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Abstract Let A be a central simple algebra with involution σ of the first or second
kind. Let v be a valuation on the σ -fixed part F of Z(A). A σ -special v-gauge g on A
is a kind of value function on A extending v on F , such that g(σ (x)x) = 2g(x) for
all x in A. It is shown (under certain restrictions if the residue characteristic is 2) that
if v is Henselian, then there is a σ -special v-gauge g if and only if σ is anisotropic,
and g is unique. If v is not Henselian, it is shown that there is a σ -special v-gauge g if
and only if σ remains anisotropic after scalar extension from F to the Henselization
of F with respect to v; when this occurs, g is the unique σ -invariant v-gauge on A.
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Introduction

Valuations are a major tool for the study of the structure of division algebras. The
purpose of this work is to introduce a notion that plays a similar role for central simple
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110 J.-P. Tignol, A. R. Wadsworth

algebras with involution, and to prove analogues for this notion to fundamental results
on valuations on division algebras.

Since the definition of a (Schilling) valuation implies an absence of zero divisors,
the only central simple algebras that can have valuations are division algebras. Given
a division algebra D finite-dimensional over its center F , it is natural to view valua-
tions on D as extensions of valuations on F , since valuations on fields are abundant
and their theory is well-developed. But not every valuation v on F extends to D.
In the extension question, Henselian valuations play a special role. Schilling proved
in [17, pp. 53–54] that if v on F is Henselian, then v has an extension to a valua-
tion on D, and this extension is unique. Much later it was proved by Ershov [5] and
Wadsworth [19] that for any valuation v on F , v extends to D if and only if it satisfies
a Henselian-like condition with respect to the field extensions of F within D; they
also proved that when v extends to D the extension is unique. Another fundamental
criterion was proved by Morandi [14]: v on F extends to a valuation on D if and only
if D remains a division algebra after scalar extension to the Henselization Fh of F
for v. We will prove analogues for central simple algebras with involutions to these
theorems of Schilling, Ershov-Wadsworth, and Morandi.

An involution on a central simple algebra A is a ring-anti-automorphism σ such
that σ 2 = idA. As Weil suggested in [20], the theory of central simple algebras with
involution is a natural sibling to the theory of central simple algebras, since the associ-
ated automorphism groups are the basic types of classical groups. In each setting there
is a notion of anisotropic object, corresponding to when the associated automorphism
group is anisotropic as an algebraic group. The anisotropic central simple algebras
are the division algebras. An involution σ on a central simple algebra A is anisotropic
just when the equation σ(x)x = 0 holds only for x = 0. In earlier work [18] we
have developed the theory of gauges, which are a kind of value functions for central
simple algebras. (The definition of a gauge is recalled at the end of this introduction.)
For a central simple algebra A with involution σ , we define a σ -special gauge to
be a gauge ϕ on A satisfying the condition1 that ϕ(σ(x)x) = 2ϕ(x) for all x ∈ A.
A σ -special gauge for an algebra with involution is our analogue to a valuation on a
division algebra. If A has a σ -special gauge, then σ is easily seen to be anisotropic.
If v is a Henselian valuation on the σ -invariant part F of Z(A) and σ is aniso-
tropic, we show in Theorem 2.2 that there is a unique σ -invariant gauge ϕ on A
extending v, and ϕ is a σ -special gauge. When v on F is not Henselian, we show
in Theorem 6.1 that there is a σ -special gauge ϕ on A extending v if and only if
the anisotropic involution σ remains anisotropic after scalar extension to the Hens-
elization of F with respect to v; furthermore, there is only one such ϕ. Our results
require tame ramification and exclude orthogonal involutions if the residue charac-
teristic is 2; see the statements of Theorems 2.2 and 6.1 for the precise conditions
required.

A gauge ϕ on a central simple algebra A induces a filtration on A which yields an
associated graded ring gr(A), analogous to what one has with a valuation on a field
or a division ring. The graded structure is intrinsic to the definition of a gauge, and

1 Notice the similarity with the definition of C∗-algebras, cf. [4, Déf. 1.3.1].
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is used heavily throughout this paper. The degree 0 part of gr(A), denoted A0, is the
residue ring of the “valuation ring” of A determined by the gauge ϕ; A0 is always a
semisimple Z(A)0-algebra, but not simple in general. If σ is an involution on A and
ϕ is invariant under σ , then σ induces involutions σ̃ on gr(A) and σ0 on A0. We show
in Proposition 1.1 and Remark 2.5(1) that a σ -invariant gauge ϕ is σ -special if and
only if σ̃ is anisotropic, if and only if σ0 is anisotropic. We also prove an analogue
of a theorem of Springer: when the base field is Henselian, an involution σ is isotro-
pic if and only if its residue involution σ0 is isotropic (Corollary 2.3). This criterion
is applied to show that under specified valuation-theoretic conditions, an anisotropic
involution remains anisotropic after certain scalar extensions(Corollary 3.6).

An outline of this paper is as follows: In Sect. 1, we discuss in general terms the
compatibility of a value function with an involution, relating that notion to a compat-
ibility condition between norms and hermitian forms defined in [16]. In Sect. 2, we
restrict to the case of Henselian valuations and give the proofs of Theorem 2.2 and
Corollary 2.3. Some applications to scalar extensions (in particular Corollary 3.6) are
given in Sect. 3. Sections 4 and 5 prepare the ground for the extension of our results to
the non-Henselian case in Sect. 6. The main problem is to analyze how the condition
for the existence of a splitting base of a value function (which is a critical part of
the definition of a gauge) behaves under restriction of scalars; this is done in Sect. 5.
In Sect. 4, we investigate this condition for the composition of value functions. This
is used in Sect. 6 in the proof of Theorem 6.1 by induction on the rank of valuations.

For the convenience of the reader, we now review the basic notions of value func-
tions, norms, and gauges introduced in [16,18]. Throughout the paper, we fix a divisible
totally ordered abelian group �, which will contain the values of all the valuations
and the degrees of all the gradings we consider. Thus, a valued field (F, v) is a pair
consisting of a field F and a valuation v : F → � ∪ {∞}. The group v(F×) of values
of F is denoted by �F , and the residue field by F . We use analogous notation for
valuations on division rings.

Let (F, v) be a valued field. A v-value function on an F-vector space V is a map
α : V → � ∪ {∞} such that

(i) α(x) = ∞ if and only if x = 0;
(ii) α(x + y) ≥ min (α(x), α(y)) for x, y ∈ V ;

(iii) α(xc) = α(x)+ v(c) for all x ∈ V and c ∈ F .

The v-value function α is called a norm if V is finite-dimensional and contains a base
(ei )

n
i=1 such that

α
(

n
∑

i=1
ei ci

) = min
1≤i≤n

(α(ei ci )) for c1, …, cn ∈ F .

Such a base is called a splitting base of V for α. A v-value function ϕ on an F-algebra
A is surmultiplicative if ϕ(1) = 0 and ϕ(xy) ≥ ϕ(x)+ ϕ(y) for x, y ∈ A.

The valuation v defines a filtration on F : for γ ∈ � we set

F≥γ = {x ∈ F | v(x) ≥ γ }, F>γ = {x ∈ F | v(x) > γ },
and Fγ = F≥γ

/

F>γ .
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112 J.-P. Tignol, A. R. Wadsworth

The associated graded ring is

gr(F) = ⊕

γ∈�
Fγ .

It is called a graded field because every nonzero homogeneous element in gr(F) is
invertible. Likewise, every v-value function α on an F-vector space V defines a filtra-
tion, and the associated graded structure grα(V ) is a graded module over gr(F), which
we call a graded vector space. It is a free module, whose rank is called its dimension.
The value function is a norm if and only if dimgr(F)(grα(V )) = dimF (V ) < ∞, see
[16, Cor. 2.3]. Every nonzero element x ∈ V has an image x̃ in grα(V ) defined by

x̃ = x + V>α(x) ∈ Vα(x).

We also set ˜0 = 0 ∈ grα(V ). If ϕ is a surmultiplicative v-value function on
an F-algebra A, then grϕ(A) is an algebra over gr(F), in which multiplication is
defined by

ã˜b = ab + V>ϕ(a)+ϕ(b) =
{

˜ab if ϕ(ab) = ϕ(a)+ ϕ(b),

0 if ϕ(ab) > ϕ(a)+ ϕ(b),
for a, b ∈ A.

Now, suppose A is a finite-dimensional simple F-algebra. We denote by [A:F]
its dimension and by Z(A) its center. A surmultiplicative v-value function ϕ on A is
called a v-gauge if it satisfies the following conditions:

(i) ϕ is a v-norm, i.e., [A:F] = [grϕ(A): gr(F)];
(ii) grϕ(A) is a graded semisimple gr(F)-algebra, i.e., it does not contain any non-

zero nilpotent homogeneous two-sided ideal.

The v-gauge ϕ is said to be tame if Z
(

grϕ(A)
) = grϕ (Z(A)) and Z

(

grϕ(A)
)

is
separable over gr(F). If the residue characteristic is 0, then every v-gauge is tame,
see [18, Cor. 3.6].

1 Special gauges

Let (F, v) be a valued field and let A be an F-algebra. An F-linear involution on A is
an F-linear map σ : A → A such that

(i) σ(x + y) = σ(x)+ σ(y) for x , y ∈ A;
(ii) σ(xy) = σ(y)σ (x) for x , y ∈ A;

(iii) σ 2(x) = x for x ∈ A.

(The F-linearity implies that σ |F = idF .) A surmultiplicative v-value function
ϕ : A → � ∪ {∞} is said to be invariant under σ if

ϕ (σ(x)) = ϕ(x) for all x ∈ A. (1.1)
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Valuations on algebras with involution 113

The involution then preserves the filtration on A defined by ϕ. Therefore, it induces
an involution σ̃ on grϕ(A) such that

σ̃ (̃x) = ˜σ(x) for all x ∈ A.

As in [12, §6.A], we say that the involution σ is anisotropic if there is no nonzero
element x ∈ A such that σ(x)x = 0. Likewise, σ̃ is said to be anisotropic if there is
no nonzero homogeneous element ξ ∈ grϕ(A) such that σ̃ (ξ)ξ = 0. Clearly, if σ̃ is
anisotropic, then σ is anisotropic.

Proposition 1.1 Let ϕ be a surmultiplicative v-value function and σ an F-linear
involution on A. The following conditions are equivalent:

(a) ϕ(σ(x)x) = 2ϕ(x) for all x ∈ A;
(b) ϕ is invariant under σ , and σ̃ is anisotropic.

They imply that if x, y ∈ A satisfy σ(x)y = 0 or xσ(y) = 0, then

ϕ(x + y) = min (ϕ(x), ϕ(y)) . (1.2)

Moreover, when these equivalent conditions hold, σ is anisotropic and the
gr(F)-algebra grϕ(A) contains no nonzero homogeneous nil left or right ideal.

Proof (a) ⇒ (b): If σ(x)x = 0, then condition (a) implies that ϕ(x) = ∞, so x = 0.
Thus, σ is anisotropic. By surmultiplicativity, we have

ϕ(σ(x)x) ≥ ϕ(σ(x))+ ϕ(x) for all x ∈ A.

Therefore, (a) implies ϕ(x) ≥ ϕ(σ(x)) for all x ∈ A. Substituting σ(x) for x in this
inequality, we obtain ϕ(σ(x)) ≥ ϕ(x) for all x ∈ A. Therefore, ϕ is invariant under σ ,
and condition (a) can be reformulated as ϕ(σ(x)x) = ϕ (σ(x))+ ϕ(x) for all x ∈ A.
Thus, it implies

˜σ(x )̃x = (σ (x)x)∼ for all x ∈ A,

whence σ̃ is anisotropic, as σ is anisotropic.
(b) ⇒ (a): For all x ∈ A we have

σ̃ (̃x )̃x =
{

(σ (x)x)∼ if ϕ(σ(x)x) = ϕ (σ(x))+ ϕ(x),

0 if ϕ(σ(x)x) > ϕ (σ(x))+ ϕ(x).

Condition (b) implies that the first case always occurs. Hence, for all x ,

ϕ(σ(x)x) = ϕ(σ(x))+ ϕ(x) = 2ϕ(x).
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114 J.-P. Tignol, A. R. Wadsworth

For the rest of the proof, assume (a) and (b) hold. Then clearly σ is aniso-tropic.
Also, for x , y ∈ A we have by surmultiplicativity

ϕ (σ(x) · (x + y)) ≥ ϕ (σ(x))+ ϕ(x + y) = ϕ(x)+ ϕ(x + y). (1.3)

If σ(x)y = 0, then

ϕ (σ(x) · (x + y)) = ϕ(σ(x)x) = 2ϕ(x). (1.4)

By combining (1.3) and (1.4), we obtain ϕ(x) ≥ ϕ(x + y). Similarly, by interchanging
x and y we get ϕ(y) ≥ ϕ(x + y), hence

min (ϕ(x), ϕ(y)) ≥ ϕ(x + y).

The reverse inequality holds by definition of a value function, hence (1.2) is proved
when σ(x)y = 0. If xσ(y) = 0, we substitute σ(x) for x and σ(y) for y in the
arguments above, obtaining

ϕ (σ(x)+ σ(y)) = min (ϕ(σ (x)), ϕ(σ (y))) .

Equation (1.2) follows since ϕ ◦ σ = ϕ.
To complete the proof, suppose I ⊂ grϕ(A) is a homogeneous nil left (resp. right)

ideal and ξ ∈ I is a nonzero homogeneous element. Let η = σ̃ (ξ)ξ (resp. η = ξ σ̃ (ξ)).
Then η ∈ I is σ̃ -symmetric, homogeneous, and nonzero since σ̃ is anisotropic. Since
I is nil, we may find k ≥ 1 such that ηk 
= 0 and ηk+1 = 0. For ζ = ηk we have

σ̃ (ζ )ζ = ζ 2 = η2k = 0,

so ζ = 0, a contradiction. ��
Definition 1.2 A surmultiplicative v-value function ϕ on a central simple algebra
A with involution σ is called σ -special if it satisfies the conditions (a) and (b) of
Proposition 1.1.

