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Abstract In this paper we consider weakly hyperbolic equations of higher orders in
arbitrary dimensions with time-dependent coefficients and lower order terms. We prove
the Gevrey well-posedness of the Cauchy problem under Ck-regularity of coefficients
of the principal part and natural Levi conditions on lower order terms which may be
only continuous. In the case of analytic coefficients in the principal part we establish
the C∞ well-posedness. The proofs are based on using the quasi-symmetriser for
the corresponding companion system and inductions on the order of equation and on
the frequency regions. The main novelty compared to the existing literature is the
possibility to include lower order terms to the equation (which have been untreatable
until now in these problems) as well as considering any space dimensions. We also
give results on the ultradistributional and distributional well-posedness of the problem,
and we look at new effects for equations with discontinuous lower order terms.
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402 C. Garetto, M. Ruzhansky

1 Introduction

In this paper we study the well-posedness of the weakly hyperbolic Cauchy problem

{
Dm

t u + ∑m−1
j=0 Am− j (t, Dx )D j

t u = 0, (t, x) ∈ [0, T ] × R
n,

Dh−1
t u(0, x) = gh(x), h = 1, . . . , m,

(1)

where each Am− j (t, Dx ) is a differential operator of order m − j with continuous
coefficients depending only on t . Later we will also relax the continuity assumption
replacing it by the boundedness. As usual, Dt = 1

i ∂t and Dx = 1
i ∂x . Let A(m− j)

denote the principal part of the operator Am− j and let λl(t, ξ), l = 1, . . . , m, be the
real-valued roots of the characteristic polynomial which we write as

τm +
m−1∑
j=0

A(m− j)(t, ξ)τ j = τm +
m−1∑
j=0

∑
|γ |=m− j

am− j,γ (t)ξγ τ j . (2)

This means that

τm +
m−1∑
j=0

∑
|γ |=m− j

am− j,γ (t)ξγ τ j =
m∏

l=1

(τ − λl(t, ξ)). (3)

If (1) is strictly hyperbolic and its coefficients are in the Hölder class in
t, Am− j (·, ξ) ∈ Cα([0, T ]), 0 < α < 1, for all j and ξ , it was shown in [11, Case 3;
Remark 8] by the authors that the Cauchy problem (1) is well-posed in Gevrey classes
Gs(Rn) provided that 1 ≤ s < 1 + α

1−α
. If α = 1, it is sufficient to assume the Lip-

schitz continuity of coefficients to get the well-posedness in Gs for all s ≥ 1. Earlier,
for certain second order equations the same Gevrey index was obtained by Colombini
et al. [3], who also showed that it is sharp. We also refer to [11, Remark 16] for the
Gevrey-Beurling ultradistributional well-posedness of (1) for 1 ≤ s ≤ 1 + α

1−α
. In

this paper we will deal with more regular coefficients in the weakly hyperbolic case.
The well-posedness of the weakly hyperbolic equations has been a challenging

problem for a long time. For example, even for the second order Cauchy problem in
one space dimension,

∂2
t u − a(t, x)∂2

x u = 0, u(0, x) = g1(x), ∂t u(0, x) = g2(x), (4)

up until now there is no characterisation of smooth functions a(t, x) ≥ 0 for which (4)
would be C∞ well-posed. On one hand, there are sufficient conditions. For example,
Oleinik has shown in [16] that (4) is C∞ well-posed provided there is a constant C > 0
such that Ca(t, x) + ∂t a(t, x) ≥ 0. In the case of a(t, x) = a(t) depending only on t ,
when the problem becomes

∂2
t u − a(t)∂2

x u = 0, u(0, x) = g1(x), ∂t u(0, x) = g2(x), (5)
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Weakly hyperbolic equations 403

the Oleinik’s condition is satisfied for a(t) ≥ 0 with a′(t) ≥ 0. On the other hand, in
the celebrated paper [8], Colombini and Spagnolo constructed a C∞ function a(t) ≥ 0
such that (5) is not C∞ well-posed. The situation becomes even more complicated if
one adds mixed terms to (5), even depending only on t and analytic. For example, the
Cauchy problem for the equation

∂2
t u − 2t∂t∂x u + t2∂2

x u = 0

is Gevrey Gs well-posed for s < 2 while it is ill-posed for any s > 2. For other positive
and negative results for second order equations with time-dependent coefficients we
refer to seminal papers of Colombini et al. [3,5], and to Nishitani [15] for the necessary
and sufficient conditions for the C∞ well-posedness of (4) with analytic a(t, x) ≥ 0
in one dimension.

A reasonable substitute for the C∞ well-posedness in the weakly hyperbolic setting
is the well-posedness in the space G∞ = ⋃

s>1 Gs . Thus, Colombini et al., proved
in [4] that for every C∞ function a(t) ≥ 0, the Cauchy problem (5) is G∞ well-
posed. More precisely, they showed that if a(t) is in Ck , it is well posed in Gs with
s ≤ 1 + k/2, and if a(t) is analytic, it is C∞ well-posed.

From another direction, there are also general results for (1). For example, it was
shown by Bronshtein in [2] that, in particular, the Cauchy problem (1) with C∞
coefficients is Gs well-posed provided that 1 ≤ s < 1 + 1

m−1 . In some cases, this can
be improved. For example, for constant multiplicities, see paper [6] by Colombini and
Kinoshita in one-dimension (see also D’Ancona and Kinoshita [9]), and the authors’
paper [11] for further improvements of Gevrey indices and all dimensions, with a
survey of literature therein.

In this paper our interest in analysing the Cauchy problem (1) is motivated by

(A) allowing any space dimension n ≥ 1;
(B) considering the effect of lower order terms or, rather, the properties of the lower

order terms which do not influence the results on the Gevrey well-posedness (we
will look at new effects for both continuous and discontinuous lower order terms);
the inclusion of lower order terms in this setting has been untreatable by previous
methods;

(C) providing well-posedness results in spaces of distributions and ultradistributions.

Our main reference here is the paper [13] of Kinoshita and Spagnolo who have
studied the Cauchy problem (1) for operators with homogeneous symbols in one
dimension, x ∈ R. Under the condition

∃M > 0 : λi (t, ξ)2 + λ j (t, ξ)2 ≤ M(λi (t, ξ) − λ j (t, ξ))2,

for 1 ≤ i, j ≤ m, t ∈ [0, T ], for all ξ, (6)

on the roots λ j (t, ξ) they have obtained the following well-posedness result:

Theorem 1 ([13]) Assume that n = 1 and that the differential operator is homoge-
neous, i.e. Am− j (t, ξ) = A(m− j)(t, ξ) = am− j (t)ξm− j for all j = 0, . . . , m − 1.
If am− j ∈ C∞([0, T ]) and the characteristic roots are real and satisfy (6), then
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404 C. Garetto, M. Ruzhansky

the Cauchy problem (1) is well-posed in any Gevrey space. More precisely, if
a j ∈ Ck([0, T ]) for some k ≥ 2 then we have Gs-well-posedness for

1 ≤ s < 1 + k

2(m − 1)
.

The proof is based on the construction of a quasi-symmetriser Q(m)
ε which thanks to

the condition (6) is nearly diagonal. Previously, equations of second and third order
with analytic coefficients, still with n = 1 and without low order terms, have been
analysed by Colombini and Orrú [7]. They have shown the C∞ well-posedness of (1)
under assumption (6). Moreover, if all the coefficients am− j (t) vanish at t = 0, they
showed that the condition (6) is also necessary. So, for us it will be natural to adopt
(6) for our analysis.

Let us briefly discuss the difficulties of aims (A)–(C) above. For the dimensional
extension (A), even under condition (6) on the characteristic roots, for space depen-
dent coefficients such an extension is impossible, see e.g. Bernardi and Bove [1], for
examples of second order operators with polynomial coefficients for which the C∞
well-posedness fails for any n ≥ 2. It is interesting to note that for these examples the
usual Ivrii–Petkov conditions on lower order terms are also satisfied. As we will show,
the C∞ (and other) well-posedness holds in our case in any dimension n ≥ 1 since the
coefficients depend only on time. In part (B), the proof of the well-posedness for equa-
tions with lower order terms highlights several interesting and somewhat surprising
phenomena. For example, if the coefficients of the principal part are analytic and the
lower order terms are only bounded (in particular, they may be discontinuous, or may
exhibit more irregular oscillating behaviour), but the Cauchy data is Gevrey, we still
obtain the solution in Gevrey spaces. Indeed, the Levi conditions in this paper control
the zeros of the lower order terms but not their regularity. Finally, aim (C) is motivated
by an interesting and challenging problem for weakly hyperbolic equations: analysing
the propagation of singularities. For this, in order to be able to use also non-Gevrey
techniques, we need to have first well-posedness in some bigger space. This will be
achieved for the Cauchy problem (1) in the spaces of Beurling Gevrey ultradistrib-
utions. A subtle point of this construction is that we will have to use the Beurling
Gevrey ultradistributions and not the usual Roumieu Gevrey ultradistributional class.
In the case of the analytic principal part we will obtain the well-posedness in the usual
space of distributions.

In particular, in this paper we extend Theorem 1 to weakly hyperbolic equations
with non-homogeneous symbols and in any space dimension n ≥ 1, and find suitable
assumptions on the lower order terms for the Gevrey well-posedness. Already from the
beginning we deviate from [13] by using pseudo-differential techniques to reduce the
equation to the system. This will allow us to treat all the dimensions n ≥ 1. However,
the main challenge in the present paper is the analysis of the lower order terms. In
fact, in most (if not all) of the literature on the application of the quasi-symmetriser
to weakly hyperbolic equations the considered equations are always assumed to have
homogeneous symbols. It is our intension to show that the quasi-symmetriser can be
effectively used to control parts of the energy corresponding to the lower order terms.
It is interesting to see the appearing Levi conditions expressing the dependence of
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Weakly hyperbolic equations 405

the lower order terms on the principal part of the operator. Such control becomes
possible by exploiting the Sylvester form of the system corresponding to Eq. (1), and
the structure of the quasi-symmetriser.

An interesting effect that we observe is that the results remain true assuming just
the continuity of the lower order terms in time. For example, we will have the C∞
well-posedness for equations with analytic coefficients in the principal part and only
continuous lower order terms. Moreover, we give a variant of our results with only
assuming the boundedness of lower order terms in time (instead of continuity).

In this paper we formulate the conditions on the lower order terms in terms of the
symbols Am− j+1. Note that in (1), the operator Am− j+1(t, Dx ) is the coefficient in

front of the derivative D j−1
t . We assume that there is some constant C > 0 such that

we have

|(Am− j+1 − A(m− j+1))(t, ξ)|

≤ C
m∑

i=1

∣∣∣∣∣∣∣∣
∑

1≤l1<···<lm− j ≤m
lh �=i ∀h

λl1(t, ξ) · · · λlm− j (t, ξ)

∣∣∣∣∣∣∣∣
, (7)

for all t ∈ [0, T ], j = 1, . . . , m, and for ξ away from 0 (i.e., for |ξ | ≥ R for some
R > 0). Note that in terms of the coefficients of the original equation, using (2) we
have

(Am− j+1 − A(m− j+1))(t, ξ) =
∑

|γ |≤m− j

am− j+1,γ (t)ξγ . (8)

For j = m, the condition (7) is the condition on the low order terms coming from
the coefficient in front of Dm−1

t , in which case A1 − A(1) is independent of ξ , and
assumption (7) should read as

|(A1 − A(1))(t, ξ)| ≤ C, t ∈ [0, T ],

which will be automatically satisfied due to the boundedness of A1 in t . In Sect. 2 we
will give examples of the condition (7). We will also show in treating the case m = 3
that from the point of view of the desired energy inequality for (1) the assumption (7)
is rather natural.

