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Abstract We consider a generalization of the Stokes resolvent equation, where the
constant viscosity is replaced by a general given positive function. Such a system arises
in many situations as linearized system, when the viscosity of an incompressible, vis-
cous fluid depends on some other quantities. We prove that an associated Stokes-like
operator generates an analytic semi-group and admits a bounded H∞-calculus, which
implies the maximal Lq -regularity of the corresponding parabolic evolution equation.

The analysis is done for a large class of unbounded domains with W
2− 1

r
r -boundary for

some r > d with r ≥ q, q ′. In particular, the existence of an Lq -Helmholtz projection
is assumed.

Mathematics Subject Classification (2000) 35Q30 · 76D07 · 47A60 · 47F05

1 Introduction and assumptions

We consider the following Stokes-like resolvent system

λv − div(2ν(x)Dv)+ ∇ p = f in Ω, (1.1)

div v = g in Ω, (1.2)

v|Γ1 = 0 on Γ1, (1.3)

n · T (v, p)|Γ2 = a on Γ2, (1.4)
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382 H. Abels, Y. Terasawa

where v : Ω → R
d is the velocity of the fluid, p : Ω → R is the pressure,

T (v, p) = 2ν(x)Dv − pI

is the stress tensor, Dv = 1
2 (∇v + ∇vT ), ν : Ω → (0,∞) is a variable viscosity

coefficient, and Ω ⊆ R
d , d ≥ 2, is a suitable domain with boundary ∂Ω = Γ1 ∪ Γ2

consisting of two closed, disjoint (possibly empty) components Γ j , j = 1, 2. More-
over, we denote S(v) = 2νDv.

In the case that ν(x) = ν0 ∈ (0,∞) is independent of x the latter system was
extensively studied in many kinds of different domains relevant for mathematical fluid
mechanics. The system arises as linear system of the non-stationary Navier–Stokes
equations for incompressible fluids after Laplace transformation, which
replaces the derivative in time by a spectral parameter λ. But in many situations
the viscosity ν of an incompressible fluid depends on some quantities as, e.g., the
shear rate |Dv| in the case of some non-Newtonian fluids, cf. e.g., Malek et al. [40],
or a concentration c as in the case of diffuse interface models for free boundary value
problems, cf. e.g., Abels [4].

First results on general non-stationary Stokes systems, including the latter case of
variable viscosity, were obtained by Solonnikov [49,50] in Lq -Sobolev spaces and
weighted Hölder spaces and Bothe and Prüß [20] in Lq -Sobolev spaces, where appli-
cations to non-Newtonian fluids are treated as well. Some results on the Stokes system
with variable viscosity in L2-Sobolev spaces can also be found in [4,13], where appli-
cations to a diffuse interface model are also treated. Finally, we note that Ladyženskaja
and Solonnikov [42] and later Danchin [22] obtained results for a similar non-station-
ary Stokes system with variable density instead of variable viscosity.

The purpose of the present contribution is to study the (generalized) Stokes resol-
vent equation (1.1)–(1.4) and an associated Stokes operator in Lq -Sobolev spaces,
1 < q < ∞, in a class of general bounded and unbounded domain, which is similar to
the class in [8] and which covers most cases studied so far in the case of constant vis-
cosity. More precisely, we will show that the associated Stokes operator −Aq , defined
below, generates an analytic semi-group e−t Aq , t ≥ 0, on Lq(Ω)d . We will even show
that Aq admits a bounded H∞-calculus in the sense of McIntosh [44]. This has several
strong implication as will be explained below.

In the case of constant viscosity the boundedness and analyticity of the Stokes
semi-group was proved by Giga [32] for the case of bounded domains, Borchers
and Sohr [18] and Borchers and Varnhorn [19] for the case of an exterior domain, and
Farwig and Sohr [31] in the case of an aperture domain. We refer to Farwig and
Sohr [30] for a general approach to unbounded and bounded domains. The case of infi-
nite layers and layer-like domains were discussed by Abe and Shibata [2,3], Abe [1],
Abels and Wiegner [14], and Abels [10,12]. The case of an infinite cylinder was treated
by Farwig and Ri [28,29]. For the proof of bounded imaginary powers or a bounded
H∞-calculus in the latter domains we refer to Giga [33], Giga and Sohr [34], Noll
and Saal [46], Farwig and Ri [28], and Abels [5,7,8,11]. Finally, we refer to Farwig,
Kozono, and Sohr [27] for results on the Stokes system in general unbounded domains
with uniform C2-boundary in Sobolev spaces based on Lq(Ω)∩L2(Ω) if 2 ≤ q < ∞
and Lq(Ω)+ L2(Ω) if 1 < q ≤ 2.
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Stokes operators with variable viscosity 383

Before we present our main results we state the assumptions on the domain and
related function spaces:

Assumption 1 Let 1 < q < ∞, let d < r1, r2 ≤ ∞ such that q, q ′ ≤ min(r1, r2),
and let ν(x) = ν∞ + ν′(x) such that ν′(x) ∈ W 1

r1
(Ω) and ν(x) ≥ ν0 > 0 for all

x ∈ Ω . Moreover, let Ω ⊆ R
d , d ≥ 2, be a domain and ∂Ω = Γ1 ∪ Γ2 with Γ1, Γ2

closed and disjoint satisfying the following conditions:

(A1) There is a finite covering of Ω with relatively open sets U j , j = 1, . . . ,m,

such that U j coincides (after rotation) with a relatively open set of Rd
γ j

, where

R
d
γ j

:= {(x ′, xd) ∈ R
d : xd > γ j (x ′)}, γ j ∈ W

2− 1
r 2

r2 (Rd−1). Moreover, suppose

that there are cut-off functions ϕ j , ψ j ∈ C∞
b (Ω), j = 1, . . . ,m, such that ϕ j ,

j = 1, . . . ,m, is a partition of unity, ψ j ≡ 1 on suppϕ j , and suppψ j ⊂ U j ,
j = 1, . . . ,m.

(A2) For every f ∈ Ls(Ω)d , s = q, q ′, there is a unique decomposition f = f0+∇ p
with f0 ∈ Js(Ω) and p ∈ Ẇ 1

s,Γ2
(Ω) where

Js(Ω) :=
{

f ∈ C∞
(0)(Ω ∪ Γ2)d : div f = 0

}Ls (Ω)

,

Ẇ 1
s,Γ2

(Ω) :=
{

p ∈ Ẇ 1
s (Ω) : p|Γ2 = 0

}
.

(A3) For every p ∈ Ẇ 1
s,Γ2

(Ω), s = q, q ′, there is a decomposition p = p1 + p2

such that p1 ∈ W 1
s (Ω) with p1|Γ2 = 0, p2 ∈ Ls

loc(Ω) with ∇ p2 ∈ W 1
s (Ω) and

‖(p1,∇ p2)‖W 1
s (Ω)

≤ C‖∇ p‖s .

Remark 1 1. It is easy to see that (A1) is fulfilled for all kinds of domains with

W
2− 1

r2
r2 -boundary mentioned above. The assumption (A2) guarantees the exis-

tence of a Helmholtz-projection adapted to the boundary conditions (1.3)–(1.4).
We refer to [10,26,30,31,45,48] for the validity of the Helmholtz decomposition
for these types of domains for the case Γ2 = ∅. Moreover, (A3) is a technical
condition needed in the Sect. 6 below. It is used to overcome the difficulty that
multiplication with not compactly supported cut-off functions is not continuous
on Ẇ 1

q,Γ (Ω) in general. The condition is satisfied if the following extension prop-

erty is valid: For every p ∈ Ẇ 1
q (Ω) there is an extension p̃ ∈ Ẇ 1

q (R
d) such that

p̃|Ω = p and ‖∇ p̃‖q ≤ C‖∇ p‖q . This is the case for every (ε,∞)-domain, cf.
[21], in particular, for exterior domains. This extension property does not hold for
layer-like domains, cf. [10, Sect. 2.4]. Nevertheless (A3) is also valid in layer-like
domains, cf. [10, Lemma 2.4].

2. Let us comment on the regularity assumptions on ν and ∂Ω . First of all, ν ∈
W 1

r1
(Ω) with r1 > d implies that multiplication with ν defines a continuous map-

ping on W 1
q (Ω) for every 1 ≤ q < r1, cf. Lemma 1 below. In particular, this

implies that div(2νDv) ∈ Lq(Ω)d for every v ∈ W 2
q (Ω)

d and 1 ≤ q < r1. Since
we will partly argue by duality, we also require q ′ < r1. Moreover, since r1 > d,

W 1
r1
(Ω) ↪→ C

1− d
r1 (Ω). Therefore div(2νDv) = ν(∆v + ∇ div v) + ∇ν · Dv,
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where ∇ν · Dv is of lower order and the principal part ν(∆v+∇ div v) has Hölder
continuous coefficients. The latter property is essential to apply pseudodiffer-
ential operator methods with symbols that are Hölder continuous with respect
to the space variable x . Concerning the boundary regularity, we note that every

γ ∈ W
2− 1

r2
r2 (Rd−1) can be extended to some Γ ∈ W 2

r2
(Rd+), which is then used to

build suitable coordinate transformations. After transforming the (reduced) Stokes
system on R

d
γ to R

d+, the principal part of transformed differential operators will

have coefficients depending on ∇Γ ∈ W 1
r2
(Rd+), which embeds again to a space

of Hölder continuous functions since r2 > d. Hence multiplication by ∇Γ plays
a similar role as multiplication by ν and that is where the conditions related to
r1, r2 in the assumptions come from. Finally, let us note that, if ∂Ω is compact,

C1,1(∂Ω) ↪→ W
2− 1

r ′
r ′ (∂Ω) ↪→ W

2− 1
r

r (∂Ω) for all 1 ≤ r ≤ r ′ ≤ ∞. Therefore
the local regularity decreases if r1, r2 are chosen smaller and the case r1 = r2 = ∞
corresponds to the strongest regularity assumptions. On the other hand, the smaller
r1, r2 are chosen, the more restrictive the condition q, q ′ < min(r1, r2) gets.

In some parts of the paper we will assume additionally that the following assumption
holds:

(A4) There is some R > 0 such that for every λ ∈ Σδ with |λ| ≥ R there is no
non-trivial solution g ∈ W 1

q (Ω) with g|Γ2 = 0 of

λ(g, ϕ)Ω + (ν∇g,∇ϕ)Ω = 0 for all ϕ ∈ W 1
q ′,Γ2

(Ω). (1.5)

Here W 1
q ′,Γ2

(Ω) = {ϕ ∈ W 1
q ′(Ω) : ϕ|Γ2 = 0}. We will show later that (A4) is a

consequence of Assumption 1, cf. Lemma 14 below.
The reduced Stokes operator Aq on Lq(Ω)d is defined as

Aqv = − div(ν∇v)+ ∇ Pv − ∇νT ∇vT (1.6)

D(Aq) =
{
v ∈ W 2

q (Ω)
d : v|Γ1 = 0, T ′

1v|Γ2 = 0
}
,

where T ′
1v is defined by

(T ′
1v)τ = (n · S(v))τ |Γ2 , (T ′

1v)n = ν div v|Γ2 . (1.7)

Here fτ , fn denotes the tangential, normal component, resp., of a vector field f at the

boundary ∂Ω . Moreover, Pv ≡ p1 ∈ Ẇ 1
q (Ω) with p1|Γ2 ∈ W

1− 1
q

q (Γ2) is defined as
the solution of

(∇ p1,∇ϕ)Ω = (ν(∆− ∇ div)v,∇ϕ)Ω + (Dv, 2∇ν ⊗ ∇ϕ)Ω, (1.8)

p1|Γ2 = 2ν∂nvn (1.9)

for all ϕ ∈ Ẇ 1
q ′,Γ2

(Ω) =
{
ϕ ∈ Ẇ 1

q ′(Ω) : ϕ|Γ2 = 0
}

. Note that the righthand-side of

(1.8) defines a bounded linear functional on Ẇ 1
q ′,Γ2

(Ω). The existence of a solution
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Stokes operators with variable viscosity 385

of (1.8)–(1.9) that is unique (up to a constant if Γ2 = ∅) follows from the exis-
tence of a unique Helmholtz decomposition, i.e., (A2), cf. Lemma 2 below. Then

P : W 2
q (Ω)

d →
{

p ∈ Ẇ 1
q (Ω) : p|Γ2 ∈ W

1− 1
q

q (Γ2)

}
is a bounded linear operator.

The connection to the original system is discussed in Sect. 3 below. We note that
the definition of Aq , in particular the lower order term ∇νT ∇vT , is chosen such that
for all u ∈ D(Aq) with div u = 0 and v ∈ W 1

q ′(Ω) with v|Γ1=0, div v = 0

(Aqu, v)Ω = (− div(2νDu), v)Ω + (∇ Pu, v)Ω
= (2νDu, Dv)Ω − (n · S(u) · n, vn)Γ2 + (2ν∂nun, vn)Γ2

= (2νDu, Dv)Ω (1.10)

holds.
The main result is the following:

Theorem 1 Let Ω ⊆ R
d , d ≥ 2, δ ∈ (0, π), and q, r1, r2 be as in Assumption 1.

Then there is some R > 0 such that (λ+ Aq)
−1 exists and

‖(λ+ Aq)
−1‖L(Lq (Ω)) ≤ Cq,δ

1 + |λ| (1.11)

for all λ ∈ Σδ with |λ| ≥ R. Moreover,

∥∥∥∥∥∥∥

∫

ΓR

h(−λ)(λ+ Aq)
−1 dλ

∥∥∥∥∥∥∥L(Lq (Ω))

≤ Cq,δ‖h‖L∞(Σπ−δ) (1.12)

for every h ∈ H∞(δ), where ΓR = Γ \ BR(0) and H∞(δ) denotes the Banach algebra
of all bounded holomorphic functions h : Σπ−δ → C. In particular, for every c ∈ R

and 0 < δ′ ≤ δ such that c + Σδ′ ⊂ ρ(−Aq) the shifted reduced Stokes operator
c + Aq admits a bounded H∞-calculus with respect to δ′, i.e.,

h(c + Aq) := 1

2π i

∫

Γ

h(−λ)(λ+ c + Aq)
−1 dλ (1.13)

is a bounded operator satisfying

‖h(c + Aq)‖L(Lq (Ω)) ≤ Cq,δ‖h‖L∞(Σπ−δ) (1.14)

for all h ∈ H∞(δ′).

We note that in order to prove (1.14) for all h ∈ H∞(δ) it is sufficient to show the
estimate for h ∈ H(δ), which consists of all h ∈ H∞(δ) such that
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386 H. Abels, Y. Terasawa

|h(z)| ≤ C
|z|s

1 + |z|2s
for all z ∈ Σπ−δ

for some s > 0, cf. Denk, Hieber, and Prüss [24, Sect. 2.4].
We note that (A2) is always true in the case of a bounded domain because of [48]

and since W
2− 1

r2
r2 (Rd−1) ↪→ C1(Rd−1) if r2 > d. Moreover, (A1) is trivially true and

(A3) is valid too by Poincaré’s inequality. In this case we obtain:

Theorem 2 Let Ω ⊆ R
d , d ≥ 2, δ ∈ (0, π), and q, r1, r2 be as in Assumption 1.

Moreover, assume thatΩ is bounded and that Γ1 �= ∅. ThenΣδ ∪ {0} ⊆ ρ(−Aq) and

‖(λ+ Aq)
−1‖L(Lq (Ω)) ≤ Cq,δ

1 + |λ|
for all λ ∈ Σδ ∪ {0}. Moreover, Aq admits a bounded H∞-calculus with respect to δ.

Finally, note that, if c+ Aq admits a bounded H∞-calculus with respect to 0 < δ <

π , then, choosing h(λ) = λiy , y ∈ R, above, one obtains that c + Aq has bounded
imaginary powers (c + Aq)

iy , which satisfy

‖(c + Aq)
iy‖L(Lq (Ω)d ) ≤ Ce|y|(π−δ), (1.15)

where we note that supλ∈Σδ−π |λiy | = e|y|(π−δ). This has two important consequences,
which we summarize in the following. The first one concerns so-called maximal reg-
ularity of the reduced Stokes operator Aq and follows from the well-known result
due to Dore and Venni [25, Theorem 3.2] and its extension by Giga and Sohr [35,
Theorem 2.1].

Theorem 3 Let 1 < p < ∞, 0 < T ≤ ∞, and let Ω, q be as in Assumption 1.
Moreover, let c ∈ R be such that c + Aq is invertible and admits a bounded H∞-
calculus. Then for every f ∈ L p(0, T ; Lq(Ω)d) there is a unique solution u ∈
W 1

p(0, T ; Lq
σ (Ω)) ∩ L p(0, T ;D(Aq)) of

u′(t)+ (c + Aq)u(t) = f (t), 0 < t < T,

u(0) = 0

Moreover,

‖u′‖L p(0,T ;Lq ) + ‖(c + Aq)u‖L p(0,T ;Lq ) ≤ C‖ f ‖L p(0,T ;Lq ),

where C does not depend on T .

In particular, in the case of a bounded domain with W
2− 1

r2
r2 -boundary the latter the-

orem implies that Aq has maximal regularity on Lq(Ω)d for all 1 < q < ∞ with
q, q ′ ≤ min(r1, r2), where d < r1, r2 ≤ ∞ and ν ∈ W 1

r1
(Ω).

As a second application we note that the boundedness of (c + Aq)
iy and (1.15) can

be used to characterize the domain of the fractional powers (c + Aq)
α , 0 < α < 1, as
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Stokes operators with variable viscosity 387

D((c + Aq)
α) = (Lq(Ω)d ,D(Aq))[α],

where (., .)[α] denotes the complex interpolation functor, cf. [34, Proposition 6.1].
Here again c ∈ R is such that c + Aq is invertible and admits a bounded H∞-calculus.

The proof of Theorem 1 is based on a similar result for a bent half-space R
d
γ , cf.

Theorem 4 below, which is obtained by constructing a suitable approximation of the
resolvent (λ + Aq)

−1. The latter construction uses the technique developed in [11],
combined with newer results on the general calculus of pseudodifferential boundary
value problems studied in [9], adapted to the case of variable viscosity.