For use in Sects. 3 and 6, we record how involution invariance of value functions
behaves with respect to tensor products. Recall from [18, Prop. 1.23, (1.25)] that if V
is a finite-dimensional F-vector space with a v-norm α and W is an F-vector space
with v-value function β, then there is a v-value function α ⊗ β on V ⊗F W uniquely
determined by the condition that the map (x ⊗ y)∼ �→ x̃ ⊗ ỹ (for x ∈ V and y ∈ W )
defines an isomorphism of graded vector spaces

� : grα⊗β(V ⊗F W )
∼−→ grα(V )⊗gr(F) grβ(W ). (1.5)

In particular,

(α ⊗ β)(x ⊗ y) = α(x)+ β(y) for all x ∈ V and y ∈ W. (1.6)
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Valuations on algebras with involution 115

The value function α ⊗ β can be defined as follows: take any splitting base (ei )
n
i=1

for α on V ; then,

(α ⊗ β)
(

n
∑

i=1
ei ⊗ yi

) = min
1≤i≤n

(α(ei )+ β(yi )) for any y1, . . . , yn ∈ W.

Furthermore, analogous to [18, Cor. 1.26], if (W, β) is a valued field extending (F, v),
then α⊗β is a β-norm on V ⊗F W and (1.5) is a grβ(W )-vector space isomorphism.

Proposition 1.3 Let σ and τ be F-linear involutions on F-algebras A and B respec-
tively, and let ϕ (resp. ψ) be a surmultiplicative v-value function on A (resp. B)
invariant under σ (resp. τ ). Suppose A is finite-dimensional and ϕ is a v-norm.
Then, ϕ ⊗ ψ is a surmultiplicative v-value function on A ⊗F B invariant under
the involution σ ⊗ τ , and the canonical isomorphism� of (1.5) is an isomorphism of
graded gr(F)-algebras with involution,

(

grϕ⊗ψ(A ⊗F B),˜σ ⊗ τ
) ∼−→ (

grϕ(A)⊗gr(F) grψ(B), σ̃ ⊗ τ̃
)

.

Proof Let (ei )
n
i=1 be a splitting base of A for ϕ. For x , y ∈ A ⊗F B we may write

x =
n
∑

i=1
ei ⊗ xi and y =

n
∑

j=1
e j ⊗ y j for some x1, …, yn ∈ B.

Then,

(ϕ ⊗ ψ)(xy) = (ϕ ⊗ ψ)
( ∑

i, j
ei e j ⊗ xi x j

) ≥ min
1≤i, j≤n

(

(ϕ ⊗ ψ)(ei e j ⊗ xi y j )
)

= min
i, j

(

ϕ(ei e j )+ ψ(xi y j )
)

.

Since ϕ andψ are surmultiplicative, we have ϕ(ei e j ) ≥ ϕ(ei )+ϕ(e j ) andψ(xi y j ) ≥
ψ(xi )+ ψ(y j ), hence

(ϕ ⊗ ψ)(xy) ≥ min
i, j

(

ϕ(ei )+ ϕ(e j )+ ψ(xi )+ ψ(y j )
)

= min
i
(ϕ(ei )+ ψ(xi ))+ min

j

(

ϕ(e j )+ ψ(y j )
)

.

The last line is (ϕ ⊗ ψ)(x)+ (ϕ ⊗ ψ)(y), so

(ϕ ⊗ ψ)(xy) ≥ (ϕ ⊗ ψ)(x)+ (ϕ ⊗ ψ)(y).

Since moreover (ϕ ⊗ ψ)(1 ⊗ 1) = ϕ(1)+ ψ(1) = 0, surmultiplicativity of ϕ ⊗ ψ is
proved.

To show that the grF -vector space isomorphism� is a ring isomorphism, we check
this for �−1. The F-algebra homomorphisms ιA : A → A ⊗F B, a �→ a ⊗ 1 and
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116 J.-P. Tignol, A. R. Wadsworth

ιB : B → A ⊗F B, b �→ 1 ⊗ b, are value-preserving. Hence, they induce gr(F)-
algebra homomorphisms ι̃A : grα(A) → grα⊗β(A ⊗F B) given by ã �→ ˜a ⊗ 1, and

ι̃B : grβ(B) → grα⊗β(A ⊗F B) given by ˜b �→ ˜1 ⊗ b. For any a ∈ A and b ∈ B, we
have from (1.6),

˜a ⊗ 1 · ˜1 ⊗ b = [(a ⊗ 1) · (1 ⊗ b)]∼ = ˜a ⊗ b = [(1 ⊗ b) · (a ⊗ 1)]∼
= ˜1 ⊗ b · ˜a ⊗ 1.

Thus, im(̃ιB) centralizes im(̃ιA) in grα⊗β(A ⊗F B). So, there is an induced gr(F)-
algebra homomorphism grα(A)⊗gr(F) grβ(B) → grα⊗β(A ⊗F B) given by ã ⊗˜b �→
˜a ⊗ 1 · ˜1 ⊗ b = ˜a ⊗ b. The description of � preceding (1.5) shows that this algebra
homomorphism is �−1.

To prove ϕ ⊗ ψ is invariant under σ ⊗ τ , we first show that (σ (ei ))
n
i=1 also is a

splitting base of A for ϕ. Take any c1, …, cn ∈ F . Then, as ϕ is invariant under σ and
the ci are central in A and fixed under σ ,

ϕ
(

n
∑

i=1
σ(ei )ci

) = ϕ
(

σ
(

n
∑

i=1
σ(ei )ci

)) = ϕ
(

n
∑

i=1
ei ci

)

= min
1≤i≤n

(ϕ(ei )+ v(ci )) = min
1≤i≤n

(ϕ(σ (ei ))+ v(ci )) .

Thus, (σ (ei ))
n
i=1 is a splitting base for ϕ. With the notation above, we then have

(ϕ ⊗ ψ) ((σ ⊗ τ)(x)) = (ϕ ⊗ ψ)
(

n
∑

i=1
σ(ei )⊗ τ(xi )

)

= min
1≤i≤n

(ϕ(σ (ei ))+ ψ(τ(xi ))) .

Since ϕ is invariant under σ and ψ under τ , we have

min
1≤i≤n

(ϕ(σ (ei ))+ ψ(τ(xi ))) = min
1≤i≤n

(ϕ(ei )+ ψ(xi )) = (ϕ ⊗ ψ)(x).

Therefore, ϕ ⊗ ψ is invariant under σ ⊗ τ . To complete the proof, observe that for
a ∈ A and b ∈ B we have

˜σ ⊗ τ(˜a ⊗ b) = (σ (a)⊗ τ(b))∼ = (̃σ ⊗ τ̃ )(̃a ⊗˜b),

hence the involution σ̃ ⊗ τ̃ corresponds to ˜σ ⊗ τ under the canonical isomor-
phism (1.5). ��

The following special case will be particularly useful:

Corollary 1.4 Let A be a finite-dimensional F-algebra with an F-linear involution
σ and let (K , vK ) be any valued field extension of (F, v). If ϕ is a surmultiplicative
v-norm on A which is invariant under σ , then ϕ⊗ vK is a surmultiplicative vK -norm
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Valuations on algebras with involution 117

on A ⊗F K invariant under the involution σ ⊗ idK , and (σ ⊗ idK )
∼ ∼= σ̃ ⊗ idgr(K )

under the canonical isomorphism (1.5).

Proof It suffices to note that ˜idK = idgr(K ) and that the canonical isomorphism is an
isomorphism of gr(K )-algebras, see [18, Cor. 1.26]. ��

Now, assume A is simple and finite-dimensional, and let n = deg A, so
[A:Z(A)] = n2. Recall from [12] that involutions on A are classified into two kinds
and three types: an involution σ is of the first kind if σ |Z(A) = idZ(A); otherwise it is
of the second kind. Involutions of the second kind are also said to be of unitary type
(or simply unitary). To define the type of an involution σ of the first kind we consider
the subspaces of symmetric and of symmetrized elements in A, defined by

Sym(A, σ ) = {x ∈ A | σ(x) = x} and Symd(A, σ ) = {x + σ(x) | x ∈ A}.

The involution σ is of symplectic type (or simply symplectic) if either char(F) 
= 2 and
dimZ(A) Sym(A, σ ) = 1

2 n(n − 1) or char(F) = 2 and 1 ∈ Symd(A, σ ). Involutions
of the first kind that are not symplectic are said to be of orthogonal type (or simply
orthogonal). If σ is orthogonal, then dimZ(A) Sym(A, σ ) = 1

2 n(n + 1). The same
terminology is used for involutions on graded simple algebras.

Proposition 1.5 Let σ be an F-linear involution on a finite-dimensional simple
F-algebra A and let g be a tame v-gauge on A that is invariant under σ . Suppose F
is the subfield of Z(A) fixed under σ .

If σ is unitary, two cases may arise:

– if the valuation v extends uniquely from F to Z(A), then grg(A) is a graded simple
gr(F)-algebra and σ̃ is a unitary involution;

– if the valuation v has two different extensions to Z(A), then grg(A) is a direct prod-
uct of two graded central simple gr(F)-algebras, which are exchanged under σ̃ .

If σ is symplectic, then σ̃ is a symplectic involution on the graded central simple
gr(F)-algebra grg(A).

If σ is orthogonal and char(F) 
= 2, then σ̃ is an orthogonal involution on the
graded central simple gr(F)-algebra grg(A).

Proof Suppose first that σ is unitary, so Z(A)/F is a quadratic extension. By [18,
Cor. 2.5], the number of simple components of gr(A) equals the number of extensions
of v to Z(A). Therefore, to complete the description of σ̃ it suffices to show that σ̃
does not identically fix Z (gr(A)) = gr (Z(A)). Since the Galois group G(Z(A)/F)
acts transitively on the set of extensions of v to Z(A), see [9, Th. 3.2.15, p. 64], if
there are two such extensions, then σ |Z(A) must permute them; then σ̃ permutes the
corresponding components of gr(Z(A)). So, we may assume that v has a unique
extension to Z(A). Then, gr (Z(A)) is a graded field separable over gr(F), and
[gr (Z(A)) : gr(F)] = [Z(A):F] = 2 since g|Z(A) is a norm, by [16, Prop. 2.5].
If char(F) 
= 2 we can find z ∈ Z(A) nonzero such that σ(z) = −z, hence
σ̃ (̃z) = −̃z 
= z̃. If char(F) = 2 the separability of gr (Z(A)) over gr(F) implies by
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118 J.-P. Tignol, A. R. Wadsworth

[10, Th. 3.11, Def. 3.4] that�Z(A) = �F and Z(A)0 is separable over F0; furthermore,
[Z(A)0 :F0] = [Z(A):F] = 2 since g|Z(A) is a norm, by [16, Prop. 2.5]. So Z(A) is
unramified Galois over F , hence the non-trivial automorphism σ |Z(A) induces a non-
trivial automorphism of the residue algebra Z(A)0, by [8, Th. 19.6, p. 124], showing
that σ̃ |gr(Z(A)) is nontrivial.

Suppose next that σ is of the first kind, so Z(A) = F . For x ∈ A we have
x̃ + σ̃ (̃x) = (x + σ(x))∼ or 0. On the other hand, σ(x) = x implies σ̃ (̃x) = x̃ .
Therefore, the following inclusions are clear:

gr (Sym(A, σ )) ⊆ Sym(gr(A), σ̃ ), Symd(gr(A), σ̃ ) ⊆ gr (Symd(A, σ )). (1.7)

If char(F) 
= 2 (hence char(F) 
= 2) we have

Sym(A, σ ) = Symd(A, σ ) and Sym(gr(A), σ̃ ) = Symd(gr(A), σ̃ ),

so the inclusions in (1.7) above yield gr (Sym(A, σ )) = Sym(gr(A), σ̃ ). Since the
type of an involution can be determined from the dimension of the space of symmetric
elements, it follows that σ̃ has the same type as σ .

To complete the proof, suppose char(F) = 2 andσ is symplectic, and let n = deg A.
Since σ̃ is of the first kind we have

dimgr(F) Symd(gr(A), σ̃ ) = 1
2 n(n − 1).

On the other hand, since σ is symplectic we have

dimF Symd(A, σ ) = 1
2 n(n − 1)

(independently of whether char(F) = 2). Since g is a norm we have

dimF Symd(A, σ ) = dimgr(F) gr (Symd(A, σ )) ,

hence Symd(gr(A), σ̃ ) = gr (Symd(A, σ )). Since 1 ∈ Symd(A, σ ), it follows that
˜1 ∈ Symd(gr(A), σ̃ ), hence σ̃ is symplectic. ��
Remark 1.6 If σ is orthogonal and char(F) = 2, the involution σ̃ may be symplectic,
as the following example shows: let (F, v) be a valued field with char(F) = 0 and
char(F) = 2, and let A = M2(F). Define an orthogonal involution σ on A by

σ

(

a b
c d

)

=
(

d b
c a

)

and a v-gauge g by

g

(

a b
c d

)

= min (v(a), v(b), v(c), v(d)) .
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This gauge is clearly invariant under σ . We have grg(A) = M2 (gr(F)) with the
entrywise grading, and

(

1 0
0 1

)

=
(

1 0
0 0

)

+ σ̃

(

1 0
0 0

)

∈ Symd(grg(A), σ̃ ).

Therefore, σ̃ is symplectic.
Henceforth, we systematically avoid orthogonal involutions in characteristic 2.

In [16, Sect. 3], a notion of compatibility is defined between norms and hermi-
tian forms. In the rest of this section, we relate that notion of compatibility with the
invariance of value functions under involutions.

Let D be a finite-dimensional division F-algebra with an F-linear involution τ . Sup-
pose v extends to a valuationw on D invariant under τ and let V be a finite-dimensional
right D-vector space. Consider a nondegenerate hermitian form h : V × V → D with
respect to τ , and a w-norm α on V . The dual norm α� is defined by

α�(x) = min{w (h(x, y))− α(y) | y ∈ V, y 
= 0} for x ∈ V, (1.8)

see [16, Sect. 3]. The norm α is said to be compatible with h if and only if α� = α

(see [16, Prop. 3.5]). This is the condition needed in order for h to induce a nonde-
generate graded hermitian form on grα(V ). On the simple algebra EndD(V ) there is
the involution adh adjoint to h, defined by

h(adh( f )(x), y) = h(x, f (y)) for all x, y ∈ V .

