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Abstract Let A be a central simple algebra with involution o of the first or second
kind. Let v be a valuation on the o -fixed part F' of Z(A). A o-special v-gauge g on A
is a kind of value function on A extending v on F, such that g(o (x)x) = 2g(x) for
all x in A. It is shown (under certain restrictions if the residue characteristic is 2) that
if v is Henselian, then there is a o -special v-gauge g if and only if o is anisotropic,
and g is unique. If v is not Henselian, it is shown that there is a o-special v-gauge g if
and only if o remains anisotropic after scalar extension from F to the Henselization
of F with respect to v; when this occurs, g is the unique o -invariant v-gauge on A.
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Introduction

Valuations are a major tool for the study of the structure of division algebras. The
purpose of this work is to introduce a notion that plays a similar role for central simple
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110 J.-P. Tignol, A. R. Wadsworth

algebras with involution, and to prove analogues for this notion to fundamental results
on valuations on division algebras.

Since the definition of a (Schilling) valuation implies an absence of zero divisors,
the only central simple algebras that can have valuations are division algebras. Given
a division algebra D finite-dimensional over its center F, it is natural to view valua-
tions on D as extensions of valuations on F, since valuations on fields are abundant
and their theory is well-developed. But not every valuation v on F extends to D.
In the extension question, Henselian valuations play a special role. Schilling proved
in [17, pp. 53-54] that if v on F' is Henselian, then v has an extension to a valua-
tion on D, and this extension is unique. Much later it was proved by Ershov [5] and
Wadsworth [19] that for any valuation v on F, v extends to D if and only if it satisfies
a Henselian-like condition with respect to the field extensions of F within D; they
also proved that when v extends to D the extension is unique. Another fundamental
criterion was proved by Morandi [14]: v on F extends to a valuation on D if and only
if D remains a division algebra after scalar extension to the Henselization Fj, of F
for v. We will prove analogues for central simple algebras with involutions to these
theorems of Schilling, Ershov-Wadsworth, and Morandi.

An involution on a central simple algebra A is a ring-anti-automorphism o such
that 02 = id4. As Weil suggested in [20], the theory of central simple algebras with
involution is a natural sibling to the theory of central simple algebras, since the associ-
ated automorphism groups are the basic types of classical groups. In each setting there
is a notion of anisotropic object, corresponding to when the associated automorphism
group is anisotropic as an algebraic group. The anisotropic central simple algebras
are the division algebras. An involution o on a central simple algebra A is anisotropic
just when the equation o (x)x = 0 holds only for x = 0. In earlier work [18] we
have developed the theory of gauges, which are a kind of value functions for central
simple algebras. (The definition of a gauge is recalled at the end of this introduction.)
For a central simple algebra A with involution o, we define a o-special gauge to
be a gauge ¢ on A satisfying the condition' that @0 (x)x) = 2¢(x) forall x € A.
A o-special gauge for an algebra with involution is our analogue to a valuation on a
division algebra. If A has a o-special gauge, then o is easily seen to be anisotropic.
If v is a Henselian valuation on the o-invariant part F of Z(A) and o is aniso-
tropic, we show in Theorem 2.2 that there is a unique o-invariant gauge ¢ on A
extending v, and ¢ is a o-special gauge. When v on F is not Henselian, we show
in Theorem 6.1 that there is a o-special gauge ¢ on A extending v if and only if
the anisotropic involution ¢ remains anisotropic after scalar extension to the Hens-
elization of F' with respect to v; furthermore, there is only one such ¢. Our results
require tame ramification and exclude orthogonal involutions if the residue charac-
teristic is 2; see the statements of Theorems 2.2 and 6.1 for the precise conditions
required.

A gauge ¢ on a central simple algebra A induces a filtration on A which yields an
associated graded ring gr(A), analogous to what one has with a valuation on a field
or a division ring. The graded structure is intrinsic to the definition of a gauge, and

! Notice the similarity with the definition of C*-algebras, cf. [4, Déf. 1.3.1].
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is used heavily throughout this paper. The degree 0 part of gr(A), denoted Ay, is the
residue ring of the “valuation ring” of A determined by the gauge ¢; Ag is always a
semisimple Z(A)o-algebra, but not simple in general. If ¢ is an involution on A and
¢ is invariant under o, then o induces involutions & on gr(A) and oy on Ag. We show
in Proposition 1.1 and Remark 2.5(1) that a o -invariant gauge ¢ is o-special if and
only if & is anisotropic, if and only if o is anisotropic. We also prove an analogue
of a theorem of Springer: when the base field is Henselian, an involution o is isotro-
pic if and only if its residue involution oy is isotropic (Corollary 2.3). This criterion
is applied to show that under specified valuation-theoretic conditions, an anisotropic
involution remains anisotropic after certain scalar extensions(Corollary 3.6).

An outline of this paper is as follows: In Sect. 1, we discuss in general terms the
compatibility of a value function with an involution, relating that notion to a compat-
ibility condition between norms and hermitian forms defined in [16]. In Sect. 2, we
restrict to the case of Henselian valuations and give the proofs of Theorem 2.2 and
Corollary 2.3. Some applications to scalar extensions (in particular Corollary 3.6) are
given in Sect. 3. Sections 4 and 5 prepare the ground for the extension of our results to
the non-Henselian case in Sect. 6. The main problem is to analyze how the condition
for the existence of a splitting base of a value function (which is a critical part of
the definition of a gauge) behaves under restriction of scalars; this is done in Sect. 5.
In Sect. 4, we investigate this condition for the composition of value functions. This
is used in Sect. 6 in the proof of Theorem 6.1 by induction on the rank of valuations.

For the convenience of the reader, we now review the basic notions of value func-
tions, norms, and gauges introduced in [ 16, 18]. Throughout the paper, we fix a divisible
totally ordered abelian group I', which will contain the values of all the valuations
and the degrees of all the gradings we consider. Thus, a valued field (F, v) is a pair
consisting of a field F and a valuation v: F — I' U {oo}. The group v(F*) of values
of F is denoted by ', and the residue field by F. We use analogous notation for
valuations on division rings.

Let (F, v) be a valued field. A v-value function on an F-vector space V is a map
o: V — I" U{oo} such that

(i) «a(x) = oo if and only if x = 0;
(1) o(x 4+ y) > min (x(x),a(y)) forx,y € V;
(i) a(xc) =a(x) +v(c) forallx € Vandc € F.

The v-value function « is called a norm if V is finite-dimensional and contains a base
(ei)7_, such that

n
a(zleic,-) = 11212’1 (a(ejci)) forey,...,ch € F.
i= ==

Such a base is called a splitting base of V for «. A v-value function ¢ on an F'-algebra
A is surmultiplicative if (1) = 0 and ¢(xy) > @(x) + @(y) for x, y € A.
The valuation v defines a filtration on F: for y € I" we set

Fry ={xeFlvx) >y}, Foy={xeF]|vkx) >y}
and F, ZFZV/F>V~
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112 J.-P. Tignol, A. R. Wadsworth

The associated graded ring is

gr(F)= @ F,.

yell

It is called a graded field because every nonzero homogeneous element in gr(F) is
invertible. Likewise, every v-value function & on an F'-vector space V defines a filtra-
tion, and the associated graded structure gr, (V) is a graded module over gr(F'), which
we call a graded vector space. It is a free module, whose rank is called its dimension.
The value function is a norm if and only if dimgr(7)(gr, (V)) = dimp (V) < oo, see
[16, Cor. 2.3]. Every nonzero element x € V has an image X in gr, (V) defined by

X=x+ V>a(x) [S Va(x)~

We also set 0 = 0 € gr, (V). If ¢ is a surmultiplicative v-value function on
an F-algebra A, then gr,(A) is an algebra over gr(F), in which multiplication is
defined by

ab=ab+V b = ab if p(ab) = ¢(a) + ¢(b), fora,b € A
>@(a)+¢(b) 0 ifp(ab) > ¢(a) + ¢b), ’ .

Now, suppose A is a finite-dimensional simple F-algebra. We denote by [A: F]
its dimension and by Z(A) its center. A surmultiplicative v-value function ¢ on A is
called a v-gauge if it satisfies the following conditions:

(i) ¢isav-norm,ie., [A:F]=[gr,(A): gr(F)l;
(i) gr,(A) is a graded semisimple gr(F)-algebra, i.e., it does not contain any non-
zero nilpotent homogeneous two-sided ideal.

The v-gauge ¢ is said to be tame if Z (gr(p(A)) = gr, (Z(A)) and Z (gr(p(A)) is
separable over gr(F). If the residue characteristic is O, then every v-gauge is tame,
see [18, Cor. 3.6].

1 Special gauges
Let (F, v) be a valued field and let A be an F-algebra. An F'-linear involution on A is

an F-linear map o: A — A such that

(i) ox+y)=0x)+o(y) forx,yeA;
(i) o(xy)=o0()o(x)forx,y e A;
(iii) o2(x) = x forx € A.

(The F-linearity implies that o|r = idp.) A surmultiplicative v-value function
¢: A — I' U{oo} is said to be invariant under o if

¢ (0(x) = o(x) forallx € A. (1.1)
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The involution then preserves the filtration on A defined by ¢. Therefore, it induces
an involution & on gr, (A) such that

o(x) = g?x/) forall x € A.

Asin [12, §6.A], we say that the involution o is anisotropic if there is no nonzero
element x € A such that o (x)x = 0. Likewise, o is said to be anisotropic if there is
no nonzero homogeneous element & € ar, (A) such that 5 (§)§ = 0. Clearly, if 7 is
anisotropic, then o is anisotropic.

Proposition 1.1 Let ¢ be a surmultiplicative v-value function and o an F-linear
involution on A. The following conditions are equivalent:

(@) p(o(x)x) =2¢(x) forallx € A;

(b) ¢ is invariant under o, and & is anisotropic.

They imply that if x, y € A satisfy o(x)y = 0 orxo(y) =0, then

@(x +y) = min (¢(x), ¢(y)) . (1.2)

Moreover, when these equivalent conditions hold, o is anisotropic and the
gr(F)-algebra gr,(A) contains no nonzero homogeneous nil left or right ideal.

Proof (a) = (b): If o (x)x = 0, then condition (a) implies that ¢(x) = 0o, sox = 0.
Thus, o is anisotropic. By surmultiplicativity, we have

(o (x)x) > (o (x)) + (x) forall x € A.

Therefore, (a) implies ¢(x) > @(o(x)) for all x € A. Substituting o (x) for x in this
inequality, we obtain ¢ (o (x)) > ¢(x) forall x € A. Therefore, ¢ is invariant under o,
and condition (a) can be reformulated as ¢ (o (x)x) = ¢ (o (x)) + ¢(x) for all x € A.
Thus, it implies

G/G/))T = (o(x)x)” forallx € A,

whence & is anisotropic, as o is anisotropic.
(b) = (a): For all x € A we have

FEF = (0(x)x)” if (o (x)x) = ¢ (0(x)) + ¢(x),
0 if (o (x)x) > ¢ (0(x)) + @(x).

Condition (b) implies that the first case always occurs. Hence, for all x,
@0 (x)x) = @(o () + ¢(x) = 2¢(x).
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For the rest of the proof, assume (a) and (b) hold. Then clearly o is aniso-tropic.
Also, for x, y € A we have by surmultiplicativity

p@(x)-(x+y)z@@x)+ ok +y) =ek)+ ok +y). (1.3)

If o(x)y = 0, then
po(x) - (x+y) =p(x)x) =2¢(x). (1.4)

By combining (1.3) and (1.4), we obtain ¢(x) > ¢(x + y). Similarly, by interchanging
x and y we get ¢(y) > ¢(x + y), hence

min (p(x), p(y)) > e(x + y).