For a better understanding of the right hand side of the condition (7), let us simplify
it in the case when all the characteristic roots are nonnegative, i.e. when λl ≥ 0 for all
l = 1, . . . , m. In this situation, using (3) we see that the right hand side of (7) can be
replaced by the coefficient of τ j in (3) and, therefore, condition (7) becomes

|(Am− j+1 − A(m− j+1))(t, ξ)| ≤ C |A(m− j)(t, ξ)|

for all t ∈ [0, T ], j = 1, . . . , m, and for ξ away from 0.
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406 C. Garetto, M. Ruzhansky

In the Appendix in Sect. 6 we will show that also in general, the Levi conditions
(7) can be expressed entirely in terms of the coefficients of the Eq. (1).

We are now ready to formulate the well-posedness results. Part (i) of Theorem 2 is
the extension of Theorem 1 in [13] to any space-dimension and to equations with low
order terms. In the sequel D′

(s)(R
n)(E ′

(s)(R
n)) denotes the space of Gevrey Beurling

(compactly supported) ultradistributions. For the relevant details on these spaces of
ultradistributions and their characterisations, with their appearance in the analysis of
weakly hyperbolic equations, we refer to our paper [11], where these have been applied
to the low (Hölder) regularity constant multiplicities case.

Theorem 2 Let n ≥ 1. If the coefficients satisfy A j (·, ξ) ∈ C([0, T ]) and A( j)(·, ξ) ∈
C∞([0, T ]) for all ξ and j = 1, . . . , m, the characteristic roots are real and satisfy
(6), and the low order terms satisfy (7), then the Cauchy problem (1) is well-posed in
any Gevrey space. More precisely, for A j (·, ξ) ∈ C([0, T ]), we have:

(i) if A( j)(·, ξ) ∈ Ck([0, T ]) for some k ≥ 2 and g j ∈ Gs(Rn) for j = 1, . . . , m,

then there exists a unique solution u ∈ Cm([0, T ]; Gs(Rn)) provided that

1 ≤ s < 1 + k

2(m − 1)
;

(ii) if A( j)(·, ξ) ∈ Ck([0, T ]) for some k ≥ 2 and g j ∈ E ′
(s)(R

n) for j = 1, . . . , m,

then there exists a unique solution u ∈ Cm([0, T ];D′
(s)(R

n)) provided that

1 ≤ s ≤ 1 + k

2(m − 1)
.

In the case of analytic coefficients, we have C∞ and distributional well-posedness.

Theorem 3 If A j (·, ξ) ∈ C([0, T ]) and the coefficients A( j)(·, ξ) are analytic on
[0, T ] for all ξ and j = 1, . . . , m, the characteristic roots are real and satisfy (6), and
the lower order terms fulfil the conditions (7), then the Cauchy problem (1) is C∞ and
distributionally well-posed.

By W ∞,m we denote the Sobolev space of functions having m derivatives in L∞.
In the case of discontinuous but bounded lower order terms we have the following:

Theorem 4 (i) Assume the conditions of Theorem 2, with A j (·, ξ) ∈ C([0, T ])
replaced by A j (·, ξ) ∈ L∞([0, T ]), j = 1, . . . , m. Then the statement remains
true provided that we replace the conclusion

u ∈ Cm([0, T ]; Gs(Rn))

by

u ∈ Cm−1([0, T ]; Gs(Rn)) ∩ W ∞,m([0, T ]; Gs(Rn)).
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Weakly hyperbolic equations 407

(ii) Assume the conditions of Theorem 3 with A j (·, ξ) ∈ C([0, T ]) replaced by
A j (·, ξ) ∈ L∞([0, T ]), j = 1, . . . , m. Then the C∞ well-posedness remains
true provided that we replace the conclusion

u ∈ Cm([0, T ]; C∞(Rn))

by

u ∈ Cm−1([0, T ]; C∞(Rn)) ∩ W ∞,m([0, T ]; C∞(Rn)).

Similar conclusions remain true in the ultradistributional/distributional settings as
well.

In Remark 2 we show that in certain cases the results can be improved, but the
Gevrey index may change.

We refer to Remark 1 for a brief discussion of the strictly hyperbolic case. In this
case, even in the situation of the lower regularity of coefficients (C1), one can analyse
the global behaviour of solutions with respect to time (see [14]). The cases of constant
coefficients and systems with controlled oscillations have been treated in [17,18],
respectively.

Finally, we describe the contents of the sections in more details.
Section 2 collects some motivating examples of applications of our results. In Sect. 3

we recall the required facts about the quasi-symmetriser and in Sect. 4 we use it to
derive the energy estimate for the solutions of the hyperbolic system in Sylvester
form corresponding to the Cauchy problem (1). The estimate on the part of the energy
corresponding to lower order terms is given in Sect. 5. In Sect. 6 we prove Theorems 2,
3 and 4 and we end the paper with a final remark on the Levi conditions (7).

We thank the referee for valuable remarks leading to the improvement of the paper.

2 Examples

Let us first give an example of the Levi conditions (7) for the equations of third order,
m = 3. In this case (7) become

|A3 − A(3)|2 ≤ C(λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1),

|A2 − A(2)|2 ≤ C((λ1 + λ2)
2 + (λ2 + λ3)

2 + (λ3 + λ1)
2), (9)

|A1 − A(1)|2 ≤ C,

for some C > 0. It is convenient in certain applications, whenever possible, to write
conditions (6) and (7) in terms of the coefficients of the equation. Such analysis for
(1) has been recently carried out by Jannelli and Taglialatela [12]. In Example 3 below
we will give an example of the meaning of conditions (9).

For the future technicality, similarly to (9), we may also use an equivalent formu-
lation of (7) as

123



408 C. Garetto, M. Ruzhansky

|(Am− j+1 − A(m− j+1))(t, ξ)|2

≤ C
m∑

i=1

∣∣∣∣∣∣∣∣
∑

1≤l1<···<lm− j ≤m
lh �=i ∀h

λl1(t, ξ) · · · λlm− j (t, ξ)

∣∣∣∣∣∣∣∣

2

. (10)

Condition (6) can be often reformulated in terms of the discriminant of (1) defined
by 	(t, ξ) = ∏

i< j (λi (t, ξ) − λ j (t, ξ))2. Thus, for m = 2, n = 1, and the equation

∂2
t u + a1(t)∂t∂x u + a2(t)∂

2
x u = 0,

condition (6) is equivalent to the existence of c > 0 such that 	(t) ≥ ca1(t)2, where
	(t, ξ) = 	(t)ξ and 	(t) = a2

1(t)−4a2(t) ≥ 0 is the condition of the hyperbolicity.
For m = 3, n = 1, and the equation

∂3
t u + a1(t)∂x∂

2
t u + a2(t)∂

2
x ∂t u + a3(t)∂

3
x u = 0,

following [13], we have 	(t, ξ) = 	(t)ξ , with 	(t) = −4a3
2 − 27a2

3 + a2
1a2

2 −
4a3

1a3 + 18a1a2a3 ≥ 0, and (6) is equivalent to 	(t) ≥ c(a1(t)a2(t) − 9a3(t))2.

Since the hyperbolic equations above have homogeneous symbols, the coefficients
are real. We refer to Colombini–Orrú [7] and Kinoshita–Spagnolo [13] for more exam-
ples of equations without lower order terms in one dimension n = 1.

We now give more examples, which correspond to the new possibility, ensured
by Theorems 2 and 3, to consider equations with lower order terms and equations in
higher dimensions n ≥ 1. However, we note that in the case of second order equations
much stronger results can be obtained, see Remark 3, so Examples 1 and 2 serve
primarily at demonstrating the meaning of conditions (7) only.

Example 1

As a first example we consider the second order equation

D2
t u + a2,2(t)D2

x u + a2,1(t)Dx u + a1,0(t)Dt u + a2,0(t)u = 0,

for t ∈ [0, T ] and x ∈ R. Assume a2,2(t) is real and a2,2(t) ≤ 0. The condition (6) is
trivially satisfied by the roots

λ1(t, ξ) = −√−a2,2(t)|ξ |,
λ2(t, ξ) = +√−a2,2(t)|ξ |.

The well-posedness results of Sect. 1 are obtained under the conditions (7) on the lower
order terms. In this case (7) means that the coefficient a1,0(t) is bounded on [0, T ] and
that there exists a constant c > 0 such that |a2,1(t)ξ + a2,0(t)|2 ≤ −ca2,2(t)ξ2 for all
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t ∈ [0, T ] and for ξ away from 0. Note that this last condition holds if |a2,1(t)|2 +
|a2,0(t)|2 ≤ −c′a2,2(t) for some c′ > 0 on the t-inte rval [0, T ].

Take now the general second order equation

D2
t u + a1,1(t)Dx Dt u + a2,2(t)D2

x u + a2,1(t)Dx u + a1,0(t)Dt u + a2,0(t)u = 0.

As observed above condition (6) coincides with the bound from below

	(t) = a2
1,1(t) − 4a2,2(t) ≥ c0a2

1,1(t),

valid for some c0 > 0 on [0, T ] ([13, (15)]). Here a1,1, a2,2 are assumed real. The
conditions (7) on the lower order terms are of the type |a1,0(t)| ≤ c1 and |a2,1(t)ξ +
a2,0(t)|2 ≤ c2(a2

1,1(t) − 2a2,2(t))ξ2 for all t ∈ [0, T ] and for ξ away from 0.

Example 2

The equation

D2
t u +

n∑
j=1

a1, j (t)Dx j Dt u + a2(t)
n∑

j=1

D2
x j

u

+
n∑

j=1

b j (t)Dx j u + b(t)Dt u + d(t)u = 0

is an n-dimensional version of the previous example, with real a1, j and a2. The con-
dition (6) is trivially satisfied when a2(t) ≤ 0. The conditions (7) on the lower order
terms are as follows:

|b(t)| ≤ c,∣∣∣∣∣∣
n∑

j=1

b j (t)ξ j + d(t)

∣∣∣∣∣∣
2

≤ c

⎡
⎢⎣
⎛
⎝ n∑

j=1

a1, j (t)ξ j

⎞
⎠

2

− 2a2(t)|ξ |2
⎤
⎥⎦ ,

for t ∈ [0, T ] and ξ away from 0.

Example 3

We finally give an example of a higher order equation. Let

D3
t u − (a + b + c)Dx D2

t u + (ab + ac + bc)D2
x Dt u − abcD3

x u

+
∑
l<3

a3,l(t)Dl
x u +

∑
l<2

a2,l(t)Dl
x Dt u + a1,0(t)D2

t u = 0,
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410 C. Garetto, M. Ruzhansky

where a(t), b(t) and c(t) are real-valued functions with b and c bounded above and
from below by a (for instance, a(t)/4 ≤ b(t) ≤ a(t)/2 and a(t)/16 ≤ c(t) ≤ a(t)/8
for all t ∈ [0, T ]). It follows that condition (6) on the roots λ1(t, ξ) = a(t)ξ, λ2(t, ξ) =
b(t)ξ and λ3(t, ξ) = c(t)ξ is fulfilled on [0, T ] for all ξ ∈ R. The Levi conditions (7)
on the lower order terms are of the following type:

|a3,2(t)ξ
2 + a3,1(t)ξ + a3,0(t)|2 ≤ c a4(t)ξ4,

|a2,1(t)ξ + a2,0(t)|2 ≤ c a2(t)ξ2,

|a1,0(t)|2 ≤ c,

for t ∈ [0, T ] and ξ away from 0.