There is also the well-defined surmultiplicative v-value function End(α) on EndD(V )
defined by

End(α)( f ) = min{α ( f (x))− α(x) | x ∈ V, x 
= 0}.

Recall that End(α) is a v-gauge if and only if w on D is defectless over v, see [18,
Prop. 1.19].

Proposition 1.7 The value functions End(α) and End(α�) are related by

End(α) ◦ adh = End(α�). (1.9)

Moreover, the following conditions are equivalent:

(a) End(α) is invariant under adh;
(b) End(α�) = End(α);
(c) α − α� is constant on V ;
(d) there is a constant γ ∈ � such that α − γ is compatible with h.
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Proof Let (ei )
n
i=1 be a splitting base of V for α. The h-dual base (e�i )

n
i=1 for V is a

splitting base for α�, by [16, Lemma 3.4]. Fix some f ∈ EndD V , and let

f (e�j ) =
n
∑

i=1
e�i di j for some di j ∈ D.

Then, computation yields

adh( f )(e j ) =
n
∑

i=1
eiτ(d ji ).

We may compute End(α�)( f ) using the splitting base (e�i )
n
i=1, and End(α) (adh( f ))

using the splitting base (ei )
n
i=1, obtaining

End(α�)( f ) = min
1≤i, j≤n

(

α�(e�i )+ w(di j )− α�(e�j )
)

,

End(α) (adh( f )) = min
1≤i, j≤n

(

α(ei )+ w
(

τ(d ji )
) − α(e j )

)

.

Equation (1.9) follows since α�(e�i ) = −α(ei ), see [16, Lemma 3.4].
The equivalence of (a) and (b) readily follows from (1.9), and the equivalence of

(b) and (c) from [18, Prop. 1.22].
(c) ⇔ (d): By the definition of the dual norm in (1.8), for any constant γ in the divisible
group �, (α − γ )� = α� + γ . Therefore, α − γ is compatible with h if and only if
(α − γ )� = α − γ , which holds if and only if α − α� = 2γ . ��

Suppose the equivalent conditions of Proposition 1.7 hold, and write simply gα
for End(α). Recall from [18, Prop. 1.19] that the graded algebra grgα (EndD V )
may be identified with Endgr(D)

(

grα(V )
)

so that for f ∈ EndD V the element
˜f ∈ grgα (EndD V ) is viewed as the map ˜f : grα(V ) → grα(V ) defined by

˜f (̃x) =
{

˜f (x) if α ( f (x)) = α(x)+ gα( f ),

0 if α ( f (x)) > α(x)+ gα( f ).

On the other hand, after adding a constant if necessary, we may assume α is compatible
with h; hence we may define a graded hermitian form

˜h : grα(V )× grα(V ) → grw(D)

(with respect to the involution τ̃ ) as follows: for x , y ∈ V ,

˜h(̃x, ỹ) = h(x, y)+ D>α(x)+α(y) =
{

˜h(x, y) if w (h(x, y)) = α(x)+ α(y),

0 if w (h(x, y)) > α(x)+ α(y).

This hermitian form is well-defined and nondegenerate (cf. [16], Remark 3.2), and
we may therefore consider the adjoint involution ad

˜h on Endgrw(D)
(

grα(V )
) =

grgα (EndD V ).
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Proposition 1.8 Assumingα is compatible with h, the involution ˜adh on grgα (EndD V )
is the adjoint involution of ˜h under the identification above; i.e.,

˜adh = ad
˜h .

In particular, the value function gα = End(α) is σ -special (see Definition 1.2) if and
only if ˜h is anisotropic.

Proof To verify the equality of graded involutions, it suffices to show, for all x , y ∈ V
and f ∈ EndD V ,

˜h
(

ad
˜h(

˜f )(̃x), ỹ
) = ˜h

(

˜adh(˜f )(̃x), ỹ
)

.

From the definition of ad
˜h , it is equivalent to prove

˜h
(

x̃, ˜f (ỹ)
) = ˜h

(

˜adh(˜f )(̃x), ỹ
)

. (1.10)

Since α is compatible with h, Proposition 1.7 shows gα is invariant under adh ; hence,
gα(adh( f )) = gα( f ). Therefore, each side of (1.10) lies in Dε , where ε = α(x)+α(y)
+ gα( f ). Suppose w (h(x, f (y))) = ε. Then, necessarily α( f (y)) = gα( f ) +
α(y), and the left side of (1.10) equals h(x, f (y))∼. But since h(x, f (y)) =
h (adh( f )(x), y), we then also have

gα (adh( f )(x)) = gα (adh( f ))+ α(x),

and the right side of (1.10) becomes h (adh( f )(x), y)∼. So, (1.10) then holds. But, if
w (h(x, f (y))) > ε, then each side of (1.10) is 0. Thus, the equality (1.10) holds in
all cases, so that ˜adh = ad

˜h .
Since gα is invariant under adh , Proposition 1.1(b) holds if and only if ˜adh is aniso-

tropic. But, the involution ˜adh = ad
˜h is anisotropic if and only if its associated graded

hermitian form ˜h is anisotropic. This is proved analogously to the ungraded case [12,
Sect. 6.A], using the fact that˜h is anisotropic if and only if˜h(̃x, x̃) 
=˜0 for all nonzero
x ∈ V , as remarked in [16, p. 101]. ��

2 Henselian valuations

Throughout this section, (F, v) is a Henselian valued field and A is a finite-
dimensional simple F-algebra with an involution σ . We let K = Z(A) and assume
F is the subfield of K fixed by σ . (Thus, A is central over F if σ |Z(A) = idZ(A)). We
assume A is tame over F , which means that A is split by the maximal tamely ramified
extension of K , and that K is tame over F . Moreover, if char(F) = 2 we assume σ is
not an orthogonal involution.

Proposition 2.1 With the hypotheses above, every v-gauge on A is tame. Furthermore,
there exist v-gauges on A that are invariant under σ .
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Proof We may represent A = EndD V for some finite-dimensional right vector space
V over a central division K -algebra D. Since v is Henselian, it extends uniquely to
a valuation w on D (see for instance [17, p. 53, Th. 9] or [19, Th.]). Since A is tame
over F , by [18, Prop. 1.19] D must also be tame over F ; hence by [18, Prop. 1.12 and
1.13] w is a tame v-gauge. Therefore, every v-gauge on A is tame, by [18, Th. 3.1].

If A is split and σ is symplectic, then σ = adb for some alternating bilinear form
b on V , see [12, Sect. 4.A]. Choose a symplectic base B = (ei , fi )

n
i=1 of V for b and

define a v-norm α on V by

α
(

n
∑

i=1
eiλi + fiμi

) = min
1≤i≤n

(v(λi ), v(μi )) for λ1, …, μn ∈ F,

i.e., B is a splitting base for α on V , and each α(ei ) = α( f j ) = 0. The v-norm α

on V induces the v-gauge End(α) on EndD(V ). For g ∈ EndD(V ), if g has matrix
(ci j ) relative to B, then End(α)(g) = min1≤i, j≤n

(

v(ci j )
)

. The matrix for σ(g) has
the same set of entries up to sign as (ci j ), though the entries are relocated. Hence,
End(α) is invariant under σ . We exclude this case of A split and σ symplectic for the
rest of the proof. We may then choose an F-linear involution θ on D of the same type
as σ and an even hermitian form h on V with respect to θ such that σ = adh , see
[12, (4.2)]. By [16, Cor. 3.6], there exists a w-norm α on V that is compatible with h.
By [18, Prop. 1.19], End(α) is a v-gauge; by Proposition 1.7, this gauge is invariant
under σ . ��
Theorem 2.2 With the hypotheses of this section, if σ is anisotropic, then for the
Henselian valuation v on F there is a unique σ -special value function ϕ on A for v.
This ϕ is a tame v-gauge and its value set �A lies in the divisible hull of �F . It is the
unique v-gauge on A invariant under σ .

Proof We use the same notation as in the proof of Proposition 2.1, representing A =
EndD(V ) as in that proof. Since σ is anisotropic, it is not a symplectic involution on
a split algebra. Therefore, it is the adjoint involution of some even Hermitian form h
on V with respect to an involution θ on D of the same type as σ , see [12, Th. (4.2)].
The form h is anisotropic since σ is anisotropic. By [16, Th. 4.6 and Prop. 4.2], the
map α : V → 1

2�D ∪ {∞} defined by

α(x) = 1
2w (h(x, x)) (2.1)

is a w-norm on V that is compatible with h, and the residue form ˜h is aniso-tropic.
Proposition 1.7 then shows that ϕ = End(α) is a surmultiplicative v-value function
on A that is invariant under σ , and Proposition 1.8 shows that ϕ is σ -special. Since A
is tame over F , the valuation w is a v-gauge on D by [18, Prop. 1.13], hence ϕ is a
tame v-gauge by [18, Prop. 1.19]. Its value set obviously lies in the divisible hull of
�D , which is also the divisible hull of �F .

To prove uniqueness, suppose ϕ1 and ϕ2 are each σ -special value functions on A
for v. To show that ϕ1 = ϕ2, we argue by induction on the matrix size ms(A), which
is defined as the dimension of V in the representation A = EndD(V ).
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Suppose first that A is a division algebra. For any subfield L ⊆ A fixed elementwise
under σ we have

ϕi (x
2) = ϕi (σ (x)x) = 2ϕi (x) for all x ∈ L and i = 1, 2,

hence for nonzero ξ = x̃ϕi ∈ grϕi
(L) we have ξ2 = ˜x2ϕi 
= 0. Therefore, grϕi

(L)
is semisimple. By [18, Prop. 1.8], it follows that ϕ1 and ϕ2 coincide with the unique
valuation on L extending v. (The extension of v to L is unique because (F, v) is
Henselian.) For any x ∈ A, the product σ(x)x lies in a subfield of A fixed under σ ,
so ϕ1(σ (x)x) = ϕ2(σ (x)x). Therefore,

ϕ1(x) = 1
2ϕ1(σ (x)x) = 1

2ϕ2(σ (x)x) = ϕ2(x).

The claim is thus proved if ms(A) = 1.
Suppose next that ms(A) > 1. We may then find in A a symmetric idempotent

e 
= 0, 1. (Representing A = EndD(V ) as above, we have dimD V > 1 and we may
take for e the orthogonal projection onto any nonzero proper subspace of V .) Let f =
1 − e. The involution σ restricts to eAe and f A f , and ms(eAe), ms( f A f ) < ms(A).
By the induction hypothesis, the restrictions of ϕ1 and ϕ2 coincide on eAe and f A f .
For any x ∈ A, we have σ(xe)xe ∈ eAe and σ(x f )x f ∈ f A f , hence

ϕ1(σ (xe)xe) = ϕ2(σ (xe)xe) and ϕ1(σ (x f )x f ) = ϕ2(σ (x f )x f ).

Since ϕ1 and ϕ2 are σ -special value functions, Proposition 1.1 shows that

ϕ1(xe) = ϕ2(xe) and ϕ1(x f ) = ϕ2(x f ). (2.2)

On the other hand, we have xeσ(x f ) = 0 and xe + x f = x , hence Proposition 1.1
also yields

ϕ1(x) = min (ϕ1(xe), ϕ1(x f )) and ϕ2(x) = min (ϕ2(xe), ϕ2(x f )) .

By (2.2), it follows that ϕ1(x) = ϕ2(x).
Now, suppose g is a gauge on A that is invariant under σ . By [18, Th. 3.1] we may

find aw-norm β on V such that g = End(β). Up to the addition of a constant, we may
assume β is compatible with h in view of Proposition 1.7. But the norm α of (2.1)
is the only w-norm on V that is compatible with h by [16, Prop. 4.2], so β = α and
g = End(α). ��

If g is a v-gauge on A that is invariant under σ , we denote by σ0 the 0-component of
σ̃ . Thus, σ0 is an involution on the F-algebra A0 = A≥0/A>0, which may be viewed
as the residue algebra of A. The algebra A0 is semisimple, but not necessarily simple,
see [18, Sect. 2]. Note that if A0 = B1×· · ·× Bk with the Bi simple, then an involution
τ on A0 is anisotropic if and only if τ(Bi ) = Bi and τ |Bi is anisotropic for 1 ≤ i ≤ k.
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Corollary 2.3 With the hypotheses of this section, if g is a v-gauge on A that is
invariant under σ , the following conditions are equivalent:

(a) σ is anisotropic;
(b) σ̃ is anisotropic;
(c) σ0 is anisotropic.

Proof The implication (a) ⇒ (b) readily follows from Theorem 2.2, and the implica-
tions (b) ⇒ (a) and (b) ⇒ (c) are clear. To prove (c) ⇒ (b), suppose ξ ∈ grg(A) is a non-
zero homogeneous element such that σ̃ (ξ)ξ = 0. Every element η ∈ (

ξ grg(A)
)∩ A0

satisfies σ̃ (η)η = σ0(η)η = 0. Therefore, σ0 is isotropic if
(

ξ grg(A)
) ∩ A0 
= {0}.

The corollary thus follows from the following general result: ��
Lemma 2.4 Let A be a graded simple algebra finite-dimensional over a graded
field K, and let I ⊆ A be a homogeneous right ideal. Then, there is a homogeneous
idempotent e ∈ A of degree 0 such that I = eA.

Proof By [11, Prop. 1.3], we may identify A = EndD(V) for some graded division
K-algebra D and some finite-dimensional graded D-vector space V. Let W =
∑

im( f ), with the sum taken over all homogeneous f ∈ I. Then, W is a graded
D-subspace of V and, just as in the ungraded case, I = HomD(V,W). Take any
graded D-subspace Y of V, such that Y is complementary to W, and let e : V → W
be the projection of V onto W along Y. Then, the idempotent e is a degree-preserving
graded homomorphism, so e ∈ A0. Clearly, I = eA. ��
Remarks 2.5 (1) In Corollary 2.3, the hypothesis that (F, v) is Henselian is used only
to prove that (a) implies (b) and (c); the implications (c) ⇐⇒ (b) ⇒ (a) hold without
this hypothesis (nor any tameness assumption).

