put

M2 := max
{
M1, sup

F(K )

�E − 1
}

< +∞,

where K := F−1(E)(1). By (14), for each z ∈ F(K ),

�E (z) ≤ 1 + M2 (dist(z, E))μ . (15)

Take M3 > 0 such that F |K is Lipschitz with the constant M3, that is

|F(w) − F(w′)| ≤ M3|w − w′| (16)

for all w,w′ ∈ K . For each w ∈ K , we have

�F−1(E)(w)

by (13)︷︸︸︷≤ �E (F(w))

by (15)︷︸︸︷≤ 1 + M2 (dist(F(w), E))μ

by (16)︷︸︸︷≤ 1 + M2M
μ
3

(
dist(w, F−1(E))

)μ

,

which yields theHCP property for the set F−1(E). Consequently, F−1(E) is aMarkov
set and is L-regular. ��

The previous examples may suggest that a compact, L-regular set, which is the
inverse image of a Markov set under a complex (i.e., holomorphic) polynomial map,
is also a Markov set. This claim is however not valid.

Example 3.7 Let f : [0, R] −→ [0,+∞) be as in Example 3.6. Set D := D1 × D2,
where

D1 := {
(x1, x2) ∈ [0, R] × R : −max[0, R] f ≤ x2 ≤ f (x1)

} ⊂ C
2,

D2 := {
(x1, x2) ∈ [0, R] × R : − f (x1) ≤ x2 ≤ max[0, R] f

} ⊂ C
2.
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In the same way as we handled the set E of Example 3.6, we can show that D1, D2
satisfy Markov’s inequality. Moreover, put

G : C2 � w �−→ (w,w) ∈ C
4.

Note that

G−1(D) = {
(w1, w2) ∈ [0, R] × R : |w2| ≤ f (w1)

} ⊂ C
2.

After repeating the argument from Case 1 of Example 3.6, we conclude that G−1(D)

is L-regular and does not satisfy Markov’s inequality. On the other hand, the set D,
as the Cartesian product of the Markov sets, is a Markov set. ��

After giving the above examples illustratingvarious situationswhichoccur naturally
when we consider Markov’s inequality in the context of polynomial preimages, we
conclude this section with the statement of the following result, to be proved in the
next section.

Theorem 3.8 Assume that g : U −→ C
N ′

is a holomorphicmapping, whereU ⊂ C
N

is open (N , N ′ ∈ N). Suppose that a compact set ∅ �= E ⊂ C
N ′

has the HCP property,
Ê ⊂ g(U ) and g−1(Ê) is compact. Then

• N = N ′,
• g−1(E) has the HCP property and, in particular, is a Markov set.

Recall that Ê denotes the polynomially convex hull of E :

Ê := {
z ∈ C

N ′ : |Q(z)| ≤ ‖Q‖E for each Q ∈ C[z1, . . . , zN ′ ]}.

If Ê = E , then we say that E is polynomially convex. For example, each compact
subset of RN is polynomially convex in CN (cf. Lemma 5.4.1 in [34]).

4 A proof of Theorem 3.8

For the convenience of the reader we recall first the relevant notions and results from
[41].

Definition 4.1 For a set A ⊂ C
N , we define its complex dimension by the formula

dim A := max
{
dim � : � ⊂ A, � is a submanifold of CN

}
.

(We assume here that the maximum on the empty set is equal to −∞.)

Definition 4.2 Let � ⊂ C
N be an open set. A set A ⊂ � is called an analytic subset

(of � or in �) if, for each point a ∈ �, there is an open neighbourhood U of a and
there exist holomorphic functions ξ1, . . . , ξk : U −→ C such that

A ∩U = {z ∈ U : ξ1(z) = · · · = ξk(z) = 0} .
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Definition 4.3 A set A ⊂ C
N is called a locally analytic set (inCN ) if, for each point

a ∈ A, there is an open neighbourhood U of a and there exist holomorphic functions
ξ1, . . . , ξk : U −→ C such that

A ∩U = {z ∈ U : ξ1(z) = · · · = ξk(z) = 0} .

The subsequent proofs make use of the following two results.

Theorem 4.4 Assume that f : W −→ C
N ′

is a holomorphic mapping, where W ⊂
C

N is open (N , N ′ ∈ N). Suppose that B ⊂ W is a locally analytic set such that, for
some m ∈ N,

rank dz f ≤ m for z ∈ B.

Then f (B) is a countable union of submanifolds of dimension ≤ m.