3 The quasi-symmetriser

We begin by recalling a few facts concerning the quasi-symmetriser. For more details
see [10,13]. Note that for m × m matrices A1 and A2 the notation A1 ≤ A2 means
(A1v, v) ≤ (A2v, v) for all v ∈ C

m with (·, ·) the scalar product in C
m . Let A(λ) be

the m × m Sylvester matrix with real eigenvalues λl , i.e.,

A(λ) =

⎛
⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . 1

−σ
(m)
m (λ) −σ

(m)
m−1(λ) . . . . . . −σ

(m)
1 (λ)

⎞
⎟⎟⎠ ,

where

σ
(m)
h (λ) = (−1)h

∑
1≤i1<···<ih≤m

λi1 . . . λih

for all 1 ≤ h ≤ m. In the sequel we make use of the following notations: Pm for
the class of permutations of {1, . . . , m}, λρ = (λρ1, . . . , λρm ) with λ ∈ R

m and
ρ ∈ Pm, πiλ = (λ1, . . . , λi−1, λi+1, . . . , λm) and λ′ = πmλ = (λ1, . . . , λm−1).
Following Sect. 4 in [13] we have that the quasi-symmetriser is the Hermitian matrix

Q(m)
ε (λ) =

∑
ρ∈Pm

P(m)
ε (λρ)∗ P(m)

ε (λρ),

where ε ∈ (0, 1], P(m)
ε (λ) = H (m)

ε P(m)(λ), H (m)
ε = diag{εm−1, . . . , ε, 1} and the

matrix P(m)(λ) is defined inductively by P(1)(λ) = 1 and

P(m)(λ) =

⎛
⎜⎜⎜⎝

0

P(m−1)(λ′)
...

0
σ

(m−1)
m−1 (λ′) . . . . . . σ

(m−1)
1 (λ′) 1

⎞
⎟⎟⎟⎠ .
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Note that P(m)(λ) is depending only on λ′. Finally, let W (m)
i (λ) denote the row vector

(σ
(m−1)
m−1 (πiλ), . . . , σ

(m−1)
1 (πiλ), 1), 1 ≤ i ≤ m,

and let W(m)(λ) be the matrix with row vectors W (m)
i . The following proposition

collects the main properties of the quasi-symmetriser Q(m)
ε (λ). For a detailed proof

we refer the reader to Propositions 1 and 2 in [13] and to Proposition 1 in [10].

Proposition 1 (i) The quasi-symmetriser Q(m)
ε (λ) can be written as

Q(m)
0 (λ) + ε2 Q(m)

1 (λ) + · · · + ε2(m−1)Q(m)
m−1(λ),

where the matrices Q(m)
i (λ), i = 1, . . . , m − 1, are nonnegative and Hermitian

with entries being symmetric polynomials in λ1, . . . , λm.
(ii) There exists a function Cm(λ) bounded for bounded |λ| such that

Cm(λ)−1ε2(m−1) I ≤ Q(m)
ε (λ) ≤ Cm(λ)I.

(iii) We have

−Cm(λ)εQ(m)
ε (λ) ≤ Q(m)

ε (λ)A(λ) − A(λ)∗Q(m)
ε (λ) ≤ Cm(λ)εQ(m)

ε (λ).

(iv) For any (m − 1) × (m − 1) matrix T let T 
 denote the m × m matrix(
T 0
0 0

)
.

Then, Q(m)
ε (λ) = Q(m)

0 (λ) + ε2 ∑m
i=1 Q(m−1)

ε (πiλ)
.
(v) We have

Q(m)
0 (λ) = (m − 1)!W(m)(λ)∗W(m)(λ).

(vi) We have

det Q(m)
0 (λ) = (m − 1)!

∏
1≤i< j≤m

(λi − λ j )
2.

(vii) There exists a constant Cm such that

q(m)
0,11(λ) · · · q(m)

0,mm(λ) ≤ Cm

∏
1≤i< j≤m

(λ2
i + λ2

j ).

We finally recall that a family {Qα} of nonnegative Hermitian matrices is called nearly
diagonal if there exists a positive constant c0 such that

Qα ≥ c0 diag Qα
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for all α, with diag Qα = diag{qα,11, . . . , qα,mm}. The following linear algebra result
is proven in [13, Lemma 1].

Lemma 1 Let {Qα} be a family of nonnegative Hermitian m × m matrices such that
det Qα > 0 and

det Qα ≥ c qα,11qα,22 · · · qα,mm

for a certain constant c > 0 independent of α. Then,

Qα ≥ c m1−m diag Qα

for all α, i.e., the family {Qα} is nearly diagonal.

Lemma 1 is employed to prove that the family Q(m)
ε (λ) of quasi-symmetrisers defined

above is nearly diagonal when λ belongs to a suitable set. The following statement is
proven in [13, Proposition 3].

Proposition 2 For any M > 0 define the set

SM = {λ ∈ R
m : λ2

i + λ2
j ≤ M(λi − λ j )

2, 1 ≤ i < j ≤ m}.

Then the family of matrices {Q(m)
ε (λ) : 0 < ε ≤ 1, λ ∈ SM } is nearly diagonal.

We conclude this section with a result on nearly diagonal matrices depending on 3
parameters (i.e. ε, t, ξ ) which will be crucial in the next section. Note that this is a
straightforward extension of Lemma 2 in [13] valid for 2 parameter (i.e. ε, t) dependent
matrices.

Lemma 2 Let {Q(m)
ε (t, ξ) : 0 < ε ≤ 1, 0 ≤ t ≤ T, ξ ∈ R

n} be a nearly diagonal
family of coercive Hermitian matrices of class Ck in t , k ≥ 1. Then, there exists a
constant CT > 0 such that for any continuous function V : [0, T ] × R

n → C
m we

have

T∫
0

|(∂t Q(m)
ε (t, ξ)V (t, ξ), V (t, ξ))|

(Q(m)
ε (t, ξ)V (t, ξ), V (t, ξ))1−1/k |V (t, ξ)|2/k

dt ≤ CT ‖Q(m)
ε (·, ξ)‖1/k

Ck ([0,T ])

for all ξ ∈ R
n .

4 Reduction to a first order system and energy estimate

We now go back to the Cauchy problem (1) and perform a reduction of the m-order
equation to a first order system as in [19]. Let 〈Dx 〉 be the pseudo-differential operator

with symbol 〈ξ 〉 = (1 + |ξ |2) 1
2 . The transformation

u j = D j−1
t 〈Dx 〉m− j u,

with j = 1, . . . , m, makes the Cauchy problem (1) equivalent to the following system
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Dt

⎛
⎜⎜⎝

u1
·
·

um

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 〈Dx 〉 0 . . . 0
0 0 〈Dx 〉 . . . 0
. . . . . . . . . . . . 〈Dx 〉
b1 b2 . . . . . . bm

⎞
⎟⎟⎠
⎛
⎜⎜⎝

u1
·
·

um

⎞
⎟⎟⎠ , (11)

where

b j = −Am− j+1(t, Dx )〈Dx 〉 j−m,

with initial condition

u j |t=0 = 〈Dx 〉m− j g j , j = 1, . . . , m. (12)

The matrix in (11) can be written as A1 + B with

A1 =

⎛
⎜⎜⎝

0 〈Dx 〉 0 . . . 0
0 0 〈Dx 〉 . . . 0
. . . . . . . . . . . . 〈Dx 〉
b(1) b(2) . . . . . . b(m)

⎞
⎟⎟⎠ ,

where b( j) = −A(m− j+1)(t, Dx )〈Dx 〉 j−m is the principal part of the operator b j =
−Am− j+1(t, Dx )〈Dx 〉 j−m and

B =

⎛
⎜⎜⎝

0 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . 0

b1 − b(1) b2 − b(2) . . . . . . bm − b(m)

⎞
⎟⎟⎠ .

By Fourier transforming both sides of (11) in x we obtain the system

Dt V = A1(t, ξ)V + B(t, ξ)V,

V |t=0(ξ) = V0(ξ), (13)

where V is the m-column with entries v j = û j , V0 is the m-column with entries
v0, j = 〈ξ 〉m− j ĝ j and

A1(t, ξ) =

⎛
⎜⎜⎝

0 〈ξ 〉 0 . . . 0
0 0 〈ξ 〉 . . . 0
. . . . . . . . . . . . 〈ξ 〉

b(1)(t, ξ) b(2)(t, ξ) . . . . . . b(m)(t, ξ)

⎞
⎟⎟⎠ ,

b( j)(t, ξ) = −A(m− j+1)(t, ξ)〈ξ 〉 j−m, (14)
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B(t, ξ) =

⎛
⎜⎜⎝

0 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . 0

(b1 − b(1))(t, ξ) . . . . . . . . . (bm − b(m))(t, ξ)

⎞
⎟⎟⎠ ,

(b j − b( j))(t, ξ) = −(Am− j+1 − A(m− j+1))(t, ξ)〈ξ 〉 j−m .

From now on we will concentrate on the system (13) and on the matrix

A(t, ξ) := 〈ξ 〉−1
A1(t, ξ)

for which we will construct a quasi-symmetriser. Note that the eigenvalues of the
matrix A1 are exactly the roots λl(t, ξ), l = 1, . . . , m. It is clear that the condition
(6) holds for the eigenvalues 〈ξ 〉−1λl(t, ξ) of the 0-order matrix A(t, ξ) as well.Let
us define the energy

Eε(t, ξ) = (Q(m)
ε (t, ξ)V (t, ξ), V (t, ξ)).

We have

∂t Eε(t, ξ) = (∂t Q(m)
ε V, V ) + i(Q(m)

ε Dt V, V ) − i(Q(m)
ε V, Dt V )

= (∂t Q(m)
ε V, V ) + i(Q(m)

ε (A1V + BV ), V ) − i(Q(m)
ε V, A1V + BV )

= (∂t Q(m)
ε V, V ) + i〈ξ 〉((Q(m)

ε A − A∗Q(m)
ε )V, V )

+i((Q(m)
ε B − B∗Q(m)

ε )V, V ).

It follows that

∂t Eε(t, ξ) ≤ |(∂t Q(m)
ε V, V )|Eε

(Q(m)
ε (t, ξ)V (t, ξ), V (t, ξ))

+ |〈ξ 〉((Q(m)
ε A − A∗Q(m)

ε )V, V )|

+|((Q(m)
ε B − B∗Q(m)

ε )V, V )|. (15)

We recall that from Proposition 1, Q(m)
ε (t, ξ) is a family of smooth nonnegative Her-

mitian matrices such that

Q(m)
ε (t, ξ) = Q(m)

0 (t, ξ) + ε2 Q(m)
1 (t, ξ) + · · · + ε2(m−1)Q(m)

m−1(t, ξ). (16)

In addition there exists a constant Cm > 0 such that for all t ∈ [0, T ], ξ ∈ R
n and

ε ∈ (0, 1] the following estimates hold uniformly in V :

C−1
m ε2(m−1)|V |2 ≤ (Q(m)

ε (t, ξ)V, V ) ≤ Cm |V |2, (17)

|((Q(m)
ε A − A∗Q(m)

ε )(t, ξ)V, V )| ≤ Cmε(Q(m)
ε (t, ξ)V, V ). (18)

Finally, condition (6) and Proposition 2 ensure that the family
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{Q(m)
ε (t, ξ) : ε ∈ (0, 1], t ∈ [0, T ], ξ ∈ R

n}

is nearly diagonal.
In the sequel we assume that the coefficients a j in the Eq. (1) are of class Ck , or

in other words that the matrix A(t, ξ) has entries of class Ck in t ∈ [0, T ]. It follows
by construction that the quasi-symmetriser has the same regularity property. We now
estimate the three terms of the right hand side of (15).

4.1 First term

We write |(∂t Q(m)
ε V,V )|

(Q(m)
ε (t,ξ)V (t,ξ),V (t,ξ))

as

|(∂t Q(m)
ε V, V )|

(Q(m)
ε (t, ξ)V (t, ξ), V (t, ξ))1−1/k(Q(m)

ε (t, ξ)V (t, ξ), V (t, ξ))1/k
.