(2) Corollary 2.3 may be regarded as a version of Springer’s theorem for involutions.
In a slightly different form, it has already been proved by Larmour [13, Th. 4.5]: to see
this, observe that the residue involutions defined by Larmour are the direct summands
of our residue involution σ0 for a suitable gauge.

If the involution σ is isotropic, we may still define up to isomorphism an anisotropic
kernel (A, σ )an in such a way that if A = EndD V and σ = adh , then (A, σ )an ∼=
(EndD V0, adh0) where (V0, h0) is an anisotropic kernel of (V, h), see [3], and [2]
for involutions of the second kind. The same construction holds for graded simple
algebras with involution.

Theorem 2.6 Let σ1, σ2 be F-linear involutions on A with σ1|Z(A) = σ2|Z(A). For
the Henselian valuation v on F, let g1, g2 be v-gauges on A invariant under σ1 and σ2
respectively. If char(F) = 2, assume neither σ1 nor σ2 is orthogonal. The following
conditions are equivalent:

(a) the algebras with involution (A, σ1) and (A, σ2) are isomorphic;
(b) the graded algebras with anisotropic involution (grg1

(A), σ̃1)an and
(grg2

(A), σ̃2)an are isomorphic.
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Proof It follows from Proposition 1.5 that σi and σ̃i are of the same type. Therefore,
(a) and (b) each imply that σ1 and σ2 are of the same type. If A is split and σ1, σ2
are symplectic, then grg1

(A) and grg2
(A) are split and σ̃1, σ̃2 are symplectic, hence

hyperbolic. In this case, (a) and (b) both hold trivially. For the rest of the proof, we
exclude this case and fix a representation A = EndD V where V is a right vector space
over a central division K -algebra D. We also fix an involution θ on D of the same
type as σ1 and σ2, and non-degenerate even hermitian forms h1, h2 on V with respect
to θ such that

σ1 = adh1 and σ2 = adh2 .

As observed in the proof of Proposition 2.1, the valuation v extends uniquely to a
valuation w on D. By [18, Th. 3.1] and Proposition 1.7 we may also find norms α1
and α2 on V that are compatible with h1 and h2 respectively, such that

g1 = End(α1) and g2 = End(α2),

hence

grg1
(A) = Endgr(D)

(

grα1
(V )

)

and grg2
(A) = Endgr(D)

(

grα2
(V )

)

.

It then follows from Proposition 1.8 that

σ̃1 = ad
˜h1

and σ̃2 = ad
˜h2

;

hence, denoting by (V1, k1) and (V2, k2) the anisotropic kernels of (grα1
(V ), ˜h1) and

(grα2
(V ), ˜h2) respectively,

(grg1
(A), σ̃1)an ∼= (Endgr(D)(V1), adk1) and

(grg2
(A), σ̃2)an ∼= (Endgr(D)(V2), adk2).

If (a) holds, then h1 and h2 are similar. Scaling h2 by a factor in F×, we may assume
h1 ∼= h2. By [16, Th. 3.11], the anisotropic kernels of ˜h1 and ˜h2 are isometric, hence
(b) holds.

Conversely, if (b) holds, then the anisotropic kernels of ˜h1 and ˜h2 are similar. Scal-
ing h2 by a factor in F×, we may assume that they are isometric. By [16, Th. 4.6],
it follows that h1 and h2 are isometric, hence (a) holds. ��
Corollary 2.7 With the hypotheses of this section, up to Witt-equivalence the graded
algebra with involution (grg(A), σ̃ ) depends only on the Witt-equivalence class of
(A, σ ), and not on the choice of the invariant v-gauge g.

The results in this section depend heavily on the assumption that v is Henselian.
When v is not Henselian, for an anisotropic involution σ on A there may be no
σ -special v-gauge on A, and there may be many σ -invariant gauges. See Example 6.3
below for an example of this. What happens when v is not Henselian is described in
Theorem 6.1.
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3 Scalar extensions of involutions

As an application of the results of Sect. 2, we consider a basic case of the prob-
lem of determining when an anisotropic involution remains anisotropic over a scalar
extension.

Let σ be an F-linear involution on a finite-dimensional simple algebra A over a
field F . Assume v is a valuation on F and A carries a v-gauge g invariant under σ .
For any extension (L , vL) of (F, v), we may consider the vL -gauge g ⊗ vL on the
L-algebra AL = A ⊗F L . By Proposition 1.3, this vL -gauge is invariant under the
involution σ ⊗ idL on AL . If the “residue” involution (σ ⊗ idL)0 is anisotropic, then
σ ⊗ idL is anisotropic by Corollary 2.3 and Remark 2.5(1), and the converse holds
if vL is Henselian and AL is tame over L , unless σ is orthogonal and char(F) = 2.
We consider below a case where this residue can be explicitly calculated.

We first recall some facts which will be used repeatedly below. Let α be a surmul-
tiplicative v-norm on a finite-dimensional algebra A over a field F with valuation v.
If e is an idempotent of A with α(e) = 0 and N is any F-subspace of A, then ẽ2 = ẽ
in gr(A) and by [18, Lemma 1.7],

gr(eN ) = ẽ gr(N ) and gr(Ne) = gr(N )̃e in gr(A). (3.1)

If e 
= 1, let f = 1 − e. Then, α( f ) ≥ min (α(1), α(e)) = 0, but since f 2 = f ,
α( f ) ≤ 0. So, α( f ) = 0, hence ˜f =˜1 − ẽ in gr(A), and hence

gr(A) = ẽ gr(A)⊕ ˜f gr(A) = gr(eA)⊕ gr( f A).

Therefore, by [16, Remark 2.6], the direct sum decomposition A = eA ⊕ f A is a
splitting decomposition, i.e., α(a) = min (α(ea), α( f a)) for any a ∈ A. Likewise
A = Ae ⊕ A f is a splitting decomposition.

Recall also that an element s ∈ A× is said to be α-stable if α(s−1) = −α(s).
For such an s we have by [18, Lemma 1.3 and (1.5)], for every a ∈ A,

α(as) = α(sa) = α(a)+ α(s), hence ã s̃ = ãs and s̃ ã = s̃a. (3.2)

We now make some general observations on the tensor product of valuations. Let
L/F be a finite separable field extension. Recall that the separability idempotent of L
is the idempotent e ∈ L ⊗F L determined uniquely by the conditions that

e · (x ⊗ 1) = e · (1 ⊗ x) for all x ∈ L (3.3)

and the multiplication map L ⊗F L → L carries e to 1, see for instance [12,
Prop. (18.10)]. The separability of L/F implies that the bilinear trace form

T : L × L → F, T (x, y) = TrL/F (xy)

is nondegenerate.
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Proposition 3.1 Suppose v : F → � ∪ {∞} is a valuation that extends uniquely to
a valuation vL on L, and that the valued field extension (L , vL) of (F, v) is tame.
Then vL is a v-norm on L which is compatible with the bilinear trace form T , and
(vL ⊗ vL)(e) = 0.

Proof Since vL is the unique valuation extending v to L and since the extension is
defectless, it follows that vL is a v-norm (indeed, a v-gauge) on L , see [18, Cor. 1.9].

We claim that v
(

TrL/F (x)
) ≥ vL(x) for all x ∈ L×. To see this, consider a Galois

closure M of L over F and an extension vM of v to M . For every F-linear embedding
ι : L ↪→ M the composition vM ◦ ι is a valuation on L extending v, hence vM ◦ ι = vL .
Since TrL/F (x) = ∑

ι(x), where the sum extends over all embeddings ι : L ↪→ M ,
we have

v
(

TrL/F (x)
) = vM

( ∑

ι

ι(x)
) ≥ min

ι
(vM ◦ ι(x)) = vL(x),

proving the claim. It follows that for all x , y ∈ L×,

v (T (x, y)) ≥ vL(x)+ vL(y). (3.4)

To show that vL is compatible with T , it remains to show that for any x ∈ L× there
exists y ∈ L× for which equality holds in (3.4). For this, it suffices to show that there
exists � ∈ L× such that v

(

TrL/F (�)
) = vL(�), since equality then holds in (3.4) with

y = �x−1. For every � ∈ L× with vL(�) = 0 we have

TrL/F (�) = |�L :�F | · TrL/F (�) (3.5)

by [6, p. 65, Cor. 1]. (Ershov assumes his valuation is Henselian; but the result carries
over to the situation here: Let Fh be the Henselization of F with respect to v. Since
the unique extension of v to L is defectless, for any compositum of L with Fh we have
[L · Fh :Fh] ≥ [L :F]|�L :�F | = [L :F]. Hence, L ⊗F Fh is a field, and (3.5) holds
for L/F because it holds for (L ⊗F Fh)/Fh .)

Since L/F is tame, the residue extension L/F is separable and char(F) does not
divide |�L :�F |. Therefore, we may find � ∈ L such that vL(�) = 0 and TrL/F (�) 
= 0.

Then (3.5) shows that TrL/F (�) 
= 0, hence

v
(

TrL/F (�)
) = 0 = vL(�).

Therefore, vL is compatible with T ; it thus coincides with its dual norm v
�
L .

To complete the proof, we compute (vL ⊗ vL)(e). Let (�i )
n
i=1 be a splitting F-base

of L for vL , and let (��i )
n
i=1 be the dual base for the form T . By [12, Prop. (18.12)] we

have

e =
n
∑

i=1
�i ⊗ �

�
i ,
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hence,

(vL ⊗ vL)(e) = min
1≤i≤n

(

vL(�i )+ vL(�
�
i )

)

.

Now, for all i = 1, . . . , n we have vL(�
�
i ) = v

�
L(�

�
i ) = −vL(�i ) by [16, Lemma 3.4].

Therefore, (vL ⊗ vL)(e) = 0. ��
Continuing with the same notation and hypotheses as in Proposition 3.1, we now

assume further that the extension L/F is Galois. Let G denote its Galois group. Since
vL is the unique extension of v to L , vL ◦ ι = vL for any ι ∈ G, and hence ι induces a
graded gr(F)-automorphism ι̃ of gr(L). For ι ∈ G, let

eι = (id ⊗ι)(e) ∈ L ⊗F L ,

and let ẽι be the image of eι in gr(L ⊗F L), which is canonically identified with
gr(L)⊗gr(F) gr(L) by Proposition 1.3.

Lemma 3.2 The elements (eι)ι∈G form a family of orthogonal idempotents such
that

∑

ι∈G eι = 1. They are the primitive idempotents of L ⊗F L. They satisfy
(vL ⊗ vL)(eι) = 0 and

eι · (x ⊗ 1) = eι · (1 ⊗ ι(x)) for x ∈ L . (3.6)

Likewise, for any y ∈ gr(L),

ẽι · (y ⊗˜1) = ẽι ·
(

˜1 ⊗ ι̃(y)
)

in gr(L)⊗gr(F) gr(L). (3.7)

Moreover, (ι⊗ ι)(e) = e for ι ∈ G.

Proof Equation (3.3) shows that e · (L ⊗F L) = e · (L ⊗ 1) ∼= L . Since L is a field,
e must be a primitive idempotent. Equation (3.6) readily follows by applying id ⊗ι
to each side of (3.3). For equation (3.7), it suffices to verify the equality when y is
homogeneous and nonzero. But then y = x̃ for some nonzero x ∈ L . Both x ⊗ 1 and
1⊗ ι(x) are vL ⊗vL -stable in L ⊗F L , as defined preceding (3.2) above. Hence, using
equations (3.2) and (3.6),

ẽι ·
(

x̃ ⊗˜1
) = ẽι ·

(

˜x ⊗ 1
)

= [eι · (x ⊗ 1)]˜

= [eι · (1 ⊗ ι(x))]˜ = ẽι ·
(

˜1 ⊗ ι(x)
)

= ẽι ·
(

˜1 ⊗ ι̃(̃x)
)

.

Since e is a primitive idempotent, it is clear that each eι is also a primitive idempotent.
For ι, κ ∈ G and x ∈ L , as L ⊗F L is commutative we have

eιeκ · (1 ⊗ [κ(x)− ι(x)]) = eιeκ · (1 ⊗ κ(x))− eκeι · (1 ⊗ ι(x))

= (eιeκ − eκeι) · (x ⊗ 1) = 0.
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For ι 
= κ , if we choose x ∈ L with ι(x) 
= κ(x), then 1 ⊗ [κ(x) − ι(x)] is a unit of
L ⊗F L; hence, eιeκ = 0.

As observed in the proof of Proposition 3.1, we have e = ∑n
i=1 �i ⊗ �

�
i if (�i )

n
i=1

is an F-base of L and (��i )
n
i=1 is the dual base for the bilinear form T . It follows that

eι = ∑n
i=1 �i ⊗ ι(�

�
i ) for ι ∈ G, hence

∑

ι∈G
eι =

n
∑

i=1
�i ⊗ TrL/F (�

�
i ). (3.8)

Since (��i )
n
i=1 is the dual base of (�i )

n
i=1, we have

x =
n
∑

i=1
�i TrL/F (�

�
i x) for x ∈ L .

In particular,
∑n

i=1 �i TrL/F (�
�
i ) = 1, and equation (3.8) yields

∑

ι∈G eι = 1. So, the
eι are all the primitive idempotents of L ⊗F L .

Since vL is the unique valuation extending v to L , we have vL ◦ ι = vL for all
ι ∈ G, hence

(vL ⊗ vL)(eι) = (vL ⊗ vL)(e) = 0 for all ι ∈ G.

Finally, it is clear that (ι⊗ ι)(e) satisfies the same equation (3.3) as e and is carried to 1
by the multiplication map L ⊗F L → L . Since these properties determine e uniquely,
we have (ι⊗ ι)(e) = e for all ι ∈ G. ��

It is well-known (cf. [15, pp. 256–257, Lemma b]) that the primitive idempotents
of L ⊗F L are indexed by G and satisfy (3.6). The further properties of the eι given
in Lemma 3.2 will be useful in what follows.