The structure of the article is as follows: In Sect. 2 we summarize some prelim-
inaries and some notation. In Sect. 3 we discuss how the pressure p and the diver-
gence equation can be eliminated from (1.1)–(1.4). This uses the ideas of Grubb and
Solonnikov, cf. e.g., [39]. The reduced system contains the non-local operator Pv,
which can be approximated naturally in the class of pseudodifferential boundary value
problems going back to Boutet de Monvel [23] and developed further by Grubb [37]
to parameter-dependent operators and by the first author to the case of non-smooth
symbols [6,9,11]. Section 4 is devoted to some needed results on coordinate trans-
formation and the change of operators under coordinate transformation. The main
step is done in Sect. 5, where a suitable result for a bent half-space is proved using
the previously mentioned techniques. Using the latter result, Theorem 1 is proved in
Sect. 6. Finally, the result for bounded domains, i.e., Theorem 2, is proved in Sect. 7.

2 Preliminaries

First of all, N will denote the set of natural numbers (without 0) and N0 := N ∪ {0}.
Moreover, we denote R

d+ = {x ∈ R
d : xd > 0}, a ⊗b = (ai b j )

d
i, j=1 for a, b ∈ R

d , e j

denotes the j th canonical unit vector, and [A, B] = AB − B A the commutator of two
operators A, B. We frequently use the decomposition x = (x ′, xd) of x ∈ R

d , where
x ′ ∈ R

d−1 denotes the first (d −1)-components of x . Moreover, we identify R
d−1 with

∂Rd+ = R
d−1 ×{0} and x ′ ∈ R

d−1 with (x ′, 0) in the following. For completeness, we
note that, if v : Ω → R

d is a suitable vector field, then ∇v = (∂ jvk)
d
j,k=1. Moreover,

if A : Ω → R
d×d is suitable, then div A = (

∑d
j=1 ∂ j a jk)

d
k=1, where A = (a jk)

d
j,k=1.

If X is a Banach space and X ′ is its dual, then

〈 f, g〉 ≡ 〈 f, g〉X ′,X = f (g), f ∈ X ′, g ∈ X,

denotes the duality product.
Let M ⊆ R

d , d ≥ 2. Then Ck
b (M), k ∈ N0, denotes the set of all k-times con-

tinuously differentiable functions f : M → C such that f and all its derivatives
are bounded. Moreover, C∞

b (M) = ∩k∈NCk
b (M) and C∞

(0)(M) is the set of all f ∈
C∞(M) with supp f ⊆ M compact, and, if Ω ⊂ R

d is a domain, then C∞
0 (Ω) ≡

C∞
(0)(Ω). The usual Lebesgue-space with respect to the Lebesgue measure onΩ and the
(d−1)-dimensional surface measure on ∂Ω will be denoted by Lq(Ω), Lq(∂Ω), resp.,
1 ≤ q ≤ ∞. Moreover, we use the abbreviations ‖.‖q ≡ ‖.‖Lq (Ω) and ‖.‖q,∂Ω ≡
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388 H. Abels, Y. Terasawa

‖.‖Lq (∂Ω). Furthermore, Lq
loc(Ω), 1 ≤ q ≤ ∞, is defined as the space of all f : Ω →

C such that f ∈ Lq(B ∩Ω) for all balls B with B ∩Ω �= ∅. The usual scalar product
on L2(M) is denoted by (., .)M for M = Ω, ∂Ω . Finally, if ω : Ω → (0,∞), then
L p(Ω;ω) denotes the L p-space with respect to the measure ω(x) dx .

In the following the usual Sobolev–Slobodeckij spaces based on Lq(Ω), 1 < q <
∞, are denoted by W s

q (Ω) and W s
q (M), s ≥ 0, with norms ‖.‖s,q and ‖.‖s,q,∂Ω ,

respectively, cf. e.g., [15], where M ⊂ R
d is a (d − 1)-dimensional sufficiently

smooth manifold. We note that, if 0 < s < 1, then it is sufficient to assume that M is a
C1-manifold to define W s

q (M) in the usual way. Moreover, W m
q,0(Ω), m ∈ N, denotes

the closure of C∞
0 (Ω) in W m

q (Ω) and

W −m
q (Ω) := (W m

q ′,0(Ω))
′, W −m

q,0 (Ω) := (W m
q ′ (Ω))′, W −s

q (∂Ω) := (W s
q ′(∂Ω))′

for m ∈ N and s > 0, where 1
q + 1

q ′ = 1.

Finally, the homogeneous Sobolev space of order 1 is defined as

Ẇ 1
q (Ω) := {p ∈ Lq

loc(Ω) : ∇ p ∈ Lq(Ω)
}

normed by ‖∇ · ‖q , where functions, which differ by a constant, are identified.
Additionally, F and F−1 denote the Fourier and inverse Fourier transformation,

F[ f ](ξ) := f̂ (ξ) :=
∫

Rd

e−i x ·ξ f (x) dx,

F−1[ f ](x) := f̌ (x) :=
∫

Rd

eix ·ξ f (ξ)d−ξ,

defined for a suitable function f : R
d → C, where d−ξ := (2π)−ddξ . Note that in the

following all integrals with respect to a phase variable ξ will be scaled by (2π)−d as
above. Moreover, we will use partial Fourier transformation

Fx ′ �→ξ ′ [ f ](ξ ′, xd) := f́ (ξ ′, xd) :=
∫

Rd−1

e−i x ′·ξ ′
f (x ′, xd) dx ′

and the conjugate Fourier transformation F̄[ f ](ξ) = F[ f ](−ξ).
Let 〈ξ 〉 = (1 + |ξ |2) 1

2 , ξ ∈ R
d , and let 〈Dx 〉s ≡ OP(〈ξ 〉s) = F−1[〈ξ 〉sF[.]],

s ∈ R. Moreover, S(Rd) denotes the space of rapidly decreasing smooth functions
f : R

d → C and S ′(Rd) denotes the space of tempered distributions. Recall that
the Bessel potential space Hs

q (R
d), 1 < q < ∞, s ∈ R, is defined as the space of

all f ∈ S ′(Rd) for which 〈Dx 〉s f ∈ Lq(Rd), with norm ‖ f ‖Hs
q

= ‖〈Dx 〉s f ‖Lq .

Moreover, S(Rd ; X) and Hs
q (R

d; X) denote the vector-valued variants, where X is

a Banach space. As in [36,38], the space Hs
q (R

d+) = r+Hs
q (R

d) is defined as the

space of all distributions of Hs
q (R

d) restricted to R
d+ equipped with the quotient norm.
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Stokes operators with variable viscosity 389

Here and in the following r+ f denotes the restriction of f ∈ S ′(Rd) to R
d+. We refer

to [17, Chapter 6] for the definition of the usual Bs
qr (R

d), s ∈ R, 1 ≤ q, r ≤ ∞
and their interpolation properties. Moreover, we note that Bs

qq(R
d) = W s

q (R
d) for all

s > 0, s �∈ N, and 1 ≤ q < ∞.
Finally, Cs(Rd) ≡ Bs∞∞(Rd), s > 0, denotes the Zygmund space and Cs(Rd; X)

≡ Bs∞∞(Rd; X) its vector-valued variant for a Banach space X . Note thatCs(Rd; X) =
Cs(Rd ; X) if s > 0 and s �∈ N0, cf. e.g., [16, Equation (5.8)]. Here Cs(Rd; X) is the
space of all [s]-times continuously differentiable f : R

d → X such that f and all
its derivatives are bounded and ∂αx f , |α| = [s], is (uniformly) Hölder continuous of
degree s − [s]. Here [s] denotes the largest integer not larger than s. The space is
normed by

‖ f ‖Cs (Rd ;X) :=
∑

|α|≤[s]
‖∂αx f ‖L∞(Rd ;X) +

∑
|α|=[s]

sup
x �=y

‖∂αx f (x)− ∂αx f (y)‖X

|x − y|s−[s] .

In the following, letΩ be a domain as in the Assumption 1. First of all, using the par-
tition of unity assumed in (A2), it is easy to reduce many of the fundamental statements

on the Sobolev spaces W m
q (Ω), m ≤ 2, to a bent half space R

d
γ , γ ∈ W

2− 1
r2

r2 (Rd−1).
Using a suitable coordinate transformation, cf. e.g., Proposition 1 below, the state-
ments for the bent half-space can be proved using the corresponding statement for
R

d+. In particular, we note that the usual Sobolev embedding theorem for W 1
q (Ω) can

be proved that way. As a consequence, it is easy to prove the following lemma:

Lemma 1 Let 1 < q < ∞ and d < r ≤ ∞ such that q ≤ r and letΩ be a domain as
in the Assumption 1 with r2 = r . Then π( f, g)(x) := f (x)g(x) defines a continuous,
bilinear mapping π : W 1

q (Ω)× W 1
r (Ω) → W 1

q (Ω).

Similarly, the interpolation inequality

‖ f ‖W 1
q (Ω)

≤ cq‖ f ‖
1
2
Lq (Ω)‖ f ‖

1
2
W 2

q (Ω)

for all 1 < q < ∞ and f ∈ W 2
q (Ω) can be proved. Furthermore, there is a bounded

extension operator

E : W
1− 1

q
q (∂Ω) → W 1

q (Ω) such that Ea|∂Ω = a for all a ∈ W
1− 1

q
q (∂Ω).

This extension operator can be easily constructed using the corresponding extension
operator for R

d+, the partition of unity due to (A1) and suitable coordinate transforma-

tions. Note that the corresponding statement for Ẇ 1
q (Ω) and Ẇ

1− 1
q

q (∂Ω) are not true
for general unbounded domains; e.g., the statement is not true for an infinite layer, cf.
[10, Remark 2.6.1].

Finally, we note that, if Ω and q are as in Assumption 1, then (A2) implies that
for every f ∈ Lq(Ω)d , there is a unique p ∈ Ẇ 1

q,Γ2
(Ω) (up to a constant if Γ2 = ∅)
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390 H. Abels, Y. Terasawa

depending continuously on f such that

(∇ p,∇ϕ)Ω = ( f,∇ϕ)Ω for all ϕ ∈ Ẇ 1
q ′,Γ2

(Ω). (2.1)

Here p is the unique p ∈ Ẇ 1
q,Γ2

(Ω) such that f = f0 + ∇ p with f0 ∈ Jq(Ω), where
we note that

( f0,∇ϕ)Ω = 0 for all ϕ ∈ Ẇ 1
q,Γ2

(Ω)

since it holds for all f0 ∈ C∞
(0)(Ω ∪ Γ2) and the latter space is dense in Jq(Ω) by

definition. For the following we define

Ẇ −1
q,Γ2

(Ω) := (Ẇ 1
q ′,Γ2

(Ω))′. (2.2)

Then for every F ∈ Ẇ −1
q,Γ2

there is some f ∈ Lq(Ω)d such that ‖ f ‖Lq (Ω)d ≤
C‖F‖Ẇ−1

q,Γ2
(Ω)

and

〈F, ϕ〉Ẇ−1
q,Γ2

,Ẇ 1
q′,Γ2

= ( f,∇ϕ)Ω for all ϕ ∈ Ẇ 1
q ′,Γ2

(Ω).

This follows from the Hahn–Banach theorem by identifying Ẇ 1
q ′,Γ2

(Ω) with a closed

subspace of Lq ′
(Ω)d via the mapping ϕ �→ ∇ϕ.

We summarize these facts in the following lemma.

Lemma 2 Let Ω, q be as in Assumption 1. Then for every F ∈ Ẇ −1
q,Γ2

(Ω) and a ∈
W

1− 1
q

q (∂Ω) there is a p ∈ Ẇ 1
q,Γ2

(Ω) such that

(∇ p,∇ϕ)Ω = 〈F, ϕ〉Ẇ−1
q,Γ2

,Ẇ 1
q,Γ2

for all ϕ ∈ Ẇ 1
q ′,Γ2

(Ω), (2.3)

p|Γ2 = a on Γ2. (2.4)

If Γ2 �= ∅, p is uniquely determined. If Γ2 = ∅, then p is uniquely determined up to
a constant. Moreover, there is some constant Cq independent of F such that

‖∇ p‖Lq (Ω)d ≤ Cq

(
‖F‖Ẇ−1

q,Γ2
(Ω)

+ ‖∇ A‖Lq (Ω)

)

for all A ∈ W 1
q (Ω) with A|Γ2 = a.

Proof First of all, one can easily reduce to the case a = 0 by extending a to some A ∈
W 1

q (Ω) and considering p − A instead of p and replacing F by F − (∇ A, ·)Ω . There-
fore we can assume that a = 0. Then, as explained above, we find some f ∈ Lq(Ω)d

such that 〈F, ϕ〉 = ( f,∇ϕ) for all ϕ ∈ Ẇ 1
q ′,Γ2

(Ω) and ‖ f ‖Lq (Ω) ≤ C‖F‖Ẇ−1
q (Ω)

.

Now p ∈ Ẇ 1
q,Γ2

(Ω) solves (2.3), (2.1), resp., if and only if f = f0 + ∇ p, where
f0 ∈ Jq(Ω), i.e., p is determined by the Helmholtz decomposition due to (A2).
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Stokes operators with variable viscosity 391

3 Reduction of the Stokes system

The aim of this section is to reduce the Stokes system (1.1)–(1.4) for (v, p) to a system
only in terms of the velocity v and to eliminate the divergence equation div v = g.
The idea goes back to Grubb and Solonnikov, cf. e.g., [39].1 By this reduction the
pressure can be treated efficiently even in the case of the boundary condition (1.4)
when the pressure enters the boundary condition and therefore cannot be eliminated
from the system by applying a Helmholtz projection.

Now we will present the corresponding reduction for the case of general viscosity.

Let v ∈ W 2
q (Ω)

d , p ∈ Ẇ 1
q (Ω) with p|Γ2 ∈ W

1− 1
q

q (Γ2) be a solution of (1.1)–(1.4),

where we assume that f ∈ Lq(Ω)d , g ∈ W 1
q (Ω) with g ∈ Ẇ −1

q,Γ2
(Ω), cf. (2.2),

a ∈ W
1− 1

q
q (Γ2), λ ∈ Σδ , and let 1 < q < ∞ with q, q ′ ≤ min(r1, r2), where r1, r2

and Ω are as in Assumption 1.
Now we reduce the Stokes system to a system for v by expressing the pressure p in

dependence of v and the data ( f, g, a). To this end we multiply (1.1) by an arbitrary
∇ϕ with ϕ ∈ Ẇ 1

q ′,Γ2
(Ω). Then

(∇ p,∇ϕ)Ω = ( f,∇ϕ)Ω + λ〈g, ϕ〉Ẇ−1
q,Γ2

,Ẇ 1
q′,Γ2

+ (div(2νDv),∇ϕ)Ω,

where

(div(2νDv),∇ϕ)Ω = (ν(∆v + ∇ div v),∇ϕ)Ω + (Dv, 2∇ν ⊗ ∇ϕ)Ω
= (ν(∆− ∇ div)v,∇ϕ)Ω

+ (2ν∇g,∇ϕ)Ω + (Dv, 2∇ν ⊗ ∇ϕ)Ω.

Hence

(∇ p,∇ϕ)Ω = ( f,∇ϕ)Ω + λ〈g, ϕ〉Ẇ−1
q,Γ2

,Ẇ 1
q′,Γ2

(Ω)
+ (2ν∇g,∇ϕ)Ω

+ (ν(∆− ∇ div)v,∇ϕ)Ω + (Dv, 2∇ν ⊗ ∇ϕ)Ω

for all ϕ ∈ Ẇ 1
q ′,Γ2

(Ω). Now, if Pv ∈ Ẇ 1
q (Ω)with Pv|Γ2 ∈ W

1− 1
p

p (Γ2) is the solution
of (1.8)–(1.9), then p = Pv + p̃, where p̃ is determined by

(∇ p̃,∇ϕ)Ω = ( f,∇ϕ)Ω + λ〈g, ϕ〉Ẇ−1
q,Γ2

,Ẇ 1
q′,Γ2

(Ω)
+ (2ν∇g,∇ϕ)Ω, (3.1)

p̃|Γ2 = −an (3.2)

for all ϕ ∈ Ẇ 1
q ′,Γ2

(Ω). Hence p̃ depends only on the data ( f, g, a). Here we note that
p̃ is uniquely determined by (3.1) (up to a constant if Γ2 = ∅) due to Lemma 2.

1 In the latter work only the case div v = 0 is considered. A corresponding reduction in the general case
div v = g was first presented in [11].
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392 H. Abels, Y. Terasawa

This shows that v ∈ W 2
q (Ω)

d solves

λv − div(ν∇v)+ ∇ Pv − ∇νT ∇vT = fr in Ω, (3.3)

v|Γ1 = 0 on Γ1, (3.4)

(n · S(v))τ |Γ2 = aτ on Γ2, (3.5)

ν div v|Γ2 = νg|Γ2 on Γ2, (3.6)

where

fr = f − ∇ p̃ + ν∇g. (3.7)

Here we have used that

div(2νDv) = div(ν∇v)+ ∇νT ∇vT + ν∇ div v.

We call (3.3)–(3.6) the reduced Stokes system. We note that by the definition of
the reduced Stokes operator Aq , cf. (1.6), v ∈ W 2

q (Ω)
d solves (1.1)–(1.4) for some

right-hand side fr ∈ Lq(Ω)d and aτ = 0, νg|Γ2 = 0 if and only if v ∈ D(Aq) and
(λ+ Aq)v = fr .

To summarize we have shown:

Lemma 3 Let f ∈ Lq(Ω)d , g ∈ W 1
q (Ω) ∩ Ẇ −1

q,Γ2
(Ω), a ∈ W

1− 1
q

q (Γ2) be given.

Then any v ∈ W 2
q (Ω)

d , p ∈ Ẇ 1
q (Ω) with p|Γ2 ∈ W

1− 1
q

q (Γ2) solving (1.1)–(1.4) is a

solution of (3.3)–(3.6) if fr is defined by (3.7) and if p̃ solves (3.1)–(3.2).