The reverse inequality holds by definition of a value function, hence (1.2) is proved
when o (x)y = 0. If xo(y) = 0, we substitute o (x) for x and o (y) for y in the
arguments above, obtaining

@ (0 (x) +0(y)) = min (¢(0(x)), p(a ().

Equation (1.2) follows since ¢ o 0 = ¢.

To complete the proof, suppose | C gr,,(A) is a homogeneous nil left (resp. right)
ideal and & € |is a nonzero homogeneous element. Let n = & (§)& (resp. n = &7 (£)).
Then 1 € | is o-symmetric, homogeneous, and nonzero since ¢ is anisotropic. Since
| is nil, we may find k > 1 such that n* % 0 and n**! = 0. For ¢ = n* we have

5= =n*=0,
so ¢ = 0, a contradiction. O

Definition 1.2 A surmultiplicative v-value function ¢ on a central simple algebra
A with involution o is called o-special if it satisfies the conditions (a) and (b) of
Proposition 1.1.

For use in Sects. 3 and 6, we record how involution invariance of value functions
behaves with respect to tensor products. Recall from [18, Prop. 1.23, (1.25)] that if V
is a finite-dimensional F-vector space with a v-norm « and W is an F-vector space
with v-value function S, then there is a v-value function ¢ ® g on V ® r W uniquely
determined by the condition that the map (x ® )~ +—> X ® y (forx € Vand y € W)
defines an isomorphism of graded vector spaces

Q: gra@ﬂ(v Qr W) = ar, (V) Qgr(F) grﬂ(W)~ (1.5)
In particular,

(@®@B)(x®y)=a(x)+ B(y) forallx e Vandy € W. (1.6)
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The value function « ® B can be defined as follows: take any splitting base (e;)?_,;
for o on V; then,

(@®B)(

n
1=

e ® y,~) = min (x(e;) + B(y;)) forany yi,...,y, € W.
1 1<i<n

Furthermore, analogous to [18, Cor. 1.26], if (W, B) is a valued field extending (F, v),
thena ® Bisa B-normon V @ W and (1.5) is a grg(W)-vector space isomorphism.

Proposition 1.3 Let o and t be F-linear involutions on F-algebras A and B respec-
tively, and let ¢ (resp. W) be a surmultiplicative v-value function on A (resp. B)
invariant under o (resp. T). Suppose A is finite-dimensional and ¢ is a v-norm.
Then, ¢ ® ¥ is a surmultiplicative v-value function on A Q@ B invariant under
the involution o ® t, and the canonical isomorphism Q2 of (1.5) is an isomorphism of
graded Qr(F)-algebras with involution,

(Iryay(A®F B).o ®1) => (g, (A) ®gi(r) Oy (B).5 ®T) .

Proof Let (ei);’:1 be a splitting base of A for ¢. For x, y € A ® p B we may write

n n
x=>>¢Qx; and y= > ¢;®y; forsomexi,...,y, € B.
i=1 j=1

Then,
(P ® Yy = (9@ V) (X eie; @ xix;j) = 1<mi/n ((p @ Y)(eiej @ xiy)))
i <i,j<n

= min (pleie)) + ¥ (xiy))) -

Since ¢ and v are surmultiplicative, we have ¢ (e;e;) > @(e;) +¢(e;) and ¥ (x;y;) >
¥ (x;) + ¥ (y)), hence

(p @ y)(xy) = min (p(e) +(e)) + v () + ¥ (3))
= miin (plei) + ¥ (x)) + mjin (<P(€j) + 1ﬂ(y,j)) .
The last line is (¢ ® ¥)(x) + (¢ @ ¥)(y), so

(@ Y)(xy) = (¢ @ Y)(x) + (¢ ® ¥)(¥).

Since moreover (¢ ® ¥)(1 ® 1) = ¢(1) + ¥ (1) = 0, surmultiplicativity of ¢ @ ¥ is
proved.

To show that the grp-vector space isomorphism €2 is a ring isomorphism, we check
this for QL. The F-algebra homomorphisms t4: A - AQr B,a — a ® 1 and
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116 J.-P. Tignol, A. R. Wadsworth

tp: B - AQ®rF B,b — 1 ® b, are value-preserving. Hence, they induce gr(F)
algebra homomorphisms 74 : gr,(A) — gra®ﬂ(A ®F B) givenby a > a ® 1 and

ip: grg(B) — gry,gp(A ®F B) given byb — 1 ®b Foranya € Aand b € B, we
have from (1.6),

a®1-1@b=[@®1)- 18] =a®b=[1®b) (a®1)]”

Thus, im (1) centralizes im(z4) in Orecp(A ®F B). So, there is an induced gr(F)-
algebra homomorphism gr, (A) ®gr(r) 9rg(B) — Qrygp(A®F B) givenby a ® b
a®l- 1/(\8579 = a/@). The description of €2 preceding (1.5) shows that this algebra
homomorphism is Q7!

To prove ¢ ®  is invariant under o ® t, we first show that (o (e,))”  alsois a
splitting base of A for ¢. Take any cy, ..., ¢, € F. Then, as ¢ is invariant under o and
the ¢; are central in A and fixed under o,

n n

o( X oleci) =0 (X oleci)) = of é eici)

i=1 i=l1

min (p(e;) +v(c;)) = min (p(o(e;)) +v(ci).

Thus, (o (e,-));?=1 is a splitting base for ¢. With the notation above, we then have

(p®Y) (0 ®1)(x))

(V) Zf’(e’) ® 7(x))
min (p(o(er) + Y (T(x))-

Since ¢ is invariant under ¢ and v under t, we have
lgliign (p(o(e) + ¥ (t(x)) = 1313’1 (plei) + ¥ (xi) = (¢ @ P)(x).

Therefore, ¢ ® v is invariant under o ® 7. To complete the proof, observe that for
a € Aand b € B we have

cRTW®b) = (0(@) @) =G @T)@®Db),

hence the involution & ® T corresponds to o ® t under the canonical isomor-
phism (1.5). O

The following special case will be particularly useful:

Corollary 1.4 Let A be a finite-dimensional F-algebra with an F-linear involution
o and let (K, vk) be any valued field extension of (F, v). If ¢ is a surmultiplicative
v-norm on A which is invariant under o, then ¢ Q vg is a surmultiplicative vk -norm
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Valuations on algebras with involution 117

on A @ K invariant under the involution o ® idg, and (o0 ® idg)~ =0 ® idgr(x)
under the canonical isomorphism (1.5).

Proof 1t suffices to note that 171? = idgr(k) and that the canonical isomorphism is an
isomorphism of gr(K)-algebras, see [18, Cor. 1.26]. O

Now, assume A is simple and finite-dimensional, and let n = degA, so
[A:Z(A)] = n?. Recall from [12] that involutions on A are classified into two kinds
and three types: an involution o is of the first kind if o|z(a) = idz(a); otherwise it is
of the second kind. Involutions of the second kind are also said to be of unitary type
(or simply unitary). To define the type of an involution o of the first kind we consider
the subspaces of symmetric and of symmetrized elements in A, defined by

Sym(A,0) ={x € A|lo(x) =x} and Symd(A,0)={x+o(x)|x € A}.

The involution o is of symplectic type (or simply symplectic) if either char (F) # 2 and
dimz4) Sym(A, o) = %n(n — 1) orchar(F) =2 and 1 € Symd(A, o). Involutions
of the first kind that are not symplectic are said to be of orthogonal type (or simply
orthogonal). If o is orthogonal, then dimz4) Sym(A, o) = %n(n + 1). The same
terminology is used for involutions on graded simple algebras.

Proposition 1.5 Let o be an F-linear involution on a finite-dimensional simple
F-algebra A and let g be a tame v-gauge on A that is invariant under o. Suppose F
is the subfield of Z(A) fixed under o.

If o is unitary, two cases may arise:

— if the valuation v extends uniquely from F to Z(A), then gr,(A) is a graded simple
gr(F)-algebra and & is a unitary involution;

— If the valuation v has two different extensions to Z(A), then gr,(A) is a direct prod-
uct of two graded central simple gr(F)-algebras, which are exchanged under .

If o is symplectic, then & is a symplectic involution on the graded central simple
gr(F)-algebra grg(A).

If o is orthogonal and char(F) # 2, then G is an orthogonal involution on the
graded central simple gr(F)-algebra gr,(A).

Proof Suppose first that ¢ is unitary, so Z(A)/F is a quadratic extension. By [18,
Cor. 2.5], the number of simple components of gr(A) equals the number of extensions
of v to Z(A). Therefore, to complete the description of & it suffices to show that &
does not identically fix Z (gr(A)) = gr (Z(A)). Since the Galois group G(Z(A)/F)
acts transitively on the set of extensions of v to Z(A), see [9, Th. 3.2.15, p. 64], if
there are two such extensions, then o|z(4) must permute them; then & permutes the
corresponding components of gr(Z(A)). So, we may assume that v has a unique
extension to Z(A). Then, gr(Z(A)) is a graded field separable over gr(F), and
[gr (Z(A)) : gr(F)] = [Z(A):F] = 2 since g|z(a) is a norm, by [16, Prop. 2.5].
If char(F) # 2 we can find z € Z(A) nonzero such that o(z) = —z, hence
G () = —Z # Z. If char(F) = 2 the separability of gr (Z(A)) over gr(F) implies by
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[10,Th.3.11, Def. 3.4] that I'z(4) = I'r and Z(A)¢ is separable over Fy; furthermore,
[Z(A)o:Fol = [Z(A):F] = 2 since g|z(a) is a norm, by [16, Prop. 2.5]. So Z(A) is
unramified Galois over F, hence the non-trivial automorphism o’|z(4) induces a non-
trivial automorphism of the residue algebra Z(A)o, by [8, Th. 19.6, p. 124], showing
that & |gr(z(4)) is nontrivial.

Suppose next that o is of the first kind, so Z(A) = F. For x € A we have
X+ 0(X) = (x +0(x))” or 0. On the other hand, o (x) = x implies 6 (X) = X.
Therefore, the following inclusions are clear:

gr (Sym(A, o)) € Sym(gr(A), o), Symd(gr(A),o) € gr(Symd(A,0)). (1.7)

If char(F) # 2 (hence char(F) # 2) we have
Sym(A, o) = Symd(A,0) and Sym(gr(A), o) = Symd(gr(A), o),

so the inclusions in (1.7) above yield gr (Sym(A, o)) = Sym(gr(A), o). Since the
type of an involution can be determined from the dimension of the space of symmetric
elements, it follows that & has the same type as o

To complete the proof, suppose char (F) = 2 and o is symplectic, andletn = deg A.
Since & is of the first kind we have

dimgr(r) Symd(gr(A), ) = in(n — 1).
On the other hand, since o is symplectic we have
dimy Symd(A, o) = Sn(n — 1)

(independently of whether char(F) = 2). Since g is a norm we have

dimy Symd(A, o) = dimgy(r) gr (Symd(A, o)),

hence Symd(gr(A), o) = gr(Symd(A, o)). Since 1 € Symd(A, o), it follows that
1 € Symd(gr(A), o), hence o is symplectic. O

Remark 1.6 1f o is orthogonal and char(F) = 2, the involution & may be symplectic,
as the following example shows: let (F, v) be a valued field with char(F) = 0 and
char(F) = 2, and let A = M, (F). Define an orthogonal involution o on A by

aby _(db
Nea) = \ca
and a v-gauge g by

¢ (Ccl 2) = min (v(a), v(b), v(c), v(d)) .
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This gauge is clearly invariant under . We have grg(A) = M, (gr(F)) with the
entrywise grading, and

((1) (1)) = ((1) 8) +5 ((1) 8) € Symd(gr,(A),5).

Therefore, o is symplectic.
Henceforth, we systematically avoid orthogonal involutions in characteristic 2.

In [16, Sect. 3], a notion of compatibility is defined between norms and hermi-
tian forms. In the rest of this section, we relate that notion of compatibility with the
invariance of value functions under involutions.