Now, assume further that L ⊆ D for some finite-dimensional division F-algebra D,
and that v extends to a valuation vD on D such that D/F is defectless; i.e., vD is a
v-norm on D. The restriction of vD to L is then the unique valuation vL extend-
ing v. We will use the idempotents (eι)ι∈G to analyze extensions of involutions from
D to D ⊗F L . Let C be the centralizer CD(L). Viewing D as a right C-vector space,
we have the canonical isomorphism

η : D ⊗F L ∼−→ EndC (D), (3.9)

which carries d ⊗ � to the map x �→ dx� for d, x ∈ D and � ∈ L . For ι ∈ G, consider
the following C-subspace of D:

Dι = {d ∈ D|�d = d ι(�) for all � ∈ L}.

Since ι on L is induced by an inner automorphism of D by Skolem–Noether, Dι 
= {0}.
Since in addition, Did = C and Dκ · Dι ⊆ Dικ for all ι, κ ∈ G, we must have
dimC (Dι) = 1 for each ι.
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Lemma 3.3 We have D ⊗F L = ⊕

ι∈G eι(D ⊗ 1) and D = ⊕

ι∈G Dι, and these
direct sums are splitting decompositions of D ⊗F L and D with respect to vD ⊗ vL

and vD, respectively. More precisely, we have

(vD ⊗ vL)
( ∑

ι∈G
eι · (xι ⊗ 1)

) = min
ι∈G

(vD(xι)) for xι ∈ D,

and

vD
( ∑

ι∈G
yι

) = min
ι∈G

(vD(yι)) for yι ∈ Dι.

Furthermore, for all ι, κ ∈ G,

eι(D ⊗F L)eκ = eι(Dκ−1ι ⊗ 1).

Proof Let A = D ⊗F L and α = vD ⊗ vL . Since (eι)ι∈G is a family of orthogonal
idempotents with

∑

ι∈G eι = 1 and α(eι) = 0 for each ι, the collection (̃eι)ι∈G is a
family of orthogonal idempotents in gr(A) with

∑

ι∈G ẽι =˜1. Hence, using (3.1),

A = ⊕

ι∈G
eιA and gr(A) = ⊕

ι∈G
ẽι gr(A) = ⊕

ι∈G
gr(eιA). (3.10)

Likewise, for any ι ∈ G,

eιA = ⊕

κ∈G
eιAeκ and gr(eιA) = ⊕

κ∈G
gr(eιA)̃eκ = ⊕

κ∈G
gr(eιAeκ). (3.11)

In view of (3.6), we have eι · (1⊗ L) = eι · (L ⊗1), hence eι · (D ⊗F L) = eι · (D ⊗1).
For any nonzero x ∈ D, α(x ⊗ 1) = vD(x) and

α
(

(x ⊗ 1)−1) = α(x−1 ⊗ 1) = −vD(x).

So, x ⊗ 1 is α-stable, and (3.2) applies. Since (3.10) shows that the direct sum A =
⊕

ι∈G eιA is a splitting decomposition of A for α, it follows using (3.2) that for any
xι ∈ D,

α
( ∑

ι∈G
eι · (xι ⊗ 1)

) = min
ι∈G

(α(eι · (xι ⊗ 1)))

= min
ι∈G

(α(eι)+ α(xι ⊗ 1)) = min
ι∈G

(vD(xι)).

To prove the rest, we use the canonical isomorphism η of (3.9). For each ι ∈ G,
let πι = η(eι), which is a projection in EndC (D). By (3.6) and the commutativity of
L ⊗F L , for any � ∈ L and d ∈ D,

� · πι(d) = η ((�⊗ 1)eι) (d) = η ((1 ⊗ ι(�))eι) (d) = πι(d) · ι(�).
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Hence, πι(D) ⊆ Dι. Since im(πι) is a nonzero C-subspace of the 1-dimensional
C-vector space Dι, it follows that im(πι) = Dι. Because (πι)ι∈G is a family of orthog-
onal idempotents of EndC (D) such that

∑

ι∈G πι = idD , we have D = ⊕

ι∈G Dι;
furthermore, each πι is the projection of D onto Dι parallel to

⊕

κ 
=ι Dκ . Thus, for
any ι, κ ∈ G, πι EndC (D)πκ consists of those endomorphisms sending Dκ to Dι and
Dλ to {0} for λ 
= κ . For any λ ∈ G, since Dκ−1ιDλ ⊆ Dλκ−1ι, we have

[πι ◦ η(Dκ−1ι ⊗ 1)](Dλ) = πι(Dκ−1ιDλ) ⊆ πι(Dλκ−1ι) ⊆
{

Dι, if λ = κ;
{0}, if λ 
= κ.

Hence, πι ◦ η(Dκ−1ι ⊗ 1) ⊆ πι EndC (D)πκ . By applying η−1, this yields

eι(Dκ−1ι ⊗ 1) ⊆ eιAeκ for all ι, κ ∈ G. (3.12)

Now, fix ι ∈ G. We have seen that eιA = eι(D ⊗1). The F-epimorphism ρι : D →
eιA given by d �→ eι(d⊗1) is clearly injective;ρι is also norm-preserving, asα(eι) = 0
and d ⊗ 1 is stable in A for each nonzero d ∈ D. Since D = ⊕

κ∈G Dκ−1ι, we have

⊕

κ∈GeιAeκ = eιA = ρι(D) = ⊕

κ∈Gρι(Dκ−1ι)

= ⊕

κ∈Geι(Dκ−1ι ⊗ 1). (3.13)

This shows that the inclusions in (3.12) must all be equalities. It follows from (3.11)
above that the direct sum decomposition

⊕

κ∈G eιAeκ is a splitting decomposition of
eιA. Therefore, by applying the norm-preserving map ρ−1

ι to the terms in (3.13), it
follows that

⊕

κ∈G Dκ is a splitting decomposition of D. ��
While D ⊗F L is simple, the degree 0 part (D ⊗F L)0 of gr(D ⊗F L) is in general

only semisimple. The value sets �Dι of the Dι encode how (D ⊗F L)0 decomposes:
Since each Dι is a 1-dimensional C-subspace of D and vD|Dι is a vD|C -norm on Dι,
each �Dι is a coset of �C in �D . Therefore, there is a well-defined map

ψ : G → �D
/

�C given by ψ(ι) = �Dι .

Because Dι · Dκ ⊆ Dκι and �D is abelian, ψ is a group homomorphism, which is
surjective since D = ⊕

ι∈G Dι is a splitting decomposition of D by Lemma 3.3. So,
| ker(ψ)| = |G|/|�D :�C | = [D :C]/|�D :�C |, which shows that

ψ is injective if and only if D is totally ramified over C . (3.14)

Lemma 3.4 Let A = D ⊗F L. Then, each ẽι is a primitive idempotent of A0, and
A0 = ⊕

ι∈G ẽιA0 = ⊕

ι∈G ẽι(D0 ⊗ 1). For any ι, κ ∈ G,

ẽιA0ẽκ =
{

ẽι
(

(Dκ−1ι)0 ⊗ 1
) 
= 0, if ψ(κ) = ψ(ι);

0, if ψ(κ) 
= ψ(ι).
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Proof We saw in (3.10) that gr(A) = ⊕

ι∈G ẽι gr(A). Moreover, as gr(A) =
gr(D) ⊗gr(F) gr(L) and ẽι (1 ⊗ gr(L)) = ẽι (gr(L)⊗ 1) by (3.7), we have
ẽι gr(A) = ẽι (gr(D)⊗ 1). So, for the degree 0 components we have A0 =
⊕

ι∈G ẽιA0 = ⊕

ι∈G ẽι (D0 ⊗ 1). Similarly, for ι, κ ∈ G, by (3.1) and Lemma 3.3,

ẽι gr(A)̃eκ = gr(eιAeκ) = gr
(

eι(Dκ−1ι ⊗ 1)
)

= ẽι gr(Dκ−1ι ⊗ 1) = ẽι
(

gr(Dκ−1ι)⊗ 1
)

.

Hence, for the degree 0 components,

ẽιA0ẽκ = ẽι
(

(Dκ−1ι)0 ⊗ 1
)

.

If ψ(κ) 
= ψ(ι), then ψ(κ−1ι) is a nonzero element of �D
/

�C , so (Dκ−1ι)0 = {0}.
If ψ(κ) = ψ(ι), then (Dκ−1ι)0 
= 0, and since nonzero elements of Dκ−1ι ⊗ 1 are
stable, (3.2) yields ẽι

(

(Dκ−1ι)0 ⊗ 1
) 
= {0}. If κ = ι, then (Dκ−1ι)0 ⊗ 1 = C0 ⊗ 1,

so ẽιA0ẽι = ẽι (C0 ⊗ 1). Since C ⊗ 1 centralizes eι ∈ L ⊗F L , C0 ⊗ 1 centralizes ẽι.
Hence, ẽιA0ẽι ∼= C0 ⊗1 ∼= C0. Since C0 is a division ring, ẽι is a primitive idempotent
of A0. ��

Now, assume σ is an F-linear involution on D which stabilizes L , and therefore
restricts to an automorphism σL of L , and let ι ∈ G be such that ι2 = id. Then σ ⊗ ι

is an involution on D ⊗F L . Since the valuation vD extending v to D is unique by
[19, Th.], it is invariant under σ . Likewise, vL is invariant under ι, hence vD ⊗ vL is
invariant under σ ⊗ ι by Proposition 1.3.

Proposition 3.5 The involution σ ⊗ ι on D ⊗F L is isotropic unless σL = ι and ι lies
in the center Z(G) of G. If σL = ι ∈ Z(G) and D is totally ramified over CD(L),
then σ ⊗ ι is anisotropic.

Proof For κ ∈ G we have

(σL ⊗ ι)(eκ) = (σL ⊗ ικ)(e) = (idL ⊗ικσL) ◦ (σL ⊗ σL)(e).

Since (σL ⊗ σL)(e) = e by Lemma 3.2, it follows that

(σL ⊗ ι)(eκ) = eικσL .

If ι 
= σL or if ι = σL and ι /∈ Z(G), we may find κ ∈ G such that ικσL 
= κ , hence

(σ ⊗ ι)(eκ) · eκ = eικσL · eκ = 0.

Therefore, σ ⊗ ι is isotropic.
Now assume σL = ι and ι ∈ Z(G). So, (σ ⊗ ι)(eκ) = eκ for all κ ∈ G; hence,

in (D ⊗F L)0, (σ ⊗ ι)0(̃eκ) = ẽκ . Assume further that D is totally ramified over
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C = CD(L). Then ψ is injective by (3.14), so by Lemma 3.4, ẽι(D ⊗F L)0 ẽκ = 0
whenever κ 
= ι. Hence,

(D ⊗F L)0 = ⊕

ι∈G
ẽι(D ⊗F L)0ẽι.

Since (σ ⊗ ι)0 maps each direct summand to itself and each summand is a division
ring, (σ ⊗ ι)0 is anisotropic. It follows from Corollary 2.3 (see also Remark 2.5(1))
that σ ⊗ ι is anisotropic. ��
Corollary 3.6 Let D be a central division algebra over a field F. Assume v is a val-
uation on F which extends to a valuation on D so that D is tame over F. Let σ be an
involution of the first kind on D and let L ⊆ D be a subfield Galois over F, consist-
ing of σ -symmetric elements. If D is totally ramified over CD(L), then the involution
σ ⊗ idL on D ⊗F L is anisotropic.

Proof This is immediate from Proposition 3.5. ��
Remarks 3.7 (a) The assumption in Corollary 3.6 that D is totally ramified over CD(L)
holds whenever D is totally ramified over F . In this case we do not have to assume that
L is Galois over F . For, since v extends to D, it follows from a theorem of Morandi
[14] that D remains a division ring after scalar extension to a Henselization Fh of
F for v. Therefore, we may assume that F is Henselian. The extension L/F is then
Galois, since it is tame and totally ramified.

(b) Another case in which D is totally ramified over CD(L) occurs whenever the
subfield L of D is unramified over F and L ⊆ Z(D).

(c) Another way to obtain the information about (D ⊗F L)0 needed in the proof
of Proposition 3.5 is to prove that if the F-central division ring D has a valuation
tame over F and L is any subfield of D containing F , and C = CD(L), then the
canonical isomorphism D ⊗F L ∼= EndC (D) is norm-preserving; so this induces a
graded isomorphism

gr(D ⊗F L) ∼= gr (EndC (D)) ∼= Endgr(C) (gr(D)).

4 Composition of value functions

Let v : F → � ∪ {∞} be a valuation on a field F , and let � ⊂ � be a convex sub-
group, i.e., if 0 ≤ γ ≤ δ with γ ∈ � and δ ∈ �, then γ ∈ �. Let � = �/�, and let
ε : � → � be the canonical map. The ordering on � induces a total ordering on �
such that for γ1, γ2 ∈ �, if γ1 ≤ γ2, then ε(γ1) ≤ ε(γ2). Consequently,

if ε(γ2) < ε(γ1), then γ2 < γ1. (4.1)

Because � is assumed to be divisible, � and � are also divisible. By composing v
with ε, we obtain a coarser valuation on F ,

w = ε ◦ v : F → � ∪ {∞}.
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Let F
v

(resp. F
w

) denote the residue field of F for the valuation v (resp. w). The
valuation v induces a valuation

u : F
w → � ∪ {∞},

with residue field

F
wu = F

v
,

see [9, pp. 44–45].
Now, let V be an F-vector space and let α : V → � ∪ {∞} be a v-value function.

Composition with ε yields a w-value function

β = ε ◦ α : V → � ∪ {∞}.

Each λ ∈ � = �/� is a coset of �, and may therefore be viewed as a subset of �.
For x ∈ V , we have by definition

β(x) = λ ∈ � if and only if α(x) ∈ λ ⊂ �.

For λ ∈ �, let

V β
≥λ = {x ∈ V | β(x) ≥ λ}, V β

>λ = {x ∈ V | β(x) > λ},
and V β

λ = V β
≥λ

/

V β
>λ.

The group V β
λ is an F

w
-vector space.

Lemma 4.1 If x, y ∈ V β
≥λ satisfy x ≡ y 
≡ 0(mod V β

>λ), then α(x) = α(y).

