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1 Introduction

In the original publication the second author constructed for n ≥ 2 a series of compact
complex manifolds Xn and an element [β1] in the En-term of the Frölicher spectral
sequence claiming that dn([β1]) �= 0 (Lemma 2 in loc.cit.). This claim is incorrect:
we explain in Remark 2 that on the contrary β1 induces a class in E∞.

However, the main result of the original publication remains true (up to a change
in the dimension of the examples).

Theorem 1 For every n ≥ 2 there exist a complex 4n − 2-dimensional compact
complex manifold Xn such that the Frölicher spectral sequence does not degenerate
at the En term, i.e., dn �= 0.

The method of construction has remained the same, but we needed to introduce
some extra counting variables.

We believe that in every dimension there are examples of nilmanifolds with left-
invariant complex structure where the maximal possible non-degeneracy occurs, but
the structure equations might be quite complicated.

The online version of the original article can be found under doi:10.1007/s00208-007-0206-z.

L. Bigalke · S. Rollenske (B)
Fakultät für Mathematik, Universtät Bielefeld, Universitätsstr. 25,
33615 Bielefeld, Germany
e-mail: rollenske@math.uni-bielefeld.de

123

http://dx.doi.org/10.1007/s00208-007-0206-z


1120 L. Bigalke, S. Rollenske

2 Construction of the example

Consider the space Gn := C
4n−2 with coordinates

x1, . . . , xn−1, y1, . . . , yn, z1, . . . , zn−1, w1, . . . , wn .

Endow Gn with the structure of a real nilpotent Lie-group by identifying it with the
subgroup of Gl(2n + 2, C) consisting of upper triangular matrices of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 ȳ1 w1
1 0 . . . 0 z̄1 −x1 0 . . . 0 w2

. . .
. . .

...
...

1 0 . . . 0 z̄n−1 −xn−1 0 wn

1 0 . . . 0 y1
. . .

...
...

. . .
...

...

1 0 yn

1 z1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let Γ = Gn ∩Gl(2n +2, Z[i]), which is a lattice in the real Lie-group G. Note that if
g ∈ Gn is a fixed element then the action on the left, g′ �→ gg′, is holomorphic with
respect to the complex structure on C

4n−2. The quotient

Xn = Γ/Gn

is a compact complex manifold; more precisely, it is a compact nilmanifold with
left-invariant complex structure.

Remark 1 The manifold Xn admits a simple geometric description in terms of prin-
cipal holomorphic torus bundles: the centre of Gn is given by the matrices for which
all xi , yi and zi vanish and hence isomorphic (as a Lie group) to C

n . This yields an
exact sequence of real Lie-groups

0 → C
n → Gn → C

3n−2 → 0

which is compatible with the action of Γ . Denoting by Tk the quotient C
k/Z[i]k the

exact sequence induces a Tn principal bundle structure on Xn → T3n−2.

The space of left-invariant 1-forms U is spanned by the components of A−1d A and
their complex conjugates, so a basis for the forms of type (1, 0) is given by

dx1, . . . , dxn−1, dy1, . . . , dyn, dz1, . . . , dzn−1, ω1, . . . , ωn
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where

ω1 = dw1 − ȳ1dz1,

ωk = dwk − z̄k−1dyk−1 + xk−1dyk (k = 2, . . . , n).

For later reference we calculate the differentials of the above basis vectors:

d(dxi ) = d(dzi ) = 0 (i = 1 · · · n − 1)

d(dyi ) = 0 (i = 1 · · · n)

dω1 = −d ȳ1 ∧ dz1

dωi = dxi−1 ∧ dyi + dyi−1 ∧ dz̄i−1

The following lemma shows that the Frölicher spectral sequence of Xn has non-
vanishing differential dn thus proving our Theorem.

Lemma 1 The differential form β1 = ω̄1 ∧ dz̄2 ∧ · · · d̄zn−1 defines a class [β1]n ∈
E0,n−1

n and

dn([β1]n) = (−1)n−2[dx1 ∧ · · · ∧ dxn−1 ∧ dyn]n �= 0 in En,0
n .

Proof By Remark 1 the projection to the (x, y, z)-coordinates endows Xn with the
structure of holomorphic principal torus bundle over a complex torus. By the results
of [2] the inclusion of left-invariant forms into the double complex (Ap,q(Xn), ∂, ∂̄)

induces an isomorphism on the E1-terms of the respective spectral sequences. Thus
for our purpose we may work with left-invariant forms only, that is, start with the
E0-term

E p,q
0 = �pU ⊗ �qŪ .

A (p, q)-form α lives to Er if it represents a class in E p,q
r , which is a subquotient

of E p,q
0 ; the resulting class will be denoted by [α]r .

β1 defines a class in En . As explained in [1, §14, p.161ff] this is equivalent to the
existence of a zig-zag of length n, that is, a collection of elements β2, . . . , βn such that

βi ∈ E p+i,q−i
0 , ∂̄β1 = 0, ∂βi−1 + ∂̄βi = 0 (i = 2, . . . n).