Let D be a finite-dimensional division F'-algebra with an F'-linear involution t. Sup-
pose v extends to a valuation w on D invariant under T and let V be a finite-dimensional
right D-vector space. Consider a nondegenerate hermitian form/: V x V. — D with
respect to 7, and a w-norm « on V. The dual norm «* is defined by

o (x) = min{w (h(x,y)) —a(y) |y €V, y #0} forxeV, (1.8)
see [16, Sect. 3]. The norm « is said to be compatible with h if and only if o* = «
(see [16, Prop. 3.5]). This is the condition needed in order for / to induce a nonde-

generate graded hermitian form on gr, (V). On the simple algebra Endp (V) there is
the involution ady, adjoint to 4, defined by

h(adp(f)(x), y) = h(x, f(y)) forallx,ye V.

There is also the well-defined surmultiplicative v-value function End(«) on Endp (V)
defined by

End(a)(f) = minfa (f(x)) —a(x) | x € V, x # 0}

Recall that End(«) is a v-gauge if and only if w on D is defectless over v, see [18,
Prop. 1.19].

Proposition 1.7 The value functions End (o) and End(a?) are related by
End(e) o ad;, = End(a?). (1.9)

Moreover, the following conditions are equivalent:

(a) End(«) is invariant under adj;

(b) End(a?) = End(a);

() o —afisconstanton V;

(d) thereis a constant y € T such that o — y is compatible with h.
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Proof Let (e;)!_, be a splitting base of V for a. The h-dual base (eij 7 forVisa
splitting base for af, by [16, Lemma 3.4]. Fix some f € Endp V, and let

n
f(e?) = ~Zle?dij for some d;; € D.
1=
Then, computation yields
n
adp(f)(ej) = > eit(d)i).
i=1

We may compute End(a?)( f) using the splitting base (e?);’: 1> and End(e) (ad(f))

using the splitting base (e;)_, obtaining

End@)(f) = min (o(e)) +wdy) — o (e)),
1<i,j<n ! J

End() (ady (f)) = lglijnq (a(er) +w (t(d)i)) — ale))).

Equation (1.9) follows since an(ef) = —a(e;), see [16, Lemma 3.4].

The equivalence of (a) and (b) readily follows from (1.9), and the equivalence of
(b) and (c) from [18, Prop. 1.22].
(c) < (d): By the definition of the dual norm in (1.8), for any constant y in the divisible
group I', (@ — y)* = af + y. Therefore, & — y is compatible with 4 if and only if
(« — y)* = & — y, which holds if and only if @ — o = 2y. O

Suppose the equivalent conditions of Proposition 1.7 hold, and write simply g,
for End(er). Recall from [18, Prop. 1.19] that the graded algebra gr, (Endp V)
may be identified with Endg(p) (gr,(V)) so that for f € Endp V the element
f €Qrg, (Endp V) is viewed as the map f: ar, (V) — gr,(V) defined by

) = o) ifa(f(x) =ax) + g (f),
0 ifa (f(x) > a(x)+ go(f).

On the other hand, after adding a constant if necessary, we may assume « is compatible
with /; hence we may define a graded hermitian form

h: gry(V) x gry(V) — gr, (D)
(with respect to the involution 7) as follows: for x, y € V,

h(x,y) ifw(h(x, y)) = a(x) + a(y),

ﬁ~,~ = h(x, D= o(x)+a(y) =
(x,y) =h(x,y) + (X)+a(y) [O if wh(x,y) > a(x) +a(y).

This hermitian form is well-defined and nondegenerate (cf. [16], Remark 3.2), and
we may therefore consider the adjoint involution adj on Endgr, (p) (gra(V)) =
gre, (Endp V).
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Proposition 1.8 Assuming « is compatible with h, the involution a~dh ongry, (Endp V)
is the adjoint involution of h under the identification above; i.e.,

éah = adj .

In particular, the value function g, = End(«) is o -special (see Definition 1.2) if and
only if h is anisotropic.

Proof To verify the equality of graded involutions, it suffices to show, forall x, y € V
and f € Endp V,

I (ad (@), 7) = (ady () (@), 7) -
From the definition of adg, it is equivalent to prove
(% F) =k (adi(H@), 7). (1.10)

Since « is compatible with &, Proposition 1.7 shows g, is invariant under ad; hence,
go(adn(f)) = go(f). Therefore, each side of (1.10) liesin D, where ¢ = a(x)+a(y)
+ ga(f). Suppose w (h(x, f(1))) = €. Then, necessarily a(f(y)) = ga(f) +
«(y), and the left side of (1.10) equals h(x, f(y))~. But since h(x, f(y)) =
h (adj (f)(x), ¥), we then also have

8a (adp () (x)) = ga (adn(f)) + a(x),

and the right side of (1.10) becomes % (ad;, (f)(x), y)~ . So, (1.10) then holds. But, if
w (h(x, f(y))) > €, then each side of (1.10) is 0. Thus, the equality (1.10) holds in
all cases, so that adh = adj.

Since g, is invariant under ady,, Proposition 1.1(b) holds if and only if adh 1S aniso-
tropic. But, the involution ad;, = ady, is anisotropic if and only if its associated graded
hermitian form 7 is anisotropic. This is proved analogously to the ungraded case [12,
Sect. 6.A], using the fact that / is anisotropic if and only if (X, X) # 0 for all nonzero
x € V,asremarked in [16, p. 101]. 0O

2 Henselian valuations

Throughout this section, (F,v) is a Henselian valued field and A is a finite-
dimensional simple F-algebra with an involution . We let K = Z(A) and assume
F is the subfield of K fixed by o. (Thus, A is central over F if o'|z(a) = idz(a)). We
assume A is tame over F', which means that A is split by the maximal tamely ramified
extension of K, and that K is tame over F. Moreover, if char(f) = 2 we assume o is
not an orthogonal involution.

Proposition 2.1 With the hypotheses above, every v-gauge on A is tame. Furthermore,
there exist v-gauges on A that are invariant under o.
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Proof We may represent A = Endp V for some finite-dimensional right vector space
V over a central division K-algebra D. Since v is Henselian, it extends uniquely to
a valuation w on D (see for instance [17, p. 53, Th. 9] or [19, Th.]). Since A is tame
over F, by [18, Prop. 1.19] D must also be tame over F; hence by [18, Prop. 1.12 and
1.13] w is a tame v-gauge. Therefore, every v-gauge on A is tame, by [18, Th. 3.1].

If A is split and o is symplectic, then o = ad, for some alternating bilinear form
bon V,see [12, Sect. 4.A]. Choose a symplectic base B = (¢;, f,-);’:1 of V for b and
define a v-norm o on V by

n
o X eidi + fimi) = min G, v(u)  forAr, . pin € F,
i=1 ==

i.e., B is a splitting base for « on V, and each a(e;) = a(f;) = 0. The v-norm «
on V induces the v-gauge End(«) on Endp (V). For g € Endp(V), if g has matrix
(cij) relative to BB, then End()(g) = minj<;, j<, (v(c;j)). The matrix for o (g) has
the same set of entries up to sign as (¢;;), though the entries are relocated. Hence,
End(«) is invariant under o. We exclude this case of A split and o symplectic for the
rest of the proof. We may then choose an F-linear involution 6 on D of the same type
as o and an even hermitian form 4 on V with respect to 6 such that ¢ = adj, see
[12, (4.2)]. By [16, Cor. 3.6], there exists a w-norm « on V that is compatible with /.
By [18, Prop. 1.19], End(w) is a v-gauge; by Proposition 1.7, this gauge is invariant
under o. O

Theorem 2.2 With the hypotheses of this section, if o is anisotropic, then for the
Henselian valuation v on F there is a unique o -special value function ¢ on A for v.
This ¢ is a tame v-gauge and its value set I 4 lies in the divisible hull of T . It is the
unique v-gauge on A invariant under o.

Proof We use the same notation as in the proof of Proposition 2.1, representing A =
Endp (V) as in that proof. Since o is anisotropic, it is not a symplectic involution on
a split algebra. Therefore, it is the adjoint involution of some even Hermitian form 4
on V with respect to an involution 8 on D of the same type as o, see [12, Th. (4.2)].
The form 4 is anisotropic since o is anisotropic. By [16, Th. 4.6 and Prop. 4.2], the
mapo: V — %FD U {oo} defined by

a(x) = tw (h(x, x)) 2.1

is a w-norm on V that is compatible with 4, and the residue form h is aniso-tropic.
Proposition 1.7 then shows that ¢ = End(«) is a surmultiplicative v-value function
on A that is invariant under o, and Proposition 1.8 shows that ¢ is o-special. Since A
is tame over F', the valuation w is a v-gauge on D by [18, Prop. 1.13], hence ¢ is a
tame v-gauge by [18, Prop. 1.19]. Its value set obviously lies in the divisible hull of
I'p, which is also the divisible hull of I'f.

To prove uniqueness, suppose ¢ and ¢, are each o-special value functions on A
for v. To show that ¢ = ¢», we argue by induction on the matrix size ms(A), which
is defined as the dimension of V in the representation A = Endp (V).
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Suppose first that A is a division algebra. For any subfield L C A fixed elementwise
under o we have

@i (x?) = @i (0 (x)x) =2¢;(x) forallx € Landi = 1,2,

hence for nonzero & = x¥% € gr,, (L) we have g2 = x2¥ # 0. Therefore, gr,, (L)
is semisimple. By [18, Prop. 1.8], it follows that ¢; and ¢, coincide with the unique
valuation on L extending v. (The extension of v to L is unique because (F, v) is
Henselian.) For any x € A, the product o (x)x lies in a subfield of A fixed under o,
s0 ¢1(0(x)x) = @2(0(x)x). Therefore,

@1(x) = $91(0(X)x) = $92(0 (X)x) = P2(x).

The claim is thus proved if ms(A) = 1.

Suppose next that ms(A) > 1. We may then find in A a symmetric idempotent
e # 0, 1. (Representing A = Endp (V) as above, we have dimp V > 1 and we may
take for e the orthogonal projection onto any nonzero proper subspace of V.) Let f =
1 — e. The involution o restricts to eAe and fAf, and ms(eAe), ms(fAf) < ms(A).
By the induction hypothesis, the restrictions of ¢ and ¢; coincide on eAe and fAf.
For any x € A, we have o (xe)xe € eAe and o (xf)xf € fAf, hence

p1(o(xe)xe) = ga(o(xe)xe) and @i(o(xf)xf) = @a(o(xf)xf).

Since ¢ and ¢, are o -special value functions, Proposition 1.1 shows that

p1(xe) = @2(xe) and @1(xf) = @2(xf). 2.2

On the other hand, we have xeo (xf) = 0 and xe + xf = x, hence Proposition 1.1
also yields

@1(x) = min (g1 (xe), p1(xf)) and @2(x) = min (p2(xe), P2(xf)) .

By (2.2), it follows that ¢ (x) = @2 (x).

Now, suppose g is a gauge on A that is invariant under o. By [18, Th. 3.1] we may
find a w-norm g on V such that g = End (). Up to the addition of a constant, we may
assume B is compatible with 4 in view of Proposition 1.7. But the norm « of (2.1)
is the only w-norm on V that is compatible with & by [16, Prop. 4.2], so 8 = « and
¢ = End(x). O

If g is a v-gauge on A that is invariant under o, we denote by o the 0-component of
o. Thus, oy is an involution on the f—algebra Ao = A>o/A~0, which may be viewed
as the residue algebra of A. The algebra A is semisimple, but not necessarily simple,
see [18, Sect. 2]. Note thatif Ag = By x - - - X By with the B; simple, then an involution
7 on A is anisotropic if and only if 7(B;) = B; and 7|, is anisotropic for 1 <i < k.
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Corollary 2.3 With the hypotheses of this section, if g is a v-gauge on A that is
invariant under o, the following conditions are equivalent:

(a) o is anisotropic;
(b) o is anisotropic;
(c) oy is anisotropic.