From (17) we have

|(∂t Q(m)
ε V, V )|

(Q(m)
ε (t, ξ)V (t, ξ), V (t, ξ))

≤ |(∂t Q(m)
ε V, V )|

(Q(m)
ε (t, ξ)V (t, ξ), V (t, ξ))1−1/k(C−1

m ε2(m−1)|V |2)1/k

≤ C1/k
m ε−2(m−1)/k |(∂t Q(m)

ε V, V )|
(Q(m)

ε (t, ξ)V (t, ξ), V (t, ξ))1−1/k |V |2/k
.

An application of Lemma 2 yields the estimate

T∫
0

|(∂t Q(m)
ε V, V )|

(Q(m)
ε (t, ξ)V (t, ξ), V (t, ξ))

dt

≤ C1/k
m ε−2(m−1)/kCT sup

ξ∈Rn
‖Qε(·, ξ)‖1/k

Ck ([0,T ])

≤ C1ε
−2(m−1)/k,

for all ε ∈ (0, 1]. Setting |(∂t Q(m)
ε V,V )|

(Q(m)
ε (t,ξ)V (t,ξ),V (t,ξ))

= Kε(t, ξ) we conclude that

|(∂t Q(m)
ε V, V )|Eε

(Q(m)
ε (t, ξ)V (t, ξ), V (t, ξ))

= Kε(t, ξ)Eε, (19)
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with

T∫
0

Kε(t, ξ) dt ≤ C1ε
−2(m−1)/k . (20)

4.2 Second term

From the property (18) we have that

|〈ξ 〉((Q(m)
ε A − A∗Q(m)

ε )V, V )| ≤ Cmε〈ξ 〉(Q(m)
ε (t, ξ)V, V ) ≤ C2ε〈ξ 〉Eε.

4.3 Third term

We now concentrate on

((Q(m)
ε B − B∗Q(m)

ε )V, V ),

which is the main task in this paper. By Proposition 1(iv) and the definition of the
matrix B(t, ξ) we have that

((Q(m)
ε B − B∗Q(m)

ε )V, V ) = ((Q(m)
0 B − B∗Q(m)

0 )V, V )

+ ε2
m∑

i=1

((Q(m−1)
ε (πiλ)
B − B∗Q(m−1)

ε (πiλ)
)V, V ),

where we notice that (Q(m−1)
ε (πiλ)
 B − B∗Q(m−1)

ε (πiλ)
) = 0 due to the structure
of zeros in B and in Q(m−1)

ε (πiλ)
. Hence

((Q(m)
ε B − B∗Q(m)

ε )V, V ) = ((Q(m)
0 B − B∗Q(m)

0 )V, V ).

Note that from Proposition 1(i) we have that (Q(m)
0 V, V ) ≤ Eε. In the next section

we will show that the conditions on B corresponding to (7) imply that

|((Q(m)
0 B − B∗Q(m)

0 )V, V )| ≤ C3(Q(m)
0 V, V ) ≤ C3 Eε, (21)

for some constant C3 > 0 independent of t ∈ [0, T ], ξ ∈ R
n and V ∈ C

m .

Remark 1 Note that condition (6) is trivially satisfied when the roots are distinct, i.e. in
the strictly hyperbolic case. It follows that the family {Qε(λ)} of quasi-symmetrisers
is nearly diagonal and, therefore, there exists a constant c0 > 0 such that Q(m)

0 ≥
c0diag Q(m)

0 . This means that

(Q(m)
0 V, V ) ≥ c0

m∑
i=1

q0,i i |Vi |2
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holds for all V ∈ C
m . From the hypothesis of strict hyperbolicity it easily follows that

inf
t∈[0,T ],|ξ |≥R,i=1,...,m

q0,i i (t, ξ) > 0,

for any R > 0. This bound from below implies

(Q(m)
0 (t, ξ)V, V ) ≥ c′

0|V |2 (22)

for t ∈ [0, T ] and |ξ | ≥ R and hence the estimate

|((Q(m)
0 B − B∗Q(m)

0 )V, V )| ≤ C3(Q0V, V )

holds trivially in the strictly hyperbolic case for any lower order term B (for our
purposes it will not be restrictive to assume |ξ | ≥ R). Concluding, when the roots λi

are distinct the Gevrey and ultradistributional well-posedness results in Theorems 2
and 3 can be stated without additional conditions on the lower order terms. Strictly
hyperbolic equations under low regularity (Hölder Cα , 0 < α < 1) of the coefficients
have been analysed by the authors in [11, Case 3], to which we refer for general
statements on the Gevrey and ultradistributional well-posedness in this setting.

5 Estimates for the lower order terms

We begin by rewriting ((Q(m)
0 B − B∗Q(m)

0 )V, V ) in terms of the matrix W = W(m).
From Proposition 1(v) we have

((Q(m)
0 B − B∗Q(m)

0 )V, V ) = (m − 1)!((W BV,WV ) − (WV,W BV ))

= 2i(m − 1)!�(W BV,WV ).

It follows that

|((Q(m)
0 B − B∗Q(m)

0 )V, V )| ≤ 2(m − 1)!|W BV ||WV |.

Since

(Q0V, V ) = (m − 1)!|WV |2

we have that if

|W BV | ≤ C |WV | (23)

for some constant C > 0 independent of t, ξ and V , then the condition (21) will hold.
It is our task to show that the condition (7) on the matrix B of the lower order terms
implies the estimate (23).
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Before dealing with the general case of Bm ×m-matrix, let us consider the instruc-
tive case m = 3, which will illustrate the general argument in a simplified setting. In
the sequel, for f and g real-valued functions (in the variable y) we write f (y) ≺ g(y)

if there exists a constant C > 0 such that f (y) ≤ Cg(y) for all y. More precisely, we
will set y = (t, ξ) or y = (t, ξ, V ).

5.1 The case m = 3

By definition of the row vectors W (3)
i , i = 1, 2, 3, we have that

W =
⎛
⎝λ2λ3 −λ2 − λ3 1

λ3λ1 −λ3 − λ1 1
λ1λ2 −λ1 − λ2 1

⎞
⎠ ,

where λi , i = 1, 2, 3, are the 0-order normalised roots. Hence, by definition of the
matrix B setting b j − b( j) = B j , j = 1, 2, 3, we get

W BV =
⎛
⎝ B1V1 + B2V2 + B3V3

B1V1 + B2V2 + B3V3
B1V1 + B2V2 + B3V3

⎞
⎠

and

WV =
⎛
⎝ (λ2λ3)V1 − (λ2 + λ3)V2 + V3

(λ3λ1)V1 − (λ3 + λ1)V2 + V3
(λ1λ2)V1 − (λ1 + λ2)V2 + V3

⎞
⎠ .

Thus, instead of working on proving (23) we can work on the equivalent inequality

|B1V1 + B2V2 + B3V3|2 ≺ |(λ2λ3)V1 − (λ2 + λ3)V2 + V3|2
+ |(λ3λ1)V1 − (λ3 + λ1)V2 + V3|2
+ |(λ1λ2)V1 − (λ1 + λ2)V2 + V3|2. (24)

In terms of the coefficients of the matrix B the Levi conditions (9) on the lower order
terms can be written as

|B1|2 ≺ λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1,

|B2|2 ≺ (λ1 + λ2)
2 + (λ2 + λ3)

2 + (λ3 + λ1)
2, (25)

|B3|2 ≺ c.

Under these conditions we now want to prove that (24) holds for all vectors V . We
note here that actually for the right hand side of (24) by the triangle inequality we
have the upper bound
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|(λ2λ3)V1−(λ2+λ3)V2+V3|2+|(λ3λ1)V1−(λ3+λ1)V2+V3|2
+|(λ1λ2)V1−(λ1+λ2)V2+V3|2

≺ (λ2
1λ

2
2+λ2

2λ
2
3+λ2

3λ
2
1)|V1|2+((λ1+λ2)

2+(λ2+λ3)
2+(λ3+λ1)

2)|V2|2+|V3|2,
in which the right hand side of (25) appears naturally.

Our strategy is to proceed by 3 steps making use of the following partition of R
3:

R
3 = �

δ1
1 ∪ ((

�
δ1
1

)c ∩ �
δ2
2

) ∪ ((
�

δ1
1

)c ∩ (
�

δ2
2

)c)
,

where

�
δ1
1 := {V ∈ R

3 : |V3|2 + ((λ1 + λ2)
2 + (λ2 + λ3)

2 + (λ3 + λ1)
2)|V2|2

≤ δ1(λ
2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1)|V1|2},

and

�
δ2
2 := {V ∈ R

3 : |V3|2 ≤ δ2((λ1 + λ2)
2 + (λ2 + λ3)

2 + (λ3 + λ1)
2)|V2|2}.

Estimate on �
δ1
1 .

Making use of the conditions (25) we have that

|B1V1+B2V2+B3V3|2 ≺ |B1|2|V1|2+|B2|2|V2|2+|B3|2|V3|2
≺ (λ2

1λ
2
2+λ2

2λ
2
3+λ2

3λ
2
1)|V1|2+((λ1+λ2)

2+(λ2+λ3)
2+(λ3+λ1)

2)|V2|2+|V3|2
≺ (λ2

1λ
2
2+λ2

2λ
2
3+λ2

3λ
2
1)|V1|2 (26)

on �
δ1
1 . Note1 that we have

|(λ2λ3)V1 − (λ2 + λ3)V2 + V3|2 + |(λ3λ1)V1 − (λ3 + λ1)V2 + V3|2
� |(λ2λ3 − λ3λ1)V1 − (λ2 − λ1)V2|2
� (λ2 − λ1)

2|λ3V1 − V2|2 � (λ2
1 + λ2

2)|λ3V1 − V2|2,
where also in the last line we make use of the condition (6) on the roots λi . Hence, by
applying this to different combinations of terms, we get

|(λ2λ3)V1 − (λ2 + λ3)V2 + V3|2
+|(λ3λ1)V1 − (λ3 + λ1)V2 + V3|2 + |(λ1λ2)V1 − (λ1 + λ2)V2 + V3|2

� (λ2
1 + λ2

2)|λ3V1 − V2|2 + (λ2
2 + λ2

3)|λ1V1 − V2|2 + (λ2
3 + λ2

1)|λ2V1 − V2|2
� λ2

1(|λ3V1 − V2|2 + |λ2V1 − V2|2) + λ2
2(|λ3V1 − V2|2 + |λ1V1 − V2|2)

+λ2
3(|λ2V1 − V2|2 + |λ1V1 − V2|2)

� (λ2
1(λ3 − λ2)

2 + λ2
2(λ3 − λ1)

2 + λ2
3(λ2 − λ1)

2)|V1|2
� (λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1)|V1|2. (27)

1 Using the formula |z1|2 + |z2|2 ≥ 1
2 |z1 − z2|2, z1, z2 ∈ C.
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From the bound from below (27) and the estimate (26) one has that the inequality (24)
holds true in the region �

δ1
1 for all δ1 > 0.

Estimate on
(
�

δ1
1

)c ∩ �
δ2
2 .

We assume from now on that V ∈ (
�

δ1
1

)c which means that

|V3|2+((λ1+λ2)
2+(λ2+λ3)

2+(λ3+λ1)
2)|V2|2 > δ1(λ

2
1λ

2
2+λ2

2λ
2
3+λ2

3λ
2
1)|V1|2.

One immediately has

|B1V1 + B2V2 + B3V3|2 ≺ |B1|2|V1|2 + |B2|2|V2|2 + |B3|2|V3|2
≺ (λ2

1λ
2
2+λ2

2λ
2
3+λ2

3λ
2
1)|V1|2+((λ1+λ2)

2+(λ2+λ3)
2+(λ3+λ1)

2)|V2|2+|V3|2
≺ ((λ1 + λ2)

2 + (λ2 + λ3)
2 + (λ3 + λ1)

2)|V2|2 + |V3|2.