Note that in the reduced Stokes system (3.3)–(3.6) the divergence equation div v =
g does not appear. Hence, if we want to obtain a solution of the original Stokes system
(1.1)–(1.4) by solving the reduced system, it is crucial to prove that div v = g if the
right-hand side is chosen as above. To this end we note that, if fr is defined by (3.7),
where p̃ solves (3.1)–(3.2), then g can be derived back from fr because of

− ( fr ,∇ϕ)Ω = λ〈g, ϕ〉Ẇ−1
q,Γ2

,Ẇ 1
q′,Γ2

+ (ν∇g,∇ϕ)Ω (3.8)

for all ϕ ∈ Ẇ 1
q,Γ2

(Ω). On the other hand, if v ∈ W 2
q (Ω)

d solves (3.3)–(3.6), then

− ( fr ,∇ϕ)Ω = λ〈div v, ϕ〉Ẇ−1
q,Γ2

,Ẇ 1
q′,Γ2

+ (ν∇ div v,∇ϕ)Ω (3.9)

for all ϕ ∈ Ẇ 1
q,Γ2

(Ω) because of (3.3) multiplied with −∇ϕ and

(div(ν∇v),∇ϕ)Ω − (∇ Pv,∇ϕ)Ω + (∇νT ∇vT ,∇ϕ)Ω
= (ν∆v,∇ϕ)Ω − (∇ Pv,∇ϕ)Ω + (Dv, 2∇ν ⊗ ∇ϕ)Ω = (ν∇ div v,∇ϕ)Ω

for all ϕ ∈ Ẇ 1
q,Γ2

(Ω) due to (1.8).
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In order to conclude div v = g we need the following assumption.

(A4′) Let λ ∈ C\(−∞, 0) be such that there is no non-trivial u ∈ W 1
q,Γ2

(Ω) with

λ(u, ϕ)Ω + (ν∇u,∇ϕ)Ω = 0 for all ϕ ∈ W 1
q ′,Γ2

(Ω).

Note the assumption (A4) is just (A4′) for all λ ∈ Σδ with |λ| ≥ R and some R > 0.
As mentioned above it will be shown later that (A1)–(A3) imply (A4) and therefore
(A4′) for large λ.

Altogether we obtain:

Lemma 4 Let f ∈ Lq(Ω)d , g ∈ W 1
q (Ω) ∩ Ẇ −1

q,Γ2
(Ω) with g|Γ2 ∈ W

1− 1
q

q (Γ2),

a ∈ W
1− 1

q
q (Γ2) be given and let fr be defined as in (3.7) where p̃ solves (3.1)–(3.2).

Moreover, assume that (A4′) holds. Then any solution v ∈ W 2
q (Ω)

d of (3.3)–(3.6)

solves (1.1)–(1.4) where p = Pv+ p̃ ∈ Ẇ 1
q (Ω) and p|Γ2 ∈ W

1− 1
q

q (Γ2). Finally, (3.3)–
(3.6) has no non-trivial solution v ∈ W 2

q (Ω)
d with right-hand side ( fr , aτ , νg|Γ2) = 0

if and only if (1.1)–(1.4) has no non-trivial solution v ∈ W 2
q (Ω)

d , p ∈ Ẇ 1
q (Ω) with

p|Γ2 ∈ W
1− 1

q
q (Γ2) and right-hand side ( f, g, a) = 0.

Proof If v solves (3.3)–(3.6) with fr as in (3.7) and p̃ solving (3.1)–(3.2), then (3.8)–
(3.9) imply

λ〈g − div v, ϕ〉Ẇ−1
q,Γ2

,Ẇ 1
q′,Γ2

+ (ν∇(g − div v), ϕ) = 0 for all ϕ ∈ W 1
q ′,Γ2

(Ω).

On the other hand, (3.6) implies (g − div v)|Γ2 = 0. Therefore g − div v ∈ W 1
q,Γ2

(Ω)

and g − div v = 0 by (A4′). Thus v solves (1.2). Concerning the boundary condition,
using (1.4) it can be easily shown that

p|Γ2 = (n · S(v))n|Γ2 − an,

where (n · S(v))n|Γ2 is equal to 2ν∂nvn . Hence (1.4) follows. Altogether we obtain
that (v, p) solve (1.1)–(1.4) with p as above.

Finally, assume that (3.3)–(3.6) has no non-trivial solution v ∈ W 2
q (Ω)

d with

right-hand side ( fr , aτ , νg|Γ2) = 0. Moreover, let v ∈ W 2
q (Ω)

d , p ∈ Ẇ 1
q (Ω) with

p|Γ2 ∈ W
1− 1

q
q (Γ2) be a solution of (1.1)–(1.4) with ( f, g, a) = 0. Then fr = 0 and

therefore v ∈ W 2
q (Ω)

d solves (3.3)–(3.6) with zero right-hand side due to Lemma 3.
Hence v = 0 by the assumption and therefore the solutions of (1.1)–(1.4) are unique.

Conversely, let v ∈ W 2
q (Ω)

d be a solution of (3.3)–(3.6) with right-hand side zero
and assume that (1.1)–(1.4) has no non-trivial solution for zero data. Then ( fr , p̃) = 0
if p̃ satisfies (3.1)–(3.2) and if fr satisfies (3.7) for ( f, g, a) = 0. Hence (v, p) with
p = Pv solve (1.1)–(1.4) with ( f, g, a) = 0 by the first part of the lemma. Conse-
quently v = 0, which proves the converse implication.
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4 Coordinate transformation

We start with a simple results on extensions of γ ∈ W
2− 1

r
r (Rd−1).

Lemma 5 Let γ ∈ W
2− 1

r
r (Rd−1), 1 < r < ∞ with r > d, and let ε > 0. Then there is

some Γ ∈W 2
r (R

d) such that Γ (x ′, 0)=γ (x ′), ∂xdΓ (x
′, 0)=0 and |∂xdΓ (x

′, xd)|≤ε
for all x ∈ R

d .

Proof Let Γ̃ ∈ W 2
r (R

d) be an extension of γ ∈ W
2− 1

r
r (Rd−1) such that ∂xd Γ̃ (x

′, 0)
= 0. ThenΓλ = Γ̃ (x ′, λxd) ∈ W 2

r (R
d) is also an extension ofγ with ∂xdΓλ(x

′, 0) = 0
and

‖∂xdΓλ‖L∞(Rd ) = |λ|‖∂xd Γ̃ ‖L∞(Rd ) →λ→0 0

since W 2
r (R

d) ↪→ C1
b(R

d) due to r > d. Now we can choose λ > 0 so small that
Γ ≡ Γλ satisfies the statement of the lemma.

The following proposition states the existence of a suitable coordinate transfor-
mation, which will lead to a nice structure of the boundary symbol operators of the
transformed Stokes system on the half-space. It generalizes a result due to Schumach-
er [47] and is proved similarly.

Proposition 1 Let γ ∈ W
2− 1

r
r (Rd−1) with r > d. Then there is some F ∈ W 2

r (R
d)d

such that F : R
d → R

d is a C1-diffeomorphism, F(Rd+)=R
d
γ , F(x ′, 0)=(x ′, γ (x ′)),

and −∂xd F(x)|xd=0 = n(x ′, γ (x ′)), where n denotes the exterior unit normal of ∂Rd
γ .

Proof The case r = ∞ was proved in [47]. Hence it only remains to consider the case
d < r < ∞. Let Γ ∈ W 2

r (R
d) be as in Lemma 5 with ε = 1

2 . Then we define

F(x) =
(

x ′
xd + Γ (x)

)
− xdkD(Dx )ñ ≡ F̃(x)− xdkD(Dx )ñ

where kD(Dx )a = F−1
ξ ′ �→x ′ [e−〈ξ ′〉|xd |á(ξ ′)] and

ñ(x ′) = n(x ′, γ (x ′))+ (∂xdΓ (x
′, 0)+ 1)ed

= 1√
1 + |∇γ (x ′)|2

( ∇γ (x ′)√
1 + |∇γ (x ′)|2 − 1

)
∈ B

1− 1
r

rr (Rd−1).

Hence −∂xd F(x ′, 0) = n(x ′, γ (x ′)) since kD(Dx )ñ|xd=0 = ñ. Furthermore, F̃ ∈
W 2

r (R
d)d ↪→ C1

b(R
d)d is a diffeomorphism on R

d since F̃(x ′, xd) is a strictly increas-
ing function in xd for every fixed x ′ ∈ R

d−1. Moreover, F̃ maps R
d+ onto R

d
γ and

‖∇ F̃−1‖L∞ ≤ 2 since ‖∇ F̃ − I‖L∞ ≤ 1
2 . We note that xdkD(Dx ) is a Poisson oper-

ator of order −1 in the sense of Definition 4 below. Hence f± := xdkD(Dx )ñ|
R

d± ∈
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W 2
r (R

d±) because of Theorem 6 below. Since f+|∂Rd+ = f−|∂Rd+ = 0 and ∂xd f+|∂Rd+ =
∂xd f−|∂Rd+ = ñ, we conclude that xdkD(Dx )ñ ∈ W 2

r (R
d). Furthermore,

‖xdkD(Dx )ñ‖C1(Rd ) ≤ C‖xdkD(Dx )ñ‖W 2
r (R

d ) ≤ C ′‖∇′γ ‖
W

1− 1
r

r (Rd−1)

by Theorem 6 again. Hence there is some ε > 0 such that

‖xdkD(Dx )ñ‖C1(Rd ) ≤ 1

4
≤ 1

2
‖∇ F̃−1‖−1∞

provided that ‖∇γ ‖
W

1− 1
r

r (Rd−1)
≤ ε. But then

∇F(x) = I + ∇Γ ⊗ ed − ∇xdkD(Dx )ñ

is invertible and

‖∇F−1‖∞ ≤ 4 provided that ‖∇′γ ‖
W

1− 1
r

r (Rd−1)
≤ ε.

Moreover, F : R
d → R

d is globally invertible since y = F(x) is equivalent to
x = F̃−1(y + xdkD(Dx )ñ) ≡ Hy(x) and Hy : R

d → R
d is a contraction since

|∇x Hy(x)| ≤ 1
2 .

For the general case we consider γλ(x ′) = γ (λx ′), λ > 0. Then

‖∇γλ‖
W

1− 1
r

r (Rd−1)
≤ C‖∇γλ‖

1
r
Lr (Rd−1)

‖∇γλ‖1− 1
r

W 1
r (R

d−1)
→λ→0 0

since r > d. Hence we can apply the first part and obtain a C1-diffeomorphism
Fλ : R

d → R
d with respect to γλ. But then

F = δλ−1 ◦ Fλ ◦ δλ where (δλ f )(x) = f (λx)

is a C1-diffeomorphism with the desired properties.

In the following we denote (F∗u)(x) := u(F(x)) for u : R
d
γ → R and (F∗,−1v)(x)

:= v(F−1(x)) for v : R
d+ → R, where F is as in the latter proposition.

Corollary 1 Let γ ∈ W
2− 1

r
r (Rd−1) with r > d. Then

F∗ : W 1
q (R

d
γ ) → W 1

q (R
d+), F∗ : Ẇ 1

q (R
d
γ ) → Ẇ 1

q (R
d+) for all 1 ≤ q ≤ ∞,

F∗ : W 2
q (R

d
γ ) → W 2

q (R
d+) for all 1 ≤ q ≤ r

continuously. Moreover, the corresponding statements are true for F∗,−1. Finally, if

(F∗
0 a)(x ′) = a(x ′, γ (x ′)) for a ∈ C1

b(∂R
d
γ ) and (F∗,−1

0 a)(x) = a
(

F−1(x)|∂Rd
γ

)
for
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a ∈ C1
b(R

d−1), then

F∗
0 : W s

q (∂R
d
γ ) → W s

q (R
d−1)

is a bounded mapping for all 1 < q < ∞, 0 ≤ s < 1, with continuous inverse F∗,−1
0 .

Proof The first statements easily follow from the chain and product rule, where we
note that

∇(F∗u) = ∇F(x)(∇u)(F(x))

where ∇F ∈ W 1
r (R

d+) and (∇u)(F(x)) ∈ W 1
q (R

d+) if u ∈ W 2
q (Ω). Therefore

∇F F∗(∇u) ∈ W 1
q (R

d+) for all 1 ≤ q ≤ r due to Lemma 1.
For the last statement we note that W s

q (∂R
d
γ ) is normed by

‖a‖q
W s

q (∂R
d
γ )

= ‖a‖q
Lq (∂Rd

γ )
+

∫

Lq (∂Rd
γ )

∫

Lq (∂Rd
γ )

|a(x)− a(y)|q
|x − y|d−1+sq

dσ(x) dσ(y),

where dσ denotes integration with respect to the surface measure on ∂Rd
γ . Since F0 ≡

F |Rd−1 : R
d−1 → ∂Rd

γ is a C1-diffeomorphism, ‖F∗
0 a‖Lq (Rd−1) ≤ C‖a‖Lq (∂Rd

γ )
and

∫

Rd−1

∫

Rd−1

|a(F0(x ′))− a(F0(y′))|q
|x ′ − y′|d−1+sq

dx ′ dy′

≤ C
∫

Rd−1

∫

Rd−1

|a(F0(x ′))− a(F0(y′))|q
|F0(x ′)− F0(y′)|d−1+sq

J (x ′)J (y′) dx ′ dy′

= C
∫

∂Rd
γ

∫

∂Rd
γ

|a(x)− a(y)|q
|F−1

0 (x)− F−1
0 (y)|d−1+sq

dσ(x) dσ(y) ≤ C‖a‖q
Bs

qq (∂R
d
γ )

where J (z′) = det(∇F0(z′)T ∇F0(z′)) 1
2 . Hence F∗

0 : W s
q (∂R

d
γ ) → W s

q (R
d−1) is con-

tinuous. The statement for F∗,−1
0 is proved in the same way.

Corollary 2 Let d < r2 ≤ ∞, 1 ≤ q < ∞, and let Ω ⊆ R
d , d ≥ 2, be a

domain satisfying the assumption (A1). Then there are linear bounded operators

E0 : W
1− 1

q
q (∂Ω) → W 1

q (Ω) and E1 : W
2− 1

q
q (∂Ω) × W

1− 1
q

q (∂Ω) → W 2
q (Ω) if

1 < q ≤ r such that

γ0 E0a = a and

(
γ0
γ1

)
E1b = b

for all a ∈ W
1− 1

q
q (∂Ω), b ∈ W

2− 1
q

q (∂Ω)× W
1− 1

q
q (∂Ω).
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Proof First let Ω = R
d
γ with γ ∈ W

2− 1
r2

r2 (Rd−1). Using Proposition 1 and Corol-
lary 1, the statement is easily reduced to the corresponding statements for a half-
space R

d+, where we note that −∂d F∗v|Rd−1 = F∗
0 ∂nv|∂Rd

γ
= F∗

0 γ1v for all v ∈
C1
(0)(R

d
γ ).

If Ω is a general domain satisfying the assumption (A1), then the statement for
E0 is easily reduced to the case of finitely many bent half-spaces R

d
γ j

using the par-
tition of unity assumed in (A1). The extension operator E1b can be constructed as
follows: Let v ∈ W 2

q (Ω) be such that v|∂Ω = b1, where b = (b1, b2). Moreover,
let w j ∈ W 2

q (R
d
γ j
) be such that w j |∂Rd

γ j
= 0 and ∂nw j |∂Rd

γ j
= ψ j b2 − ψ j∂nv|∂Rd

γ j
.

Then w = ∑N
j=1 ϕ jw j satisfies w|∂Ω = 0 and ∂nw|∂Ω = b2 − ∂nv|∂Ω . Therefore

E1b := v + w has the desired properties. Obviously, the extension operators can be
constructed to become bounded operators.

In the following we will denote the variables and operators corresponding to the
original problem in R

d
γ by x, ξ,∇, . . . and of the transformed problem in R

d+ by
x, ξ ,∇, . . .. Similarly, a(x ′, ξ) will indicate the symbols of the transformed prob-
lem and a(ξ) the symbols of the model operator (the corresponding operator on
R

d+).
In the following, let U = U (x ′) be an orthonormal matrix which maps the exterior

normal vector

n(x ′) = 1√
1 + |∇′γ (x ′)|2

(∇′γ (x ′)
−1

)

on ∂Rd
γ at the point (x ′, γ (x ′)) to −ed , which is the exterior normal on R

d+.
Using this notation,

∇F∗,−1v = F∗,−1U T (x ′)A(x)∇v = F∗,−1 OP(U T (x ′)A(x)iξ)v,

where A(x)ξ = U (x ′)(∇x F(x))−1ξ and v ∈ C1(R
d
γ ). Then (A|xd=0)

−T has the
structure

A(x ′, 0)−T = U (x ′)
(

I ′ −n′(x ′)
∇′γ (x ′)T −nd(x

′)

)
=
(

A′(x ′)−T 0

0 1

)
(4.1)

due to Proposition 1, where A′(x ′, 0) depends smoothly on ∇′γ (x ′). Hence A|xd=0
has the same structure with A′(x ′, 0)−T replaced by A′(x ′, 0).

Remark 2 Note that relation (4.1) is of much simpler structure than the corresponding
relation in the previous work [11, Equation (5.15)]. This leads to some simplifications
in the present proofs. The more complicated structure in [11] was due to the simple

coordinate transformation F̃(x) =
(

x ′
xd + γ (x ′)

)
, which was used in order to deal
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with a boundary of regularity C1,1. The coordinate transformation due to Proposi-
tion 1 admits to work with C1,1-boundary again (if r2 = ∞). But it has the same
structural properties as the coordinate transformation used in [32,33], i.e., that normal
directions are preserved at the boundary, which leads to (4.1). Note that, if one would
apply directly the coordinate transformation used in [32,33], one would need higher
regularity assumptions on ∂Ω , e.g., C2,1 instead of C1,1.

In the following we will for simplicity write A(x ′) instead of A((x ′, 0)). Moreover,
we denote γ j u = (−∂xd )

j u|∂Rd+ and γnv = n · γ0v. More generally, the transformed
differential and trace operators needed in the following are considered in the next
lemma.

Lemma 6 Let v ∈ C∞
(0)(R

d
γ ), u ∈ C∞

(0)(R
d
γ )

d , and let F be as in Proposition 1. Then

F∗∇v = ∇F∗v, F∗ div u = divF∗u, F∗∆u = ∆F∗u + R1 F∗u,

F∗
0 γnu = γn F∗u, F∗

0 γ1v = γ1 F∗v, F∗
0 T ′

1u = t ′1(x ′, Dx )F
∗u,

where

1.

∇ = OP(U T (x ′)A(x)iξ), div u = OP((A(x)iξ)T U (x ′))u,

∆ = − OP(|A(x)ξ |2), γn = −ed · γ0U (x ′),

γ1 = γn∇ = −γ0∂d .

2. R1 is a differential operator of order 1 with Lr2 -coefficients, r2 > d.

3. t ′1(x ′, Dx )u = −γ0U T (x ′)O P

(
iξ

d
I ′ A′(x ′)iξ ′

(A′(x ′)iξ ′)T iξ
d

)
U (x ′)u.