Proof The implication (a) = (b) readily follows from Theorem 2.2, and the implica-
tions (b) = (a) and (b) = (c) are clear. To prove (c) = (b), suppose § < ar, (A)isanon-
zero homogeneous element such that  (§)§ = 0. Every element ny € (E ar, (A)) NAg
satisfies o (n)n = og(n)n = 0. Therefore, oy is isotropic if (s gr, (A)) N Ag # {0}.
The corollary thus follows from the following general result: O

Lemma 2.4 Let A be a graded simple algebra finite-dimensional over a graded
field K, and let | C A be a homogeneous right ideal. Then, there is a homogeneous
idempotent e € A of degree 0O such that | = eA.

Proof By [11, Prop. 1.3], we may identify A = Endp(V) for some graded division
K-algebra D and some finite-dimensional graded D-vector space V. Let W =
> im(f), with the sum taken over all homogeneous f € I. Then, W is a graded
D-subspace of V and, just as in the ungraded case, | = Homp(V, W). Take any
graded D-subspace Y of V, such that Y is complementary to W, and lete: V — W
be the projection of V onto W along Y. Then, the idempotent e is a degree-preserving
graded homomorphism, so e € Ag. Clearly, | = eA. O

Remarks 2.5 (1) In Corollary 2.3, the hypothesis that (F, v) is Henselian is used only
to prove that (a) implies (b) and (c); the implications (c) <= (b) = (a) hold without
this hypothesis (nor any tameness assumption).

(2) Corollary 2.3 may be regarded as a version of Springer’s theorem for involutions.
In a slightly different form, it has already been proved by Larmour [13, Th. 4.5]: to see
this, observe that the residue involutions defined by Larmour are the direct summands
of our residue involution oy for a suitable gauge.

If the involution o is isotropic, we may still define up to isomorphism an anisotropic
kernel (A, 0),, in such a way that if A = Endp V and o = adj, then (A, o) =
(Endp Vo, ady,) where (Vp, ho) is an anisotropic kernel of (V, &), see [3], and [2]
for involutions of the second kind. The same construction holds for graded simple
algebras with involution.

Theorem 2.6 Let o1, 02 be F-linear involutions on A with o1|z(4) = 02|z(a). For
the Henselian valuation v on F, let g1, g2 be v-gauges on A invariant under o1 and o3
respectively. If char(F) = 2, assume neither o1 nor oy is orthogonal. The following
conditions are equivalent:

(a) the algebras with involution (A, o1) and (A, 02) are isomorphic;
(b) the graded algebras with anisotropic involution (Qr, (A),01)an and
(Qrg, (A), 02)an are isomorphic.
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Proof Tt follows from Proposition 1.5 that o; and &; are of the same type. Therefore,
(a) and (b) each imply that o and o7 are of the same type. If A is split and o1, 02
are symplectic, then gr, (A) and gr,, (A) are split and o1, 0 are symplectic, hence
hyperbolic. In this case, (a) and (b) both hold trivially. For the rest of the proof, we
exclude this case and fix a representation A = Endp V where V is a right vector space
over a central division K-algebra D. We also fix an involution 6 on D of the same
type as o1 and o2, and non-degenerate even hermitian forms %1, 4> on V with respect
to 6 such that

oy =ady, and oz =ady,.

As observed in the proof of Proposition 2.1, the valuation v extends uniquely to a
valuation w on D. By [18, Th. 3.1] and Proposition 1.7 we may also find norms o
and o on V that are compatible with /1 and &, respectively, such that

g1 = End(a;) and g» = End(a2),
hence
gr, (A) = Endgr(p) (9r,, (V) and gr,, (A) = Endgi(p) (9r, (V)
It then follows from Proposition 1.8 that
o] = ad;, and oy = adj;;

hence, denoting by (V1, k1) and (V2, k) the anisotropic kernels of (gr,, (V), iy) and
(gry, (V). ho) respectively,

(9rg, (A), 01)an = (Endgr(p)(V1), ady,) and
(9r,,(A), 02)an = (Endgr(p)(V2), ady,).

If (a) holds, then A and £, are similar. Scaling /15 by a factor in F*, we may assume
h1 = hy. By [16, Th. 3.11], the anisotropic kernels of h~1 and h~2 are isometric, hence
(b) holds. B B

Conversely, if (b) holds, then the anisotropic kernels of /4| and h; are similar. Scal-
ing hy by a factor in F*, we may assume that they are isometric. By [16, Th. 4.6],
it follows that 41 and &, are isometric, hence (a) holds. O

Corollary 2.7 With the hypotheses of this section, up to Witt-equivalence the graded
algebra with involution (Qrg(A), o) depends only on the Witt-equivalence class of
(A, o), and not on the choice of the invariant v-gauge g.

The results in this section depend heavily on the assumption that v is Henselian.
When v is not Henselian, for an anisotropic involution o on A there may be no
o-special v-gauge on A, and there may be many o -invariant gauges. See Example 6.3
below for an example of this. What happens when v is not Henselian is described in
Theorem 6.1.
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3 Scalar extensions of involutions

As an application of the results of Sect. 2, we consider a basic case of the prob-
lem of determining when an anisotropic involution remains anisotropic over a scalar
extension.

Let o be an F-linear involution on a finite-dimensional simple algebra A over a
field F. Assume v is a valuation on F and A carries a v-gauge g invariant under o.
For any extension (L, vy ) of (F, v), we may consider the vy -gauge g ® vy on the
L-algebra A; = A ®F L. By Proposition 1.3, this vy -gauge is invariant under the
involution o ® id;, on Ar. If the “residue” involution (o ® idz )¢ is anisotropic, then
o ® idy is anisotropic by Corollary 2.3 and Remark 2.5(1), and the converse holds
if v is Henselian and A; is tame over L, unless o is orthogonal and char(F) = 2.
We consider below a case where this residue can be explicitly calculated.

We first recall some facts which will be used repeatedly below. Let o be a surmul-
tiplicative v-norm on a finite-dimensional algebra A over a field F' with valuation v.
If ¢ is an idempotent of A with a(e) = 0 and N is any F-subspace of A, then &> =&
in gr(A) and by [18, Lemma 1.7],

gr(eN) =egr(N) and gr(Ne) =gr(N)e ingr(A). 3.1

Ife # 1,let f =1 —e. Then, a(f) > min(a(1), a(e)) = 0, but since 2 =f,
a(f) <0.So,a(f) =0,hence f =1 —"e¢in gr(A), and hence

gr(4) = 2gr(A) @ f gr(A) = gr(eA) ® gr(f A).

Therefore, by [16, Remark 2.6], the direct sum decomposition A =eA @ fA is a
splitting decomposition, i.e., «(a) = min (x(ea), a(fa)) for any a € A. Likewise
A = Ae @ Af is a splitting decomposition.

Recall also that an element s € A is said to be a-stable if a(s™') = —a(s).
For such an s we have by [18, Lemma 1.3 and (1.5)], for every a € A,

alas) = a(sa) = ala) +a(s), hence as=as and sa=sa. (3.2)

We now make some general observations on the tensor product of valuations. Let
L/F be a finite separable field extension. Recall that the separability idempotent of L
is the idempotent ¢ € L @ L determined uniquely by the conditions that

e-(x®1)=e-(1®x) forallx € L (3.3)

and the multiplication map L ® p L — L carries e to 1, see for instance [12,
Prop. (18.10)]. The separability of L/F implies that the bilinear trace form

T:LxL—F, T(x,y)=Tryp(xy)

is nondegenerate.
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Proposition 3.1 Suppose v: F — T U {oo} is a valuation that extends uniquely to
a valuation vy on L, and that the valued field extension (L, vy) of (F,v) is tame.
Then vy, is a v-norm on L which is compatible with the bilinear trace form T, and

(vp ®vL)(e) =0.

Proof Since vy is the unique valuation extending v to L and since the extension is
defectless, it follows that vy is a v-norm (indeed, a v-gauge) on L, see [18, Cor. 1.9].

We claim that v (Trz, 7 (x)) > vz (x) forallx € L*. To see this, consider a Galois
closure M of L over F and an extension vy of v to M. For every F-linear embedding
t: L < M the composition vy ot is a valuation on L extending v, hence vy ot = vp.
Since Try r(x) = > 1(x), where the sum extends over all embeddings ¢: L < M,
we have

v (Trr r() = vy (2 1(x) = min (vy o ¢(x)) = v (x),

L

proving the claim. It follows that for all x, y € L*,

v(T(x,y)) = vr(x) +vr(y). (3.4)

To show that vy, is compatible with 7', it remains to show that for any x € L* there
exists y € L* for which equality holds in (3.4). For this, it suffices to show that there
exists £ € L™ such that v (TrL / F(Z)) = v (), since equality then holds in (3.4) with
y = £x~!. Forevery £ € L* with vz (£) = 0 we have

Trp/p(€) = |UL:TF] 'sz/f(z) (3.5)

by [6, p. 65, Cor. 1]. (Ershov assumes his valuation is Henselian; but the result carries
over to the situation here: Let F}, be the Henselization of F with respect to v. Since
the unique extension of v to L is defectless, for any compositum of L with Fj, we have
[L-Fy:Fy] > [L:Fl|IT:TF| = [L:F). Hence, L @ F}, is a field, and (3.5) holds
for L/ F because it holds for (L ®f Fy)/Fp.)

Since L/F is tame, the residue extension L/F is separable and char(F) does not
divide |y :T"r|. Therefore, we may find £ € L suchthat vy (¢) = 0 and TrZ/F(Z) # 0.

Then (3.5) shows that Try /z(£) # 0, hence

v (TI'L/F(E)) =0= UL(E).

Therefore, vy, is compatible with T'; it thus coincides with its dual norm vi.

To complete the proof, we compute (v;, ® vy )(e). Let (Ei)?zl be a splitting F-base
of L for vy, and let (E?)?zl be the dual base for the form 7'. By [12, Prop. (18.12)] we
have

< 1
e = z€i®gi’
i=1
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hence,

(v ® vr)(e) = min (vp(6;) + v (€)).
1<i<n
Now, forall i = 1, ..., n we have vz, (¢7) = v} (/) = —vz () by [16, Lemma 3.4].
Therefore, (v;, ® vy)(e) = 0. O

Continuing with the same notation and hypotheses as in Proposition 3.1, we now
assume further that the extension L/ F is Galois. Let G denote its Galois group. Since
vy, is the unique extension of v to L, vy ot = vy, for any ¢ € G, and hence ¢ induces a
graded gr(F)-automorphism ¢ of gr(L). For ¢ € G, let

e, = (id®u)(e) € LQ®F L,

and let ¢, be the image of ¢, in gr(L ® L), which is canonically identified with
gr(L) ®gr(ry gr(L) by Proposition 1.3.

Lemma 3.2 The elements (e,),cc form a family of orthogonal idempotents such
that 3" ,.;e. = 1. They are the primitive idempotents of L ®p L. They satisfy
(v ® vr)(e)) = 0and

e-x®@1)=¢ -1Q®t(x)) forxelL. 3.6)
Likewise, for any y € gr(L),
a-(veh=2e-(10Uy) ingr(L) g gr(L). (3.7)

Moreover, (1 @ 1)(e) = e fort € G.

Proof Equation (3.3) shows thate - (L ®r L) =e- (L ® 1) = L. Since L is a field,
e must be a primitive idempotent. Equation (3.6) readily follows by applying id ®:
to each side of (3.3). For equation (3.7), it suffices to verify the equality when y is
homogeneous and nonzero. But then y = X for some nonzero x € L. Both x ® 1 and
1 ®t(x) are vy @ vy -stable in L ® L, as defined preceding (3.2) above. Hence, using
equations (3.2) and (3.6),

ZL'(Y@)T) =Z-(x/§/l) =[e-x® 1]~
=le. (1@ =7 (18) =2 - ((e7@).