Proof See [41, p. 254]. ��
Theorem 4.5 Every compact analytic subset of CN is finite.

Proof See [41, p. 235]. ��
Before proceeding with the proof of Theorem 3.8, let us also state the following

lemma.

Lemma 4.6 Assume that f : W −→ C
N ′

is a holomorphic mapping, where W ⊂ C
N

is open (N , N ′ ∈ N). Suppose that a set A ⊂ f (W ) is nonpluripolar. Then f −1(A) is
nonpluripolar as well.

Proof We will consider two cases.
Case 1: N < N ′. Obviously, rank dw f ≤ N for each w ∈ W . By Theorem 4.4,

f (W ) is a countable union of submanifolds of dimension ≤ N . In particular, the set
f (W ) (and hence A) is pluripolar, which is a contradiction. The case N < N ′ cannot
therefore occur.

Case 2: N ≥ N ′. We have W = B ∪ W0, where

B := {
w ∈ W : rank dw f ≤ N ′ − 1

}
,

W0 := {
w ∈ W : rank dw f = N ′} .

Clearly, the set B is an analytic subset of W . As in Case 1, we show via Theorem 4.4
that f (B) is pluripolar. In particular, the set A ∩ f (W0) is nonpluripolar.

By the rank theorem, for each a ∈ W0, there exists an open set Ua such that
a ∈ Ua ⊂ W0, f (Ua) is open, and there exist biholomorphic mappings ϕa : Ua −→
�a × �a , ψa : f (Ua) −→ �a , where �a ⊂ C

N ′
, �a ⊂ C

N−N ′
are open sets, such

that the mapping

ψa ◦ f ◦ ϕ−1
a : �a × �a −→ �a
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is the natural projection. Clearly, there is a sequence a j ∈ W0 ( j ∈ N) such that

W0 = Ua1 ∪Ua2 ∪ · · · .

Take l ∈ N such that A ∩ f (Ual ) is nonpluripolar. Then the set ψal (A ∩ f (Ual )) is
also nonpluripolar.

Suppose, to derive a contradiction, that f −1(A) is pluripolar. Then ϕal ( f
−1(A) ∩

Ual ) is also pluripolar and therefore

ϕal ( f
−1(A) ∩Ual ) ⊂ {

ζ ∈ C
N : u(ζ ) = −∞}

for some plurisubharmonic function u in CN . Note that, for each y ∈ �al ,

ψal (A ∩ f (Ual )) ⊂ {
x ∈ C

N ′ : u(x, y) = −∞}
.

Since ψal (A∩ f (Ual )) is nonpluripolar, it follows that u ≡ −∞ in CN ′ ×�al , which
is impossible.12 ��

In the proof of Theorem 3.8, wewill use the notion of the relative extremal function.
Suppose that � ⊂ C

N is an open set and A ⊂ �. The relative extremal function for
A in � is defined as follows:

uA,�(z) := sup
{
ϕ(z) : ϕ ∈ PSH(�), ϕ ≤ 0, ϕ|A ≤ −1

}

(z ∈ �), where PSH(�) denotes the plurisubharmonic functions in �.

Proof of Theorem 3.8. We will consider three cases.
Case 1: N > N ′. Take b = (b1, . . . , bN ′) ∈ Ê ⊂ g(U ). By the formula on p. 169

of [41],

dim g−1(b)=dim {w ∈ U : g1(w) − b1=0, . . . , gN ′(w)−bN ′ =0}≥N − N ′ > 0.

(17)

On the other hand, g−1(b) = g−1(b) ∩ g−1(Ê) is compact, analytic and hence finite
(cf. Theorem 4.5), in contradiction with (17). This means that the case N > N ′ cannot
occur.

Case 2: N < N ′. It follows from Theorem 4.4 that g(U ) is a countable union
of submanifolds of dimension ≤ N . In particular, g(U ) (and hence E) is pluripolar,
which is a contradiction. The case N < N ′ cannot therefore occur.

Case 3: N = N ′. Put K := g−1(Ê) and take λ > 0 such that K(λ) ⊂ U .13 Note
that there exists ε > 0 such that

g−1(Êε) ∩
{
w ∈ C

N : dist(w, K ) = λ
}

= ∅. (18)

12 Recall that pluripolar sets have Lebesgue measure zero.
13 Recall that K(λ) := {w ∈ C

N : dist(w, K ) ≤ λ} and Kλ := {w ∈ C
N : dist(w, K ) < λ}.
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Suppose, towards a contradiction, that this is not the case and take a sequence
a j ∈ U ( j ∈ N) such that

dist(a j , K ) = λ and dist
(
g(a j ), Ê

) → 0.