Proof We have β(x − y) > λ = β(y). Since β = ε ◦ α, (4.1) shows that α(x − y) >
α(y). Hence, α(x) = min (α(x − y), α(y)) = α(y). ��

In view of this lemma, we may define

αλ : V β
λ → λ ∪ {∞} by x + V β

>λ �→
{

α(x) if β(x) = λ,

∞ if β(x) > λ.

Clearly, αλ is a u-value function on V β
λ . For γ ∈ λ we have

(V β
λ )

αλ
γ = V α

γ .

Therefore,

grα(V ) = ⊕

λ∈�
grαλ(V

β
λ ) where grαλ(V

β
λ ) = ⊕

γ∈λ
V α
γ
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while

grβ(V ) = ⊕

λ∈�
V β
λ .

Now, let

�F = v(F×) ⊆ �, �F = � ∩ �F ⊆ �,

�F = w(F×) = �F/�F ⊆ �.

These groups are the value groups of, respectively, v, u, and w. Similarly, let

�V = α(V \ {0}) ⊆ � and �V = β(V \ {0}) ⊆ �.

For each λ ∈ �V , let also

λV = αλ(V
β
λ \ {0}) ⊆ λ.

Clearly, λV = λ ∩ �V . Note �F (resp. �F , resp. �F ) is a subgroup of � (resp. �,
resp. �), while �V (resp. �V , resp. λV for λ ∈ �V ) is a union of cosets of �F (resp.
�F , resp. �F ). We denote by |�V :�F | the cardinality of the set of cosets of �F in
�V , and define likewise |�V :�F | and |λV :�F | for λ ∈ �V .

Lemma 4.2 If dimF V is finite, then |�V :�F |, |�V :�F |, and |λV :�F | for λ ∈ �V

are finite. If λ1, …, λr ∈ �V are representatives of the various cosets of �V modulo
�F , then

|�V :�F | =
r
∑

i=1
|(λi )V :�F |.

Proof By [16, Prop. 2.2] we have

|�V :�F | ≤ dimF V, |�V :�F | ≤ dimF V,

and also

|λV :�F | ≤ dimF
w V β

λ ≤ dimF V for λ ∈ �V .

For i = 1, …, r , let γi1, …, γisi ∈ (λi )V ⊆ � be representatives of the various cosets
of (λi )V modulo �F . Thus,

(λi )V =
si
∐

j=1
(γi j +�F ),

where
∐

denotes the disjoint union. For γ ∈ �V , we have ε(γ ) ∈ �V , hence

ε(γ ) = λi + w(a) for some i ∈ {1, . . . , r} and some a ∈ F×.
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It follows that γ − v(a) ∈ (λi )V ; hence,

γ − v(a) = γi j + v(b) for some j ∈ {1, . . . , si } and some b ∈ F×.

This shows that γ ≡ γi j mod �F , hence

�V =
r
⋃

i=1

si
⋃

j=1
(γi j + �F ). (4.2)

To complete the proof, it suffices to show the union is disjoint. If γi j ≡ γk�(mod�F )

for some i , j , k, �, then ε(γi j ) ≡ ε(γk�) (mod�F ), hence i = k since ε(γi j ) = λi

and ε(γk�) = λk . Moreover, from ε(γi j ) = ε(γk�) it follows that γi j −γk� ∈ �, hence
γi j ≡ γk� (mod�F ) implies γi j ≡ γk� (mod �F ), hence also j = �. ��
Proposition 4.3 Suppose dimF V is finite, and let λ1, . . . , λr ∈ �V be representa-
tives of the various cosets of�V modulo�F . The following conditions are equivalent:

(i) α is a norm;
(ii) β is a norm and αλ is a norm for all λ ∈ �V ;

(iii) β is a norm and αλi is a norm for i = 1, . . . , r .

Proof Use the same notation as in the lemma. For simplicity, denote αi = αλi and

Vi = V β
λi

for i = 1, …, r , and Vi j = V α
γi j

for i = 1, …, r and j = 1, …, si , and use
the notation [V :F] for dimF V . From (4.2) it follows that

[grα(V ): grv(F)] =
r
∑

i=1

si
∑

j=1
[Vi j :F

v]. (4.3)

Likewise,

[grβ(V ): grw(F)] =
r
∑

i=1
[Vi :F

w] (4.4)

and

[grαi
(Vi ): gru(F

w
)] =

si
∑

j=1
[Vi j :F

v] for i = 1, . . . , r. (4.5)

If αk is not a norm for some k ∈ {1, . . . , r}, then

[Vk :F
w] > [grαk

(Vk): gru(F
w
)].

On the other hand, we have

[Vi :F
w] ≥ [grαi

(Vi ): gru(F
w
)] for all i;
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hence, by (4.4) and (4.5),

[grβ(V ): grw(F)] >
r
∑

i=1
[grαi

(Vi ): gru(F
w
)] =

r
∑

i=1

si
∑

j=1
[Vi j :F

v].

In view of (4.3), it follows that [grβ(V ): grw(F)] > [grα(V ): grv(F)]. Since
[V :F] ≥ [grβ(V ): grw(F)], we have [V :F] > [grα(V ): grv(F)], hence α is not
a norm.

If each αi is a norm, then [Vi :F
w] = [grαi

(Vi ): gru(F)] for i = 1, . . . , r , hence
(4.4), (4.5), and (4.3) yield

[grβ(V ): grw(F)] =
r
∑

i=1

si
∑

j=1
[Vi j :F

v] = [grα(V ): grv(F)].

It follows that α is a norm if and only if β is a norm. We have thus proved (i) ⇐⇒ (iii).
Since any λ ∈ � can be chosen as a representative of its coset, the arguments above
also show (i) ⇒ (ii). Since (ii) ⇒ (iii) is clear, the proof is complete. ��

To put Proposition 4.3 in perspective, we relate the graded vector spaces grα(V )
and grβ(V ) by means of a value-function-like map

α∗ : grβ(V ) → � ∪ {∞}

defined as follows: for ξ ∈ grβ(V ), ξ 
= 0, let �(ξ) be the homogeneous component

of ξ of least degree, and let λ = deg (�(ξ)), so �(ξ) ∈ V β
λ ; then let

α∗(ξ) = αλ (�(ξ)) ∈ λ ⊆ �.

Let also α∗(0) = ∞. For x ∈ V we thus have

α∗(̃xβ) = α(x), (4.6)

where x̃β denotes the image of x in grβ(V ).
A similar construction applies to the valuation v, and yields a map

v∗ : grw(F) → � ∪ {∞},

which satisfies the same properties as a valuation, and such that the image v∗(ρ) of any
nonzero ρ ∈ grw(F) depends only on its homogeneous component of least degree.
The map α∗ deserves the name of a graded v∗-value function since it satisfies the
following properties:

(i) α∗(ξ) = ∞ if and only if ξ = 0; if ξ 
= 0, then α∗(ξ) = α∗ (�(ξ)) and
ε ◦ α∗(ξ) = deg �(ξ);

(ii) α∗(ξ + η) ≥ min (α∗(ξ), α∗(η)) for ξ , η ∈ grβ(V );
(iii) α∗(ξρ) = α∗(ξ)+ v∗(ρ) for ξ ∈ grβ(V ) and ρ ∈ grw(F).
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We may thus consider the associated graded structure grα∗
(

grβ(V )
)

. If x ∈ V satisfies
β(x) = λ and α(x) = γ , we may identify

(x + V β
>λ)+ grβ(V )

α∗
>γ = x + V α

>γ ;

thus

grα∗
(

grβ(V )
) = grα(V ). (4.7)

We define α∗ to be a graded v∗-norm if

[grα∗
(

grβ(V )
) : grv∗

(

grw(F)
)] = [grβ(V ): grw(F)].

It is easy to check that this holds if and only if each αλ is a u-norm. By an argument
analogous to the one in [16, Prop. 2.5] for ungraded norms, one can check that if α∗ is
a graded norm, then for any graded subspace W of grβ(V ), α∗|W is a graded norm on
W. Consequently, by dimension count, the functor grα∗( ) preserves strict inclusions
of graded subspaces of grβ(V ). Proposition 4.3 may be rephrased as follows: α is a
v-norm if and only if β is a w-norm and α∗ is a graded v∗-norm. Indeed, if (ei )

n
i=1

is a splitting base of V for α, then it is also a splitting base for β, and (̃eβi )
n
i=1 is a

splitting base of grβ(V ) for α∗.
We now apply this construction to a finite-dimensional F-algebra A. If α : A →

� ∪ {∞} is a surmultiplicative v-value function, then the coarser w-value function
β = ε ◦ α is clearly surmultiplicative, and the map α∗ is also surmultiplicative, by an
easy calculation using (4.6). The notions of gauge and tame gauge for graded norms
are defined analogously to the ungraded cases.

Proposition 4.4 The map α is a v-gauge (resp. a tame v-gauge) if and only if β is a
w-gauge (resp. a tame w-gauge) and α∗ is a graded v∗-gauge (resp. a tame graded
v∗-gauge).

Proof Proposition 4.3 already shows that α is a v-norm if and only if β is a w-norm
and α∗ is a graded v∗-norm. We noted above that α is surmultiplicative if and only if
β and α∗ are surmultiplicative.

Suppose α is a v-gauge. Since grα∗
(

grβ(A)
) = grα(A) and grα(A) is semisimple,

it follows that grβ(A) is semisimple. For, if I is a nontrivial nilpotent homogeneous
left ideal of grβ(A), then grα∗(I) is a nontrivial nilpotent homogeneous left ideal of
grα∗

(

grβ(A)
)

. Thus, β is a w-gauge. Also, grα∗
(

grβ(A)
)

is semisimple by hypothe-
sis, hence α∗ is a graded v∗-gauge. Conversely, if β is a w-gauge and α∗ is a graded
v∗-gauge, then α is a v-gauge since grα(A) = grα∗

(

grβ(A)
)

.
Assume now that α is a v-gauge. For the centers we have the obvious inclusions

grα (Z(A)) = grα∗
(

grβ(Z(A))
) ⊆ grα∗

(

Z(grβ(A))
)

⊆ Z
(

grα∗(grβ(A))
) = Z

(

grα(A)
)

. (4.8)
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Thus, Z
(

grα(A)
) = grα (Z(A)) if and only if we have equalities throughout (4.8);

since grα∗( ) preserves strict inclusions, this holds if and only if

grβ (Z(A)) = Z
(

grβ(A)
)

and grα∗
(

Z(grβ(A))
) = Z

(

grα∗(grβ(A))
)

.

Assume we have these equalities. Let Z = Z(A), which is a direct product of fields, as
A is semisimple. The separability condition on the graded center required for tameness
holds for α if and only if it holds for α∗, since they have the same graded rings. Sup-
pose now that grβ(Z) is not separable over grw(F). Because grβ(A) is semisimple,
its center grβ(Z) is a direct product C1 ×· · ·×Ck of graded fields, and some C j must
not be separable over grw(F). By [10, Prop. 3.7, Prop. 3.5] there is a graded field T
with grw(F) ⊆ T � C j and C j purely inseparable over T. So,

grv(F) = grα∗
(

grw(V )
) ⊆ grα∗(T) � grα∗(C j ),

and grα∗(C j ) is purely inseparable over grα∗(T). Now,

grα(Z) = grα∗
(

grβ(Z)
) =

k
∏

i=1
grα∗(Ci ).

Since grα∗(C j ) is purely inseparable over grα∗(T), it cannot be separable over grv(F),
so grα(Z) is not separable over grv(F). Thus, grα(Z) is separable over grv(F) if and
only grα∗

(

grβ(Z)
)

is separable over grv∗
(

grw(F)
)

and grβ(Z) is separable over
grw(F). Therefore, α is a tame v-gauge if and only if β is a tame w-gauge and α∗ is
a tame graded v∗-gauge. ��

5 Descent of norms

Throughout this section, we fix the following notation: V is a finite-dimensional vec-
tor space over a field F , and v : F → � ∪ {∞} is a valuation. Let (Fh, vh) be a
Henselization of (F, v). If α : V ⊗F Fh → � ∪ {∞} is a vh-norm, then clearly
α|V : V → � ∪ {∞} is a v-value function, but not necessarily a v-norm unless � has
rank one, see Proposition 5.4 and Example 5.6. In this section, we give an inductive
criterion for α|V to be a v-norm when � is the divisible hull of �F and the rank rk(�)
is finite, see Proposition 5.5.

We first discuss the descent problem in a general context: let (K , vK ) be an arbitrary
valued field extension of (F, v), and let α : V ⊗F K → � ∪ {∞} be a vK -norm. We
identify V with its canonical image in V ⊗F K . For any x ∈ V and c ∈ K we have

α(x ⊗ c) = α((x ⊗ 1) · c) = α|V (x)+ vK (c).

Therefore, for any γ ∈ �V,α|V and δ ∈ �K the usual F-bilinear map V ×K → V ⊗F K
sends V≥γ × K≥δ into (V ⊗F K )≥γ+δ . Likewise, V>γ × K≥δ and V≥γ × K>δ map
into (V ⊗F K )>γ+δ . Consequently, there is a well- defined induced map Vγ × Kδ →
(V ⊗F K )γ+δ given by (̃x, c̃) �→ ˜x ⊗ c. The direct sum of these maps over all such

123



140 J.-P. Tignol, A. R. Wadsworth

γ, δ yields a homomorphism grα|V (V )× grvK
(K ) → grα(V ⊗F K ), which is clearly

grv(F)-bilinear; hence there is a canonical map

χ : grα|V (V )⊗grv(F) grvK
(K ) → grα(V ⊗F K )

which maps x̃ ⊗ c̃ to ˜x ⊗ c for x ∈ V and c ∈ K .
On the other hand, recall from Sect. 1 (see (1.5)) that if α|V is a v-norm on V , then

there is a canonical isomorphism of grvK
(K )-vector spaces

ρ : grα|V ⊗vK
(V ⊗F K ) ∼−→ grα|V (V )⊗grv(F) grvK

(K )

which maps ˜x ⊗ c to x̃ ⊗ c̃ for x ∈ V and c ∈ K .