Consider the following differential forms βk of bidegree (k − 1, n − k):

β2 = ω2 ∧ dz̄2 ∧ · · · ∧ z̄n−1

βk = dx1 ∧ · · · ∧ dxk−2 ∧ ωk ∧ dz̄k ∧ · · · ∧ z̄n−1 (3 ≤ k ≤ n − 1)

βn = dx1 ∧ · · · ∧ dxn−2 ∧ ωn
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A simple calculation shows that

∂̄β1 = 0,

∂β1 = −dy1 ∧ dz̄1 ∧ · · · ∧ dz̄n−1 = −∂̄β2,

and for 2 ≤ k ≤ n − 1

∂βk = (−1)k−2dx1 ∧ · · · ∧ dxk−1 ∧ dyk ∧ dz̄k ∧ · · · ∧ dz̄n−1 = −∂̄βk+1.

Therefore these elements define a zig-zag and β1 defines a class in E0,n−1
n .

It remains to prove that

dn[β1]n = [∂βn]n = (−1)n−2[dx1 ∧ · · · ∧ dxn−1 ∧ dyn]n

defines a non-zero class in En,0
n , or equivalently, that β1 does not live to En+1. In other

words, we have to prove that does not exist a zig-zag of length n + 1 for β1. Since we
are in a first quadrant double complex we have En,−1

0 = 0 and there exists a zig-zag
of length n + 1 if and only if there exists a zig-zag (β1, β

′
2, . . . , β

′
n) of length n such

that ∂β ′
n = 0.

To see that this cannot happen we put

U1 =〈dx1, . . . , dxn−1, dy1, . . . , dyn, dz1, . . . , dzn−1〉C and U2 =〈ω1, . . . , ωn〉C,

such that U = U1 ⊕ U2. The above basis of U and its complex conjugate induce a
basis on each exterior power and a decomposition

�n(U ⊕ Ū ) = �n(U1 ⊕ Ū1) ⊕ Sn,

where Sn is spanned by wedge products of basis elements, at least one of which is in
U2 ⊕ Ū2.

The elements βk and (−1)k∂βk are basis vectors and we decompose

Ek−1,n−k
0 = βkC ⊕ Vk and Ek,n−k

0 = ∂βkC ⊕ Wk,

where Vk (resp. Wk) is spanned by all other basis elements of type (k − 1, n − k)

(resp. (k, n − k)). Let ξk be the element of the dual basis such that ξk�∂βk = 1 and
the contraction with any other basis element is zero.

The differentials ∂ and ∂̄ respect this decomposition, in the sense that

∂(Vk) ⊂ Wk and ∂̄(Vk) ⊂ Wk−1. (1)

More precisely, let α be one of the forms in our chosen basis for �n−1(U ⊕Ū ). Recall
that α is a decomposable form. Then

∂α /∈ Wk ⇐⇒ ξk�∂α �= 0 ⇐⇒ α = βk,

∂̄α /∈ Wk ⇐⇒ ξk�∂̄α �= 0 ⇐⇒ α = βk+1,
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which implies (1). If α ∈ �n−1(U1 ⊕ Ū1) then dα = 0 and the claim is trivial. If the
form α contains at least two basis elements of U2 ⊕ Ū2 then each summand of dα

with respect to the basis contains at least one element of U2 ⊕ Ū2, in other words,
dα ∈ Sn . Since ξk�Sn = 0 the claim is true also for those elements.

The remaining elements of the basis are of the form ±α′ ∧ωi or ±α′ ∧ ω̄i for some
α′ in our chosen basis for �n−2(U1 ⊕ Ū1). Paying special attention to the counting
variable dyk this case is easily checked by looking for solutions of the equation

∂(α′ ∧ ωi ) = (−1)n−1α′ ∧ ∂ωi

= (−1)k−2dx1 ∧ · · · ∧ dxk−1 ∧ dyk ∧ dz̄k ∧ · · · ∧ dz̄n−1 = ∂βk,

and similarly in the other cases involving either ∂̄ or ω̄i .
Thus if (β1, β

′
2, . . . , β

′
n) is any zig-zag of length n for β1 then β ′

k ≡ βk mod Vk

by (1) and, in particular,

∂β ′
n ≡ ∂βn �≡ 0 mod Wn .

Thus β1 does not live to En+1 and dn[β1]n is non-zero as claimed. ��
Remark 2 In the original publication we constructed a compact complex manifold in a
very similar way and an element [β1]n ∈ E0,n−1

n . However, our claim that dn([β1]n) �=
0 was wrong: while the constructed zig-zag could not be extended, the sequence of
elements (in the notation of [original publication, Lem. 2])

(β1, dx1 ∧ ω̄2 ∧ dx̄3 ∧ · · · ∧ dx̄n−1, 0, 0, . . . )

gives an infinite zig-zag for β1. In other words, the element considered gives an element
of E∞ and thus a de Rham cohomology class.
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