Passing to a subsequence if necessary, we can assume that a j → a ∈ K(λ)\Kλ.
Consequently, dist(a, K ) = λ and dist

(
g(a), Ê

) = 0, which means that a /∈ K and
a ∈ K , a contradiction.

Put � := Kλ ∩ g−1(Êε), where ε > 0 is of (18). For each compact set T ⊂ Êε ,
we have

g−1(T ) ∩ � = g−1(T ) ∩ Kλ

by (18)︷︸︸︷= g−1(T ) ∩ K(λ),

and therefore the set g−1(T ) ∩ � is compact. It follows that

� � w �−→ g(w) ∈ Êε

is a proper holomorphic map. Since the set �′ := g(�) is open (cf. [52], Theorem
15.1.6), it follows that

� � w �−→ g(w) ∈ �′

is also a proper holomorphic map. Note moreover that g−1(E) ⊂ K ⊂ �, Ê =
g(K ) ⊂ �′ and �,�′ are bounded. (Use the fact that �′ ⊂ Êε .)

By Lemma 4.6, the set g−1(E) is nonpluripolar and hence V ∗
g−1(E)

∈ L(CN ) (see
(11)). In particular,

V ∗
g−1(E)

≤ M1 in � ∪ g−1(E)(1)

for some M1 > 0. It is clear that

Vg−1(E) ≤ M1(ug−1(E),� + 1) in �. (19)

Moreover, by Proposition 5.3.3 in [34], there exists M2 > 0 such that

uE,�′ + 1 ≤ M2VE in �′. (20)

Let M3, μ > 0 be such that, for each z ∈ E(1),

�E (z) ≤ 1 + M3 (dist(z, E))μ

(see Definition 3.1). Obviously, for each z ∈ �′,

VE (z) ≤ M4 (dist(z, E))μ , (21)
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where M4 := max
{
M3, sup�′\E(1)

VE
}
. (If �′ ⊂ E(1), then we set M4 := M3.)

By Proposition 4.5.14 in [34],

uE,�′ ◦ g = ug−1(E),� in �. (22)

Consequently, for each w ∈ �,

Vg−1(E)(w)

by (19)︷︸︸︷≤ M1
(
ug−1(E),�(w) + 1

) by (22)︷︸︸︷= M1
(
uE,�′(g(w)) + 1

)
by (20)︷︸︸︷≤ M1M2VE (g(w))

by (21)︷︸︸︷≤ M1M2M4 (dist(g(w), E))μ

and therefore

Vg−1(E)(w) ≤ M1M2M4M
μ
5

(
dist(w, g−1(E))

)μ

, (23)

where M5 > 0 is such that |g(ζ ) − g(ζ ′)| ≤ M5|ζ − ζ ′| for all ζ, ζ ′ ∈ �. Put

M6 := max
{
M1M2M4M

μ
5 , M1M

−1
7

}
,

where

M7 := inf
CN \�

(
dist(·, g−1(E))

)μ

> 0.

The estimate (23) implies that, for each w ∈ g−1(E)(1),

Vg−1(E)(w) ≤ M6

(
dist(w, g−1(E))

)μ

.

Hence

�g−1(E)(w) ≤ 1 + M
(
dist(w, g−1(E))

)μ

,

where M > 0 is such that eM6t ≤ 1+Mt for t ∈ [0, 1]. The case N = N ′ is therefore
settled, and the proof of the theorem is complete. ��

With regard to Theorem 3.8, we have the following remark.

Remark 4.7 In Theorem 3.8, even if U = C
N and g : CN −→ C

N is a polynomial
map, the assumption that Ê ⊂ g(U ) and g−1(Ê) is compact cannot be replaced by
the assumption that E ⊂ g(U ) and g−1(E) is compact and L-regular.

Proof Set

g : C2 � (w1, w2) �−→ (w1, w1w2) ∈ C
2.

Take a compact set K ⊂ R
2 ⊂ C

2 such that:
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• K ⊂ (
0, 1

2

] × (1, 2],
• K is L-regular,
• K does not satisfy Markov’s inequality.

(For instance, we can take a suitable translate of the set F−1(E) from Case 1 of
Example 3.6 with appropriately chosen function f .)