Lemma 5.1 The following conditions are equivalent:

(a) α|V is a v-norm on V and α = α|V ⊗ vK .
(b) V contains a K -splitting base of the norm α on V ⊗F K .
(c) α|V is a v-norm and the canonical map χ is injective.

When these conditions hold, the map χ is a graded isomorphism, which is the inverse
of ρ, and �V ⊗F K ,α = �V,α|V + �K ,vK .

Proof (b) ⇒ (a) If B = (ei )
n
i=1 ⊆ V is a splitting base for α on V ⊗F K , then B is

clearly also a splitting base for α|V on V . So, α|V is a v-norm. Furthermore, by the
definition of α|V ⊗ vK , we have for any k1, . . . , kn ∈ K ,

(α|V ⊗ vK )
(

n
∑

i=1
ei ⊗ ki

) = min
1≤i≤n

(α|V (ei )+ vK (ki ))

= min
1≤i≤n

(α(ei ⊗ 1)+ vK (ki ))

= α
(

n
∑

i=1
(ei ⊗ 1) · ki

) = α
(

n
∑

i=1
ei ⊗ ki

)

,

showing that α|V ⊗ vK = α.
(a) ⇒ (c) When (a) holds, α|V is a norm, and χ is clearly the inverse of ρ, so χ is

injective.
(c) ⇒ (b) Suppose (c) holds. Let (ei )

n
i=1 be an F-splitting base for α|V on V . Then,

by [16, Cor. 2.3(ii)] ẽ1, . . . , ẽn are grv(F)-linearly independent in grα|V (V ). Hence,
ẽ1 ⊗˜1, . . . , ẽn ⊗˜1 are grvK

(K )-linearly independent in grα|V (V ) ⊗grv(F) grvK
(K ).

By the injectivity of χ the χ(ẽi ⊗˜1) = ˜ei ⊗ 1 are grvK
(K )-linearly independent in

grα(V ⊗F K ). But, since α and α|V are norms,

[grα(V ⊗F K ): grvK
(K )] = [V ⊗F K :K ] = [V :F] = n.

Therefore,
(

˜ei ⊗ 1
)n

i=1 is a homogeneous grvK
(K )-vector space base of

grα(V ⊗F K ), hence (ei ⊗ 1)ni=1 is a K -splitting base for α on V ⊗F K by [16,
Cor. 2.3(ii)].
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When the conditions (a) – (c) hold, we have

�V ⊗F K ,α = �V ⊗F K ,α|V ⊗vK = �V,α|V + �K ,vK

and the map χ is the inverse of ρ, so χ is an isomorphism. ��
Note that under the hypotheses of Lemma 5.1 if α|V is a norm then α ≥ α|V ⊗ vK .

For, if (ei )
n
i=1 is a v-splitting base for α|V on V , then for any k1, . . . , kn ∈ K ,

α
(

n
∑

i=1
ei ⊗ ki

) ≥ min
1≤i≤n

(α(ei ⊗ ki )) = min
1≤i≤n

(α(ei )+ vK (ki ))

= (α|V ⊗ vK )
(

n
∑

i=1
ei ⊗ ki

)

.

We next show that the inequality α ≥ α|V ⊗ vK is actually an equality when K is
immediate over F , but not in general.

Corollary 5.2 Let (K , vK ) be an immediate valued field extension of (F, v) and
let α : V ⊗F K → � ∪ {∞} be a vK -norm. If α|V is a norm, then α = α|V ⊗ vK .
So, the canonical map grα|V (V ) → grα(V ⊗F K ) is an isomorphism grα|V (V ) ∼=
grα(V ⊗F K ), and �V = �V ⊗F K .

Proof Since vK is immediate over v, we have grvK
(K ) = grv(F), so the canonical

map χ of Lemma 5.1(c) is just the injection grα|V (V ) ↪→ grα(V ⊗F K ) arising from
the canonical inclusion V ↪→ V ⊗F K . Thus, the corollary follows from Lemma 5.1,
using �K = �F for the last assertion. ��
Example 5.3 Let (K , vK ) be an extension of (F, v) with F � K . Let ξ ∈ K be such
that vK (ξ) = 0 and ξ /∈ F , and let V be a 2-dimensional F-vector space with base
(e1, e2). Let f = e1 ⊗1+e2 ⊗ ξ ∈ V ⊗F K , and consider the vK -norm α on V ⊗F K
with splitting base (e1 ⊗ 1, f ) such that

α(e1 ⊗ 1) = 0 and α( f ) > 0.

Then, as e2 = ( f − e1)ξ
−1, we have for c1, c2 ∈ F ,

α|V (e1c1 + e2c2) = α
(

(e1(c1 − ξ−1c2)+ f c2
)

= min
(

α(e1)+ vK (c1 − ξ−1c2), α( f )+ vK (c2)
)

= min (v(c1), v(c2)) .

Hence, (e1, e2) is a v-splitting base of V for α|V , showing that α|V is a v-norm on V .
However, α|V ⊗ vK < α since

(α|V ⊗ vK )( f ) = min (vK (1), vK (ξ)) = 0 < α( f ).
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Thus, the first condition in Lemma 5.1(a) holds, but not the second. The Lemma shows
that V does not contain any splitting base for the vK -norm α on V ⊗F K . Also, the
second condition in part (c) of the Lemma fails, since the canonical map χ satisfies

χ(ẽ1 ⊗ 1 + ẽ2 ⊗˜ξ) = ˜e1 ⊗ 1 + ˜e2 ⊗ ξ = 0.

We now turn to the descent problem posed at the beginning of this section, for
(K , vK ) = (Fh, vh) a Henselization of (F, v). The rank one case is easy:

Proposition 5.4 Let α : V ⊗F Fh → � ∪ {∞} be a vh-norm, let γ ∈ �, and suppose
im(α) ⊆ γ + (�F ⊗Z Q). If rk(�F ) = 1, then α|V is a v-norm and α = α|V ⊗ vh.

Proof Let (ei )
n
i=1 be an arbitrary F-base of V and let x ∈ V ⊗F Fh ,

x =
n
∑

i=1
ei ⊗ ki for some ki ∈ Fh .

Since rk(�F ) = 1, the field F is dense in Fh for the topology of the valuation vh : see
[7, Sect. 1.6] or use the fact that F is dense in its completion ̂F and that Fh embeds in
̂F by [8, Th. 17.18]. Furthermore, �F is dense in its divisible hull �F ⊗Z Q. For each
i , 1 ≤ i ≤ n, since α(x)− α(ei ⊗ 1) ∈ �F ⊗Z Q, we may therefore find an element
fi ∈ F such that

vh(ki − fi ) > α(x)− α(ei ⊗ 1).

Let y = ∑n
i=1 ei ⊗ fi = ∑n

i=1 ei fi ⊗ 1 ∈ V . Then,

α(x − y) = α
(

n
∑

i=1
ei ⊗ (ki − fi )

) ≥ min
1≤i≤n

(α(ei ⊗ (ki − fi )))

= min
1≤i≤n

(α(ei )+ vh(ki − fi )) > α(x).

Hence,

x̃ = ỹ ∈ grα|V (V ).

This proves that the monomorphism grα|V (V ) ↪→ grα(V ⊗F Fh) is an isomorphism.
Hence, as α is a norm,

[grα|V (V ): grv(F)] = [grα(V ⊗F Fh): grvh
(Fh)]

= [(V ⊗F Fh):Fh] = [V :F],

which shows that α|V is a v-norm. ��
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Now, suppose � = �F ⊗Z Q, with rk(�) > 1, and suppose � contains a convex
subgroup� of rank 1. As in Sect. 4, we consider the canonical map ε : � → �/� = �

and the coarser valuation

w = ε ◦ v : F → � ∪ {∞}.

Let (Fh,v, vh) be a Henselization of (F, v) and (Fh,w, wh) a Henselization of (F, w).
Let also

y = ε ◦ vh : Fh,v → � ∪ {∞}.

By [9, Cor. 4.1.4, p. 90], the valuation y is Henselian, hence we may assume
(Fh,w, wh) ⊆ (Fh,v, y).

Let α : V ⊗F Fh,v → � ∪ {∞} be a vh-norm, and let

β = ε ◦ α : V ⊗F Fh,v → � ∪ {∞}.

By Proposition 4.3, the map β is a y-norm.

Proposition 5.5 If β|V is a w-norm and β = β|V ⊗ y, then α|V is a v-norm on V
and α = α|V ⊗ vh.

Proof As observed in Sect. 4, the valuation v induces a valuation u on the residue
field F

w
,

u : F
w → � ∪ {∞}.

Note that the value group of u is�F = �F ∩� and, as� is divisible and torsion-free,

�F ⊗Z Q = (�F ⊗Z Q) ∩ (�⊗Z Q) = � ∩� = �.

Let �V = β|V (V \ {0}) ⊆ �. Clearly, β|V = ε ◦ (α|V ). In order to show that α|V is
a norm, it therefore suffices, by Proposition 4.3, to show that each map

(α|V )λ : V β|V
λ → λ ∪ {∞}, for λ ∈ �V , (5.1)

is a u-norm. To simplify notation, we write Vλ for V β|V
λ . Note that the canonical inclu-

sion V ↪→ V ⊗F Fh,v is compatible with the respective value functions β|V and β so
yields an injection Vλ ↪→ (V ⊗F Fh,v)

β
λ ; let V ′

λ denote the image of Vλ. Then, clearly
αλ|V ′

λ

∼= (α|V )λ.

Let uh : Fh,v
y → � ∪ {∞} be the valuation induced by vh . As observed by

Morandi [14, p. 239], (Fh,v
y
, uh) is a Henselization of (F

w
, u). Since α is a vh-norm,

Proposition 4.3 shows that

αλ : (V ⊗F Fh,v)
β
λ → λ ∪ {∞}
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is a uh-norm for every λ ∈ �V . Since (Fh,v, y) is an inertial extension of (Fh,w, wh)

by [14, p. 239], we have

gry(Fh,v) ∼= grwh
(Fh,w)⊗grwh

(Fh,w)0 gry(Fh,v)0

= grw(F)⊗grw(F)0 gry(Fh,v)0.

Because β = β|V ⊗ y, this yields graded isomorphisms

grβ(V ⊗F Fh,v) ∼= grβ|V (V )⊗grw(F) gry(Fh,v)

∼= grβ|V (V )⊗grw(F)0 gry(Fh,v)0 ∼= grβ|V (V )⊗F
w Fh,v

y
.

For any λ ∈ �F , when we restrict these graded isomorphisms to the λ-component we
obtain the Fh,v

y
-vector space isomorphism

ψ : (V ⊗F Fh,v)
β
λ

∼−→ Vλ ⊗F
w Fh,v

y
.

Let α̂ = αλ ◦ ψ−1 : Vλ ⊗F
w Fh,v

y → λ ∪ {∞}, which is the uh-value function on
im(ψ) corresponding to αλ on the domain of ψ . Since αλ is a uh-norm, so is α̂.
Because (Fh,v

y
, uh) is a Henselization of (F

w
, u) and λ is a coset of� = �F ⊗Z Q,

which has rank 1, with �F the value group of u, Proposition 5.4 applies to α̂, and
shows that α̂|Vλ is a u-norm. Note that ψ maps the V ′

λ defined above after (5.1) to
the copy of Vλ in im(ψ). So, αλ|V ′

λ

∼= α̂|Vλ . But, we saw above that (α|V )λ ∼= αλ|V ′
λ
.

Since α̂|Vλ is a u-norm, these isomorphisms show that (α|V )λ is also a u-norm. Thus,
by Proposition 4.3 α|V is a v-norm; then α = α|V ⊗ vh by Corollary 5.2. ��

The following is an example of a norm on a Henselization that does not descend to
a norm.

Example 5.6 Let k be any field with char(k) 
= 2, and let F = k(x, y) with x and y
algebraically independent over k. Let v be the valuation on F obtained by restriction
from the canonical Henselian valuation on k((x))((y)), so�F = Z × Z and F = k. Let

(Fh, vh) be a Henselization of (F, v). Let A =
(

1+x, y
F

)

, a quaternion division algebra

over F , and let Ah = A ⊗F Fh . The algebra Ah is split since 1 + x ∈ F×2
h . Therefore,

we may find vh-gauges on Ah that are unramified, in the sense that �Ah = �F . Fix
such a vh-gauge α. We claim that α|A is not a v-norm on A.

Suppose the contrary. Then grα|A
(A) = grα(Ah) by Lemma 5.2, so α|A is a

v-gauge. Consider the convex subgroup � = Z × {0} ⊆ �F and the canonical
epimorphism

ε : �F → �F/� = Z.

Let w = ε ◦ v : F → Z ∪ {∞}, which is the y-adic valuation on F , and let
β = ε ◦ α : Ah → Z ∪ {∞}. Proposition 4.4 shows that β|A is a tame w-gauge on
A. However, the y-adic valuation w extends to A, so by [18, Cor. 3.4] β|A is the
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(unique) valuation on A that extends w. In particular, if j ∈ A satisfies j2 = y we
must have β|A( j) = 1

2 . This is a contradiction since β|A is unramified.

6 Non-Henselian valuations

Let (F, v) be a valued field and let A be a finite-dimensional simple F-algebra with
an involution σ . Let K = Z(A), and assume F is the subfield of K fixed under σ . Fix
a Henselization (Fh, vh) of (F, v).

Theorem 6.1 Suppose A is split by the maximal tamely ramified extension of Fh.
Moreover, if char(F) = 2 suppose that σ is not an orthogonal involution. Then, the
following conditions are equivalent:

(a) σ ⊗ idFh is an anisotropic involution on A ⊗F Fh;
(b) there exists a σ -special v-gauge ϕ on A i.e., ϕ(σ(x)x) = 2ϕ(x) for all x ∈ A.

When they hold, ϕ is the unique v-gauge on A that is invariant under σ , it is tame,
and its value group lies in the divisible hull of �F .