Since e is a primitive idempotent, it is clear that each e, is also a primitive idempotent.
Fori,k € Gandx € L, as L ®p L is commutative we have

eee - (1@ [k(x) —1(x)]) = e - (1@ k(x)) —ece, - (1 ®1(x))
= (eex —eve)- (x®1)=0.
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For ¢ # «, if we choose x € L with t(x) # k(x), then 1 ® [k (x) — ¢(x)] is a unit of
L ®F L;hence, e¢,e, = 0.

As observed in the proof of Proposition 3.1, we have e = >7_, {; ® 6? if (£)7_,
is an F-base of L and (Z?);’ | is the dual base for the bilinear form 7'. It follows that

=27 ,14® L(Z?) for ¢ € G, hence

n
Zée[ - Zlei ® Trp r(th). (3.8)
Le 1=

Since (Zf):?:l is the dual base of (¢;)7_,, we have

n
x=>4 TrL/F(E?x) forx € L.
i=1

In particular, Z?:l £ TrL/F(IZf) = 1, and equation (3.8) yields ZteG e, = 1. So, the
e, are all the primitive idempotents of L @ ¢ L.

Since vy, is the unique valuation extending v to L, we have vy ot = vy for all
t € G, hence

(vp @vp)(e) = (vp @ur)(e) =0 forall: € G.

Finally, it is clear that (: ® ¢) (e) satisfies the same equation (3.3) as e and is carried to 1
by the multiplication map L ® p L — L. Since these properties determine e uniquely,
we have (1 ® t)(e) = eforall: € G. O

It is well-known (cf. [15, pp. 256-257, Lemma b]) that the primitive idempotents
of L ® L are indexed by G and satisfy (3.6). The further properties of the ¢, given
in Lemma 3.2 will be useful in what follows.

Now, assume further that L € D for some finite-dimensional division F-algebra D,
and that v extends to a valuation vp on D such that D/F is defectless; i.e., vp is a
v-norm on D. The restriction of vp to L is then the unique valuation v; extend-
ing v. We will use the idempotents (e,),eG to analyze extensions of involutions from
Dto D ®F L. Let C be the centralizer Cp(L). Viewing D as a right C-vector space,
we have the canonical isomorphism

n: D®p L = Endc(D), (3.9)

which carries d ® £ to the map x +— dx{ ford,x € D and ¢ € L. For € G, consider
the following C-subspace of D:

D, ={d e D|td =d(¢) forall £ € L}.
Since ¢ on L is induced by an inner automorphism of D by Skolem—Noether, D, # {0}.

Since in addition, Dijg = C and D, - D, € D, for all .,k € G, we must have
dim¢(D,) = 1 for each .
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Lemma 3.3 We have D @ L = @,.ge(D ® 1) and D = @, D., and these
direct sums are splitting decompositions of D @ p L and D with respect to vp ® v,
and vp, respectively. More precisely, we have

wp®v) (XY e-(x,®1) = min (vp(x))  forx € D,
1eG t

and

UD( >, yt) = min (vp(y.,)) fory € D,.
eG 1eG

Furthermore, for all , k € G,
e, (D ®F L)e, = e,(D-1,® 1).

Proof Let A= D ®p L and @ = vp ® vr. Since (e,),ec is a family of orthogonal
idempotents with > .- e, = 1 and a(e,) = 0 for each ¢, the collection (€).eG is a
family of orthogonal idempotents in gr(A) with > _; €, = 1. Hence, using (3.1),

A=@eA and gr(d) = Pz, gr(A) = B grieA). (3.10)
1eG 1eG 1eG

Likewise, for any ¢ € G,

e A= @ eAe, and gr(e,A) = @ gr(e,Ae, = P gr(e,Aey). (3.11)
keG keG keG

In view of (3.6), wehavee,- (1®L) =¢,- (L®1),hencee,- (DRXrL) =¢,- (DR 1).
For any nonzero x € D, a(x ® 1) = vp(x) and

(@D ) =acx™'®1) = —vp©x).
So, x ® 1 is a-stable, and (3.2) applies. Since (3.10) shows that the direct sum A =

P, e A is a splitting decomposition of A for «, it follows using (3.2) that for any
x, €D,

a( X e (x,®1) =min(a(e - (x, ® 1))
eG eG

= min (a(e,) + a(x, ® 1)) = min (vp(x)).
1eG 1eG

To prove the rest, we use the canonical isomorphism 7 of (3.9). For eacht € G,
let 7, = n(e,), which is a projection in End¢ (D). By (3.6) and the commutativity of
L®pF L,forany ¢ € Landd € D,

C-m(d) =n((€® De) (d) =n (1@ cb)e) (d) =m(d) - 1(£).
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Hence, 7, (D) C D,. Since im(7,) is a nonzero C-subspace of the 1-dimensional
C-vector space D,, it follows thatim(;r,) = D,. Because (77,),e¢ is a family of orthog-
onal idempotents of Endc (D) such that >’ . m, = idp, we have D = @,.; Di;
furthermore, each 7, is the projection of D onto D, parallel to @K# D. Thus, for
any ¢, k € G, m, Endc (D)m, consists of those endomorphisms sending D, to D, and
D;, to {0} for A # k. For any A € G, since D, —1,D; € D, -1,, we have

D,, ifA=«k;
[T[l o U(DK—IL ® 1)](DA.) = T[L(DK_ILD)») g T[L(D)L/(_][) g {{OL}’ 1fk ;é .

Hence, 7, o n(D,-1, ® 1) € 7, End¢c(D)m,. By applying n~!, this yields
e(De-1,®1) CeAe, foralli,k € G. (3.12)

Now, fixt € G. We have seen that e, A = ¢,(D ® 1). The F-epimorphism p,: D —
e, A givenbyd — ¢,(d®1l)isclearly injective; p, is also norm-preserving, as «(e,) = 0
and d ® 1 is stable in A for each nonzero d € D. Since D = @, .; D,-1,, we have

@KeGelAeK = elA = pl(D) = @KQGpL(DK_IL)
= @Drecga(D-1,® D). (3.13)

This shows that the inclusions in (3.12) must all be equalities. It follows from (3.11)
above that the direct sum decomposition @, .; e, Ae, is a splitting decomposition of
e, A. Therefore, by applying the norm-preserving map ,ol_1 to the terms in (3.13), it
follows that @, .; Dy is a splitting decomposition of D. u|

While D ®r L is simple, the degree 0 part (D @ p L) of gr(D ® L) is in general
only semisimple. The value sets I'p, of the D, encode how (D ®fr L)¢ decomposes:
Since each D, is a 1-dimensional C-subspace of D and vp|p, is a vp|c-norm on D,,
each I'p, is a coset of I'c in I' p. Therefore, there is a well-defined map

Y: G — I'p/T¢ givenby ¥ (1) =Tp,.
Because D, - D, € Dy, and I'p is abelian, ¥ is a group homomorphism, which is
surjective since D = @, D, is a splitting decomposition of D by Lemma 3.3. So,
| ker(y)| = |G|/|FD:FC| = [D:C]/|FD:FC|, which shows that

¥ is injective if and only if D is totally ramified over C. (3.14)

Lemma 3.4 Let A = D ®p L. Then, each e, is a primitive idempotent of Aoy, and
Ay =P, cgeAo=P,cce(Do®1). Forany i,k € G,

e (D10 ®1) #0, if ) = Yy

Ao, = [ 0, R E 2 20)
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Proof We saw in (3.10) that gr(A) = €p,.; e 9r(A). Moreover, as gr(A) =
gr(D) ®grry 9r(L) and e, (1®gr(L)) = e (gr(L)®1) by (3.7), we have
e, gr(A) = e, (gr(D)®1). So, for the degree 0 components we have Ay =
D, e.Ao = P, e (Do ® 1). Similarly, for ¢, k € G, by (3.1) and Lemma 3.3,

2. gr(A)2 = grle,Ae,) = gr (e,(Dy-1, ® 1)
=2, gr(De1,® 1) =2, (gr(De-1) @ 1).

Hence, for the degree 0 components,
EtAOEK = ZL ((DK*IL)O X 1)

If Y (k) # ¥ (1), then Iﬂ(/c_lt) is a nonzero element of FD/FC, so (D,-1,)o = {0}.
If Y (k) = ¥ (1), then (D,-1,)0 # 0, and since nonzero elements of D,-1, ® 1 are
stable, (3.2) yields €, ((D,-1,)0 ® 1) # {0}. If & = ¢, then (D,-1)0 ® 1 = Co ® 1,
soe,Ape, = ¢, (Co® 1). Since C ® 1 centralizes ¢, € L @ L, Cy ® 1 centralizes e,.
Hence, ¢, Apge, = Co® 1 = Cy. Since Cy is a division ring, ¢, is a primitive idempotent
of Ag. O

Now, assume o is an F-linear involution on D which stabilizes L, and therefore
restricts to an automorphism o, of L, and let ¢t € G be such that 2 =id. Theno ® ¢
is an involution on D ®r L. Since the valuation vp extending v to D is unique by
[19, Th.], it is invariant under o . Likewise, vy is invariant under ¢, hence vp ® vy is
invariant under o ® ¢ by Proposition 1.3.

Proposition 3.5 The involution o @ t on D @ L is isotropic unless o, = t and ( lies
in the center Z(G) of G. If o, =t € Z(G) and D is totally ramified over Cp(L),

then o ® ( is anisotropic.

Proof For k € G we have
(o ® )(ec) = (oL ® tk)(e) = (idL ®ikor) o (oL @ or)(e).
Since (07 ® o1)(e) = e by Lemma 3.2, it follows that
(oL ® V)(ex) = ewoy -
Ift#oporift =07 andt ¢ Z(G), we may find k € G such that ikop # «k, hence
(0 ®@u)(ex) - ex = eyoy, - e = 0.

Therefore, o ® ¢ is isotropic.
Now assume o7 = tand ¢t € Z(G). So, (0 ® t)(e,) = e, for all k € G; hence,
in (D ®F L), (0 ® t)g(e,) = €. Assume further that D is totally ramified over
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C = Cp(L). Then ¢ is injective by (3.14), so by Lemma 3.4, ¢,(D ®f L)oe, =0
whenever « # (. Hence,

(D®r L)y = @ e.(D ®r L)oe,.
1eG

Since (o0 ® t)g maps each direct summand to itself and each summand is a division
ring, (o ® () is anisotropic. It follows from Corollary 2.3 (see also Remark 2.5(1))
that o ® ¢ is anisotropic. O

Corollary 3.6 Let D be a central division algebra over a field F. Assume v is a val-
uation on F which extends to a valuation on D so that D is tame over F. Let o be an
involution of the first kind on D and let L C D be a subfield Galois over F, consist-
ing of o -symmetric elements. If D is totally ramified over Cp (L), then the involution
o ®idy on D ®F L is anisotropic.

Proof This is immediate from Proposition 3.5. O

Remarks 3.7 (a) The assumption in Corollary 3.6 that D is totally ramified over C p (L)
holds whenever D is totally ramified over F'. In this case we do not have to assume that
L is Galois over F. For, since v extends to D, it follows from a theorem of Morandi
[14] that D remains a division ring after scalar extension to a Henselization Fj, of
F for v. Therefore, we may assume that F is Henselian. The extension L/ F is then
Galois, since it is tame and totally ramified.

(b) Another case in which D is totally ramified over Cp(L) occurs whenever the
subfield L of D is unramified over F and L C Z(D).