If additionally γ0u = 0, then

F∗
0 γn(∆− ∇ div)u = t0(x

′, Dx )F
∗u

where t0(x
′, Dx ) = OP′((A′(x ′)iξ ′)T (U (x ′)γ1)).

Proof The proof is done in the same way as in [11, Lemma 5.6] except for the last
statement. In order to prove the last statement, we use the identity

n · (∆− ∇ div)u|∂Rd
γ

= divτ ∂nu|∂Rd
γ

if γ0u = 0.

Here divτ w = Tr(Pτ∇W )|∂Rd
γ

for all w ∈ C1(∂Rd
γ )

d where W ∈ C1(Rd
γ )

d is an
arbitrary extension of w and Pτ = Pτ (x) denotes the orthogonal projection onto the
tangent space of ∂Rd

γ at x ∈ ∂Rd
γ . It is easy to check that

123



Stokes operators with variable viscosity 399

F∗
0 (Pτ )(x

′) = U T (x ′)(I − ed ⊗ ed)U (x
′).

Hence

F∗
0 (divτ w) = Tr

(
U T (x ′)(I − ed ⊗ ed)U (x

′)U T (x ′)A(x ′)∇F∗w
)

|xd=0

= Tr
(

U T (x ′)(I − ed ⊗ ed)A(x
′)∇F∗w

)∣∣∣
xd=0

= F−1
ξ �→x

[
Tr
(

U T (x ′)(I − ed ⊗ ed)A(x
′)iξ ⊗ v̂(ξ)

)]∣∣∣
xd=0

= F−1
ξ ′ �→x ′

[
(A′(x ′)iξ ′)T (U (x ′)v́(ξ ′, 0))′

]

where v = F∗w. From this identity the statement follows because of F∗
0 (∂nu|∂Rd

γ
) =

γ1 F∗
0 u.

Lemma 7 Let d < r2 ≤ ∞, 1 < q ≤ r2, j = 0, 1, λ ∈ C, and let Ω ⊆ R
d , d ≥ 2,

be a domain satisfying the assumption (A1). Then there is a continuous extension

operator E j : W
2− j− 1

q
q (Ω) → W 2

q (Ω) such that

〈λ〉‖E j a‖Lq (Ω) + ‖∇2 E j a‖Lq (Ω)

≤ C

(
〈λ〉1− j

2 − 1
2q ‖a‖Lq (∂Ω) + ‖a‖

W
2− j− 1

q
q (∂Ω)

)
(4.2)

for j = 0, 1 and T ′
1 E1a = a as well as E0a|∂Ω = a, where T ′

1 is defined as in (1.7).

Proof First let j = 0 and let Ω = R
d
γ , γ ∈ W

2− 1
r2

r2 (Rd−1). Using the coordinate
transformation due to Proposition 1, the statement is easily reduced to the case of a
half-space R

d+. In the latter case the statement can be reduced to the case λ = 1 by
the same scaling argument as in [38, Sect. 1.1]. If j = 0 and Ω is a general domain
satisfying the assumption (A1), then one can prove the statement easily with the aid
of the partition of unity and the statement for a bent half space.

Next let j = 1. Then we choose E1a ∈ W 2
q (Ω) such that E1a|∂Ω = 0 and

∂n E1a|∂Ω = ν−1a. By the same arguments as in the case j = 0 one can choose E1a
such that (4.2) holds. (Again one reduces to the case of a half-space and uses a simple
scaling argument). Then

(T ′
1 E1a)τ = ν ((∂n E1a)τ + ∇τ E1an)|∂Ω = aτ + 0

(T ′
1 E1a)n = ν (div((I − n ⊗ n)E1a)+ (∂n E1a)n)|∂Ω = 0 + an

since E1a|∂Ω = 0. Hence T ′
1 E1a = a.
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5 Construction of the approximative resolvent

The proof of Theorem 1 is based on the following result.

Theorem 4 Let R
d
γ , d ≥ 2, γ ∈ W

2− 1
r 2

r2 (Rd−1), be a bent half-space, let ν, q, r, r2, τ

be as in Assumption 1, j = 0, 1, and let δ ∈ (0, π). Then there are bounded operators
R j,λ : Lq(Rd

γ )
d → W 2

q (R
d
γ )

d , G j,λ : Lq(Rd
γ )

d → W 1
q (R

d
γ )

d such that

(λ− div(ν∇·))R j,λ f + ∇G j,λ f = f + S j,λ f in R
d
γ , (5.1)

R0,λ f |∂Rd
γ

= 0 on ∂Rd
γ if j = 0, (5.2)

T ′
1 R1,λ f = 0 on ∂Rd

γ if j = 1, (5.3)

for every f ∈ Lq(Rd
γ )

d and λ ∈ C\(−∞, 0] as well as

(∇G j,λ f,∇ϕ)Rd
γ

= (ν(∆− ∇ div)R j,λ f,∇ϕ)Rd
γ

+ 〈S′
j,λ f, ϕ〉W−1

q,0,W
1
q′ (5.4)

for all ϕ ∈ W 1
q ′(Rd

γ ) with ϕ|∂Rd
γ

= 0 if j = 1 and

G1,λ f |∂Rd
γ

= 2ν(∂n R1,λ f )n|∂Rd
γ

+ S′′
λ f on ∂Rd

γ (5.5)

where

‖S j,λ‖L(Lq (Rd
γ ))

+ ‖S′
0,λ‖L(Lq (Rd

γ ),W
−1
q,0(R

d
γ ))

≤ Cq,δ〈λ〉−ε, (5.6)

‖S′
1,λ‖L(Lq (Rd

γ ),W
−1
q (Rd

γ ))
+ ‖S′′

λ‖L(Lq (Rd
γ ),W

1− 1
q

q (∂Rd
γ ))

≤ Cq,δ〈λ〉−ε (5.7)

uniformly in λ ∈ Σδ for some ε > 0. Moreover,

(1 + |λ|)‖R j,λ‖L(Lq (Rd
γ ))

+ ‖∇2 R j,λ‖L(Lq (Rd
γ ))

≤ Cq,δ, (5.8)

(1 + |λ| 1
2 )‖G j,λ‖L(Lq (Rd

γ ))
+ ‖∇G j,λ‖L(Lq (Rd

γ ))
≤ Cq,δ, (5.9)

∥∥∥∥∥∥∥

∫

ΓR

h(−λ)R j,λ dλ

∥∥∥∥∥∥∥L(Lq (Rd
γ ))

≤ Cq,δ‖h‖∞, (5.10)

uniformly in λ ∈ Σδ and h ∈ H(δ).

Remark 3 Here the operator G j,λ represents the principal part of P R j,λ, cf. (1.8)–
(1.9) and note that the term ∇νT Dv is of lower order compared to ν(∆ − ∇ div)v.
Lower order terms in general will give rise to a contribution to the remainder terms
S j,λ, S′

j,λ, and S′′
λ .

The theorem will be proved with aid of the calculus of pseudodifferential boundary
value problems with non-smooth coefficient as developed in [9,11].
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5.1 Pseudodifferential operators with non-smooth coefficients

In the following we denote Dx j = 1
i ∂x j and Dx = (Dx1, . . . , Dxd ).

Definition 1 Let X be a Banach space and let τ > 0. Then the symbol space
Cτ Sm

1,0(R
d × R

d; X), m ∈ R, is the set of all functions p : R
d × R

d → X that

are smooth with respect to ξ and are in Cτ (Rd) with respect to x satisfying

‖Dα
ξ p(., ξ)‖Cτ (Rd ;X) ≤ Cα〈ξ 〉m−|α|

for all α ∈ N
d
0 . Moreover, we define for k ∈ N the semi-norm

|p|(m)k := sup
|α|≤k,ξ∈Rd

〈ξ 〉|α|−m‖Dα
ξ p(., ξ)‖Cτ (Rd ;X).

Finally, Cτ Sm
1,0(R

d ×R
d; X) denotes the corresponding space with Cτ replaced by Cτ .

Given p ∈ Cτ Sm
1,0(R

d × R
d ;L(X0, X1)), where X0, X1 are two Banach spaces, we

define

p(x, Dx )u ≡ OP(p(x, ξ))u =
∫

Rd

eix ·ξ p(x, ξ)û(ξ)d−ξ and

p(Dx , x)u ≡ OP(p(y, ξ))u =
∫

Rd

∫

Rd

ei(x−y)·ξ p(y, ξ)u(y) dyd−ξ (5.11)

for u ∈ S(Rd ; X0) are the associated pseudodifferential operators in L- and R-form,
respectively; also called x-form and y-form. Here the second integral has to be
understood as iterated integral or oscillatory integral, cf. [41, Theorem 2.2]. If p ∈
Cτ Sm

1,0(R
d−1×R

d−1;L(X0, X1)), then p(x ′, Dx ′) = OP′(p(x ′, ξ ′)) and p(Dx ′ , x ′) =
OP′(p(y′, ξ ′)) denote the corresponding pseudodifferential operators acting on func-
tions defined on R

d−1.
Concerning boundedness on Bessel potential spaces, we recall

Theorem 5 Let τ > 0, 1 < q < ∞, m ∈ R, and let H0, H1 be Hilbert spaces. If
p ∈ Cτ Sm

1,0(R
d × R

d ;L(H0, H1)) and s ∈ (−τ, τ ), then p(x, Dx ) and p(Dx , x)
extend to bounded linear operators

p(x, Dx ) : Hs+m
q (Rd ; H0) → Hs

q (R
d ; H1) and

p(Dx , x) : Hs
q (R

d ; H0) → Hs−m
q (Rd ; H1).

Moreover, the operators depend continuously on the symbols with respect to the oper-
ator norm and the symbol semi-norms.
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We refer to [11, Theorem 3.2] for references and comments on the proof. The con-
tinuous dependence is not stated explicitly there; but this follows from linearity of
the mapping p �→ (p(x, Dx ), p(Dx , x)) and the fact that the operator norms can be
bounded in terms of the symbol semi-norms only.

Note that the latter theorem is also true for p ∈ Cτ Sm
1,0(R

d ×R
d ;L(H0, H1)) since

Cτ (Rd; X) = Cτ (Rd; X) for τ �∈ N and (−τ, τ ) is an open interval. (Hence the result
for τ ∈ N follows from the result for τ ′ �∈ N with |s| < τ ′ < τ ).

In order to deal with the low regularity of ν ∈ W 1
r1
(Ω) and γ ∈ W

2− 1
r2

r2 (Rd−1) we
need the following commutator estimate.

Lemma 8 Let a ∈ Bτrr (R
d), τ > 0, 1 ≤ r ≤ ∞, such that τ > d

r . Then

[a(x), 〈Dx 〉s] : Hs−θ
q (Rd) → Lq(Rd)

is a bounded operator for all 0 ≤ s ≤ τ , 1 < q < ∞ with q ≤ r and all 0 < θ <

min
(
1, τ − d

r

)
.

The lemma is a consequence of Marschall [43, Corollary 3.4], where we note that
[a(x), 〈Dx 〉s] = 〈Dx 〉sa(x)− O P(a(x)〈ξ 〉s).

Next we define a non-smooth variant of the classes of parameter-dependent pseudo-
differential operators studied in [37]. To this end, we denote ρ(ξ, µ) = 〈ξ 〉〈(ξ, µ)〉−1.

Definition 2 Let m, ν ∈ R. Then Cτ Sm,ν
1,0 (R

d × R
d+1
+ ) is the space of all functions

p(x, ξ, µ) smooth w.r.t. (ξ, µ) and in Cτ w.r.t. x such that

‖Dα
ξ D j

µ p(., ξ, µ)‖Cτ (Rd ) ≤ Cα, j (ρ(ξ, µ)
ν−|α| + 1)〈ξ, µ〉m−|α|− j

uniformly in (ξ, µ) ∈ R
d+1
+ and for all α ∈ N

d
0 , j ∈ N0. Moreover, let

|p|(m,ν)k = sup
|α|, j≤k,(ξ,µ)∈R

d+1+
‖Dα

ξ D j
µ p(., ξ, µ)‖Cτ (Rd )(ρ

ν−|α| + 1)−1〈ξ, µ〉−m+|α|+ j

be the corresponding increasing sequence of semi-norms.

We note that

(ρ(ξ, µ)ν + 1)〈ξ, µ〉m �
{

〈ξ, µ〉m if ν ≥ 0,

〈ξ 〉ν〈ξ, µ〉m−ν if ν < 0.

Remark 4 If p ∈ Cτ Sm,ν
1,0 and m′ > m, then p ∈ Cτ Sm′,ν

1,0 with |p|(m′,ν)
k ≤ 〈µ〉m−m′

|p|(m,ν)k for all k ∈ N0. Moreover, if m ≤ 0, ν ≥ 0 and if we look at p as a parame-

ter-independent symbol with fixed µ ≥ 0, then |p(., µ)|(m)k ≤ C |p|(m,ν)k uniformly in
µ ∈ R+.

In order to deal with the symbols after coordinate transformation, we use the fol-
lowing simple lemma.
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Lemma 9 Let p(ξ, µ) ∈ Sm,ν
1,0 (R

d × R
d+1
+ ), m, ν ∈ R, and A ∈ Cτ (Rd)d×d , τ > 0,

with A−1 ∈ Cτ (Rd)d×d . Then q(x, ξ, µ) := p(A(x)ξ, µ) ∈ Cτ Sm,ν
1,0 (R

d × R
d+1
+ ),

and for every k ∈ N0 there is some k′ ∈ N0 such that |q|(m,ν)k ≤ C |p|(m,ν)k′ , where C
depends only on ‖A‖Cτ , ‖A−1‖Cτ , k,m, ν, and d.

Proof The proof is a simple variant of the proof of [11, Lemma 5.4].

5.2 Pseudodifferential boundary value problems with non-smooth coefficients

We recall a non-smooth version of parameter-dependent Green operators developed
in [37] as defined in [11] with the only difference that C0,1-regularity w.r.t. x is
replaced by Cτ -regularity for some τ > 0. We use the notation of [37] except that

γ j u = (−1)d∂ j
d u|∂Rd+ . Recall that R

2
++ = R+ × R+.

We start with the definition of the symbol-kernels of non-smooth Poisson, trace,
and singular Green operators.

Definition 3 The space Cτ Sm,ν
1,0 (R

N × R
d
+,S(R+)), m, ν ∈ R, d, N ∈ N, consists

of all functions f̃ (x, ξ ′, µ, yd), which are smooth in (ξ ′, µ, yd) ∈ R
d
+ × R+, are in

Cτ (RN ) with respect to x , and satisfy

‖yl
d∂

l ′
yd
∂ j
µDα

ξ ′ f̃ (., ξ ′, µ, .)‖Cτ (RN ;L2
yd
(R+))

≤ Cα, j,l,l ′(ρ(ξ
′, µ)ν−[l−l ′]+−|α| + 1)〈ξ ′, µ〉m+ 1

2 −l+l ′−|α|− j (5.12)

for all α ∈ N
d−1
0 , j, l, l ′ ∈ N0.

Similarly, the space Cτ Sm,ν
1,0 (R

N ×R
d
+,S(R

2
++)), m, ν ∈ R, d, N ∈ N, is the space

of all f̃ (x, ξ ′, yd , zd), which are smooth in (ξ ′, µ, yd , zd) ∈ R
d
+ × R

2
++ and which

are in Cτ (RN ) with respect to x such that

‖yk
d∂

k′
yd

zl
d∂

l ′
zd
∂ j
µDα

ξ ′ f̃ (., ξ ′, .)‖Cτ (RN ;L2
yd ,zd

(R2++))

≤ Cα, j,k,k′,l,l ′(ρ
ν−[k−k′]+−[l−l ′]+−|α| + 1)〈ξ ′, µ〉m+1−k+k′−l+l ′−|α|− j (5.13)

for all α ∈ N
d−1
0 , j, k, k′, l, l ′ ∈ N0, where ρ = ρ(ξ ′, µ). Finally, m is called the

degree of the symbols f ∈ Cτ Sm,ν
1,0 (R

N × R
d
+,K),K = S(R+),S(R2

++)).

Now the Poisson operators with non-smooth coefficients are defined in almost the
same way as in the smooth case:

Definition 4 Let k̃ = k̃(x, ξ ′, yn) ∈ Cτ Sm−1,ν
1,0 (Rd × R

d
+,S(R+)), m, ν ∈ R. Then

we define the Poisson operator of order m by

k(x, µ, Dx )a = F−1
ξ ′ �→x ′

[
k̃(x, ξ ′, µ, xd)á(ξ

′)
]
, a ∈ S(Rd−1).
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Finally, we note that the boundary symbol operator k(x, ξ ′, µ, Dd) : C → S(R+) is
defined as a one-dimensional Poisson operator with symbol-kernel k̃(x, ξ ′, µ, yd) for
fixed (x ′, ξ ′, µ), which is simply defined by

k(x, ξ ′, µ, Dd)a = k̃(x, ξ ′, µ, xd)a for all a ∈ C.

As usually, Poisson operators can be considered as operator-valued pseudodifferen-
tial operators with values in L(C; H), where H is a suitable space of functions on
R+, e.g., Hm(R+) or L2(R+, xs

d), m, s ≥ 0. Having this in mind, k(Dx , x ′, µ) =
O P ′(k(y′, ξ ′, µ, Dd)) denotes the corresponding pseudodifferential operator in
y-form as defined in (5.11).

The trace and singular Green operators are defined as follows:

Definition 5 Let m, ν ∈ R and let r ∈ N0.

1. If t̃0 ∈ Cτ Sm,ν
1,0 (R

d−1 × R
d
+,S(R+)), s j ∈ Cτ Sm− j,ν

1,0 (Rd−1 × R
d−1), j =

0, . . . , r − 1, then the associated trace operator of order m and class r is defined
as

t (x ′, µ, Dx ) f =
r−1∑
j=0

s j (x
′, µ, Dx ′)γ j f + t0(x

′, µ, Dx ) f

t0(x
′, µ, Dx ) f = F−1

ξ ′ �→x ′

⎡
⎣

∞∫

0

t̃0(x
′, ξ ′, µ, yd) f́ (ξ ′, yd) dyd

⎤
⎦ ,

where f́ (ξ ′, xd) = Fx ′ �→ξ ′ [ f (., xd)].
2. If g̃0 ∈ Cτ Sm−1,ν

1,0 (Rd × R
d
+,S(R

2
++)), k̃ j ∈ Cτ Sm− j−1,ν

1,0 (Rd × R
d
+,S(R+)) for

j = 0, . . . , r −1, then the associated singular Green operator of order m and class
r is defined as

g(x, µ, Dx ) f =
r−1∑
j=0

k j (x, µ, Dx )γ j f + g0(x, µ, Dx ) f,

g0(x, µ, Dx ) f = F−1
ξ ′ �→x ′

⎡
⎣

∞∫

0

g̃0(x, ξ
′, µ, xd , yd) f́ (ξ ′, yd) dyd

⎤
⎦ ,

where f́ is as above and k j (x, µ, Dx ) denotes the Poisson operator with symbol-
kernel k̃ j (x, ξ ′, µ, yd) (in x-form).