Put moreover E := � ∪ g(K ), where � := {
z ∈ C

2 : |z1| = |z2| = 1
}
. Clearly,

E ⊂ D2, E ⊂ g(C2) = (
(C\{0}) × C

) ∪ {(0, 0)} and g−1(E) = � ∪ K .14 It is well
known that, for each u ∈ C,

�
D
(u) = �∂D(u) = max{1, |u|},

where D := D1. Combining this with Proposition 5.9 in [55] we get, for each z =
(z1, z2) ∈ C

2, the following estimates

max{1, |z|} = max
{
�
D
(z1), �

D
(z2)

} = �
D2

(z) ≤ �E (z) ≤ ��(z)

= max {�∂D(z1), �∂D(z2)} = max{1, |z|}.

Therefore

�E (z) = ��(z) = �
D2

(z) = max{1, |z|}.

In particular,

• E has the HCP property: �E (z) ≤ 1 + dist(z, E) for each z ∈ C
2,

• g−1(E) = � ∪ K is L-regular, because � and K are L-regular.

Suppose, towards a contradiction, that g−1(E) is a Markov set. Since � is the
Shilov boundary of D2 (see Example 3.3), it follows that D2 ∪ K is a Markov set
as well. Put � : C

2 � (w1, w2) �−→ w2 ∈ C. Note that �(D2) = D ⊂ C and
�(K ) ⊂ (1, 2] ⊂ R ⊂ C. Consequently, the sets �(D2) and �(K ) are disjoint and
polynomially convex. Clearly, D2 and K are also polynomially convex. Therefore, by
Kallin’s separation lemma (cf. [33, p. 302]), we obtain the polynomial convexity of
the set D2 ∪ K . On account of Corollary 5.2, we get a contradiction, because K is not
a Markov set. ��

5 Subsets of Markov sets

In this section, we will prove the following result announced in Introduction.

Theorem 5.1 Let E ⊂ C
N be a compact and polynomially convex set satisfying

Markov’s inequality. Assume that K ⊂ E is compact, nonpluripolar and open in
E. Then K is a Markov set. Furthermore, if E satisfies Markov’s inequality with an
exponent ε > 0 (see Definition 1.2), then K satisfies Markov’s inequality with the
exponent ε as well.

14 Recall that DN := {z ∈ C
N : |z| < 1}.
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Proof Choose λ > 0 such that K(λ) ∩ (E\K ) = ∅. In particular, we have

E ⊂ K ∪
(
C

N\K(λ)

)
⊂ Kλ ∪

(
C

N\K(λ)

)
.

Take moreover a compact and polynomially convex set Z ⊂ C
N such that E ⊂

IntZ and Z ⊂ Kλ ∪ (
C

N\K(λ)

)
—see the proof of Lemma 2.7.4 in [32]. Define

g : Kλ ∪ (
C

N\K(λ)

) −→ C by the formula

g(z) :=
{
1 if z ∈ Kλ,

0 if z ∈ C
N\K(λ).

By Theorem 8.5(1) in [55], there exist M > 0, ρ ∈ (0, 1)with the following property:
for each μ ∈ N, we can choose a polynomial Rμ ∈ C[z1, . . . , zN ] with deg Rμ ≤ μ

and such that
‖g − Rμ‖Z ≤ Mρμ. (24)

We can clearly assume that M ≥ 1.
By (11), VK (and hence �K ) is bounded on each compact subset of CN . Thus we

may choose k ∈ N such that

1 − Mρk > 0 and Mρk sup
E

�K ≤ 1. (25)

Moreover, let ε,C > 0 be of Definition 1.2 for the set E . Therefore, for each polyno-
mial P ∈ C[z1, . . . , zN ] and each α ∈ N

N
0 ,

‖DαP‖E ≤ (
C(deg P)ε

)|α|‖P‖E . (26)

Take also C1 > 0 such that

C1 ≤ C−1, C1(k + 1)−ε < λ, K(C1(k+1)−ε) ⊂ Z

and put

C2 := (k + 1)ε
eN (1 + Mρk)

C1(1 − Mρk)
.