More precisely,

|B1V1 + B2V2 + B3V3|2 ≺ ((λ1 + λ2)
2 + (λ2 + λ3)

2 + (λ3 + λ1)
2)|V2|2 (28)

holds for all V ∈ (
�

δ1
1

)c ∩ �
δ2
2 . We estimate the right-hand side of (24) as

|(λ2λ3)V1 − (λ2 + λ3)V2 + V3|2
+|(λ3λ1)V1 − (λ3 + λ1)V2 + V3|2 + |(λ1λ2)V1 − (λ1 + λ2)V2 + V3|2

� γ1(|(λ2 + λ3)V2 − V3|2 + |(λ3 + λ1)V2 − V3|2 + |(λ1 + λ2)V2 − V3|2)
−γ2(λ

2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1)|V1|2,

for some2 constants γ1, γ2 > 0. By using condition (6) we get the estimate

(λ2 − λ1)
2 + (λ3 − λ2)

2 + (λ3 − λ1)
2 ≥ 2

M
(λ2

1 + λ2
2 + λ2

3)

≥ 1

2M
((λ1 + λ2)

2 + (λ2 + λ3)
2 + (λ3 + λ1)

2)

and then

|(λ2λ3)V1−(λ2+λ3)V2+V3|2
+|(λ3λ1)V1 − (λ3 + λ1)V2 + V3|2 + |(λ1λ2)V1 − (λ1 + λ2)V2 + V3|2

� γ1((λ2 − λ1)
2+(λ3−λ2)

2+(λ3−λ1)
2)|V2|2−γ2(λ

2
1λ

2
2+λ2

2λ
2
3+λ2

3λ
2
1)|V1|2

� γ ′
1((λ1+λ2)

2+(λ2+λ3)
2+(λ3+λ1)

2)|V2|2−γ2(λ
2
1λ

2
2+λ2

2λ
2
3+λ2

3λ
2
1)|V1|2

� (γ ′
1 − γ2

1

δ1
(δ2 + 1))((λ1 + λ2)

2 + (λ2 + λ3)
2 + (λ3 + λ1)

2)|V2|2,

2 For example, we can take γ1 = 1
2 , γ2 = 1, using the inequality |z1 − z2|2 ≥ 1

2 |z1|2 − |z2|2.

123



Weakly hyperbolic equations 421

for some3 constant γ ′
1 > 0. Combining this with (28) we conclude that for any δ2 and

for δ1 big enough the right-hand side of (24) can be estimated from below by |V2|2
and, therefore, (24) holds true on

(
�

δ1
1

)c ∩ �
δ2
2 .

Estimate on
(
�

δ1
1

)c ∩ (
�

δ2
2

)c
.

Since on
(
�

δ2
2

)c we have

|V3|2 > δ2((λ1 + λ2)
2 + (λ2 + λ3)

2 + (λ3 + λ1)
2)|V2|2,

it follows that

|B1V1 + B2V2 + B3V3|2 ≺ |V3|2.

Then, for V ∈ (
�

δ1
1

)c ∩ (
�

δ2
2

)c, for suitable4 constants γ1, γ2, γ3 (independent of V ),

|(λ2λ3)V1 − (λ2 + λ3)V2 + V3|2
+|(λ3λ1)V1 − (λ3 + λ1)V2 + V3|2 + |(λ1λ2)V1 − (λ1 + λ2)V2 + V3|2

� γ3|V3|2 − γ2((λ1 + λ2)
2 + (λ2 + λ3)

2 + (λ3 + λ1)
2)|V2|2

−γ1
1

δ1
(|V3|2 + ((λ1 + λ2)

2 + (λ2 + λ3)
2 + (λ3 + λ1)

2)|V2|2)

� (γ3 − γ1
1

δ1
)|V3|2 − (γ2 + γ1

1

δ1
)

1

δ2
|V3|2.

We conclude that for δ1 and δ2 big enough,

|(λ2λ3)V1 − (λ2 + λ3)V2 + V3|2 + |(λ3λ1)V1 − (λ3 + λ1)V2 + V3|2
+|(λ1λ2)V1 − (λ1 + λ2)V2 + V3|2 � |V3|2,

and, therefore, (24) holds in the area
(
�

δ1
1

)c ∩ (
�

δ2
2

)c.

The next table describes and summarises the proof above:

Area Estimates in δi

�
δ1
1 |V1|2 Any δ1(

�
δ1
1
)c ∩ �

δ2
2 |V2|2 δ1 big, any δ2(

�
δ1
1
)c ∩ (

�
δ2
2
)c |V3|2 δ1 and δ2 big

3 Here we use the inequality |z1|2 + |z2|2 + |z3|2 ≥ 1
4 (|z1 − z2|2 + |z2 − z3|2 + |z3 − z1|2).

4 Using the inequality |z1 − z2 − z3|2 ≥ 1
4 |z1|2 − 1

2 |z2|2 − |z3|2.
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5.2 The general case m

Inspired by the previous subsection we now deal with the inequality

|W BV | ≺ |WV |

for W = W(m) and arbitrary m ≥ 2. This is the topic of the following theorem where
the coefficients σ

(m)
h (λ) are defined as in Sect. 3 and λ = (λ1, λ2, . . . , λm) ∈ R

m is
the vector of the eigenvalues of the matrix A(t, ξ) (or the 0-order normalised roots)
satisfying the condition (6).

Theorem 5 Let the entries B j of the matrix

B =

⎛
⎜⎜⎝

0 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . 0
B1 B2 . . . . . . Bm

⎞
⎟⎟⎠

in (13) fulfil the condition

|B j |2 ≺
m∑

i=1

|σ (m−1)
m− j (πiλ)|2 (29)

for j = 1, . . . , m. Then we have

|W BV | ≺ |WV |

uniformly over all V ∈ C
m. More precisely, define

�
δk
k : = {V ∈ C

m : |Vm |2 +
m−1∑

j=k+1

m∑
i=1

|σ (m−1)
m− j (πiλ)|2|Vj |2

≤ δk

m∑
i=1

|σ (m−1)
m−k (πiλ)|2|Vk |2},

for k = 1, . . . , m − 2, and for k = m − 1, define

�
δm−1
m−1 := {V ∈ C

m : |Vm |2 ≤ δm−1

m∑
i=1

|σ (m−1)
1 (πiλ)|2|Vm−1|2}.

Then, there exist suitable δ j > 0, j = 1, . . . , m − 1, such that
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|W BV |2 ≺
m∑

i=1

|σ (m−1)
m−1 (πiλ)|2|V1|2,

|WV |2 �
m∑

i=1

|σ (m−1)
m−1 (πiλ)|2|V1|2

on �
δ1
1 ,

|W BV |2 ≺
m∑

i=1

|σ (m−1)
m−k (πiλ)|2|Vk |2,

|WV |2 �
m∑

i=1

|σ (m−1)
m−k (πiλ)|2|Vk |2

on

(
�

δ1
1

)c ∩ (
�

δ2
2

)c ∩ · · · ∩ (
�

δk−1
k−1

)c ∩ �
δk
k

for 2 ≤ k ≤ m − 1, and

|W BV |2 ≺
m∑

i=1

|σ (m−1)
0 (πiλ)|2|Vm |2,

|WV |2 �
m∑

i=1

|σ (m−1)
0 (πiλ)|2|Vm |2

on
(
�

δ1
1

)c ∩ (
�

δ2
2

)c ∩ · · · ∩ (
�

δm−1
m−1

)c
.

Note that (29) is a reformulation of the condition (10) on the lower order terms. The
proof of Theorem 5 makes use of the following two lemmas.

Lemma 3 For all i and j with 1 ≤ i, j ≤ m and k = 1, . . . , m − 1, one has

σ
(m−1)
m−k (πiλ) − σ

(m−1)
m−k (π jλ)

= (−1)m−k(λ j − λi )
∑

ih �=i, ih �= j
1≤i1<i2<···<im−k−1≤m

λi1λi2 · · · λim−k−1 . (30)

Proof By definition of σ
(m−1)
m−k (πiλ) and σ

(m−1)
m−k (π jλ) we have that

σ
(m−1)
m−k (πiλ) = (−1)m−k

∑
1≤l1<l2<···<lm−k≤m

lh �=i

λl1λl2 · · · λlm−k
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= (−1)m−k
∑

1≤l1<l2<···<lm−k≤m
lh �=i, j

λl1λl2 · · · λlm−k

+ (−1)m−kλ j

∑
1≤l1<l2<···<lm−k−1≤m

lh �=i, j

λl1λl2 · · · λlm−k−1

and

σ
(m−1)
m−k (π jλ) = (−1)m−k

∑
1≤l1<l2<···<lm−k≤m

lh �= j

λl1λl2 · · · λlm−k

= (−1)m−k
∑

1≤l1<l2<···<lm−k≤m
lh �=i, j

λl1λl2 · · · λlm−k

+(−1)m−kλi

∑
1≤l1<l2<···<lm−k−1≤m

lh �=i, j

λl1λl2 · · · λlm−k−1 .

This leads immediately to the formula (30). ��
Lemma 4 For all k = 1, . . . , m, we have

m∑
i=1

∣∣∣∣∣∣
m∑

j=k+1

σ
(m−1)
m− j (πiλ)Vj + σ

(m−1)
m−k (πiλ)Vk

∣∣∣∣∣∣
2

�
m∑

i=1

|σ (m−1)
m−k (πiλ)|2|Vk |2. (31)

Proof We give a proof by induction on the order m. Setting m = 2 the estimates above
makes sense for k = 1. Hence we have to prove that

2∑
i=1

|σ (1)
0 (πiλ)V2 + σ

(1)
1 (πiλ)V1|2 =

2∑
i=1

|V2 + σ
(1)
1 (πiλ)V1|2

�
2∑

i=1

|σ (1)
1 (πiλ)|2|V1|2.

This is clear since by the condition (6) we have that

2∑
i=1

|V2 + σ
(1)
1 (πiλ)V1|2 � |σ (1)

1 (π1λ) − σ
(1)
1 (π2λ)|2|V1|2 = (λ2 − λ1)

2|V1|2

� (λ2
1 + λ2

2)|V1|2 =
2∑

i=1

|σ (1)
1 (πiλ)|2|V1|2.
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Assume now that (31) holds for m − 1. Estimating the left-hand side of (31) with the
differences between two arbitrary summands5 we can write

m∑
i=1

∣∣∣∣∣∣
m∑

j=k+1

σ
(m−1)
m− j (πiλ)Vj + σ

(m−1)
m−k (πiλ)Vk

∣∣∣∣∣∣
2

�
∑

1≤l1 �=l2≤m

∣∣∣∣
m∑

j=k+1

(σ
(m−1)
m− j (πl1λ) − σ

(m−1)
m− j (πl2λ))Vj

+(σ
(m−1)
m−k (πl1λ) − σ

(m−1)
m−k (πl2λ))Vk

∣∣∣∣
2

=
∑

1≤l1 �=l2≤m

∣∣∣∣
m−1∑

j=k+1

(σ
(m−1)
m− j (πl1λ) − σ

(m−1)
m− j (πl2λ))Vj

+(σ
(m−1)
m−k (πl1λ) − σ

(m−1)
m−k (πl2λ))Vk

∣∣∣∣
2

,

where the terms with j = m cancel. By applying Lemma 3 and the condition (6) we
obtain the following bound from below:

m∑
i=1

∣∣∣∣
m∑

j=k+1

σ
(m−1)
m− j (πiλ)Vj + σ

(m−1)
m−k (πiλ)Vk

∣∣∣∣
2

�
∑

1≤l1 �=l2≤m

∣∣∣∣−(λl2 − λl1)Vm−1

+
m−2∑

j=k+1

(−1)m− j (λl2 − λl1)
∑

ih �=l1, ih �=l2
1≤i1<i2<···<im− j−1≤m

(λi1λi2 · · · λim− j−1)Vj

+(−1)m−k(λl2 − λl1)
∑

ih �=l1, ih �=l2
1≤i1<i2<···<im−k−1≤m

(λi1λi2 · · · λim−k−1)Vk

∣∣∣∣
2

�
∑

1≤l1 �=l2≤m

(λ2
l1 + λ2

l2)

∣∣∣∣−Vm−1 +
m−2∑

j=k+1

(−1)m− j
∑

ih �=l1, ih �=l2
1≤i1<i2<···<im− j−1≤m

(λi1λi2 · · · λim− j−1)Vj + (−1)m−k
∑

ih �=l1, ih �=l2
1≤i1<i2<···<im−k−1≤m

(λi1λi2 · · · λim−k−1)Vk

∣∣∣∣
2

.