Proof Let Ah = A ⊗F Fh and σh = σ ⊗ idFh . If ϕ is a σ -special v-gauge on
A, then by Proposition 1.1 ϕ is invariant under σ and σ̃ is anisotropic on grϕ(A).
By Corollary 1.4, ϕ ⊗ vh is invariant under σh . Since

grϕ⊗vh
(Ah) ∼= grϕ(A)⊗grv(F) grvh

(Fh) ∼= grϕ(A)

and σ̃h ∼= σ̃ , it follows that σ̃h is anisotropic, hence σh must also be anisotropic,
proving (b) ⇒ (a).

Now, suppose (a) holds. Let ϕ1 and ϕ2 be v-gauges on A that are each invariant
under σ . Then, by Corollary 1.4 each ϕi ⊗ vh is a surmultiplicative vh-norm on Ah

which is invariant under σh . Moreover, ϕi ⊗ vh is a gauge on Ah since grϕi ⊗vh
(Ah) ∼=

grϕi
(A)⊗grv(F)grvh

(Fh) ∼= grϕi
(A) andϕi is a gauge on A. Since σh is assumed aniso-

tropic, the uniqueness part of Theorem 2.2 (applied to σh on Ah) yields ϕ1 ⊗ vh =
ϕ2 ⊗ vh , hence ϕ1 = ϕ2. Theorem 2.2 also shows that ϕ1 ⊗ vh is tame and satisfies
ϕ1 (σh(x)x) = 2ϕ1(x) for all x ∈ Ah , hence ϕ1 is tame and satisfies condition (b).
Furthermore, �A,ϕ1 = �Ah ,ϕ1⊗vh which lies in the divisible hull of �Fh = �F by
Theorem 2.2.

Thus, it only remains to prove the existence of a v-gauge on A invariant under σ ,
assuming σh is anisotropic. Note first that K ⊗F Fh is a field. For, otherwise, as K is
Galois over F with [K :F] = 2, K ⊗F Fh would be a direct sum of two fields, and the
nontrivial Fh-automorphism σ |K⊗F Fh must permute the two primitive idempotents of
K ⊗F Fh , call them e1 and e2. Then, σh(e1)e1 = e2e1 = 0; but, this cannot happen as
σh is anisotropic. Since K ⊗F Fh is a field and K = Z(A), Ah ∼= A ⊗K (K ⊗F Fh)

is a central simple K ⊗F Fh-algebra.
Because Ah is simple, σh is anisotropic, and vh is Henselian, Theorem 2.2 yields a

σh-invariant vh-gauge ϕh on Ah whose value set lies in the divisible hull of�Fh = �F .
The restriction ϕ = ϕh |A is clearly a σ -invariant v-value function whose value set lies
in the divisible hull of�F . Henceforth, we may thus assume� = �F ⊗ZQ. If we show
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that ϕ is a v-norm, then Corollary 5.2 yields ϕh = ϕ⊗vh , so grϕ(A) = grϕ⊗vh
(Ah) =

grϕh
(Ah), hence ϕ is a v-gauge, and the proof will be complete.

Suppose first that rk(�F ) < ∞. We then argue by induction on rk(�F ). If rk(�F ) =
1, then Proposition 5.4 shows that ϕ is a v-norm. So, we may assume rk(�F ) > 1.
Let � ⊆ � be a convex subgroup of rank 1 and let

ε : � → � = �/�

be the canonical epimorphism. Letw = ε◦v and y = ε◦vh , to agree with the notation
of Sect. 5. So, w has value group �F = (�F + �)/�, and � = �F ⊗Z Q, which
has rank rk(�F ) − 1. Let (Fh,w, wh) ⊆ (Fh, y) be a Henselization of (F, w). Since
σh is anisotropic, its restriction σ ⊗ idFh,w is an anisotropic involution on the subring
A ⊗F Fh,w of Ah . Since Ah ∼= (A ⊗F Fh,w)⊗Fh,w Fh and Ah is simple, A ⊗F Fh,w

must also be simple. Therefore, Theorem 2.2 applies, yielding a wh-gauge ψh on
A ⊗F Fh,w invariant under σ ⊗ idFh,w . By induction, ψh |A is a w-gauge on A invari-
ant under σ . The same argument as for ϕ1 above shows that the gauge ψ |A is tame.
Therefore, by [18, Cor. 1.26] ψh |A ⊗ y is a y-gauge on Ah , which is σh-invariant by
Corollary 1.4. But, ε◦ϕh is also a y-gauge on Ah , by Proposition 4.4 since ϕ is a gauge,
and ε◦ϕh is invariant under σh because ϕh is. By the uniqueness given in Theorem 2.2,
it follows that ε ◦ϕh = ψh |A ⊗ y. Restricting to A, we also have ε ◦ϕ = ψh |A, which
is a w-gauge so a w-norm on A. Furthermore, (ε ◦ ϕ) ⊗ y = ψh |A ⊗ y = ε ◦ ϕh .
Proposition 5.5 with α = ϕh then shows that ϕ is a v-norm. The theorem is thus proved
if rk(�F ) < ∞.

For the rest of the proof, assume that �F has infinite rank. Let (ai )
n
i=1 be an

F-base of A. Write ai ak = ∑

l ciklal for some cikl ∈ F and σ(ai ) = ∑

k dikak for
some dik ∈ F . Let F0 be the prime subfield of F , and let

F1 = F0({cikl , dik | 1 ≤ i, k, l ≤ n}) ⊆ F.

Let A1 be the F1-span of the ai , which is an F1-algebra. We have A1 ⊗F1 F = A and
σ restricts to an involution σ1 on A1. Now, let (ei )

n
i=1 be a splitting base of Ah for

the v-norm ϕh . We need to enlarge F1 to capture the ei in the Henselization: let L
be any field with F1 ⊆ L ⊆ F and L finitely generated over F1, and let vL = v|L .
Since Fh is Henselian, there is a unique Henselization (Lh, vL ,h) of (L , vL) inside
(Fh, vh) by [9, Th. 5.2.2(2), p. 121]. Because F is the direct limit of such fields L ,
the direct limit over such L of the (Lh, vL ,h) is a Henselian valued field (M, vM )with
F ⊆ M ⊆ Fh and vh |M = vM . Therefore, (M, vM ) = (Fh, vh) by the uniqueness of
the Henselization. Since Ah = A1 ⊗F1 M , there is a field F2 finitely generated over
F1 (hence also over F0) such that e1, . . . , en ∈ A1 ⊗F1 (F2)h . Let

A2 = A1 ⊗F1 F2 ⊆ A, A2,h = A1 ⊗F1 (F2)h = A2 ⊗F2 (F2)h ⊆ Ah .

Note that A2 is a simple F2-algebra since A = AF2 ⊗F2 F and A is simple. Let
σ2 = σ |A2 , which is an involution on A2, and let

σ2,h = σh |A2,h = σ2 ⊗ id(F2)h ,
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which is an anisotropic involution on A2,h . Let ϕ2 = ϕh |A2 and ϕ2,h = ϕh |A2,h .
Since Ah = A2,h ⊗(F2)h Fh and e1, . . . , en ∈ A2,h , Lemma 5.1 says that ϕ2,h is a
vF2,h-norm on A2,h and ϕh = ϕ2,h ⊗ vh . Now, F2 is finitely generated over the prime
field F0, so rk(�F2,vF2

) ≤ trdeg(F2/F0) < ∞ by [1, Ch. 6, Sect. 10.3, Cor. 2]. Since
ϕ2,h is a vF2,h-norm, the finite rank case shows that ϕ2 is a vF2 -norm on A2; then,
ϕ2,h = ϕ2 ⊗ vF2,h by Corollary 5.2. Hence,

ϕ2 ⊗ vh = (ϕ2 ⊗ vF2,h)⊗ vh = ϕ2,h ⊗ vh = ϕh .

Therefore, as ϕ2 is a norm, ϕh |A = (ϕ2 ⊗vh)|A2⊗F2 F = ϕ2 ⊗v, which is a norm since
it is a scalar extension of the norm ϕ2. ��
Corollary 6.2 With the hypotheses on A, σ , and v as in Theorem 6.1, let ϕ be a
v-gauge on A which is invariant under σ . Then,

(a) If the residue involution σ0 is anisotropic, then ϕ is the unique σ -special v-gauge
on A.

(b) If σ0 is isotropic, then there is no σ -special v-gauge on A.

Proof Let (Fh, vh) be a Henselization of (F, v), and let Ah = A ⊗F Fh and σh =
σ ⊗ idFh . Let ϕh = ϕ ⊗ vh , a surmultiplicative value function on Ah which is invari-
ant under the involution σh , by Corollary 1.4. The graded isomorphisms grϕh

(Ah) ∼=
grϕ(A)⊗grv(F) grvh

(Fh) ∼= grϕ(A) show that ϕh is a gauge on Ah , and σ̃h ∼= σ̃ and
(σh)0 ∼= σ0. (a) If σ0 is anisotropic, then so is (σh)0, and so also is σh by Corollary 2.3.
Theorem 6.1 then shows that ϕ is a σ -special v-gauge and is the unique such v-gauge
on A, proving (a). For (b), we prove the contrapositive: If there were a σ -special
v-gauge ψ for A then the uniqueness in Theorem 6.1 shows that ϕ = ψ . Hence, σh is
anisotropic by Theorem 6.1, so (σh)0 is anisotropic by Corollary 2.3, which implies
σ0 is anisotropic as well. ��
Example 6.3 Even when there is no σ -special v-gauge on A, there may still be tame
v-gauges on A invariant under σ , but they need not be unique. For example, let A
the quaternion division algebra (−1,−1)Q over the field of rational numbers, and
let v be the 3-adic valuation on Q. Let (1, i, j, k) be the quaternion base of A with
i2 = j2 = −1 and k = i j = − j i . As shown in [18, Ex. 1.16], a v-gauge ϕ can be
defined on A by

ϕ(a0 + a1i + a2 j + a3k) = min (v(a0), v(a1), v(a2), v(a3)).

Clearly, the residue algebra of A for ϕ is A0 = (−1,−1)F3
∼= M2(F3). The v-gauge ϕ

is obviously invariant under the conjugation involution σ on A. (This is the involution
with σ(i) = −i and σ( j) = − j , which is the unique symplectic involution on A.)
Since A is a division algebra, σ must be anisotropic. The residue involution σ0 is the
conjugation involution on A0, which is isotropic, since σ0(t)t = NrdA0(t) for any t in
the split quaternion algebra A0. So, by Corollary 6.2(b) there is no σ -special v-gauge
on A. For any unit u ∈ A× the map ϕu defined by

ϕu(x) = ϕ(uxu−1) for x ∈ A
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is a v-gauge on A, and Prop. 1.17 of [18] shows that ϕu = ϕ if and only if ũ is invert-
ible in grϕ(A), which is not a graded division ring. But, for every u ∈ A×, since ϕ is
invariant under σ and σ(u)u is central,

ϕu(σ (x)) = ϕ(σ [(σ (u−1)xσ(u)]) = ϕ(σ(u−1)xσ(u))

= ϕu([σ(u)u]−1x[σ(u)u]) = ϕu(x),

showing that ϕu is invariant under σ .

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Bourbaki, N.: Elements of Mathematics, Commutative Algebra. Addison-Wesley, Reading (1972).
English trans. of Éléments de Mathématique, Algèbre Commutative

2. Dejaiffe, I.: Somme orthogonale d’algèbres à involution et algèbre de Clifford. Comm. Algebra 26,
1589–1612 (1998)

3. Dejaiffe, I., Lewis, D.W., Tignol, J.-P.: Witt equivalence of central simple algebras with involu-
tion. Rend. Circ. Mat. Palermo 49(2), 325–342 (2000)

4. Dixmier, J.: Les C∗-algèbres et leurs représentations. Gauthier-Villars & Cie, Éditeur, Paris (1964).
English trans.: C∗-Algebras. North-Holland, Amsterdam (1977)

5. Ershov, Yu.L.: Valued division rings. In: Fifth All Union Symposium, Theory of Rings, Algebras, and
Modules, pp. 53–55. Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk (1982, in Russian)

6. Ershov, Yu.L.: Henselian valuations of division rings and the group SK1. Math. USSR Sbornik 45,
63–71 (1983)

7. Ershov, Yu.L.: Multi-Valued Fields. Kluwer, New York (2001)
8. Endler, O.: Valuation Theory. Springer, New York (1972)
9. Engler, A.J., Prestel, A.: Valued Fields. Springer, Berlin (2005)

10. Hwang, Y.-S., Wadsworth, A.R.: Algebraic extensions of graded and valued fields. Comm.
Algebra 27, 821–840 (1999)

11. Hwang, Y.-S., Wadsworth, A.R.: Correspondences between valued division algebras and graded divi-
sion algebras. J. Algebra 220, 73–114 (1999)

12. Knus, M.-A., Merkurjev, A.S., Rost, M., Tignol, J.-P.: The Book of Involutions. Coll. Pub. 44. Amer.
Math. Soc., Providence (1998)

13. Larmour, D.W.: A Springer Theorem for Hermitian forms. Math. Z. 252, 459–472 (2006)
14. Morandi, P.: The Henselization of a valued division algebra. J. Algebra 122, 232–243 (1989)
15. Pierce, R.S.: Associative Algebras. Springer, New York (1982)
16. Renard, J.-F., Tignol, J.-P., Wadsworth, A.R.: Graded Hermitian forms and Springer’s theorem. Indag.

Math., N.S. 18, 97–134 (2007)
17. Schilling, O.F.G.: The Theory of Valuations. Amer. Math. Soc., New York (1950)
18. Tignol, J.-P., Wadsworth, A.R.: Value functions and associated graded rings for semisimple alge-

bras. Trans. Am. Math. Soc. 362, 687–726 (2010)
19. Wadsworth, A.R.: Extending valuations to finite-dimensional division algebras. Proc. Am. Math.

Soc. 98, 20–22 (1986)
20. Weil, A.: Algebras with involutions and the classical groups. J. Indian Math. Soc. (N.S.) 24,

589–623 (1960)

123


	Valuations on algebras with involution
	Abstract
	Introduction
	1 Special gauges
	2 Henselian valuations
	3 Scalar extensions of involutions
	4 Composition of value functions
	5 Descent of norms
	6 Non-Henselian valuations
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