Finally, the boundary symbol operators t (x ′, ξ ′, µ, Dd), g(x, ξ ′, µ, Dd) and the cor-
responding operators in R-form t (Dx , x ′), g(Dx , x) are defined in the same way as
for the Poisson operator. Note that, if t ′(x ′, µ, Dx ) is a trace operator of class 0, then

(t (x ′, µ, Dx )ϕ, ψ)Rd−1 = (ϕ, k(Dx , x ′, µ)ψ)
R

d+ , (5.14)
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where k̃(x ′, ξ ′, µ, yd) = t̃(x ′, ξ ′, µ, yd) and ϕ ∈ S(Rd
+), ψ ∈ S(Rd−1). Hence trace

operators can be considered as adjoints of Poisson operators plus a sum of usual trace
operators s j (x ′, µ, Dx ′)γ j , cf. e.g., [37, Proposition 2.4.2]. Moreover, if k(x, µ, Dx )

is a Poisson operator, then

(k(x, µ, Dx )ψ, ϕ)Rd+ = (ψ, t (Dx , x, µ)ϕ)Rd−1 , (5.15)

where t̃(x, ξ ′, µ, yd) = k̃(x, ξ ′, yd) and ϕ ∈ S(Rd
+), ψ ∈ S(Rd−1). Similarly, if

g0(x ′, µ, Dx ) is a singular Green operator of class 0 in x-form, then

(g0(x
′, µ, Dx )ϕ, ψ)Rd+ = (ϕ, g1(Dx , x ′, µ)ψ)

R
d+ (5.16)

for all ϕ,ψ ∈ S(Rd
+), where g̃1(x, ξ ′, µ, yd , zd) = g̃0(x, ξ ′, µ, zd , yd). We note that

most of the time the symbol kernels k̃(x, ξ ′, yd), t̃0(x, ξ ′, yd), and g̃0(x, ξ ′, yd , zd)

will be independent of xd , which is denoted by x ′ instead of x in the symbol-kernel.
We refer to [37] and [9, Definition 5.2] for the definition of the (global) transmis-

sion condition for a pseudodifferential symbol p ∈ Sm
1,0(R

d × R
d) and a variant for

p ∈ Cτ Sm
1,0(R

d × R
d). We will not use this property directly since we will mainly

deal with differential operators or with the mapping property p(Dx , x)+ : Lq(Ω) →
W 2

q (Ω) for p ∈ Cτ S−2
1,0(R

d × R
d), which holds without the transmission condition.

For completeness we recall the general definition of a Green operator with non-smooth
coefficients as in [9].

Definition 6 A Green operator (in L-form) of order m ∈ Z, class r ∈ N0, and regu-
larity ν ∈ R with coefficients in Cτ is defined as

a(x, µ, Dx ) =
(

p(x, µ, Dx )+ + g(x ′, µ, Dx ) k(x ′, µ, Dx )

t (x ′, µ, Dx ) s(x ′, µ, Dx ′)

)
,

where k(x ′, µ, Dx ), t (x ′, µ, Dx ), and g(x ′, µ, Dx ) are Poisson, trace, and singular
Green operators of order m, regularity ν, and class r ,

p(x ′, µ, Dx )+ = r+ p(x ′, µ, Dx )e
+, p ∈ Cτ Sm,ν

1,0 (R
d × R

d
+),

is a truncated pseudodifferential operator satisfying the transmission condition in the

sense of [9, Definition 5.2] and s ∈ Cτ Sm−1,ν
1,0 (Rd−1 × R

d
+).

In the following we will often restrict ourselves to parameter-independent symbols
and operators. The corresponding symbol classes Cτ Sd

1,0(R
d−1 × R

d−1,K), K =
S(R+),S(R2

++), are defined as above with the restriction that the symbols are inde-
pendent of µ and the symbol estimates hold for µ = 0, cf. [9] for details.

Moreover, if f̃ is a Poisson, trace, or singular Green symbol-kernel, then | f̃ |(m,ν)k ,
k ∈ N, are the semi-norms (monotonically increasing in k) associated to (5.12), (5.13),
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406 H. Abels, Y. Terasawa

resp., in the usual way, cf. Definitions 1 and 2. The semi-norms of parameter-inde-
pendent symbols will be denoted by | f̃ |(m)k .

Remark 5 1. As in Remark 4, | f̃ |(m+ε,ν)
k ≤ 〈µ〉−ε| f̃ |(m,ν)k for all ε > 0.

2. If f̃ is a parameter-dependent Poisson or trace symbol-kernel of degree m ≤ − 1
2 ,

regularity ν ≥ 0, then f̃ (., µ), µ ≥ 0 fixed, is a parameter-independent symbol-
kernel of the same degree with | f̃ (., µ)|(m)k ≤ | f̃ |(m,ν)k uniformly in µ > 0. The
same is true for parameter-dependent singular Green symbol-kernels of degree
m ≤ −1.

Remark 6 Let a j (x, ξ ′, Dd), j = 1, 2, be the boundary symbol operator of a Poisson,
trace, singular Green operator, or a pseudodifferential operators with the transmis-
sion condition of order m j (and class r j ) with coefficients in Cτ j . As observed in
[9, Remark 4.5], the composition a1(x, ξ ′, Dd)a2(x ′, ξ ′, Dd) = a(x, ξ ′, Dd) of the
boundary symbol operators is again a boundary symbol operator if the composition is
well-defined and the coefficients of a2 are independent of xd . The boundary symbol
operator of the composition is also denoted by (a1 ◦d a2)(x, ξ ′, Dd).

The following theorem summarizes some mapping properties of trace and singular
Green operators in R-form, which will be used in the following.

Theorem 6 Let 1 < q < ∞.

1. Let t ∈ Cτ Sm
1,0(R

d−1 × R
d−1,S(R+)), m ∈ R, be a trace operator of order d

and class 0. Then t (Dx , x ′) extend to a bounded operator

t (Dx , x ′) : Lq(Rd+) → B
−m− 1

q
qq (Rd−1).

2. Let g ∈ Cτ S−m−1
1,0 (Rd−1 × R

d ,S(R2
++)), m ∈ R, be a singular Green operator

of order −m and class 0. Then g(Dx , x ′) extends to a bounded operator

g(Dx , x ′) : Lq(Rd+) → W m
q (R

d+).

All operators depend continuously on the symbols with respect to the operator norm
and the symbol semi-norms.

Proof The theorem follows directly from [9, Theorem 4.8] and duality using (5.15)–
(5.16).

The following lemma summarizes the results concerning composition of non-smooth
pseudodifferential operators which we need in Sect. 5.6.

Lemma 10 Let 1 < q < ∞ and d < r ≤ ∞ such that q ≤ r and let d1 ∈ N0.
Moreover, let p1(x, Dx ) = ∑

|α|≤d1
aα(x)Dα

x be a differential operator of order

d1 with coefficients aα ∈ W 1
r (R

d), r > d, for all |α| ≤ d1 and let t (x ′, Dx ) =∑
|α|≤d1−1 bα(x ′)γ0 Dα

x be a differential trace operator of order d1 − 1, class d1, and

with coefficients bα ∈ W
1− 1

r
r (Rd−1).
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1. Let g̃ ∈ Cτ S−d1−1
1,0 (Rd−1 × R

d−1,S(R2
++)). Then

p1(x, Dx )g(Dx , x ′)− (p1|xd=0 ◦d g)(Dx , x ′) : Lq(Rd+) → Lq(Rd+),

t (x ′, Dx )g(Dx , x ′)− (t ◦d g)(Dx , x ′) : Lq(Rd+) → B
1− 1

q
qq (Rd−1),

γ0g(Dx , x ′)− (γ0 ◦d g)(Dx , x ′) : Lq(Rd+) → B
d1− 1

q
qq (Rd−1)

with operator norms bounded by C(p1)|g|(−d1−1+ε)
k , C(t)|g|(−d1−1+ε)

k , resp., for
some ε,C > 0, k ∈ N. Moreover,

t (x ′, Dx )g(Dx , x ′)− (t ◦d g)(Dx , x ′) : Lq(Rd+) → Lq(Rd−1),

γ0g(Dx , x ′)− (γ0 ◦d g)(Dx , x ′) : Lq(Rd+) → Lq(Rd−1)

with operator norm bounded by C(t)|g|(−d1− 1
q +ε)

k , C |g|(−1− 1
q +ε)

k , resp., for some
ε,C > 0, k ∈ N.

2. Let p2 ∈ Cτ S−d1
1,0 (R

d × R
d). Then

p1(x
′, Dx )p2(Dx , x)+ − (p1 · p2)(Dx , x)+ : Lq(Rd+) → Lq(Rd+)

with operator-norms bounded by C(p1)|p2|(−d1+ε)
k for some ε,C > 0, k ∈ N0.

Moreover, if p2 satisfies the (global) transmission condition, cf. [9, Definition 5.2],
and d1 ≥ 1, then

t (x ′, Dx )p2(Dx , x)+ − (t ◦d p2|xd=0)(Dx , x ′) : Lq(Rd+) → B
1− 1

q
qq (Rd−1)

γ0 p2(Dx , x)+ − (γ0 ◦d p2|xd=0)(Dx , x ′) : Lq(Rd+) → B
d1− 1

q
qq (Rd−1)

with operator norms bounded by C(t)|p2|(−d1+ε)
k for some ε,C(t) > 0, k ∈ N.

Finally,

t (x ′, Dx )p2(Dx , x)+ − (t ◦d p2|xd=0)(Dx , x ′) : Lq(Rd+) → Lq(Rd−1)

γ0 p2(Dx , x)+ − (γ0 ◦d p2|xd=0)(Dx , x ′) : Lq(Rd+) → Lq(Rd−1)

with operator norms bounded by C(t)|p2|
(−d1+ 1

q′ +ε)
k , C |p2|(−

1
q +ε)

k , resp.

Proof First we consider the compositions with p1(x, Dx ). Since p1(x, Dx ) =∑|α|≤d1
aα(x)Dα

x and Dα
x p2(Dx , x) = O P(ξα p2(y, ξ)) as well as

Dα
x g(Dx , x ′) = OP′(OPd(ξ

α) ◦ g(y′, ξ ′, Dd)),

123



408 H. Abels, Y. Terasawa

it suffices to consider the case d1 = 0 and p1(x, Dx ) = a(x). But, using the relations

(a(x)g(Dx , x)ϕ, ψ)
R

d+ = (ϕ, g1(x, Dx )a(x)ψ)Rd+ ,

(a(x)p2(Dx , x)+ϕ,ψ)Rd+ = (ϕ, p2(x, Dx )+a(x)ψ)
R

d+

for all ϕ,ψ ∈ S(Rd
+), cf. (5.16), where g̃1(x ′, ξ ′, xd , yd) = g̃(x ′, ξ ′, yd , xd) and

p2(x, ξ) = p2(x, ξ), the corresponding statements 1.-2. follow from [9, Theorem 3.6,
Theorem 5.9] with the choice 0 < θ < min(1, 1 − d

r ), where ḡ, p2 are considers as
symbols of order −d1 + ε for 0 < ε ≤ θ .

Concerning the compositions with t (x ′, Dx ), one can reduce to the case t (x ′, Dx ) =
a(x ′)γ0 and d1 = 1 similarly as before. Therefore

t (x ′, Dx )g(Dx , x ′) = a(x ′)γ0g(Dx , x),

t (x ′, Dx )p2(Dx , x ′)+ = a(x ′)γ0 p2(Dx , x)+,

where γ0g(Dx , x) and γ0 p2(Dx , x)+ are trace operators of class 0, cf. Remark 6. Let

t̃(Dx , x) denote one of them and let s = 1 − 1
q if q ≥ 2 and s ∈

(
1 − 1

q , 1 − 1
r

)
if

q < 2. Then

〈Dx ′ 〉sa(x ′)t̃(Dx , x ′) = a(x ′)〈Dx ′ 〉s t̃(Dx , x ′)+ [〈Dx ′ 〉s, a(x ′)]t̃(Dx , x ′),

where 〈Dx 〉s t̃(Dx , x ′) is a trace operator of order − 1
q if q ≥ 2 and order s − 1 if

q < 2. Hence we can apply [9, Theorem 4.13] to the first term [again using (5.14)]
and Lemma 8 together with Theorem 6 to the second term to prove the statements of

the lemma with B
1− 1

q
qq (Rd−1) replaced by Hs

q (R
d−1) + Bs

qq(R
d−1). If q ≥ 2, then

Hs
q (R

d−1) = H
1− 1

q
q (Rd−1) ↪→ B

1− 1
q

qq (Rd−1), cf. e.g., [51, Sect. 2.3.3, Remark 4]. If

1 < q < 2, then s > 1 − 1
q and we use that Hs

q (R
d−1) ↪→ B

1− 1
q

qq (Rd−1), cf. [51,
Sect. 2.3.3, Remark 4] again. This finishes the proof.

Lemma 11 Let t̃0 ∈ Cτ Sm
1,0(R

d × R
d−1,S(R+)) for some τ > 0, m ∈ R. Then

OP′(t̃0(y, ξ ′, Dd)− t̃0(y
′, 0, ξ ′, Dd)) : Lq(Rd+) → B

−m− 1
q

qq (Rd−1)

with operator norm bounded by C|t0|(m−ε)
k for some ε > 0.

Proof Using (5.15) the result directly follows from [9, Theorem 4.11].

Finally, we need the following simple lemma when dealing with coordinate trans-
formations.

Lemma 12 Let f̃ (ξ ′, µ, xd) ∈ Cτ Sm,ν
1,0 (R

d−1 × R
d
+,S(R+)), m, ν ∈ R, τ > 0.

Moreover, let A(x ′) ∈ Cτ (Rd−1)(d−1)×(d−1), τ > 0, such that A−1(x ′) ∈ Cτ

(Rd−1)(d−1)×(d−1), c ∈ Cτ (Rd−1 × R
d−1), c(x ′) ≥ c0 > 0. Then g̃(x ′, ξ ′, µ, xd) :=
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f̃ (A(x ′)ξ ′, µ, c(x ′)xd) ∈ Cτ Sm,ν
1,0 (R

d−1 × R
d
+,S(R+)) and for every k ∈ N0 there

is some k′ ∈ N0 such that

|g̃|(m,ν)k ≤ C(‖A‖Cτ , ‖A−1‖Cτ )| f̃ |(m,ν)k′ .

The same statement is true if f̃ ∈ Cτ Sm,ν
1,0 (R

d−1 × R
d
+,S(R

2
++)) is independent of x ′

and if we set

g̃(x ′, ξ ′, µ, xd , yd) := f̃ (A(x ′)ξ ′, µ, c(x ′)xd , c(x ′)yd).

Proof The proof of the lemma is the same as the proof of [11, Lemma 5.5] just
replacing C0,1-norms by Cτ -norms.

Finally, if k̃, t̃ ∈ Sm,ν
1,0 (R

d−1×R
d
+,S(R+)) and g̃ ∈ Cτ Sm,ν

1,0 (R
d−1×R

d
+,S(R

2
++)),

then we define for c > 0 and a ∈ C, f ∈ S(R+)

k(x ′, ξ ′, µ, cDd)a := k̃(x ′, ξ ′, µ, c−1xd)a,

t (x ′, ξ ′, µ, cDd) f := c−1

∞∫

0

t̃(x ′, ξ ′, µ, c−1 yd) f (yd) dyd ,

g(x ′, ξ ′, µ, cDd) f := c−1

∞∫

0

g̃(x ′, ξ ′, µ, c−1xd , c−1 yd) f (yd) dyd .

These definitions are motivated by the relations

k(., cDd) = δc−1 k(., Dd), t (., cDd) = t (., Dd)δc, g(., cDd) = δc−1 g(., Dd)δc,

where δr f (xd) = f (r xd) for r > 0, where we note that

δc−1 p(Dxd )δc = OPd(p(cξd))

for every suitable function p : R → R. Because of the latter relation, the scaling Dd �→
cDd is consistent with composition of operators in the sense that a1(., cDd)a2(., cDd)

= (a1 ◦d a2)(., cDd) for any Poisson, trace, and singular Green operators a j , j = 1, 2,
such that the composition is well-defined. Finally, we note that the choice of the scaling
above differs slightly from the one used in [11, Sect. 5.2].

5.3 The model operators of the reduced Stokes equations in R
d+ with unit viscosity

In this section we summarize some results on the boundary symbol operator of the
reduced Stokes equation in R

d+ with unit viscosity as discussed in [11, Sect. 5].
In the following we use the relation λ = eiθµ2 for µ > 0, θ ∈ (−δ, δ) respectively

λ ∈ Σδ for some δ ∈ (0, π) arbitrary but fixed. Most of the time we will write all
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symbol-kernels and boundary symbol operators in dependence of λ ∈ Σδ instead of
µ having in mind that in the estimates for the symbol-kernel classes the latter relation
for µ and λ is used.

First of all, let

ar
j,λ(ξ

′, Dd) =
(
µ2eiθ + |ξ ′|2 + D2

d + kr
j (ξ

′, Dd)tr
j (ξ

′, Dd)

t ′j (ξ ′, Dd)

)
,

j = 0, 1, θ ∈ (−π, π), be the model operator of the reduced Stokes equations, where

kr
0(ξ

′, Dd)a = e−[ξ ′]xd

(
iξ ′
[ξ ′]
−1

)
a, kr

1(ξ
′, Dd)a = e−[ξ ′]xd

(
iξ ′

−[ξ ′]
)

a,

tr
0 (ξ

′, Dd)u = iξ ′T ∂du′(0), tr
1 (ξ

′, Dd)u = 2∂dud(0),

t ′0(ξ ′, Dd)u = u(0), t ′1(ξ ′, Dd)u =
(

iξ ′ud(0)+ ∂du′(0)
iξ ′ · u′(0)+ ∂dun(0)

)

for a ∈ C
d and u ∈ S(R+)d .