Noting that

(−1)m− j
∑

ih �=l1, ih �=l2
1≤i1<i2<···<im− j−1≤m

(λi1λi2 · · · λim− j−1) = −σ
(m−2)
m−1− j (πl2(πl1λ))

5 Using the inequality
∑m

i=1 |zi |2 � ∑
1≤h1 �=h2≤m |zh1 − zh2 |2.
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for j = k, . . . , m − 2, we write the estimate above as

m∑
i=1

∣∣∣∣
m∑

j=k+1

σ
(m−1)
m− j (πiλ)Vj + σ

(m−1)
m−k (πiλ)Vk

∣∣∣∣
2

�
∑

1≤l1 �=l2≤m

(λ2
l1 + λ2

l2)

∣∣∣∣−Vm−1 −
m−2∑

j=k+1

σ
(m−2)
m−1− j (πl2(πl1λ))Vj − σ

(m−2)
m−1−k(πl2(πl1λ))Vk

∣∣∣∣
2

,

where the right hand-side can be written as

∑
1≤l1 �=l2≤m

(λ2
l1 + λ2

l2)

∣∣∣∣Vm−1 +
m−2∑

j=k+1

σ
(m−2)
m−1− j (πl2(πl1λ))Vj + σ

(m−2)
m−1−k(πl2(πl1λ))Vk

∣∣∣∣
2

=
∑

l1

λ2
l1

∑
1≤l1 �=l2≤m

∣∣∣∣Vm−1 +
m−2∑

j=k+1

σ
(m−2)
m−1− j (πl2(πl1λ))Vj

+ σ
(m−2)
m−1−k(πl2(πl1λ))Vk

∣∣∣∣
2

+
∑

l2

λ2
l2

∑
1≤l1 �=l2≤m

∣∣∣∣Vm−1 +
m−2∑

j=k+1

σ
(m−2)
m−1− j (πl2(πl1λ))Vj

+σ
(m−2)
m−1−k(πl2(πl1λ))Vk

∣∣∣∣
2

. (32)

By now applying the inductive hypothesis to the last two summands in (32) we obtain

m∑
i=1

∣∣∣∣
m∑

j=k+1

σ
(m−1)
m− j (πiλ)Vj + σ

(m−1)
m−k (πiλ)Vk

∣∣∣∣
2

�
∑

l1

λ2
l1

∑
1≤l1 �=l2≤m

|σ (m−2)
m−1−k(πl2(πl1λ))|2|Vk |2

+
∑

l2

λ2
l2

∑
1≤l1 �=l2≤m

|σ (m−2)
m−1−k(πl1(πl2λ))|2|Vk |2

�
m∑

i=1

|σ (m−1)
m−k (πiλ)|2|Vk |2,

which completes the proof. ��
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Proof of Theorem 5 By definition of the matrices W and B we have that |W BV |2 ≺
|WV |2 is equivalent to

∣∣∣∣
m∑

j=1

B j Vj

∣∣∣∣
2

≺
m∑

i=1

∣∣∣∣
m∑

j=1

σ
(m−1)
m− j (πiλ)Vj

∣∣∣∣
2

. (33)

Making use of the conditions (29) we have that the following estimate is valid on the
area �

δ1
1 :

∣∣∣∣
m∑

j=1

B j Vj

∣∣∣∣
2

≺
m∑

j=1

|B j |2|Vj |2 ≺
m∑

j=1

m∑
i=1

|σ (m−1)
m− j (πiλ)|2|Vj |2

≺ |Vm |2 +
m−1∑
j=2

m∑
i=1

|σ (m−1)
m− j (πiλ)|2|Vj |2 +

m∑
i=1

|σ (m−1)
m−1 (πiλ)|2|V1|2

≺ (1 + δ1)

m∑
i=1

|σ (m−1)
m−1 (πiλ)|2|V1|2 ≺

m∑
i=1

|σ (m−1)
m−1 (πiλ)|2|V1|2.

Setting k = 1 in Lemma 4 we obtain the bound from below

m∑
i=1

∣∣∣∣
m∑

j=1

σ
(m−1)
m− j (πiλ)Vj

∣∣∣∣
2

=
m∑

i=1

∣∣∣∣
m∑

j=2

σ
(m−1)
m− j (πiλ)Vj + σ

(m−1)
m−1 (πiλ)V1

∣∣∣∣
2

�
m∑

i=1

|σ (m−1)
m−1 (πiλ)|2|V1|2.

This proves the inequality (33) on �
δ1
1 for any δ1 > 0.

Let us now assume that V ∈ (
�

δ1
1

)c ∩ (
�

δ2
2

)c ∩ · · · ∩ (
�

δk−1
k−1

)c ∩ �
δk
k for 2 ≤ k ≤

m − 1. By definition of the regions �
δh
h and taking δh ≥ 1 for 1 ≤ h ≤ k − 1 we have

that

m∑
i=1

|σ (m−1)
m−(k−1)(πiλ)|2|Vk−1|2

<
1

δk−1

(
|Vm |2 +

m−1∑
j=k+1

m∑
i=1

|σ (m−1)
m− j (πiλ)|2|Vj |2

+
m∑

i=1

|σ (m−1)
m−k (πiλ)|2|Vk |2

)

≤ 1

δk−1
(1 + δk)

m∑
i=1

|σ (m−1)
m−k (πiλ)|2|Vk |2,
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m∑
i=1

|σ (m−1)
m−(k−2)(πiλ)|2|Vk−2|2

<
1

δk−2

(
|Vm |2 +

m−1∑
j=k+1

m∑
i=1

|σ (m−1)
m− j (πiλ)|2|Vj |2

+
m∑

i=1

|σ (m−1)
m−k (πiλ)|2|Vk |2 +

m∑
i=1

|σ (m−1)
m−(k−1)(πiλ)|2|Vk−1|2

)

≤ 1

δk−2

(
1 + δk + 1

δk−1
(1 + δk)

) m∑
i=1

|σ (m−1)
m−k (πiλ)|2|Vk |2,

≤ (1 + δk)

(
1

δk−1
+ 1

δk−2

) m∑
i=1

|σ (m−1)
m−k (πiλ)|2|Vk |2.

By iteration one can easily prove the following bound

m∑
i=1

|σ (m−1)
m− j (πiλ)|2|Vj |2 ≤ (1 + δk)

k−1∑
h=1

1

δh

m∑
i=1

|σ (m−1)
m−k (πiλ)|2|Vk |2, (34)

valid on the region
(
�

δ1
1

)c ∩(�δ2
2

)c ∩· · ·∩(�δk−1
k−1

)c ∩�
δk
k for all j with 1 ≤ j ≤ k −1.

It follows that

∣∣∣∣
m∑

j=1

B j Vj

∣∣∣∣
2

≺
m∑

j=1

|B j |2|Vj |2 ≺
m∑

j=1

m∑
i=1

|σ (m−1)
m− j (πiλ)|2|Vj |2

≺
m∑

j=k+1

m∑
i=1

|σ (m−1)
m− j (πiλ)|2|Vj |2 +

m∑
i=1

|σ (m−1)
m−k (πiλ)|2|Vk |2

+
k−1∑
j=1

m∑
i=1

|σ (m−1)
m− j (πiλ)|2|Vj |2 ≺

m∑
i=1

|σ (m−1)
m−k (πiλ)|2|Vk |2.

We now pass to estimate the right-hand side of (33) making use of Lemma 4 and of
the bound (34). We obtain

m∑
i=1

∣∣∣∣
m∑

j=1

σ
(m−1)
m− j (πiλ)Vj

∣∣∣∣
2

�
m∑

i=1

γ1

∣∣∣∣
m∑

j=k+1

σ
(m−1)
m− j (πiλ)Vj + σ

(m−1)
m−k (πiλ)Vk

∣∣∣∣
2

−γ2

m∑
i=1

k−1∑
j=1

|σ (m−1)
m− j (πiλ)|2|Vj |2
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� γ1

m∑
i=1

|σ (m−1)
m−k (πiλ)|2|Vk |2 − γ2(1 + δk)

k−1∑
h=1

1

δh

m∑
i=1

|σ (m−1)
m−k (πiλ)|2|Vk |2

=
(

γ1 − γ2(1 + δk)

k−1∑
h=1

1

δh

) m∑
i=1

|σ (m−1)
m−k (πiλ)|2|Vk |2.

Therefore, the estimate (33) holds in the region
(
�

δ1
1

)c ∩(
�

δ2
2

)c ∩· · ·∩(
�

δk−1
k−1

)c ∩�
δk
k

for any δk > 0 choosing δ1, δ2, . . . , δk−1 big enough.
We conclude the proof by assuming V ∈ (

�
δ1
1

)c ∩ (
�

δ2
2

)c ∩ · · · ∩ (
�

δm−1
m−1

)c. Since

|Vm |2 +
m−1∑

j=h+1

m∑
i=1

|σ (m−1)
m− j (πiλ)|2|Vj |2 > δh

m∑
i=1

|σ (m−1)
m−h (πiλ)|2|Vh |2,

for 1 ≤ h ≤ m − 1, arguing as above and taking δh ≥ 1 we obtain the estimate

m∑
i=1

|σ (m−1)
m− j (πiλ)|2|Vj |2 ≤

m−1∑
h=1

1

δh
|Vm |2 (35)

valid on the region
(
�

δ1
1

)c ∩ (
�

δ2
2

)c ∩ · · · ∩ (
�

δm−1
m−1

)c for all j with 1 ≤ j ≤ m − 1.
Hence,

∣∣∣∣
m∑

j=1

B j Vj

∣∣∣∣
2

≺
m∑

j=1

|B j |2|Vj |2 ≺
m∑

j=1

m∑
i=1

|σ (m−1)
m− j (πiλ)|2|Vj |2 ≺ |Vm |2

and

m∑
i=1

∣∣∣∣
m∑

j=1

σ
(m−1)
m− j (πiλ)Vj

∣∣∣∣
2

� γ1|Vm |2 − γ2

m∑
i=1

∣∣∣∣
m−1∑
j=1

σ
(m−1)
m− j (πiλ)Vj

∣∣∣∣
2

� γ1|Vm |2 − γ2

m−1∑
j=1

m∑
i=1

|σ (m−1)
m− j (πiλ)|2|Vj |2

�
(

γ1 − γ2(m − 1)

m−1∑
h=1

1

δh

)
|Vm |2.

This means that the inequality (33) holds on
(
�

δ1
1

)c ∩ (
�

δ2
2

)c ∩ · · · ∩ (
�

δm−1
m−1

)c for
sufficiently large values of δ1, δ2, . . . , δm−1. ��
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6 Well-posedness results

We are now ready to prove the well-posedness results given in Theorem 2. For the
advantage of the reader and the sake of clarity we reformulate Theorem 2 as the
following Theorem 6 where we make use of the language and notations introduced in
Theorem 5.

Theorem 6 Assume A j ∈ C([0, T ]) for all j . If the coefficients satisfy A( j) ∈
C∞([0, T ]), the characteristic roots are real and satisfy (6) and the entries of the
matrix B of the lower order terms in (13) fulfil the conditions (29) for ξ away from 0,
then the Cauchy problem (1) is well-posed in any Gevrey space. More precisely,

(i) if A( j) ∈ Ck([0, T ]) for some k ≥ 2 and g j ∈ Gs(Rn) for j = 1, . . . , m, then
there exists a unique solution u ∈ Cm([0, T ]; Gs(Rn)) for

1 ≤ s < 1 + k

2(m − 1)
;

(ii) if A( j) ∈ Ck([0, T ]) for some k ≥ 2 and g j ∈ E ′
(s)(R

n) for j = 1, . . . , m, then
there exists a unique solution u ∈ Cm([0, T ];D′

(s)(R
n)) for

1 ≤ s ≤ 1 + k

2(m − 1)
.