(c) Another way to obtain the information about (D ®r L)o needed in the proof
of Proposition 3.5 is to prove that if the F-central division ring D has a valuation
tame over F and L is any subfield of D containing F, and C = Cp(L), then the
canonical isomorphism D ® r L = End¢ (D) is norm-preserving; so this induces a
graded isomorphism

gr(D ®r L) = gr(Endc (D)) = Endgr(C) (gr(D)).

4 Composition of value functions
Letv: F — I' U {oco} be a valuation on a field F, and let A C I" be a convex sub-
group, i.e,if0 <y <Swithy e "and§ € A, then y € A.Let A =T/A, and let

e: I' — A be the canonical map. The ordering on I" induces a total ordering on A
such that for y1, y» € T, if 1 < y», then €(y1) < €(y»2). Consequently,

ife(yn) < e(y1), theny, < y. 4.1

Because I' is assumed to be divisible, A and A are also divisible. By composing v
with ¢, we obtain a coarser valuation on F,

w=¢cov: F— AU/{o0}.
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Let F' (resp. fw) denote the residue field of F for the valuation v (resp. w). The
valuation v induces a valuation

u: F" = AU {0},
with residue field

—w —v
F

see [9, pp. 44-45].
Now, let V be an F-vector space and let: V — I'" U {oo} be a v-value function.
Composition with ¢ yields a w-value function

B=¢cowa:V — AU{oo}.

Each A € A =T'/A is acoset of A, and may therefore be viewed as a subset of I".
For x € V, we have by definition

B(x)=Xxe A ifandonlyif a(x) e r CT.
For A € A, let

fo={x€V|ﬁ(x)zk}, Ve ={x eV |Bx) > AL

>
and V) =Vl /vE.
The group Vf is an F" -vector space.
Lemmad4.1 Ifx, y € VQ satisfy x =y # 0(mod ka), then a(x) = a(y).

Proof We have B(x —y) > A = B(y). Since B = c o, (4.1) shows that «(x — y) >
a(y). Hence, a(x) = min (a(x — y), @ (y)) = a(y). O

In view of this lemma, we may define

a(x) if B(x) = A,
oo if B(x) > A.

oy Vf—)ku{oo} by x+VfA»—> [
Clearly, o, is a u-value function on Vf . For y € A we have
iy =V,

Therefore,

ar,(V) = & grm(vf) where graA(Vf) =PV
reA ye
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while

ars(V) = @ V.

rEA

Now, let

Fp=v(F*) CT, Ap=ANTfrCA,
AFZUJ(FX)ZFF/AFEA.

These groups are the value groups of, respectively, v, u, and w. Similarly, let
Ly =a(V\{OHh ST and Ay =B(V\{0}) € A.
Foreach A € Ay, let also
v = a (VI (0D S 2.
Clearly, Ay = A N T'y. Note ' (resp. AF, resp. Af) is a subgroup of I' (resp. A,
resp. A), while I'y (resp. Ay, resp. Ay for A € Ay) is a union of cosets of I'f (resp.

A, resp. Ar). We denote by |I'y:I'r| the cardinality of the set of cosets of I'r in
'y, and define likewise |Ay:AFr| and |Ay:Af| fork € Ay.

Lemma 4.2 [fdimp V is finite, then |I'y :Up|, |Ay:AFr|, and |Ayv:AF| for A € Ay
are finite. If A1, ..., Ay € Ay are representatives of the various cosets of Ay modulo
AF, then

,
ICy:Trl= > [(A)v:AF]|.
i=1

Proof By [16, Prop. 2.2] we have
[ITy:Trp| <dimpV, |Ay:Afp| <dimpV,
and also
Ay:Ap| < dimpe VP < dimp Vo ford € Ay.

Fori =1, ...,r,lety1, ..., ¥is; € (Aj)v C I' be representatives of the various cosets
of (A;)y modulo A . Thus,

Ay = H (vij + AF),
j=1

where | | denotes the disjoint union. For y € 'y, we have £(y) € Ay, hence

e(y) =A; +w(a) forsomei €{l,...,r}andsomea € F*.
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It follows that y — v(a) € (A;)v; hence,
y —v(a) = yij +v(b) forsome j € {l,...,s;}andsomeb e F*.

This shows that y = y;; mod I'r, hence
roos
=U U +Tr. 4.2)
i=1 j=1

To complete the proof, it suffices to show the union is disjoint. If y;; = yx¢(modI'r)
for some i, j, k, £, then e(y;j) = €(yxe) (mod Af), hence i = k since e(y;;) = A;
and &(yk¢) = Ak. Moreover, from €(y;;) = €(yx¢) it follows that y;; — yx¢ € A, hence
vij = Yke (modI'p) implies y;; = yx¢ (mod A ), hence also j = £. O

Proposition 4.3 Suppose dimg V is finite, and let A1, ..., A, € Ay be representa-
tives of the various cosets of Ay modulo A r. The following conditions are equivalent:

(i) «isanorm;
(i) PBisanormand ay is a norm forall A € Ay,
(iii) B isanormandw;, isanormfori =1,...,r.

Proof Use the same notation as in the lemma. For simplicity, denote o; = cr;, and

V—Vﬁforz—l rande_V"‘ fori =1,...,rand j =1, ..., s;, and use
the notation [V F] for dimp V. From (4 2) it follows that

[gr, (V): gr,(F)] =é g Vi ) “3)
Likewise,
[9rs(V): gr, (F)] = ; [V, P .4)
and
[gry, (Vi): ar, (F)] = _szil[\/i.,:f”] fori=1,...,r. 4.5)
P
If oy is not a norm for some k € {1, ..., r}, then

[Vi:F' 1> [gry, (Vi): gr, (F L.
On the other hand, we have

[Vi:F"] > [gry, (V):gr,(F)] foralli;

@ Springer



Valuations on algebras with involution 137

hence, by (4.4) and (4.5),

[grs(V): gr, (F)] > Zl[gra,.(%):gru(F“’)] = zl _Zl[v,-j:F”].
1= 1=1j=
In view of (4.3), it follows that [grg(V):gr,(F)] > [gr,(V):gr,(F)]. Since
[V:F] = [grg(V):gr, (F)], we have [V:F] > [gr,(V): gr,(F)], hence « is not
a norm.
If each «; is a norm, then [V,-:fw] = [grai(V,-): gr,(F)]fori =1,...,r, hence
(4.4), (4.5), and (4.3) yield

r Si

[grs(V): gr, (F)] = X 3 [V F 1= [gr(V): gr,(F)l.

i=1j=1

It follows that « is a norm if and only if B is a norm. We have thus proved (i) <= (iii).
Since any A € A can be chosen as a representative of its coset, the arguments above
also show (i) = (ii). Since (ii) = (iii) is clear, the proof is complete. O

To put Proposition 4.3 in perspective, we relate the graded vector spaces gr, (V)
and grg(V) by means of a value-function-like map

o grg(V) — I'U {oo}

defined as follows: for § € grg(V), & # 0, let £(§) be the homogeneous component
of & of least degree, and let A = deg (£(&)), so £(§) € Vﬂ; then let

ax(§) = (L(§)) e C T
Let also a4 (0) = o0o. For x € V we thus have
() = a(x), (4.6)

where X# denotes the image of x in grg(V).
A similar construction applies to the valuation v, and yields a map

Vil gr, (F) — I'U {oo},

which satisfies the same properties as a valuation, and such that the image v,.(p) of any
nonzero p € gr, (F) depends only on its homogeneous component of least degree.
The map o, deserves the name of a graded v.-value function since it satisfies the
following properties:

(1) ox(§) = oo if and only if &€ = 0; if £ # O, then wx(§) = a, (£(§)) and
coay(§) =degl(§);
(i) ax(§ +n) = min (ax(§), ax(n)) for &, n € grg(V);
(iii) o (§p) = ax(§) + vi(p) for§ € grg(V) and p € gr,, (F).

@ Springer



138 J.-P. Tignol, A. R. Wadsworth

We may thus consider the associated graded structure gr,, (gr 8 (V)) Ifx € V satisfies
B(x) = X and o(x) = y, we may identify

@+ V) gV, =x+ Ve

thus

ar, (9rs(V)) = gr, (V). 4.7)

We define o, to be a graded v,-norm if

[y, (9rs(V)) g1y, (9r, (7)1 = [grg(V): gr,,(F)].

It is easy to check that this holds if and only if each «; is a u-norm. By an argument
analogous to the one in [16, Prop. 2.5] for ungraded norms, one can check that if oy is
a graded norm, then for any graded subspace W of grg(V), a|w is a graded norm on
W. Consequently, by dimension count, the functor gr, (_) preserves strict inclusions
of graded subspaces of grg(V). Proposition 4.3 may be rephrased as follows: « is a
v-norm if and only if 8 is a w-norm and «, is a graded v,-norm. Indeed, if (e; ?:1
is a splitting base of V for «, then it is also a splitting base for 8, and (27146);’:1 isa
splitting base of grg (V) for a.

We now apply this construction to a finite-dimensional F-algebra A. If «: A —
I' U {00} is a surmultiplicative v-value function, then the coarser w-value function
B = ¢ o« is clearly surmultiplicative, and the map « is also surmultiplicative, by an
easy calculation using (4.6). The notions of gauge and tame gauge for graded norms
are defined analogously to the ungraded cases.

Proposition 4.4 The map « is a v-gauge (resp. a tame v-gauge) if and only if B is a
w-gauge (resp. a tame w-gauge) and o is a graded v-gauge (resp. a tame graded
V4-gauge).

Proof Proposition 4.3 already shows that « is a v-norm if and only if 8 is a w-norm
and o is a graded v,-norm. We noted above that « is surmultiplicative if and only if
B and o, are surmultiplicative.

Suppose « is a v-gauge. Since gr,, (grﬁ (A)) =gr,(A) and gr,(A) is semisimple,
it follows that grg(A) is semisimple. For, if | is a nontrivial nilpotent homogeneous
left ideal of grg(A), then gr,, (1) is a nontrivial nilpotent homogeneous left ideal of
gy, (9rg(A)). Thus, B is a w-gauge. Also, gr,_(9rg(A)) is semisimple by hypothe-
sis, hence a is a graded v,-gauge. Conversely, if B is a w-gauge and o is a graded
v4-gauge, then « is a v-gauge since gr,, (A) = gr,_ (grﬂ (A)).

Assume now that « is a v-gauge. For the centers we have the obvious inclusions

9y (Z(A) = gry, (9rs(Z(A))) S gry, (Z(grs(A))
C Z(9r,.(9r(A)) = Z (gry(4)) - 4.8)
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Thus, Z (gr,(A)) = gr, (Z(A)) if and only if we have equalities throughout (4.8);
since gr,, (L) preserves strict inclusions, this holds if and only if

grg (Z(A)) = Z (grg(A)) and gr,, (Z(grﬁ(A)))=Z(gra*(grﬁ(A))).

Assume we have these equalities. Let Z = Z(A), which is a direct product of fields, as
A is semisimple. The separability condition on the graded center required for tameness
holds for « if and only if it holds for «,, since they have the same graded rings. Sup-
pose now that grg(Z) is not separable over gr,,(F). Because grg(A) is semisimple,
its center grg(Z) is a direct product Gy x - - - x Gy of graded fields, and some C; must
not be separable over gr,, (F). By [10, Prop. 3.7, Prop. 3.5] there is a graded field T
with gr,,(F) €T & C; and C; purely inseparable over T. So,

gr,(F) = gry, (9r,(V)) S gre, (M S 91, (C)),
and gr, (C;) is purely inseparable over gr,_ (T). Now,
k

gr,(Z2) = gr,, (9rs(2)) =

1

gra* (Cl)
1

Since gr, (C;) is purely inseparable over gr,,_(T), it cannot be separable over gr,, (F),
so gr, (Z) is not separable over gr, (F). Thus, gr, (Z) is separable over gr, (F) if and
only gr,, (grg(2)) is separable over gr, (gr,(F)) and grg(Z) is separable over
gr,, (F). Therefore, « is a tame v-gauge if and only if B is a tame w-gauge and o is
a tame graded v,-gauge. O

5 Descent of norms

Throughout this section, we fix the following notation: V is a finite-dimensional vec-
tor space over a field F, and v: F — [ U {oo} is a valuation. Let (Fj, v;) be a
Henselization of (F,v). If «: V ®f F, — T' U {oo} is a vj-norm, then clearly
aly: V — I' U {oo} is a v-value function, but not necessarily a v-norm unless I" has
rank one, see Proposition 5.4 and Example 5.6. In this section, we give an inductive
criterion for |y to be a v-norm when I is the divisible hull of I' 7 and the rank rk(I")
is finite, see Proposition 5.5.