We note that these model operators are obtained by considering the reduced Stokes
system (3.3)–(3.6) with unit viscosity ν(x) ≡ 1 in Ω = R

d+ and applying Fourier
transformation in tangential direction x ′ ∈ R

d−1. In that case either only the Dirichlet
boundary condition (3.5) is considered, which corresponds to the case j = 0 above
and the choice Γ1 = ∂Rd+ and Γ2 = ∅, or only the Neumann type boundary condi-
tion (3.6) is present, which is denoted by j = 1 above and is obtained by choosing
Γ1 = ∅, Γ2 = ∂Rd+. Here P is replaced by kr

j (ξ
′, Dd)t j (ξ

′, Dd) since (1.8)–(1.9) is
in the case ν ≡ 1 the weak formulation of the Laplace equation ∆p1 = 0 together
with either Neumann ( j = 0) or Dirichlet boundary condition ( j = 1). Calculating
the solution of (1.8)–(1.9) explicitly in this caseΩ = R

d+, ν ≡ 1 after (partial) Fourier
transformation, one obtains kr

j (ξ
′, Dd)t j (ξ

′, Dd)u for given u.
Note that the definition of tr

0 (ξ
′, Dd) and kr

0(ξ
′, Dd) differs from the definitions

in [11], but the product kr
0(ξ

′, Dd)tr
0 (ξ

′, Dd) stays the same. – The present decom-
position is more suitable for the following. Here [.] denotes a smooth function with
[ξ ′] = |ξ ′| if |ξ ′| ≥ 1 and [ξ ′] ≥ 1

2 if |ξ ′| < 1.
The following theorem summarizes the essential properties of the model operator

shown in [11].

Theorem 7 Let 0 < δ < π and let θ ∈ [−δ, δ]. Then there is some c0 > 0 such that

ar
j,λ(ξ

′, µ, Dd) ≡ ar
j (ξ

′, µ, Dd) : H2
2 (R+)d → L2(R+)d × C

d

is bijective for all |(ξ ′, µ)| ≥ c0. Moreover, ar
j (ξ

′, µ, Dd)
−1 is a boundary symbol

operator of order −2, class 0, and regularity 1
2 . Finally,

ar
j (ξ

′, µ, Dd)
−1
(

f
0

)
= pλ(ξ

′, Dd)+ f + gr
j,λ(ξ

′, Dd) f ≡ rr
j,λ(ξ

′, Dd) f
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for f ∈ S(R+)d , where λ = eiθµ2, pλ(ξ) = (λ+ |ξ |2)−1 and gr
j,λ(ξ

′, Dd) satisfies

∥∥∥∥∥∥∥

∫

ΓR

h(−λ)Dα′
ξ ′ gr

j,λ(ξ
′, Dd) dλ

∥∥∥∥∥∥∥
X

≤ Cδ,δ′,α′ 〈ξ ′〉−|α′|‖h‖∞ (5.17)

for X = L(L2(R+; x−δ′
d ), H δ′

2 (R+)) and X = L(H−δ′
2 (R+), L2(R+; xδ

′
d )) uniformly

in ξ ′ ∈ R
d−1 for all h ∈ H(δ), 0 ≤ δ′ < 1

2 , α′ ∈ N
d−1
0 . Here ΓR = Γ \BR and

Γ = ∂Σδ for some R ≥ R0 := c2
0.

Proof The first part is the content of [11, Lemma 5.1]. The validity of (5.17) follows
from [11, Theorem 5.13]. More precisely, from [11, Theorem 5.13] we obtain that

∥∥∥∥∥∥∥

∫

ΓR

h(−λ)Dα′
ξ ′ ǧr

j,λ(ξ
′, Dd) dλ

∥∥∥∥∥∥∥
X

≤ Cδ,δ′,α′ 〈ξ ′〉−|α′|‖h‖∞

for X = L(L2(R; |xd |−δ′), H δ′
2 (R)) and X = L(H−δ′

2 (R), L2(R; |xd |δ′)) uniformly
in ξ ′ ∈ R

d−1 for all h ∈ H(δ), 0 ≤ δ′ < 1
2 , α′ ∈ N

d−1
0 , where

ǧr
j,λ(ξ

′, Dd) f :=
∫

R

g̃r
j,λ(ξ

′, xd , yd) f (yd) dyd

for f ∈ L2(R; |xd |−δ′)∪ H−δ′
2 (R) and g̃r

j,λ(ξ
′, xd , yd) is extended by zero for xd < 0

or yd < 0. Since gr
j,λ(ξ

′, Dd) = r+ǧr
j,λ(ξ

′, Dd)e+ and e+ : H−δ′
2 (R+) → H−δ′

2 (R)

is continues for 0 ≤ δ′ < 1
2 , (5.17) follows.

Furthermore, we note that

OPd(λ+ |ξ |2)gr
j,λ(ξ

′, Dd) f = −kr
j (ξ

′, Dd)t
r
j (ξ

′, Dd)r
r
j,λ(ξ

′, Dd) (5.18)

since OPd(λ+ |ξ |2)pλ(ξ ′, Dd) f = f .

5.4 The model operators of the reduced Stokes equations in R
d+ with general

viscosity

First of all, we note that, if (v, p) is a solution of the Stokes equation resolvent equation

in R
d+ for ν ≡ const. > 0, then (w, q) with w(x) = v(ν

1
2 x) and q(x) = ν− 1

2 p(ν
1
2 x)

is a solution of the Stokes equation with unit viscosity. This scaling is also valid on
the level of the boundary symbol operators for the reduced Stokes system as follows:
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After partial Fourier transformation the reduced Stokes equation on R
d+ with constant

viscosity ν becomes

(λ+ ν|ξ ′|2 + νD2
d)ũ(xd)+ kr

j (ξ
′, Dd)νtr

j (ξ
′, Dd)ũ(xd) = f̃ (xd), xd > 0,

ν j t ′j (ξ ′, Dd)ũ = ã

provided that |ξ ′| ≥ 1 where kr
j , tr

j , t ′j are as in the previous section. Now we use that

kr
j (ξ

′, Dd)νtr
j (ξ

′, Dd) = kr
j (ν

1
2 ξ ′, ν 1

2 Dd)tr
j (ν

1
2 ξ ′, ν 1

2 Dd),

ν j 1
2 t ′j (ξ ′, Dd) = t ′j (ν

1
2 ξ ′, ν 1

2 Dd)

Altogether we see that the boundary symbol operator of the reduced Stokes equation
in R

d+ with viscosity ν > 0 is

ar
j,λ,ν(ξ

′, Dd) :=
(

I 0

0 ν
j
2

)
ar

j,λ(ν
1
2 ξ ′, ν

1
2 Dd),

where ar
j,λ(ξ

′, Dd) ≡ ar
j (ξ

′, µ, Dd) is the boundary symbol operator of the reduced

Stokes equation with unit viscosity as defined above and the factor ν
j
2 only acts on

the boundary data.

Finally, we note that there is some g̃ j,λ ∈ Cτ S
−2, 1

2
1,0 (Rd ×R

d+1
) (independent of x)

such that
(

iξ ′
∂d

)
ν

1
2 g j,λ(ν

1
2 ξ ′, ν

1
2 Dd) ≡ kr

j (ν
1
2 ξ ′, ν

1
2 Dd)t

r
j (ν

1
2 ξ ′, ν

1
2 Dd)r

r
j,λ(ν

1
2 ξ ′, ν

1
2 Dd)

= − OPd(λ+ ν|ξ |2)+gr
j,λ(ν

1
2 ξ ′, ν

1
2 Dd) (5.19)

because of (5.18). In particular, this implies

(−∂d)
1− jν

1
2 g j,λ(ν

1
2 ξ ′, ν

1
2 Dd)

∣∣∣
xd=0

= ν
j
2 tr

j (ν
1
2 ξ ′, ν

1
2 Dd)r

r
j,λ(ν

1
2 ξ ′, ν

1
2 Dd)

= νtr
j (ξ

′, Dd)r
r
j,λ(ν

1
2 ξ ′, ν

1
2 Dd) (5.20)

and

(|ξ ′|2 − ∂2
d )g j,λ(ν

1
2 ξ ′, ν

1
2 Dd) = 0 in (0,∞). (5.21)

5.5 Symbols of the reduced Stokes equations in R
d
γ

As we have seen in Sect. 4 coordinate transformation acts on the principal symbol as

a(ξ) � a(x ′, ξ) = a(A(x)ξ)
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Stokes operators with variable viscosity 413

with an additional factor U T (x) on the left if the range of the operator consists of
vector fields and additional factor U (x) on the right if the domain of the operator
consists of vector fields. Therefore we define the principal boundary symbol operator
for the reduced Stokes equation R

d
γ by

ar
j,λ(x

′, ξ ′, Dd)

= U T (x ′) diag(I, ν(x ′) j 1
2 )ar

j,λ(ν(x
′)

1
2 A′(x ′)ξ ′, ν(x ′)

1
2 Dd)U (x

′),

where ν = F∗ν and ν(x ′) = ν(x ′, 0). Hence

ar,−1
j,λ (x

′, ξ ′, Dd)

= U T (x ′)ar,−1
j,λ (ν(x

′)
1
2 A′(x ′)ξ ′, ν(x ′)

1
2 Dd) diag(1, ν(x ′)−

j
2 )U (x ′). (5.22)

This is the essential formula for the construction of the parametrix.
Moreover, we set

rr
j,λ(x

′, 0, ξ ′, Dd) f = ar,−1
j,λ (x

′, ξ ′, Dd)

(
f
0

)
, f ∈ S(R+).

Then

rr
j,λ(x

′, 0, ξ ′, Dd) f = p
λ
(x ′, 0, ξ ′, Dd)+ f + gr

j,λ
(x ′, ξ ′, Dd) f

where p
λ
(x, ξ) = (λ+ ν(x)|A(x)ξ |2)−1 and

gr
j,λ
(x ′, ξ ′, Dd) f = U (x ′)T gr

j,λ(ν
1
2 (x ′)A′(x ′)ξ ′, ν

1
2 (x ′)Dd)U (x

′) f. (5.23)

Finally, we set for x = (x ′, xd) with xd > 0

rr
j,λ(x, ξ

′, Dd) f = p
λ
(x, ξ ′, Dd)+ f + gr

j,λ
(x ′, ξ ′, Dd) f

and we define the parametrix of the reduced Stokes system on the transformed R
d
γ as

rr
j,λ(Dx , x) = p

λ
(Dx , x)+ + gr

j,λ
(Dx , x ′) (5.24)

For the general construction of a parametrix in the case of non-smooth coefficients we
refer to [9, Sect. 6].

Remark 7 We note that pλ(ξ) = (λ + |ξ |2)−1 satisfies the transmission condition
because of [37, Theorem 2.2.13] and since every polynomial in ξ satisfies the trans-
mission condition. Therefore p

λ
(x, ξ) satisfies the global transmission condition in

the sense of [9, Definition 5.2] because of [9, Remark 5.3].
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414 H. Abels, Y. Terasawa

We have to estimate the semi-norms of the transformed symbols. Because of (4.1)

and ∇′γ ∈ W
1− 1

r2
r2 (Rd−1) ↪→ Cτ2(Rd−1) with τ2 = 1 − d

r2
> 0, we have A′(x ′),

A′−1
(x ′), c(x ′) ∈ Cτ2(Rd−1). Moreover, ν(x)|xd=0 ∈ W

1− 1
r1

r1 (Rd−1) ↪→ Cτ1(Rd−1)

with τ1 = 1 − d
r1
> 0. Hence we can apply Lemmas 9 and 12 to obtain:

Corollary 3 Let ar
j,λ(x

′, ξ ′, Dd), j = 0, 1, be the transformed boundary symbol
operators of the reduced Stokes equations defined above. Then

ar
j (x

′, ξ ′, µ, Dd) ≡ ar
j,λ(x

′, ξ ′, Dd)

and rr,−1
j (x, ξ ′, µ, Dd) are Green symbols of order 2, −2, respectively, regularity 1

2 ,

and Cτ -smoothness in x ′ for τ = min
(

1 − d
r1
, 1 − d

r2

)
. Moreover, the semi-norms of

the symbols are uniformly bounded in θ ∈ [−δ, δ] for any δ ∈ (0, π).
Theorem 8 Let δ ∈ (0, π), R0 = c2

0 > 0 be the constant in Theorem 7, and
gr

j,λ
(x ′, ξ ′, Dd) be defined as in (5.23) with j = 0, 1. Then

∥∥∥∥∥∥∥

∫

ΓR

h(−λ)gr
j,λ
(Dx , x ′) dλ

∥∥∥∥∥∥∥L(Lq (Rd+))

≤ Cδ‖h‖∞

for every h ∈ H(δ) and R ≥ max{R0, 1}.
Proof By (5.23) and (5.17), we obtain

∥∥∥∥∥∥∥

∫

ΓR

h(−λ)Dα′
ξ ′ gr

j,λ
(., ξ ′, Dd) dλ

∥∥∥∥∥∥∥
Cτ (X)

≤ Cδ,δ′,α′ 〈ξ ′〉−|α′|‖h‖∞

for X = L(L2(R+; x−δ′
d ), H δ′

2 (R+)) and X = L(H−δ′
2 (R+), L2(R+; xδ

′
d )) uniformly

in ξ ′ ∈ R
d−1 for all h ∈ H(δ), 0 ≤ δ′ < 1

2 , α′ ∈ N
d−1
0 . Hence Theorem 5 implies

∥∥∥∥∥∥∥

∫

ΓR

h(−λ)gr
j,λ
(Dx , x ′) dλ

∥∥∥∥∥∥∥L(Lq (Rd−1;H0),Lq (Rd−1;H1))

≤ Cδ‖h‖∞

where (H0, H1) are (L2(R+; x−δ′
d ), H δ′

2 (R+)) or (H−δ′
2 (R+), L2(R+; xδ

′
d )). Now, if

1 < q ≤ 2, then one uses the interpolation inclusions

(L2(R+, xδ
′

n ), L2(R+, xδn))θ,q ⊆ Lq(R+),
(H−δ′

2 (R+), H−δ
2 (R+))θ,q ⊇ Lq(R+),
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where 0 ≤ δ′ < 1
q − 1

2 < δ < 1
2 , θ =

(
1
q − 1

2 − δ′
)
/(δ−δ′), cf. e.g., [11, Lemma 2.1],

and (., .)θ,q denotes the real interpolation functor. This implies the statement in this
case. If 2 ≤ q < ∞, then one uses instead

(L2(R+, x−δ′
n ), L2(R+, x−δ

n ))θ,q ⊇ Lq(R+),
(H δ′

2 (R+), H δ
2 (R+))θ,q ⊆ Lq(R+),

where 0 ≤ δ′ < 1
2 − 1

q < δ < 1
2 , and θ = ( 1

2 − 1
q − δ′)/(δ − δ′), cf. e.g., [11,

Lemma 2.1] again. This finishes the proof.

For the pseudodifferential operator part p
λ
(x, Dx ) we can apply:

Lemma 13 Let 1 < q < ∞, R > 0, and δ ∈ (0, π). Then p
λ
(x, ξ) = (λ +

ν(x)|A(x)ξ |2)−1, x ∈ R
d , ξ ∈ R, with A, A−1 ∈ Cτ (Rd)d×d , ν, ν−1 ∈ Cτ (Rd)

satisfies

∥∥∥∥∥∥∥

∫

ΓR

h(−λ)Dα
ξ p

λ
(., ξ) dλ

∥∥∥∥∥∥∥
Cτ

≤ Cδ,R,α‖h‖∞〈ξ 〉−|α|

uniformly in ξ ∈ R
d , for all α ∈ N

d
0 and h ∈ H(δ).

Proof The proof is literally the same as in [11, Lemma 5.14] just replacing C0,1-norms
by Cτ -norms.

Now we are in the position to prove the following main step in the proof of Theo-
rem 4:

Theorem 9 Let 1 < q < ∞, a ∈ Cτ (Rd) with τ > 0, 0 < δ < π , λ ∈ Σδ ,
and let rr

j,λ(Dx , x) be as above. Then rr
j,λ(Dx , x) extends to a bounded operator

rr
j,λ(Dx , x) : Lq(Rd+)d → W 2

q (R
d+)d and

(λ− ν∆)rr
j,λ(Dx , x) f + ∇g

j,λ
(Dx , x ′) f = f + S j,λ f in R

d+, (5.25)

t ′j (x ′, Dx )r
r
j,λ(Dx , x) f = S′

j,λ f on ∂Rd+ (5.26)

for every f ∈ Lq(Rd
γ )

d where g
j,λ
(Dx , x ′) is a singular Green operator of order −1,

class 0, and regularity 1
2 . Moreover,

(
∇g

j,λ
(Dx , x ′) f, a∇ϕ

)
R

d+
= (ν(∆− ∇div)rr

j,λ(Dx , x) f, a∇ϕ)
R

d+ + 〈S′′
j,λ f, ϕ〉W−1

q,0,W
1
q′ (5.27)

for all ϕ ∈ W 1
q ′(Rd+) with ϕ|xd=0 = 0 if j = 1,

g
1,λ
(Dx , x ′) f |∂Rd+ = tr

1(x
′, Dx )r

r
1,λ(Dx , x) f + S′′′

λ f on ∂Rd+, (5.28)
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and

‖S j,λ f ‖Lq (Rd+) + ‖S′
j,λ f ‖

W
2− j− 1

q
q (Rd−1)

≤ Cq,δ〈λ〉−ε‖ f ‖Lq (Rd+), (5.29)

‖S′′
j,λ f ‖W−1

q,0(R
d+))

+ ‖S′′′
λ f ‖

W
1− 1

q
q (Rd−1)

≤ Cq,δ〈λ〉−ε‖ f ‖Lq (Rd+), (5.30)

〈λ〉 1
2 (2− j− 1

q )‖S′
j,λ f ‖Lq (Rd−1) ≤ Cq,δ〈λ〉−ε‖ f ‖Lq (Rd+) (5.31)

uniformly in λ ∈ Σδ , f ∈ Lq(Rd+)d for some ε > 0. Finally,

〈λ〉‖rr
j,λ(Dx , x)‖L(Lq (Rd+)) + ‖∇2rr

j,λ(Dx , x)‖L(Lq (Rd+)) ≤ Cq,δ, (5.32)

〈λ〉 1
2 ‖gr

j,λ
(Dx , x ′)‖L(Lq (Rd+)) + ‖∇gr

j,λ
(Dx , x ′)‖L(Lq (Rd+)) ≤ Cq,δ (5.33)

uniformly in λ ∈ Σδ , |λ| ≥ R0, where R0 is as in Theorem 7.