Proof As usual, the well-posedness in the case of s = 1 follows from the result of
Bony and Shapira, so we may assume s > 1. By the finite propagation speed for
hyperbolic equations it is not restrictive to take compactly supported initial data and,
therefore, to have that the solution u is compactly supported in x .

Combining the energy estimate (15) with the estimates of the first, second and third
term in Sect. 4 we obtain the estimate

∂t Eε(t, ξ) ≤ (Kε(t, ξ) + C2ε〈ξ 〉 + C3)Eε(t, ξ), (36)

where Kε(t, ξ) defined in (19) in Sect. 4.1 has the property (20), i.e.

T∫
0

Kε(t, ξ) dt ≤ C1ε
−2(m−1)/k,

and C1, C2, C3 are positive constants. Thus, (36) holds for t ∈ [0, T ] and |ξ | ≥ R, with
the estimate for the third term provided by Theorem 5. A straightforward application
of Gronwall’s lemma leads to

Eε(t, ξ) ≤ Eε(0, ξ)eC1ε
−2(m−1)/k+C2T ε〈ξ〉+C3T

≤ Eε(0, ξ)CT eCT (ε−2(m−1)/k+ε〈ξ〉).
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Setting ε−2(m−1)/k = ε〈ξ 〉 we get

Eε(t, ξ) ≤ Eε(0, ξ)CT eCT 〈ξ〉 1
σ
,

where σ = 1 + k/[2(m − 1)]. Finally, making use of the inequality (17) we arrive at

C−1
m ε2(m−1)|V (t, ξ)|2 ≤ Eε(t, ξ) ≤ Eε(0, ξ)CT eCT 〈ξ〉 1

σ

≤ Cm |V (0, ξ)|2CT eCT 〈ξ〉 1
σ
,

which implies

|V (t, ξ)| ≤ C〈ξ 〉 k
2σ eC〈ξ〉 1

σ |V (0, ξ)|, (37)

for some new constant C > 0, for t ∈ [0, T ] and |ξ | ≥ R.

(i) Recall that V (t, ξ) = Fx→ξU (t, x), where U is the u j ’s column vector. If the
initial data g j belong to Gs

0(R
n) from the Fourier transform characterisation of

Gevrey functions ([11, Proposition 2.2]) we have that |V (0, ξ)| ≤ c e−δ〈ξ〉 1
s for

some constants c > 0 and δ > 0. Hence,

|V (t, ξ)| ≤ C〈ξ 〉 k
2σ eC〈ξ〉 1

σ c e−δ〈ξ〉 1
s

for all t ∈ [0, T ] and ξ ∈ R
n . Let s < σ . Then V (t, ξ) defines a tempered

distribution in §′(Rn) such that

|V (t, ξ)| ≤ Cc〈ξ 〉 k
2σ eC〈ξ〉 1

σ e− δ
2 〈ξ〉 1

s e− δ
2 〈ξ〉 1

s

≤ Cc〈ξ 〉 k
2σ e〈ξ〉 1

σ (C− δ
2 〈ξ〉 1

s − 1
σ )e− δ

2 〈ξ〉 1
s
.

It follows that

|V (t, ξ)| ≤ c′e− δ
2 〈ξ〉 1

s
, (38)

for some c′, δ > 0 and for |ξ | large enough. This is sufficient to prove that
U (t, x) belongs to the Gevrey class Gs(Rn) for all t ∈ [0, T ] and that the Cauchy
problem (1) has a unique solution u ∈ Cm([0, T ]; Gs(Rn)) for s < σ under the
assumptions of case (i).

(ii) If the initial data g j are Gevrey Beurling ultradistributions in E ′
(s)(R

n), from the
Fourier transform characterisation of ultradistributions ([11, Proposition 2.13])

we have that there exist δ > 0 and c > 0 such that |V (0, ξ)| ≤ c eδ〈ξ〉 1
s for all

ξ ∈ R
n . Hence, taking s ≤ σ , we obtain the estimate

|V (t, ξ)| ≤ Cc〈ξ 〉 k
2σ eC〈ξ〉 1

σ e+δ〈ξ〉 1
s ≤ c′e+δ′〈ξ〉 1

s
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432 C. Garetto, M. Ruzhansky

for some c′, δ′ > 0. This proves that the Cauchy problem (1) has a unique solution
u ∈ Cm([0, T ];D′

(s)(R
n)) for s ≤ σ under the assumptions of case (ii).

��
We pass to consider the case of analytic coefficients. We prove C∞ and distributional
well-posedness of the Cauchy problem (1) providing an extension of Theorem 1 in
[13] to any space dimension. Our proof makes use of the following lemma on analytic
functions, a parameter-dependent version of the statement (61)–(62) in [13].

Lemma 5 Let f (t, ξ) be an analytic function in t ∈ [0, T ], continuous and homoge-
neous of order 0 in ξ ∈ R

n. Then,

(i) for all ξ there exists a partition (τh(ξ)) of the interval [0, T ] such that

0 = τ0 < τ1 < · · · < τh(ξ) < · · · < τN (ξ) = T

with supξ �=0 N (ξ) < ∞, such that f (t, ξ) �= 0 in each open interval
(τh(ξ), τh+1(ξ));

(ii) there exists C > 0 such that

|∂t f (t, ξ)| ≤ C

(
1

t − τh(ξ)

+ 1

τh+1(ξ) − t

)
| f (t, ξ)|

for all t ∈ (τh(ξ), τh+1(ξ)), ξ ∈ R
n with ξ �= 0 and 0 ≤ h(ξ) ≤ N (ξ).

Proof Since the function f is homogeneous of order 0 in ξ we can assume |ξ | = 1.
Excluding the trivial case f ≡ 0 we have that f (t, ξ) has a finite number of zeroes in
[0, T ] and hence we can find a partition (τh(ξ)) as in (i) such that f (t, ξ) �= 0 in each
interval (τh(ξ), τh+1(ξ)), taking τh(ξ), 1 ≤ h(ξ) ≤ N (ξ)− 1, to be the zeros of f (·, ξ).

Note that the function N (ξ) is locally bounded and, therefore, by homogeneity
supξ �=0 N (ξ) = sup|ξ |=1 N (ξ) < ∞. Indeed, if sup|ξ |=1 N (ξ) = +∞ we can find a
sequence of points (ξl)l with |ξl | = 1 and some ξ ′ with |ξ ′| = 1 such that ξl → ξ ′
and N (ξl) → +∞ as l → ∞. It follows that f (t, ξ ′) must have infinite zeros in t in
contradiction with the hypothesis of analyticity on [0, T ].

We now work on the interval (0, τ1). By the analiticity in t we can write

f (t, ξ) = tν0(ξ)(τ1 − t)ν1(ξ)g(t, ξ)

where g(t, ξ) is an analytic function in t never vanishing on [0, τ1] homogeneous of
degree 0 in ξ . Note that the functions ν0 and ν1 are positive and have local maxima at
all points (perturbations in ξ in a sufficiently small neighborhood can not increase the
multiplicity). Arguing as in [13, p. 566] we write t |∂t f (t, ξ)| as∣∣∣∣ f (t)

(
ν0(ξ) − ν1(ξ)t

(τ1 − t)
+ t∂t g(t, ξ)

g(t, ξ)

)∣∣∣∣.
Let us fix ξ0 with |ξ0| = 1. Taking t in [0, τ1/2] and ξ in a sufficiently small neigh-
borhood of ξ0 we have that ν0(ξ) ≤ c1, ν1(ξ)t/(τ1 − t) ≤ c2, |g(t, ξ)| ≥ c0 > 0 and
t∂t g(t, ξ)/g(t, ξ) ≤ c3. Hence,
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t |∂t f (t, ξ)| ≤ C | f (t, ξ)|

on [0, τ1/2] for ξ in a neighborhood of ξ0. Similarly, one proves that

(τ1 − t)|∂t f (t, ξ)| ≤ C | f (t, ξ)|

on [τ1/2, τ1] for ξ in a neighborhood of ξ0. The homogeneity in ξ combined with a
standard compactness argument allows us to extend the inequality

|∂t f (t, ξ)| ≤ C

(
1

t
+ 1

τ1 − t

)
| f (t, ξ)|

to R
n \{0} for t ∈ (0, τ1). Analogously one obtains that

|∂t f (t, ξ)| ≤ C

(
1

t − τh(ξ)

+ 1

τh+1(ξ) − t

)
| f (t, ξ)|

when t ∈ (τh(ξ), τh+1(ξ)) and ξ �= 0. ��
In the case of analytic coefficients, Theorem 3 follows from the following Theorem 7.

Theorem 7 If A j ∈ C([0, T ]) for all j , and the coefficients A( j) are analytic on
[0, T ], the characteristic roots are real and satisfy (6), and the entries of the matrix B
of the lower order terms in (13) fulfil the conditions (29) for ξ away from 0, then the
Cauchy problem (1) is C∞ and distributionally well-posed.

Proof By the finite propagation speed for hyperbolic equations it is not restrictive
to assume that the initial data g j are compactly supported. If the coefficients a j are

analytic in t on [0, T ] then by construction the entries of the quasi-symmetriser Q(m)
ε

are analytic as well. In particular, by Proposition 1

qε,i j (t, ξ) = q0,i j (t, ξ) + ε2q1,i j (t, ξ) + · · · + ε2(m−1)qm−1,i j (t, ξ).

We use the partition of the interval [0, T ] in Lemma 5 (applied to any qε,i j (t, ξ) or
more precisely to any q̃ε,i j (t, ξ) = qε,i j (λ(t, ξ)/|ξ |), homogeneous function of order
0 in ξ having the same zeros in t of qε,i j (t, ξ)). Note that this partition can be chosen
independent of ε. Considering the first interval [0, τ1] (τ1 = τ1(ξ)) we define

Eε(t, ξ) =
{

|V (t, ξ)|2 for t ∈ [0, ε] ∪ [τ1 − ε, τ1],
(Qε(t, ξ)V (t, ξ), V (t, ξ)) for t ∈ [ε, τ1 − ε].

as in [13, p. 567]. Hence

∂t Eε(t, ξ) ≤ |∂t Eε(t, ξ)| ≤ |((A1 − A∗
1)V, V )| + |((B − B∗)V, V )|

≤
(

2 sup
t∈[0,T ]

‖A1(t, ξ)‖ + 2 sup
t∈[0,T ]

‖B(t, ξ)‖
)

Eε(t, ξ)
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434 C. Garetto, M. Ruzhansky

on [0, ε]∪[τ1 −ε, τ1]. It follows by the Gronwall inequality that there exists a constant
α > 0 such that

Eε(t, ξ) ≤
{

e2αε〈ξ〉Eε(0, ξ) for t ∈ [0, ε],
e2αε〈ξ〉Eε(τ1 − ε, ξ) for t ∈ [τ1 − ε, τ1]. (39)

On the interval [ε, τ1 − ε] we proceed as in the proof for the Gevrey well-posedness
under the conditions (29) on the lower order terms for |ξ | ≥ R. We have

∂t Eε(t, ξ) ≤
( |(∂t QεV, V )|

(Qε(t, ξ)V (t, ξ), V (t, ξ))
+ C2ε〈ξ 〉 + C3

)
Eε(t, ξ). (40)

Since the family Qε(λ) is nearly diagonal when the roots λl satisfy the condition (6)
we have that Qε ≥ c0diag Qε, i.e.,

(Qε(t, ξ)V, V ) ≥ c0

m∑
h=1

qε,hh(t, ξ)|Vh |2.