We first discuss the descent problem in a general context: let (K, vk ) be an arbitrary
valued field extension of (F, v),andlet@: V ® p K — I' U {c0} be a vg-norm. We
identify V with its canonical image in V ® r K. For any x € V and ¢ € K we have

ax®c)=a((x®1)-c) =aly(x) + vk (c).
Therefore, forany y € I'y 4|, and§ € I'g theusual F-bilinearmap VxK — V®rK
sends V>, x K>sinto (V ®f K)>,4s. Likewise, V., x K>s and V>, x K.5 map

into (V ®F K)~ +s. Consequently, there is a well- defined induced map V), x K5 —
(V ®F K)y4s given by (x,0) — x/_Q\é/c The direct sum of these maps over all such
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¥, 8 yields ahomomorphismgr,,, (V) x gr, (K) — gr,(V ®F K), whichis clearly
gr, (F)-bilinear; hence there is a canonical map

X gra|v(v) ®gl‘v(F) grvK (K) - gra(v ®F K)

which maps ¥ @ Ctox @ c forx € Vand ¢ € K.
On the other hand, recall from Sect. 1 (see (1.5)) that if a|y is a v-norm on V, then
there is a canonical isomorphism of gr,, (K )-vector spaces

P gralv®vk(v ®r K) = gra|V(V) Qgr, (F) Iy (K)

whichmaps x @ ctoX @ Cforx € Vand ¢ € K.

Lemma 5.1 The following conditions are equivalent:

(a) alyisav-normonV anda = aly ® vk.
(b) V contains a K -splitting base of the norma on V Qr K.
(¢) «aly is a v-norm and the canonical map x is injective.

When these conditions hold, the map x is a graded isomorphism, which is the inverse
of p, and IN'verk.a = Fv,a‘v + Tk vg-

Proof (b) = (a) If B = (e;)7_; € V is a splitting base for @ on V ®F K, then B is
clearly also a splitting base for a|y on V. So, «|y is a v-norm. Furthermore, by the
definition of @|y ® vk, we have for any ki, ..., k, € K,

(@l ® ) (3 i ® &) = min (aly(en) + vk k)

i=1

lrgig (a(e; ® 1) +vg (ki)

=0‘(i(€i ® 1) k) =0l(§,€i ® ki),
i=1

i=1
showing that oy ® vk = «.

(a) = (c) When (a) holds, «|y is a norm, and y is clearly the inverse of p, so x is
injective.

(c) = (b) Suppose (c) holds. Let (e;)}_, be an F'-splitting base for «|y on V. Then,
by [16, Cor. 2.3(ii)] e, ..., €, are gr, (F)-linearly independent in gr,, (V). Hence,
e1®l1,...,e,®1 are 9ry. (K)-linearly independent in gra‘V(V) ®gr, (F) g (K).
By the injectivity of x the x(e; ® = 2835/1 are gr, (K)-linearly independent in
gr,(V ®F K). But, since « and «|y are norms,

[gr,(V®F K):gr, (K)]=[V®p K:K]=[V:F]=n.
Therefore, (;_éi)?zl is a homogeneous gr, (K)-vector space base of

ar,(V ®r K), hence (¢; ® 1);‘:1 is a K-splitting base for « on V Q@ K by [16,
Cor. 2.3(i1)].
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When the conditions (a) — (c¢) hold, we have

Pverka =Tverkalyor = vy + Tk
and the map y is the inverse of p, so x is an isomorphism. O

Note that under the hypotheses of Lemma 5.1 if ¢|y isanorm then @ > o|y ® vk.
For, if (e;)]_, is a v-splitting base for «|y on V, then for any k1, ..., k, € K,

o

n
1=

e ® ki) > min (a(e; ® kj)) = min (a(e;) + vg (ki)
1 1<i<n 1<i<n

= (xly ® vK)(iei ® ki).

We next show that the inequality @ > a|y ® vk is actually an equality when K is
immediate over F, but not in general.

Corollary 5.2 Let (K, vg) be an immediate valued field extension of (F,v) and
let: VR K — I'U{oo} be a vg-norm. If a|y is a norm, then o = oy ® vg.
So, the canonical map Qry, (V) — gr,(V ®F K) is an isomorphism gr,, (V) =
gr,(V®rK),andl'y =Tygrk.

aly

Proof Since vk is immediate over v, we have gr, (K) = gr,(F), so the canonical
map x of Lemma 5.1(c) is just the injection gr,, (V) <> gr,(V ®F K) arising from
the canonical inclusion V < V @ K. Thus, the corollary follows from Lemma 5.1,
using 'y = I'r for the last assertion. O

Example 5.3 Let (K, vg) be an extension of (F, v) with F ; K.Let& € K be such
that vx (§) = 0 and £ ¢ F, and let V be a 2-dimensional F-vector space with base

(e1,e2).Let f =e1®14+e2 & € V®F K, and consider the vg-norma on V ® p K
with splitting base (e; ® 1, f) such that

a(e1®1)=0 and «a(f)>0.
Then, as ex = (f —61)5_1,Wehaveforcl,62 eF,

aly(eic + excr) = af(er(cy — & 'e2) + fea)
= min (a(e1) + vg (e — e ler), a(f) + vk (€2))
= min (v(cy), v(c2)).

Hence, (e1, €2) is a v-splitting base of V for |y, showing that «|y is a v-normon V.
However, a|y ® vk < o since

(aly ® vg)(f) = min (vg (1), vk (§)) =0 < a(f).
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Thus, the first condition in Lemma 5.1(a) holds, but not the second. The Lemma shows
that V does not contain any splitting base for the vg-norm o on V @ K. Also, the
second condition in part (c) of the Lemma fails, since the canonical map yx satisfies

X@E®I+HRE) =e; @1 +e®E =0.

We now turn to the descent problem posed at the beginning of this section, for
(K, vk) = (Fp, vp) a Henselization of (F, v). The rank one case is easy:

Proposition 5.4 Leto: V Q@ F, — ' U {00} be a vy-norm, let y € T, and suppose
im(a) Sy + (TrQz Q). Iftk(T'r) = 1, then a|y is a v-norm and a = aly Q vp,.

Proof Let (e; ;’:1 be an arbitrary F-base of V andletx € V Qf Fp,

n
x= Y ¢ ®k forsomek; € Fj.
i=1

Since rk(I'r) = 1, the field F is dense in F}, for the topology of the valuation vj,: see
[7, Sect. 1.6] or use the fact that F is dense in its completion F and that Fj, embeds in
ﬁby [8, Th. 17.18]. Furthermore, I' ¢ is dense in its divisible hull I"  ®7 Q. For each
i,1 <i<n,sincea(x)—ale ®1) € I'r ®7 Q, we may therefore find an element
fi € F such that

vp(ki — fi) > a(x) —ale ®1).

Lety=>" ,6®fi=>1 ¢ fi ®1€V.Then,

a(x —y) =a(Xe® ki — fi)) = lgll_ign (alei @ (ki — fi)))

i=1

= minl (xx(ei) +vp(ki — fi)) > a(x).

1<i<r
Hence,
X = y € gr(x|v(v)-

This proves that the monomorphism gr
Hence, as « is a norm,

(V) <= gr,(V ®F Fp) is an isomorphism.

aly

[9ry), (V):gr,(F)] = [gr,(V ®F Fp): gry, (F)]
=[(V®F Fp):Fp]l =[V:F],

which shows that «¢|y is a v-norm. m]
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Now, suppose I' = I'r ®7 Q, with rk(I") > 1, and suppose I" contains a convex
subgroup A of rank 1. Asin Sect. 4, we consider the canonicalmape: I' — I'/A = A
and the coarser valuation

w=¢c¢ov: F— AU{oo}.

Let (Fp 4, vy) be a Henselization of (F, v) and (Fj,,,, wy) a Henselization of (F, w).
Let also

y=¢ouv,: Fp, = AU{oo}
By [9, Cor. 4.1.4, p. 90], the valuation y is Henselian, hence we may assume

(Fnws wn) S (Fhp, ).
Leta: V ®F Fj,, — I' U{oo} be a v,-norm, and let

B=coa:V®Fr Fy,— AU{oo}.

By Proposition 4.3, the map f is a y-norm.

Proposition 5.5 If B|y is a w-norm and B = Bly ® y, then a|y is a v-norm on 'V
anda = aly ® vp.

Proof As observed in Sect. 4, the valuation v induces a valuation u on the residue
field F",

u: F' — AU{ool.
Note that the value group of u is A = I'r N A and, as A is divisible and torsion-free,
Ar®zQ=TrRzQNA®RzQ =NA=A.

Let Ay = Blv(V \{0}) € A. Clearly, B|ly = € o (¢|y). In order to show that |y is
a norm, it therefore suffices, by Proposition 4.3, to show that each map

(@ly)r: VI = aUfoo), fori e Ay, (5.1)

is a u-norm. To simplify notation, we write V) for Vf V' Note that the canonical inclu-
sion V — V ®r Fj, , is compatible with the respective value functions S|y and B so

yields an injection V), — (V QF Fh,u)f ; let V)i denote the image of V;. Then, clearly
alyy = (@fy)i.

Let uj,: my — A U {oo} be the valuation induced by v;. As observed by
Morandi [14, p. 239], (my, uyp) is a Henselization of (fw, u). Since « is a v,-norm,
Proposition 4.3 shows that

@ (V ®F Fiy)h — 1 U {oo}
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is a up-norm for every A € Ay. Since (Fj y, y) is an inertial extension of (Fj, ), wp)
by [14, p. 239], we have

9ry (Fi,v) = 9wy, (Fn,w) ®gr,,, (o 90y (Fiw)o
= gr, (F) Qgr,,(F)o 9y (Fp,v)0-

Because 8 = B|v ® y, this yields graded isomorphisms

grg(V ®F Fiw) = 9rgp, (V) ®gr,, (k) 9y (Fi,v)
= grg;, (V) ®gr, (Fo 9y (Fiv)o = grg), (V) @zv Fry’ -

For any A € AF, when we restrict these graded isomorphisms to the A-component we
obtain the thvy-vector space isomorphism

Vi (V@ Fiy)h = Vi @ Fry'

Letad =a) oy ': Vy Qpv Frol — A U {oo}, which is the u;-value function on
im(yr) correspondlng to «; on the domain of Y. Since «y is a uj-norm, so is Q.
Because (Fh W, uyp) is a Henselization of (F ,u)and Lisacosetof A = Ap ®7 Q,
which has rank 1, with Ag the value group of u, Proposition 5.4 applies to @, and
shows that &y, is a u-norm. Note that ¥ maps the V, defined above after (5.1) to
the copy of V, in im(y). So, oulv/ = aly,. But, we saw above that (o|y)) = lelv

Since @|y, is a u-norm, these 1som0rph1sms show that («|y);, is also a u-norm. Thus
by Proposition 4.3 «|y is a v-norm; then & = a|y ® vy, by Corollary 5.2. O

The following is an example of a norm on a Henselization that does not descend to
a norm.