Proof First of all, because of Corollary 3, Theorem 5, Theorem 6.2, and Remarks 4
and 5,

rr
j,λ(Dx , x) : Lq(Rd+)d → W 2

q (R
d+)d

with operator norm uniformly bounded in λ ∈ Σδ , |λ| ≥ R0, δ ∈ (0, π). Con-
sidering p

λ
(x, ξ), g̃r

j,λ
(x ′, ξ ′, xn, yn) as symbol(-kernels) of order 0 with symbol

semi-norms bounded by Cδ(1 + |λ|)−1, cf. Remark 4 and Remark 5.1, we conclude
‖R j,λ‖L(Lq (Rd+)) ≤ Cδ(1 + |λ|)−1. Hence (5.32) holds.

In order to show (5.25), we calculate

(λ− ν∆rr
j,λ(Dx , x) f )

= (λ− ν∆)p
λ
(Dx , x)+ f + (λ− ν∆)gr

j,λ
(Dx , x ′) f

= OP(q
λ
(y, ξ)p

λ
(y, ξ))+ OP′(OPd(qλ(y

′, 0, ξ))+gr
j,λ
(y′, ξ ′, Dd))+ S̃ j,λ f

= f + OP′ (q
λ
(y′, 0, ξ ′, Dd)+gr

j,λ
(y′, ξ ′, Dd)

)
f + S̃ j,λ f

where q
λ
(x, ξ) = λ+ ν(x)|A(x)ξ |2 and

‖S̃ j,λ‖L(Lq (Rd+)) ≤ C

(∣∣∣p
λ

∣∣∣
(−2+ε)
k

+
∣∣∣gr

j,λ

∣∣∣
(−3+ε)
k

)

≤ C〈λ〉− ε
2

(∣∣∣p
λ

∣∣∣
(−2,0)

k
+
∣∣∣gr

j,λ

∣∣∣
(−3,0)

k

)

uniformly in λ ∈ Σδ , |λ| ≥ R0, for some ε > 0 and k ∈ N because of Lemma 10 with
d1 = 2, Remark 4, and Remark 5.1. Next

q
λ
(y′, ξ ′, Dd)+gr

j,λ
(y′, ξ ′, Dd) = −U (y′)T

(
A′(y′)ξ ′
∂d

)
g

j,λ
(y′, ξ ′, Dd),
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where

g
j,λ
(y′, ξ ′, Dd) = ν

1
2 (y′)g j,λ(ν

1
2 (y′)A′(y′)ξ ′, ν

1
2 (y′)Dd)U (y

′) (5.34)

and g j,λ(ξ
′, Dd) is as in (5.19). Hence

OP′ (q
λ
(y′, ξ ′, Dd)+gr

j,λ
(y′, ξ ′, Dd)

)
f = −∇g

j,λ
(Dx , x ′) f + S̃′

j,λ f,

where ‖S̃′
j,λ‖L(Lq (Rd+)) ≤ C〈λ〉−ε uniformly in λ ∈ Σδ , |λ| ≥ R0 for some ε > 0

because of Lemma 10 and Remark 5 as before. Thus (5.25) holds true with S j,λ =
S̃ j,λ + S̃′

j,λ.
Since g

j,λ
(Dx , x ′) is a parameter-dependent singular Green operator of order −1,

class 0, and regularity 1
2 , we obtain (5.33) by the same arguments as for (5.32). In

order to prove (5.27), we derive for all ϕ ∈ W 1
q ′(Rd+) with ϕ|xd=0 = 0 if j = 1 that

(∇g
j,λ
(Dx , x ′) f, a∇ϕ)

R
d+ =

(
a AT A OP(iξg

j,λ
(ξ, y′)) f,∇ϕ

)
R

d+

=
(

OP′(a(y′)A(y′)T A(y′)OPd(iξ)g j,λ
(ξ ′, y′, Dd)) f,∇ϕ

)
R

d+
+ (S̃ j,λ f,∇ϕ)

R
d+

= −
(

OP′(a(y′)∂d g
j,λ
(ξ ′, y′, Dd)) f |xd=0, ϕ|xd=0

)
Rd−1

−
(
div OP′(a(y′)A(y′)T A(y′)OPd(iξ)g j,λ

(ξ ′, y′, Dd)) f, ϕ
)

R
d+
+(S̃ j,λ f,∇ϕ)

R
d+

where ‖S̃ j,λ f ‖Lq (Rd+) ≤ C〈λ〉−ε‖ f ‖Lq (Rd+) for some ε > 0 because of Lemma 10
with d1 = 0. Moreover,

− div OP′(a(y′)A(y′)T A(y′)OPd(iξ)g j,λ
(ξ ′, y′, Dd)) f

= OP′(a(y′)(|A′(y′)ξ ′|2 − ∂2
d )g j,λ

(ξ ′, y′, Dd)) = 0

due to (5.21) and (5.34). Furthermore, if j = 0, then

OP′(a(y′)∂d g
0,λ
(ξ ′, y′, Dd)) f |xd=0

= OP′(a(y′)tr
0(ξ

′, y′, Dd)r
r
0,λ(ξ

′, y′, Dd)) f

= ed · γ0 OP(a(y)(|A(y)ξ |2 − (A(y)ξ)(A(y)ξ)T )p
λ
(ξ ′, y)U (y))+ f + S′

0,λ f

+ed ·γ0 OP′(a(y′)OPd(|A(y′)ξ |2−(A(y′)ξ)(A(y′)ξ)T)U (y′)gr
0,λ
(ξ ′, y′, Dd)) f

due to (5.20) and (5.34), where

OP′(t (y, ξ ′, Dd)) f

≡ ed · γ0 OP(a(y)(|A(y)ξ |2 − (A(y)ξ)(A(y)ξ)T )p
λ
(ξ, y)U (y))+ f

= OP′(t (y′, 0, ξ ′, Dd)) f + S′
j,λ f.
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Here OP′(t (y, ξ ′, Dd)) is a trace operator of order 0 and class 0 since ed · (|A(y)ξ |2 −
(A(y)ξ)A(y)ξ)T )p

λ
(ξ, y) = O(〈ξd〉−1) w.r.t. ξd , cf. [37, Proposition 2.2.2]. There-

fore Lemma 11 implies ‖S′
j,λ f ‖

B
− 1

q
qq (Rd−1)

≤ C〈λ〉−ε‖ f ‖Lq (Rd+) for some ε > 0.

Finally, if M(y, ξ) = (|A(y)ξ |2 − (A(y)ξ)(A(y)ξ)T
)

U (y), then

(
ed · γ0 OP(a(y)M(y, ξ)p

λ
(ξ ′, y))+ f, ϕ|xd=0

)
Rd−1

= −
(

OP(a(y)M(x, ξ)p
λ
(ξ ′, y))+ f,∇ϕ

)
R

d+

= −
(

a(∆− ∇div)p
λ
(Dx , x) f,∇ϕ

)
R

d+
+ (S̃′′

j,λ f,∇ϕ)
R

d+

and
(

ed · γ0 OP′(a(y′)M(y′, ξ ′, Dd)g
r
j,λ
(ξ ′, y′, Dd)) f, ϕ|xd=0

)
Rd−1

= −
(

OP′(a(y′)M(y′, ξ ′, Dd)g
r
j,λ
(ξ ′, y′, Dd)) f,∇ϕ

)
R

d+

= −
(

a(∆− ∇div)gr
j,λ
(Dx , x ′) f,∇ϕ

)
R

d+
+ (Ŝ′′

j,λ f,∇ϕ)
R

d+

since

div OP(a(y)M(y, ξ)p
λ
(ξ ′, y))

= OP(a(y)iξ · (|A(y)ξ |2 − (A(y)ξ)(A(y)ξ)T )U (y)p
λ
(ξ ′, y)) = 0 and

div OP′(a(y′)M(y′, ξ ′, Dd)g
r
j,λ
(ξ ′, y′, Dd))

= OP′(a(y′)OPd(iξ · (|A(y′)ξ |2 − (A(y′)ξ)(A(y′)ξ)T U (y′)))gr
j,λ
(ξ ′, y′, Dd))

= 0.

Here ‖S′′
j,λ f ‖Lq (Rd+) ≤ C〈λ〉−ε‖ f ‖Lq (Rd+) because of Lemma 10 and Remark 5 again.

Furthermore, if j = 1,

gr
1,λ
(Dx , x ′)|xd=0

= OP′ (tr
1(y

′, ξ ′, Dd)r
r
j,λ(y

′, ξ ′, Dd)
)

= OP′ (tr
1(y

′, ξ ′, Dd)pλ(y
′, 0, ξ ′, Dd)+

)
+ OP′ (tr

1(y
′, ξ ′, Dd)g

r
j,λ
(y′, ξ ′, Dd)

)

= tr
1(x

′, Dx )
(

pλ(Dx , x)+ + gr
1,λ(Dx , x ′)

)+ S′′′
λ

due to (5.20), where S′′′
λ satisfies (5.30) because of Lemma 10 and Remark 5 again.

Finally,

γ0rr
0,λ(Dx , x) = OP′(γ0rr

1,λ(y
′, ξ ′, Dd))+ S′

0,λ = S′
0,λ

t ′1(x ′, Dx )rr
1,λ(Dx , x) = OP′(t ′1(y′, ξ ′, Dd)rr

1,λ(y
′, ξ ′, Dd))+ S′

1,λ = S′
1,λ
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where S′
j,λ satisfies the estimate in (5.29) because of Lemma 10 and Remark 5 once

more. Using the Lq(Rd−1)-estimates stated in Lemma 10, one derives (5.31), where
we note that

∣∣∣p
λ

∣∣∣
(− j− 1

q +ε)
k

+
∣∣∣gr

j,λ

∣∣∣
(−1− j− 1

q +ε)
k

≤ C(1 + |λ|)− 1
2 (2− j+ 1

q +ε)
(∣∣∣q
∣∣∣
(−2,0)

k
+
∣∣∣gr

j

∣∣∣
(−3,0)

k

)
.

This finishes the proof.

5.6 Proof of Theorem 4

Let R
d
γ be a bent half-space as in the assumptions of Theorem 4. Then we define

R j,λ := R′
j,λ − E j T

′
j R′

j,λ, where R′
j,λ := F∗,−1 OP′(rr

j,λ(y, ξ
′, Dd))F

∗

as parametrix for the reduced Stokes equations in R
d
γ , where rr

j,λ is defined in (5.24)
(extended for |λ| ≤ R0 suitably) and E j is the extension operator due to Lemma 7.
Then (5.2)–(5.3) hold. Because of (5.32) and Corollary 1, R′

j,λ : Lq(Rd
γ )

d →W 2
q (R

d
γ )

d

with operator norm uniformly bounded in λ ∈ Σδ ∪ {0} for every δ ∈ (0, π) and
‖R′

j,λ‖L(Lq (Rd
γ ))

≤ Cδ(1+|λ|)−1, λ ∈ Σδ . Therefore Lemma 7, (5.26), (5.29), (5.30),
and Lemma 6 imply

∥∥∥
(
〈λ〉E j T

′
j R′

j,λ f,∇2 E j T
′
j R′

j,λ f
)∥∥∥

Lq (Rd
γ )

≤ C〈λ〉−ε‖ f ‖Lq (Rd
γ )
. (5.35)

Hence (5.8) holds. Moreover, because of Theorem 8 and Lemma 13 together with
Theorem 5, (5.10) holds, where we note that

∥∥∥∥∥∥∥

∫

ΓR

h(−λ)E j T
′
j R′

j,λ dλ

∥∥∥∥∥∥∥L(Lq (Rd
γ ))

≤ Cδ‖h‖∞ for all h ∈ H(δ)

since ‖E j T ′
j R′

j,λ f ‖Lq (Rd
γ )

≤ C〈λ〉−1−ε‖ f ‖Lq (Rd
γ )

for some ε > 0.
Due to Lemma 6 and (5.8),

(λ− div(ν∇·))R j,λ = F∗,−1q
λ
(x, Dx )OP′(rr

j,λ(y, ξ
′, Dd))F

∗ + S̃′
λ

where q
λ
(x, ξ) = λ+ν(x)|A(x)ξ |2 and S̃′

λ = O((1+|λ|)−ε) in L(Lq(Rd
γ )). Because

of (5.25) and Lemma 6 again, we conclude further that

(λ− div(ν∇·))R′
j,λ = I − F∗,−1∇g

j,λ
(Dx , x ′))F∗ + S̃λ

= I − ∇G j,λ + S̃λ
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for some S̃λ = O((1 + |λ|)−ε) in L(Lq(Rd
γ )) where G j,λ = F∗,−1g

j,λ
(Dx , x ′))F∗.

Combining this with (5.35), we obtain (5.1) together with the estimate of S j,λ.
It remains to show (5.4)–(5.5). Using Lemma 6 and (5.27) with a = det ∇F(x),

we obtain

(∇G j,λ f,∇ϕ)Rd
γ

= (∇g j,λ(Dx , x ′)F∗ f, det ∇F(x)∇F∗ϕ)
R

d+
= (ν(∆− ∇div)r j,λ(Dx , x)F∗ f, a∇F∗ϕ)

R
d+ + 〈S′′

j,λF∗ f, F∗ϕ〉W−1
q,0,W

1
q′

= (ν(∆− ∇ div)R j,λ f, ϕ)Rd
γ

+ (νR1r j,λ(Dx , x)F∗ f, a∇F∗ϕ)
R

d+
+ 〈S′′

j,λF∗ f, F∗ϕ〉
≡ (ν(∆− ∇ div)R j,λ f, ϕ)Rd

γ
+ 〈S′

j,λ f, ϕ〉W−1
q,0,W

1
q′

for all ϕ ∈ W 1
q ′(Rd

γ ) with ϕ|∂Rd
γ

= 0 if j = 0, where R1 is a differential operator of
order 1 with Lr2 -coefficients, r2 > d. Hence

∣∣∣(νR1r j,λ(Dx , x)F∗ f, a∇F∗ϕ)
R

d+

∣∣∣ ≤ C‖r j,λ(Dx , x)F∗ f ‖W 1
s
‖∇ϕ‖Lq′

≤ C‖r j,λ(Dx , x)F∗ f ‖W 2−2ε
q

‖∇ϕ‖Lq′

≤ C(1 + |λ|)−ε‖ f ‖Lq ‖∇ϕ‖Lq′

for all f ∈ Lq(Rd
γ ), ϕ ∈ Ẇ 1

q ′(Rd
γ ), and some ε > 0, where 1

s = 1
q − 1

r2
> 1

q − 1
d . Com-

bining this with (5.30), we have shown the estimates of S′
j,λ stated in (5.6)–(5.7). The

identity (5.5) and the estimate of S′′
λ follows easily from (5.28), (5.30), and Lemma 6

again. This finishes the proof of Theorem 4.

6 Estimates of the parametrix

Now we define the parametrix Rλ on Ω by

Rλ f =
N∑

k=1

ψk Rγk ,λϕk f,

where Rγk ,λ denotes the approximate resolvent on R
d
γk

according to Theorem 4, where
the boundary conditions ( j = 0, 1) are chosen to fit to the boundary conditions on
∂Ω ∩ Uk . Moreover, we order R

d
γk

, k = 1, . . . , N , such that Uk ∩ Γ1 �= ∅ and
Uk ∩ Γ2 = ∅ for k = 1, . . . , N1 as well as Uk ∩ Γ1 = ∅ and Uk ∩ Γ2 �= ∅ for
k = N1 + 1, . . . , N .

We show that

(λ− div(ν∇·)+ ∇ P)Rλ f = f + Sλ f, (6.1)

Rλ f |Γ1 = 0, (6.2)

T ′
1 Rλ f |Γ2 = 0 + S′

λ f, (6.3)
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where Pv is defined as solution of (1.8)–(1.9) and

‖Sλ f ‖Lq (Ω) + ‖S′
λ f ‖

W
1− 1

q
q (Γ2)

+ 〈λ〉 1
2 − 1

2q ‖S′
λ f ‖Lq (Γ2) ≤ Cδ,q〈λ〉−ε‖ f ‖Lq (Ω)

(6.4)

uniformly in λ ∈ Σδ , f ∈ Lq(Ω)d . First of all, using Theorem 4, it is easy to check
that

(λ− div(ν∇·))Rλ f + ∇Gλ f = f + Sλ f

for some Sλ satisfying the same estimate as in (6.4) and

Gλ f =
N∑

j=1

ψ j Gγ j ,λϕ j f.

Here we note that all perturbation terms due to differentiation of the cut-off functions

ϕ j , ψ j decay of order at least 〈λ〉− 1
2 due to (5.8)–(5.9). Moreover, (6.2)–(6.3) together

with the corresponding estimate in (6.4) are proved in a straight forward manner using
Theorem 4 again. As mentioned in Remark 3 above, each Gγ j ,λ represents the prin-
cipal of P Rγ j ,λ on R

d
γ j

. In the same way Gλ represents the principal part of P Rλ on
Ω . More precisely, we will show that

‖∇ P Rλ f − ∇Gλ f ‖Lq (Ω) ≤ Cq,δ(1 + |λ|)−ε‖ f ‖Lq (Ω)

for all f ∈ Lq(Ω)d , λ ∈ Σδ and some ε > 0. This is the most important step in the
proof of Theorem 1. By duality, it is enough to show that for any f ∈ Lq(Ω)d and
any u ∈ Lq ′

(Ω)d , we have

|(∇ P Rλ f − ∇Gλ f, u)Ω | ≤ Cq,δ(1 + |λ|)−ε‖ f ‖q‖u‖q ′ . (6.5)

To show this, we use the Helmholtz decomposition for any u ∈ Lq ′
(Ω)d according to

(A2), i.e., u = u0+∇ p where u0 ∈ Jq ′(Ω) and p ∈ Ẇ 1
q ′,Γ2

(Ω).Here p can be decom-

posed by the assumption (A3) as p = p1+p2 where p1 ∈ W 1
q ′,Γ2

(Ω), p2 ∈ Ẇ 1
q ′,Γ2

(Ω)

with ∇ p2 ∈ W 1
q ′(Ω). Thus we have a decomposition of any u ∈ Lq ′

(Ω)d such that
u = u0 + ∇ p1 + ∇ p2 where u0, p1, p2 satisfy the conditions above. We estimate the
left-hand side of (6.5) using this decomposition and estimating each term separately,
which will be called first, second and third part below.