This fact combined with the inequality

|qε,i j ||Vi ||Vj | = (Qεei , e j )|Vi ||Vj | ≤
√

(Qεei , ei )(Qεe j , e j )|Vi ||Vj |

≤ √
qε,i i qε, j j |Vi ||Vj | ≤

m∑
h=1

qε,hh |Vh |2

and Lemma 5 yields

τ1−ε∫
ε

|(∂t QεV, V )|
(Qε(t, ξ)V (t, ξ), V (t, ξ))

dt ≤ c−1
0

τ1−ε∫
ε

m∑
i, j=1

|∂t qε,i j (t, ξ)|
|qε,i j (t, ξ)| dt

≤ C1

τ1−ε∫
ε

(
1

t
+ 1

τ1 − t

)
dt = 2C1 log

τ1 − ε

ε
≤ 2C1 log

T

ε
,

for some constant C1 independent of t and ξ �= 0. Going back to estimate (40) by
Gronwall’s lemma we obtain

Eε(t, ξ) ≤ CT Eε(ε, ξ)eCT log(1/ε)+CT ε〈ξ〉, (41)

for [ε, τ1 − ε] and |ξ | ≥ R. Finally, putting together (39) with (41) we conclude that
there exists a constant c > 0 such that

Eε(t, ξ) ≤ cEε(0, ξ)ec(log(1/ε)+ε〈ξ〉)

for all t ∈ [0, τ1] and |ξ | ≥ R. Hence by applying (17) we have
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|V (t, ξ)| ≤ cε−(m−1)eCT (log(1/ε)+ε〈ξ〉)|V (0, ξ)|

on [0, τ1]. An iteration of the same technique on the other subintervals of [0, T ] leads
to

|V (t, ξ)| ≤ cε−N (ξ)(m−1)eN (ξ)CT (log(1/ε)+ε〈ξ〉)|V (0, ξ)|

on [0, T ] for |ξ | ≥ R. Now, setting ε = 〈ξ 〉−1 we get

|V (t, ξ)| ≤ c〈ξ 〉N (ξ)(m−1)eN (ξ)CT 〈ξ 〉N (ξ)CT .

Remembering that from Lemma 5 the function N (ξ) is bounded in ξ we conclude that
there exist some κ ∈ N and C > 0 such that

|V (t, ξ)| ≤ C〈ξ 〉κ |V (0, ξ)| (42)

on [0, T ] for all |ξ | ≥ R. It is clear that the estimate (42) implies C∞ and distributional
well-posedness of the Cauchy problem (1). ��
Finally, given the energy estimates established above, the proof of Theorem 4 is simple:

Proof of Theorem 4 We observe that the estimates (38) and (42) imply that V (t, ξ)

is bounded in ξ if the lower order terms A(·, ξ) are bounded on [0, T ]. Coming
back to the solution u of (1) and the definition of V we get that the solution u(t, x)

is in the class Cm−1([0, T ]) with respect to t . Finally, from the equality Dm
t u =

−∑m−1
j=0 Am− j (t, Dx )D j

t u we see that the right hand side is bounded in t , implying
that u(t, x) is in W ∞,m([0, T ]) with respect to t . ��
We conclude the paper with the following remarks on how the results change if we
assume less than the Levi conditions (7). We thank T. Kinoshita for drawing our
attention to this question.

We begin by noting that the matrix B of the lower order terms in (13) can be written
as

B(t, ξ) =
m−1∑
l=0

B−l(t, ξ),

with

B−l =

⎛
⎜⎜⎝

0 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . 0

B−l,1 B−l,2 . . . . . . B−l,m

⎞
⎟⎟⎠

and

B−l, j (t, ξ) =
{

−∑
|γ |=m− j−l am− j+1,γ (t)ξγ 〈ξ 〉 j−m, for j ≤ m − l,

0, otherwise,
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436 C. Garetto, M. Ruzhansky

for j = 1, . . . , m. We easily see that the matrix B−l has entries of order −l and the
last l entries in the bottom row are equal to 0. Making use of this decomposition of B
we can write ((Q(m)

0 B − B∗Q(m)
0 )V, V ) as

m−1∑
l=0

((Q(m)
0 B−l − B∗−l Q(m)

0 )V, V ). (43)

Remark 2 Let 0 ≤ h ≤ m − 2. Let us assume the Levi conditions (7) in the form (29)
only on the B−l -matrices up to level h, i.e., instead of (7) assume only that

∣∣∣∣
min(h,m− j)∑

l=0

B−l, j

∣∣∣∣
2

≺
m∑

i=1

|σ (m−1)
m− j (πiλ)|2, (44)

for j = 1, . . . , m. In other words, we impose Levi conditions on the coefficients of
the equation corresponding to the matrices B−l up to l = h, leaving free the remaining
lower order coefficients. Recall that

|((Q(m)
0 Bl − B∗

l Q(m)
0 )V, V )| ≤ 2(m − 1)!|W B−l V ||WV |,

where the matrix W is defined in Sect. 3. Under the assumption (44) and the bound
(17) from below for the quasi-symmetriser we obtain for (43) the estimate

∣∣∣∣
m−1∑
l=0

((Q(m)
0 B−l − B∗−l Q(m)

0 )V, V )

∣∣∣∣
≤
∣∣∣∣

h∑
l=0

((Q(m)
0 B−l − B∗−l Q(m)

0 )V, V )

∣∣∣∣ +
∣∣∣∣

m−1∑
l=h+1

((Q(m)
0 B−l − B∗−l Q(m)

0 )V, V )

∣∣∣∣
≤ C3 Eε + 2(m − 1)!

m−1∑
l=h+1

|W B−l V ||WV |

≤ C3 Eε + C4〈ξ 〉−h−1ε−(m−1)Eε.

This leads to the energy estimate

∂t Eε(t, ξ) ≤ (C1ε
−2(m−1)/k + C2ε〈ξ 〉 + C3 + C4〈ξ 〉−h−1ε−(m−1))Eε(t, ξ).

The Gevrey well-posedness result of Theorem 2 will still hold true under the relaxed
Levi condition (44), e.g., if for ε−2(m−1)/k = ε〈ξ 〉 one has

〈ξ 〉−h−1ε−(m−1) ≤ 〈ξ 〉 1
σ ,
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with σ = 1 + k/[2(m − 1)], that is if

h + 1 ≥ (m − 1)(k − 2)

k + 2(m − 1)
. (45)

In other words, for any fixed k ∈ N by involving sufficiently enough matrices B−h in
the Levi condition (44) (how many depend on the equation order m and the regularity
k of the coefficients) one can still obtain Gs well-posedness for

1 ≤ s < 1 + k

2(m − 1)
.

More precisely, by rewriting (45) as

h ≥ m − 2 − 2m(m − 1)

k + 2(m − 1)
,

we can take

h ≥ h0 := m − 2 −
[

2m(m − 1)

k + 2(m − 1)

]
, (46)

for all m ≥ 2 and k ≥ 2.

We now focus on the case of second order equations.

Remark 3 From the definition of h0 in (46), we see that

h0 = −
[

4

k + 2

]
= 0

if m = 2 and k ≥ 2. This shows that in the case of second order equations under the
hypothesis (6) it is enough to put Levi conditions on the matrix B0 to prove the Gevrey
well-posedness of the Cauchy problem (1) for 1 ≤ s < 1 + k

2(m−1)
.

Concluding, let’s us consider the case of non-analytic but very regular coefficients.

Remark 4 Assume now that the equation coefficients are smooth and that m > 2. This
implies that for any a > 0 we can take k large enough such that ε−2(m−1)/k ≤ 〈ξ 〉a .
Hence, ε−2(m−1)/k ≤ 〈ξ 〉−h−1ε−(m−1) with h = 0. Setting then ε〈ξ 〉 = 〈ξ 〉−1ε−(m−1)

we get that under the Levi condition (44) with h = 0 the Cauchy problem (1) is well-
posed in Gs with

1 ≤ s < 1 + 2

m − 2

In terms of the Gevrey order this result is worse than the one stated in Theorem 2 but
it is obtained with Levi conditions only on the coefficients appearing in the matrix B0.
We note that it is still better than the Bronstein’s result due to the extra assumption (6)
and the Levi condition (44) with h = 0.

123



438 C. Garetto, M. Ruzhansky

Let us give some explanation to the relaxed Levi conditions (44). In particular, using
the definition of the terms B−l, j and omitting the squares as in (10), condition (44) is
equivalent to

min(h0,m− j)∑
l=0

∣∣∣∣∣∣
∑

|γ |=m− j−l

am− j+1,γ (t)ξγ

∣∣∣∣∣∣
≤ C

m∑
i=1

∣∣∣∣∣∣∣∣
∑

1≤l1<···<lm− j ≤m
lh �=i ∀h

λl1(t, ξ) · · · λlm− j (t, ξ)

∣∣∣∣∣∣∣∣
, (47)

where the powers of 〈ξ 〉 cancel. By comparison with the Levi conditions (7) and the
identity (8), it is clear that we impose conditions on less terms of the equation.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

Appendix

Here we show that the Levi conditions (7) can be expressed entirely in terms of the
equation coefficients. This is due to the fact that the sum

∑m
i=1 |σ (m−1)

m− j (πiλ)|2 is,

modulo some multiplicative factor C , the q j, j entry of the symmetriser Q(m)
0 (λ).

Indeed, using the notations of Sect. 3 we have that

Q(m)
0 (λ) =

∑
ρ∈Pm

P(m)
0 (λρ)∗ P(m)

0 (λρ),

where P(m)
0 (λρ)∗ P(m)

0 (λρ) is the matrix with the j, k-entry being

σ
(m−1)
m− j (πmλρ)σ

(m−1)
m−k (πmλρ).

It follows that

q j, j (λ) ∼
m∑

i=1

(σ
(m−1)
m− j (πiλ))2,

where ∼ stands for equality modulo a multiplicative positive constant. In particular,
qm,m(λ) = m!. Recalling that Q is the Bezout matrix associated to the polynomials
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(P, ∂τ P) with

P(τ, t, ξ) = τm +
m−1∑
j=0

∑
|γ |=m− j

am− j,γ (t)ξγ τ j ,

from formula (1.13) in [12] we have that, for j = 1, . . . , m − 1,

q j, j = 〈ξ 〉−2( jb2
( j+1) −

m− j−1∑
p=1

2p b( j−p+1)b( j+p+1)

)
+ 2(m − j)b(2 j+1−m)〈ξ 〉−1, (48)

where b(k) = −A(m−k+1)(t, ξ)〈ξ 〉k−m , for k = 1, ..., m, and bk = 0 for k < 1. Finally,
inserting (48) into (29) we conclude that the Levi conditions (7) can be written as

∣∣(Am− j+1 − A(m− j+1))(t, ξ)
∣∣2 〈ξ 〉2 j−2m

≤ C〈ξ 〉−2( jb2
( j+1) −

m− j−1∑
p=1

2p b( j−p+1)b( j+p+1)

)
+2C(m − j)b(2 j+1−m)〈ξ 〉−1

= C〈ξ 〉−2( j (A(m− j)(t, ξ)〈ξ 〉 j+1−m)2

−
m− j−1∑

p=1

2p A(m− j+p)(t, ξ)〈ξ 〉2 j+2−2m A(m− j−p)(t, ξ)
)

−2C(m − j)A(2m−2 j)(t, ξ)〈ξ 〉2 j−2m

or, equivalently,

∣∣(Am− j+1 − A(m− j+1))(t, ξ)
∣∣2

≤ C
(

j A(m− j)(t, ξ)2 −
m− j∑
p=1

2p A(m− j+p)(t, ξ)A(m− j−p)(t, ξ)
)
.

Here, we assume A( j) = 0 if j ≥ m + 1 or j < 0.
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