Example 5.6 Let k be any field with char(k) # 2, and let F = k(x, y) with x and y
algebraically independent over k. Let v be the valuation on F obtained by restriction

from the canonical Henselian valuationon k((x))((y)),sol'r =Z x Z and F = k. Let

(Fy, vy) be a Henselization of (F, v).Let A = (H%), a quaternion division algebra

over F,andlet A, = A ®F Fj,. The algebra Ay, is splitsince 1 +x € thz. Therefore,
we may find vj-gauges on Ay, that are unramified, in the sense that I'y, = I'r. Fix
such a vj-gauge o. We claim that | 4 is not a v-norm on A.

Suppose the contrary. Then gr,, (A) = gr,(Ap) by Lemma 5.2, so a4 is a
v-gauge. Consider the convex subgroup A = Z x {0} € I'r and the canonical
epimorphism

e:I'r—>Tfrp/A=27.
Let w = ¢ov: F — Z U {oo}, which is the y-adic valuation on F, and let

B=coa: Ay — Z U {oo}. Proposition 4.4 shows that 8|4 is a tame w-gauge on
A. However, the y-adic valuation w extends to A, so by [18, Cor. 3.4] B|4 is the
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(unique) valuation on A that extends w. In particular, if j € A satisfies j2 =y we
must have B4 (j) = % This is a contradiction since |4 is unramified.

6 Non-Henselian valuations

Let (F, v) be a valued field and let A be a finite-dimensional simple F-algebra with
an involution 0. Let K = Z(A), and assume F is the subfield of K fixed under o. Fix
a Henselization (F},, vp,) of (F, v).

Theorem 6.1 Suppose A is split by the maximal tamely ramified extension of Fj.
Moreover, if char(F) = 2 suppose that o is not an orthogonal involution. Then, the
following conditions are equivalent:

(a) o ®idp, is an anisotropic involution on A @ Fy;
(b) there exists a o-special v-gauge ¢ on A i.e., p(o(x)x) = 2¢(x) forall x € A.

When they hold, ¢ is the unique v-gauge on A that is invariant under o, it is tame,
and its value group lies in the divisible hull of T'f.

Proof Let A, = A ®F F and 0, = o ® idf,. If ¢ is a o-special v-gauge on
A, then by Proposition 1.1 ¢ is invariant under o and & is anisotropic on gr,,(A).
By Corollary 1.4, ¢ ® vy, is invariant under oy,. Since

pou, (An) = 9ry(A) Qqr, () 9y, (Fir) = gr,(A)

and o, = o, it follows that dj, is anisotropic, hence o, must also be anisotropic,
proving (b) = (a).

Now, suppose (a) holds. Let ¢ and ¢, be v-gauges on A that are each invariant
under o. Then, by Corollary 1.4 each ¢; ® vj, is a surmultiplicative vy-norm on Ay
which is invariant under oj,. Moreover, ¢; ® vj, is a gauge on Ay, since 9y, @u, (Ap) =
gr,, (A)®gr, (F)9ry, (Fn) = ar,, (A) and ¢; is a gauge on A. Since oy, is assumed aniso-
tropic, the uniqueness part of Theorem 2.2 (applied to oj, on Ay) yields ¢ ® v, =
@2 ® vy, hence @1 = ¢,. Theorem 2.2 also shows that ¢; ® vj, is tame and satisfies
@1 (o (x)x) = 2¢1(x) for all x € Ay, hence ¢ is tame and satisfies condition (b).
Furthermore, I's o, = I'4,,¢,0v, Which lies in the divisible hull of I'r, = I'r by
Theorem 2.2.

Thus, it only remains to prove the existence of a v-gauge on A invariant under o,
assuming oy, is anisotropic. Note first that K @ g F}, is a field. For, otherwise, as K is
Galois over F with [K : F] = 2, K ® r Fj, would be a direct sum of two fields, and the
nontrivial Fj-automorphism o | g g ;, must permute the two primitive idempotents of
K ®F Fy, call them e and e5. Then, oy, (e1)e; = exe; = 0; but, this cannot happen as
oy, is anisotropic. Since K @ Fj is afield and K = Z(A), Ay, = A Qk (K QF Fy)
is a central simple K ® p Fj,-algebra.

Because Ay, is simple, oy, is anisotropic, and vy, is Henselian, Theorem 2.2 yields a
op-invariant vj,-gauge ¢, on Ay, whose value set lies in the divisible hull of I';,, = I'f.
The restriction ¢ = ¢y | 4 is clearly a o -invariant v-value function whose value set lies
in the divisible hull of I' . Henceforth, we may thus assume I' = I'r ®7 Q. If we show
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that ¢ is a v-norm, then Corollary 5.2 yields ¢, = ¢ ® vj, s0 gr,(A) = Orygy, (An) =
gry, (An), hence ¢ is a v-gauge, and the proof will be complete.

Suppose first that tk (I' ) < oco. We then argue by induction onrk(I'). If tk(I'r) =
1, then Proposition 5.4 shows that ¢ is a v-norm. So, we may assume rk(I'r) > 1.
Let A C T" be a convex subgroup of rank 1 and let

e:I'—=>A=T/A

be the canonical epimorphism. Let w = eov and y = € oy, to agree with the notation
of Sect. 5. So, w has value group A = (I'r + A)/A, and A = A ®7 Q, which
has rank rk(I'r) — 1. Let (Fj,, wi) € (F, y) be a Henselization of (F, w). Since
oy, is anisotropic, its restriction o ® id g, ,, is an anisotropic involution on the subring
A®F Fpy of Ap. Since Ay = (A ®F Fi,w) ®F,, Frnand Ay is simple, A QF Fy, 4
must also be simple. Therefore, Theorem 2.2 applies, yielding a wy,-gauge ¥, on
A ®F Fj,y invariant under o ® id, ,,. By induction, ¥,[4 is a w-gauge on A invari-
ant under o. The same argument as for ¢; above shows that the gauge 1|4 is tame.
Therefore, by [18, Cor. 1.26] ¥,|4 ® y is a y-gauge on Ay, which is op-invariant by
Corollary 1.4. But, e ogj, is also a y-gauge on Ay, by Proposition 4.4 since ¢ is a gauge,
and ¢ o ¢y, is invariant under oy, because ¢, is. By the uniqueness given in Theorem 2.2,
it follows that € 0 5, = Y|4 ® y. Restricting to A, we also have € o ¢ = V|4, which
is a w-gauge so a w-norm on A. Furthermore, (¢ 0 ) @ y = Ypla ® y = € o ¢p.
Proposition 5.5 with @ = ¢, then shows that ¢ is a v-norm. The theorem is thus proved
if rk('r) < oo.

For the rest of the proof, assume that I'r has infinite rank. Let (a; ?:1 be an
F-base of A. Write ajay = >, ciria; for some cjy € F and o (a;) = D dixay for
some dj; € F.Let Fy be the prime subfield of F, and let

Fiy = Fo(cik, dix | 1 <i,k,1 <n}) CF.

Let A be the Fi-span of the a;, which is an Fy-algebra. We have A| ® r;, F = A and
o restricts to an involution o on Aj. Now, let (e; ?:1 be a splitting base of A for
the v-norm ¢;. We need to enlarge Fj to capture the e; in the Henselization: let L
be any field with F; € L C F and L finitely generated over Fp, and let vy, = v|L.
Since Fj, is Henselian, there is a unique Henselization (L, vy, ) of (L, vy) inside
(Fp, vp) by [9, Th. 5.2.2(2), p. 121]. Because F is the direct limit of such fields L,
the direct limit over such L of the (Lp, vz 5) is a Henselian valued field (M, vys) with
F € M C Fj and vy, |y = vy. Therefore, (M, vy) = (Fy, vy) by the uniqueness of
the Henselization. Since A, = Ay @ ;; M, there is a field F> finitely generated over
F (hence also over Fp) such thatey, ..., e, € A1 ®F, (F2)p. Let

Ay =A1QF F, CA, Arp = A1 Qp (F)hr = A2 ®F, (F2)n C Ay

Note that Ay is a simple F»-algebra since A = Ap, ®p, F and A is simple. Let
07 = 0 A,, which is an involution on A, and let

02,8 = Oplay, = 02 ®id(py),,
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which is an anisotropic involution on Aj ;. Let 92 = ¢pla, and @2 = @nla,,,-
Since Ay, = Ay ®(Fy), Frand ey, ..., e, € Ay, Lemma 5.1 says that @2 is a
VR, p-normon Az and ¢, = @2 5 ® vi. Now, F3 is finitely generated over the prime
field Fy, so rk(sz,sz) < trdeg(F>/Fp) < oo by [1, Ch. 6, Sect. 10.3, Cor. 2]. Since
©2., 1s a vE, p-norm, the finite rank case shows that ¢, is a vg,-norm on Aj; then,
©2.n = ¢2 @ Vf,,, by Corollary 5.2. Hence,

P RUy = (P2 QVRL) vy =21 @ vy = @p.

Therefore, as @2 is anorm, @; |4 = (92 @ Vi) la,0 HF =200, which is a norm since
it is a scalar extension of the norm ¢». O

Corollary 6.2 With the hypotheses on A, o, and v as in Theorem 6.1, let ¢ be a
v-gauge on A which is invariant under o. Then,

(a) Ifthe residue involution oy is anisotropic, then ¢ is the unique o -special v-gauge
on A.
(b) If o is isotropic, then there is no o-special v-gauge on A.

Proof Let (Fj, vy) be a Henselization of (F, v), and let Ay, = A QF Fj and o), =
o ®1idp,. Let ¢ = ¢ ® vy, a surmultiplicative value function on A;, which is invari-
ant under the involution oy, by Corollary 1.4. The graded isomorphisms gr,, (A5) =
gr,(A) ®gr, (r) 9ry, (Fr) = gr,(A) show that ¢, is a gauge on Ay, and o, = o and
(on)o = 0y. (a) If oy is anisotropic, then so is (op,)0, and so also is oy, by Corollary 2.3.
Theorem 6.1 then shows that ¢ is a o -special v-gauge and is the unique such v-gauge
on A, proving (a). For (b), we prove the contrapositive: If there were a o-special
v-gauge v for A then the uniqueness in Theorem 6.1 shows that ¢ = 1. Hence, oy, is
anisotropic by Theorem 6.1, so (0},) is anisotropic by Corollary 2.3, which implies
0y is anisotropic as well. O

Example 6.3 Even when there is no o-special v-gauge on A, there may still be tame
v-gauges on A invariant under o, but they need not be unique. For example, let A
the quaternion division algebra (—1, —1)g over the field of rational numbers, and
let v be the 3-adic valuation on Q. Let (1, i, j, k) be the quaternion base of A with
i?=j>=—landk = ij = —ji. As shown in [18, Ex. 1.16], a v-gauge ¢ can be
defined on A by

@(ap + a1i + az j + azk) = min (v(ao), v(ar), v(az), v(az)).

Clearly, the residue algebra of A for g is Ag = (=1, =), = M>(IF3). The v-gauge ¢
is obviously invariant under the conjugation involution o on A. (This is the involution
with o (i) = —i and o (j) = —j, which is the unique symplectic involution on A.)
Since A is a division algebra, o must be anisotropic. The residue involution oy is the
conjugation involution on Ag, which is isotropic, since o (#)t = Nrd4, (¢) for any ¢ in
the split quaternion algebra Ag. So, by Corollary 6.2(b) there is no o-special v-gauge
on A. For any unit u € A* the map ¢, defined by

ou(x) = @uxu~') forxe A
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is a v-gauge on A, and Prop. 1.17 of [18] shows that ¢, = ¢ if and only if u is invert-
ible in gr,,(A), which is not a graded division ring. But, for every u € A*, since ¢ is
invariant under o and o (u#)u is central,

9u(0 (%) = (oo @ Hxo@)]) = p(o @ Hxo(u)
= @u ([0 ()u] " x[o Wul) = g, (x),

showing that ¢, is invariant under o.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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