For the first part, we have
⎛
⎝∇ P

⎛
⎝

N∑
j=1

ψ j Rγ j ,λϕ j f

⎞
⎠− ∇

⎛
⎝

N∑
j=1

ψ j Gγ j ,λϕ j f

⎞
⎠ , u0

⎞
⎠
Ω

=
⎛
⎝P

⎛
⎝

N∑
j=1

ψ j Rγ j ,λ ϕ j f

⎞
⎠−

N∑
j=1

ψ j Gγ j ,λϕ j f, γnu0

⎞
⎠
Γ2
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=
⎛
⎝2ν∂n

⎛
⎝

N∑
j=N1+1

ψ j Rγ j ,λϕ j f

⎞
⎠

n

∣∣∣∣∣∣Γ2 − 2
N∑

j=1

ψ jν(∂n Rγ j ,λϕ j f )n

∣∣∣∣∣∣
Γ2

, γnu0

⎞
⎠
Γ2

− (S′′
λ f, γnu0

)
Γ2

=
⎛
⎝2ν

N∑
j=N1+1

((∂nψ j )Rγ j ,λϕ j f )n|∂Rd
γ j

− S′′
λ f, γνu0

⎞
⎠
Γ2

, (6.6)

where

‖2ν(Rγ j ,λϕ j f )n‖
W

1− 1
q

q (∂Rd
γ j
)

≤ Cq,δ〈λ〉− 1
2 ‖ f ‖q and

|(S′′
λ f, γνu0)Γ2 | ≤ Cq,δ〈λ〉−ε‖ f ‖q‖u‖q ′

because of Theorem 4. Hence the absolute value of (6.6) is estimated from above by
Cq,δ(1 + |λ|)−ε‖ f ‖q‖u‖q ′ for some ε > 0.

For the second part, we split it further into the Dirichlet and Neumann parts. Here
Dirichlet part means that the boundary condition (3.5) is present on that part of the
boundary and Neumann part refers to (3.6). For the Dirichlet part, we have

⎛
⎝∇ P

⎛
⎝

N1∑
j=1

ψ j Rγ j ,λϕ j f

⎞
⎠− ∇

⎛
⎝

N1∑
j=1

ψ j Gγ j ,λϕ j f

⎞
⎠ ,∇ p1

⎞
⎠
Ω

=
⎛
⎝ν (∆− ∇ div)

⎛
⎝

N1∑
j=1

ψ j Rγ j ,λϕ j f

⎞
⎠ ,∇ p1

⎞
⎠
Ω

−
N1∑
j=1

(
Gγ j ,λϕ j f,∇ψ j · ∇ p1

)
Rd
γ j

−
N1∑
j=1

(∇Gγ j ,λϕ j f,∇(ψ j p1)
)
Rd
γ j

+
N1∑
j=1

(∇Gγ j ,λϕ j f,∇(ψ j )p1)Rd
γ j

= (ν(∆− ∇ div)

⎛
⎝

N1∑
j=1

ψ j Rγ j ,λϕ j f

⎞
⎠ ,∇ p1)Ω

−
N1∑
j=1

(ν(∆− ∇ div)Rγ j ,λϕ j f,∇(ψ j p1))Rd
γ j

−
N1∑
j=1

〈S′
0,λϕ j f, ψ j p1〉W−1

q,0,W
1
q′

−
N1∑
j=1

(Gγ j ,λϕ j f,∇ψ j · ∇ p1)Rd
γ j

+
N1∑
j=1

(∇Gγ j ,λϕ j f, (∇ψ j )p1)Rd
γ j

(6.7)
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For the first term of (6.7), we use

N1∑
j=1

(ν(∆− ∇ div)ψ j Rγ j ,λϕ j f,∇ p1)Ω

=
N1∑
j=1

(νψ j (∆− ∇ div)Rγ j ,λϕ j f,∇ p1)Rd
γ j

+
N1∑
j=1

(ν[∆− ∇ div, ψ j ]Rγ j ,λϕ j f,∇ p1)Rd
γ j

=
N1∑
j=1

(ν(∆− ∇ div)Rγ j ,λϕ j f,∇(ψ j p1))Rd
γ j

−
N1∑
j=1

(ν(∆− ∇ div)ψ j Rγ j ,λϕ j f, (∇ψ j )p1)Rd
γ j

+
N1∑
j=1

(S j Rγ j ,λϕ j f,∇ p1)Rd
γ j

(6.8)

where S j = ν[∆−∇ div, ψ j ]. If we put (6.8) into (6.7), the first term of (6.8) cancels
with the second term of (6.7).

For the estimate of the second term of (6.8), one uses the following estimate,

‖ν(∆− ∇ div)Rγ j ,λϕ j f ‖W−ε
q (Ω) ≤ Cq,δ‖Rγ j ,λϕ j f ‖W 2−ε

q (Rd
γ j
)

≤ Cq,δ(1 + |λ|)− ε
2 ‖ϕ j f ‖Lq (Rd

γ j
)

≤ Cq,δ(1 + |λ|)− ε
2 ‖ f ‖Lq (Ω),

where 0 < ε < 1, together with the embedding W ε
q (Ω) ↪→ W 1

q (Ω) for 0 < ε < 1

and the fact that the dual of W s
q (Ω) is W −s

q ′ (Ω) for all s ∈
(
− 1

q ′ , 1
q

)
.

Since the commutator S j = [∆− ∇ div, ψ j ] is the differential operator of order 1,

we have for the third term in (6.8) ‖S j Rγ j ,λϕ j f ‖Lq(Rd
γ j
) ≤ Cq,δ(1 + |λ|)− 1

2 ‖ f ‖q .

The remaining terms, which contain the operator Gγ j ,λ, can be estimated using
similar arguments. Hence the absolute value of (6.7) is estimated from above by
Cq,δ(1 + |λ|)−ε‖ f ‖q‖u‖q ′ for some ε > 0.

For the Neumann part, we have

⎛
⎝∇ P

⎛
⎝

N∑
j=N1+1

ψ j Rγ j ,λϕ j f

⎞
⎠− ∇

⎛
⎝

N∑
j=N1+1

ψ j Gγ j ,λφ j f

⎞
⎠ ,∇ p1

⎞
⎠
Ω

=
⎛
⎝ν(∆− ∇ div)

⎛
⎝

N∑
j=N1+1

ψ j Rγ j ,λϕ j f

⎞
⎠ ,∇ p1

⎞
⎠
Ω
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−
N∑

j=N1+1

(Gγ j ,λϕ j f,∇ψ j · ∇ p1)Rd
γ j

−
N∑

j=N1+1

(∇Gγ j ,λϕ j f,∇(ψ j p1))Rd
γ j

+
N∑

j=N1+1

(∇Gγ j ,λϕ j f, (∇ψ j )p1)Rd
γ j

=
⎛
⎝ν(∆− ∇ div)

⎛
⎝

N∑
j=N1+1

ψ j Rγ j ,λϕ j f

⎞
⎠ ,∇ p1

⎞
⎠
Ω

−
N∑

j=N1+1

(Gγ j ,λϕ j f,∇ψ j · ∇ p1)Rd
γ j

−
N∑

j=N1+1

(ν(∆− ∇ div)Rγ j ,λϕ j f + S′
1,λϕ j f,∇(ψ j p1))Rd

γ j

+
N∑

j=N1+1

(∇Gγ j ,λϕ j f, (∇ψ j )p1)Rd
γ j
. (6.9)

The sum of the first and the third term of (6.9) can be treated as in the Dirichlet case
and yields the lower order term. The estimate of the other terms are also as similar as
the Dirichlet case.

Hence the absolute value of (6.9) is estimated from above by Cq,δ(1 + |λ|)−ε‖ f ‖q

‖u‖q ′ for some ε > 0.
For the third part, we can treat the Dirichlet and Neumann parts in the same way.

We have

⎛
⎝∇ P

⎛
⎝

N∑
j=1

ψ j Rγ j ,λϕ j f

⎞
⎠− ∇

⎛
⎝

N∑
j=1

ψ j Gγ j ,λϕ j f

⎞
⎠ ,∇ p2

⎞
⎠
Ω

=
⎛
⎝ν(∆−∇ div)

⎛
⎝

N∑
j=1

ψ j Rγ j ,λϕ j f

⎞
⎠ ,∇ p2

⎞
⎠
Ω

−
⎛
⎝∇
⎛
⎝

N∑
j=1

ψ j Gγ j ,λφ j f

⎞
⎠ ,∇ p2

⎞
⎠
Ω

(6.10)

For the estimate of the first term of the right-hand side of (6.10), one uses the following
estimate

‖(∆− ∇ div)ψ j Rγ j ,λϕ j f ‖W−ε
q (Ω) ≤ Cq,δ‖ψ j Rγ j ,λϕ j f ‖W 2−ε

q (Ω)

≤ Cq,δ‖Rγ j ,λϕ j f ‖W 2−ε
q (Rd

γ j
)

≤ Cq,δ〈λ〉− ε
2 ‖ϕ j f ‖Lq (Rd

γ j
)

≤ Cq,δ〈λ〉− ε
2 ‖ f ‖Lq (Ω),
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where 0 < ε < 1, together with the embedding W ε
q (Ω) ↪→ W 1

q (Ω) for 0 < ε < 1

and the fact that the dual of W s
q (Ω) is W −s

q ′ (Ω) for all s ∈
(
− 1

q
′
, 1

q

)
. The second

term of the right-hand side of (6.10) can be estimated in the same way as the first term.
Thus, combining the previous estimates, we have shown (6.5).

Next let E : W
1− 1

q
q (Γ2)

d → W 2
q (Ω)

d be a bounded operator such that Ea|Γ1 = 0
and T ′

1 Ea|Γ2 = a as well as

〈λ〉‖Ea‖Lq (Ω) + ‖∇2 Ea‖Lq (Ω) ≤ C

(
‖a‖

W
1− 1

q
q (Γ2)

+ 〈λ〉 1
2 − 1

2q ‖a‖Lq (Γ2)

)
.

We note that the existence of such an operator follows from Lemma 7. Hence

R̃λ f = Rλ f − E S′
λ f

satisfies

(λ− div(ν∇·)+ ∇ P)R̃λ f = f + Sλ f,

as well as R̃λ f |Γ1 = T ′
1 R̃λ f |Γ2 = 0, where Sλ satisfies the estimate as in (6.4).

Since Sλ → 0 in L(Lq(Ω)d) as |λ| → ∞, λ ∈ Σδ , there is some R > 0 such that
(I + Sλ)−1 exists for all λ ∈ Σδ with |λ| ≥ R. Moreover,

(I + Sλ)
−1 = I + S′

λ with ‖S′
λ‖L(Lq (Ω)) ≤ C(1 + |λ|)−ε (6.11)

by a standard Neumann series argument. If we substitute f by (I + Sλ)−1 f in the
equation, we have (λ + Aq)R̃λ(I + Sλ)−1 f = f with R̃λ(I + Sλ)−1 f |Γ1 = 0 and
T ′

1 Rλ(I + Sλ)−1 f |Γ2 = 0. Hence there exists R > 0 such that (λ + Aq) is surjec-
tive for all λ ∈ Σδ with |λ| ≥ R. Hence, if we show that there exists R′ such that
N (λ + Aq) = 0 for λ ∈ Σδ with |λ| ≥ R′, we know that λ + Aq is bijective for
λ ∈ Σδ with |λ| ≥ max(R, R′). We need the following lemma.

Lemma 14 LetΩ ⊆ R
d , d ≥ 2 and 1 < q < ∞ be as in Assumption 1. If λ+ Aq ′ is

surjective for a certain range of λ ∈ C\(−∞, 0], then there is no non-trivial solution
of (1.5) for the same range of λ.

Proof Let f ∈ Lq ′
(Ω)d be arbitrary and let u ∈ D(Aq ′) such that (λ + Aq ′)u = f.

Then, multiplying f with ∇g, we observe that div u ∈ W 1
q ′(Ω), div u|Γ2 = 0 solves

−λ(div u, g)− (ν∇ div u,∇g) = ( f,∇g)

for all g ∈ W 1
q,Γ2

(Ω). Hence, if g ∈ W 1
q,Γ2

(Ω) solves (1.5), then ( f,∇g) = 0 for all

f ∈ Lq ′
(Ω)d and therefore ∇g = 0. Since λ �= 0, we get from (1.5) that g = 0.

Proof of Theorem 1 From the arguments above we know that λ+ As for s = q, q ′ is
surjective for |λ| ≥ R′ with λ ∈ Σδ for some R′ > 0.
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In order to show existence of λ+ Aq for large λ, it remains to prove N (λ+ Aq) = 0.
Using the above lemma, we can conclude that there is no non-trivial solution of (1.5)
for the same range of λ as before. Now let u ∈ N (λ + Aq) where |λ| ≥ R′ and
λ ∈ Σδ . Then we can apply Lemma 4 with f = g = a = p̃ = 0 to conclude that u
solves (1.1)–(1.4) with right-hand side zero. In particular, this implies div u = 0. In
order to show u = 0, let f ∈ Lq ′

(Ω)d be arbitrary and let |λ| ≥ R′ with λ ∈ Σδ. Let
v ∈ D(Aq ′) with (λ+ Aq ′)v = f. Then

(u, f )Ω = (u, (λ+ Aq ′)v)Ω = λ(u, v)Ω + (2νDu, Dv)Ω
= ((λ+ Aq)u, v)Ω = 0

because of (1.10). Since f ∈ Lq ′
(Ω)d is arbitrary, we get u = 0. This shows the

existence of (λ+ Aq)
−1 for |λ| ≥ R, λ ∈ Σδ . Moreover, because of (6.11),

(λ+ Aq)
−1 = Rλ + S′′

λ,

where ‖S′′
λ‖L(Lq (Ω)) ≤ C〈λ〉−1−ε for some ε > 0. Therefore (1.11) follows from (5.8)

and (1.12) follows from (5.10).
Finally, the existence of h(c + Aq) if c + Σδ′ ⊂ ρ(−Aq) and the corresponding

estimate (1.14) follows easily form (1.11) and (1.12) using that (λ + Aq)
−1 is uni-

formly bounded on compact subsets of ρ(−Aq) and a simple shift of the contour. This
completes the proof.

7 Proof of Theorem 2

Let us assume that Ω ⊂ R
d is bounded. Then we know that there exists (λ+ Aq)

−1

for any λ ∈ Σδ such that |λ| ≥ R, where R is a sufficiently large number. Let λ0 ∈ Σδ
be such that (λ0 + Aq)

−1 exists. Then we have

(λ+ Aq)(λ0 + Aq)
−1 f = {(λ− λ0)+ (λ0 + Aq)}(λ0 + Aq)

−1 f

= (λ− λ0)(λ0 + Aq)
−1 f + f

for any λ ∈ C. By Rellich’s compactness theorem, we know that the operator
(λ − λ0)(λ0 + Aq)

−1 is compact. Hence we know that R(λ + Aq) has finite co-
dimensions for any λ ∈ C. Thus λ+ Aq is a semi-Fredholm operator for any λ ∈ C.

We know also that (λ+ Aq)
−1 exists for a certain range of λ ∈ C as mentioned above.

So, using the local invariance of the index of a family of the semi-Fredholm operators,
we have ind(λ + Aq) = 0 for any λ ∈ C. To show the existence of the inverse of
λ+ Aq for any λ ∈ C\(−∞, 0], we only have to show that N (λ+ Aq) = {0} for the
same range of λ. Moreover, we show that 0 is in the resolvent of Aq if Γ1 �= ∅.

First, let q = 2. Then (A4) is satisfied for any λ ∈ C\(−∞, 0]. Hence we can apply
Lemma 4 with f = g = a = p̃ = 0 to conclude div v = 0 for any v ∈ N (λ+ A2) and
λ ∈ C\(−∞, 0]. Moreover, if λ = 0, then (1.5) for g ∈ W 1

2 (Ω) implies g ≡ const.
Therefore div v ≡ const. for all v ∈ N (A2). Moreover, if Γ2 �= ∅, then div v|Γ2 = 0
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implies div v = 0. Finally, if Γ2 = ∅, then
∫
Ω

div v dx = ∫
∂Ω
v dσ = 0, which

implies div v = 0 again.
Using div v = 0 for all v ∈ N (λ+ A2), we conclude further

0 = (λv + A2v, v)Ω = λ(v, v)Ω + (2νDv, Dv)Ω

because of (1.10). If λ ∈ C\(−∞, 0], then one derives v = 0 directly. If λ = 0 and
Γ1 �= ∅, one also gets v = 0 by Korn’s inequality.

Next we consider the case q > 2. Since W 2
q (Ω) ↪→ H2(Ω), it follows that

N (λ+ Aq) ⊆ N (λ+ A2) = {0} for all λ ∈ C\(−∞, 0] and λ = 0 if Γ1 �= ∅.
Finally, let 1 < q < 2 and let u ∈ N (λ+ Aq). Then we have

0 = (λv − div(ν∇vT )+ ∇ν · ∇vT + ∇ Pv,∇g)

= −(λ div v, g)− (∇v,∇v ⊗ ∇g)− (ν∆v,∇g)+ (ν(∆− ∇ div)v,∇g)

+ (Dv, 2∇ν ⊗ ∇g)− (∇ν · ∇vT ,∇g)

= −(λ div v, g)− (ν∇ div v,∇g)

for any g ∈ W 1
q ′(Ω), g|Γ2 = 0.Because of R(λ+ Aq ′) = Lq ′

(Ω)d if λ ∈ C\(−∞, 0],
we can apply Lemma 14 to derive div v = 0. If λ = 0 and Γ1 �= ∅, then the arguments
in the proof of Lemma 14 show ∇ div v = 0. From this one derives div v = 0 in the
same way as in the case q = 2. Now let f ∈ Lq ′

(Ω)d and let v := (λ + Aq ′)−1 f ,
where λ ∈ C\(−∞, 0] or λ = 0 if Γ1 �= ∅. – Here we use that the theorem is already
proved for the case q ≥ 2. – Then

(u, f )Ω = (u, (λ+ Aq ′)v)Ω = λ(u, v)Ω + (2νDu, Dv)Ω
= ((λ+ Aq)u, v)Ω = 0

due to (1.10). Since f ∈ Lq ′
(Ω)d is arbitrary, we get u = 0 if λ ∈ C\(−∞, 0] or if

λ = 0 and Γ1 �= ∅. This completes the proof.
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