We will show that, for each polynomial Q ∈ C[z1, . . . , zN ] with deg Q ≤ n
(n ∈ N) and each a ∈ K(C1(k+1)−εn−ε), we have

|Q(a)| ≤ eN
1 + Mρk

1 − Mρk
‖Q‖K . (27)

To this end, fix Q, a as above and take b ∈ K such that |a− b| = dist(a, K ). Clearly,
a ∈ Z ∩ Kλ and

|a − b| ≤ C1

(k + 1)εnε
≤ 1

C(k + 1)εnε
. (28)
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Put P := Rnk · Q. Then

|P(a)| =

∣∣∣∣∣∣∣
∑

α∈NN
0

DαP(b)

α! (a − b)α

∣∣∣∣∣∣∣

by (26)︷︸︸︷≤
∑

α∈NN
0

(
C(k + 1)εnε

)|α|

α! |a − b||α|‖P‖E

by (28)︷︸︸︷≤
∑

α∈NN
0

‖P‖E
α! = eN‖P‖E

and hence
|P(a)| ≤ eN‖P‖E . (29)

We will check now that

‖P‖E ≤ (1 + Mρnk)‖Q‖K . (30)

To this end, fix y ∈ E .
Case 1: y ∈ K . Then

|P(y)| = |Rnk(y) · Q(y)|
by (24)︷︸︸︷≤ (|g(y)| + Mρnk)‖Q‖K = (1 + Mρnk)‖Q‖K .

Case 2: y ∈ E\K . Then y ∈ Z\K(λ) and

|P(y)| = |Rnk(y) · Q(y)|
by (24)︷︸︸︷≤ (|g(y)| + Mρnk)|Q(y)| = Mρnk |Q(y)|

≤ Mρnk

by the definition of �K︷ ︸︸ ︷(
�K (y)

)n‖Q‖K ≤
(
Mρk sup

E
�K

)n

‖Q‖K
by (25)︷︸︸︷≤ ‖Q‖K ,

which completes the proof of (30).
Consequently,

(1 − Mρnk)|Q(a)| = (|g(a)| − Mρnk)|Q(a)|
by (24)︷︸︸︷≤ |P(a)|

by (29)︷︸︸︷≤ eN‖P‖E
by (30)︷︸︸︷≤ eN (1 + Mρnk)‖Q‖K

and hence

|Q(a)| ≤ eN
1 + Mρnk

1 − Mρnk
‖Q‖K ≤ eN

1 + Mρk

1 − Mρk
‖Q‖K ,

which completes the proof of (27).
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By Cauchy’s inequalities, for each Q ∈ C[z1, . . . , zN ], α ∈ N
N
0 , z ∈ C

N and each
r > 0,

|DαQ(z)|
α! ≤ ‖Q‖B(z,r)

r |α| ,

where B(z, r) := {w ∈ C
N : |w − z| ≤ r}. Combining this with (27) we get, for each

Q ∈ C[z1, . . . , zN ] and each α ∈ N
N
0 with |α| = 1, the following estimate

‖DαQ‖K ≤ C2(deg Q)ε‖Q‖K .

Consequently, K satisfies Markov’s inequality with the exponent ε. ��

Corollary 5.2 Assume that E1, . . . , Ep ⊂ C
N (p ∈ N) are compact, nonpluripolar

and pairwise disjoint sets such that E := E1 ∪ · · · ∪ Ep is polynomially convex. Let
ε > 0. Then the following two statements are equivalent:

1. E satisfies Markov’s inequality with the exponent ε.
2. For each j ≤ p, the set E j satisfies Markov’s inequality with the exponent ε.

We conclude this section with the following example concerning Corollary 5.2.

Example 5.3 Set E1 := {0} ∪ [1/3, 2/3], E2 := ∂D, where D := D1, and E :=
E1∪E2. Note that E1 does not satisfyMarkov’s inequality. Indeed, suppose otherwise
and take ε,C of Definition 1.2. Then, for the polynomials Pn(z) := z(1− z)n (n ∈ N),
we have

1 = |P ′
n(0)| ≤ ‖P ′

n‖E1
≤ C(n + 1)ε‖Pn‖E1

≤ C(n + 1)ε
(
2

3

)n+1

,

which is impossible.
By Bernstein’s theorem (see Example 3.3) and the maximum principle, for each

complex polynomial Q of one variable,

‖Q′‖E ≤ ‖Q′‖
D

≤ (deg Q) ‖Q‖
D

= (deg Q) ‖Q‖∂D ≤ (deg Q)‖Q‖E .

Hence, E satisfies Markov’s inequality. Moreover, E is not polynomially convex. In
Corollary 5.2, the assumption that E is polynomially convex is therefore relevant even
if N = 1. ��
Acknowledgments I am very grateful to the referee for the comments and suggestions which improved
the exposition.
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