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Abstract

We investigate the regularity of the free boundary for the Signorini problem in
R

n+1. It is known that regular points are (n − 1)-dimensional and C∞. However,
even forC∞ obstacles ϕ, the set of non-regular (or degenerate) points could be very
large—e.g. with infinite Hn−1 measure. The only two assumptions under which
a nice structure result for degenerate points has been established are when ϕ is
analytic, and when �ϕ < 0. However, even in these cases, the set of degenerate
points is in general (n − 1)-dimensional—as large as the set of regular points. In
this work, we show for the first time that, “usually”, the set of degenerate points
is small. Namely, we prove that, given any C∞ obstacle, for almost every solution
the non-regular part of the free boundary is at most (n − 2)-dimensional. This is
the first result in this direction for the Signorini problem. Furthermore, we prove
analogous results for the obstacle problem for the fractional Laplacian (−�)s , and
for the parabolic Signorini problem. In the parabolic Signorini problem, our main
result establishes that the non-regular part of the free boundary is (n − 1 − α◦)-
dimensional for almost all times t , for some α◦ > 0. Finally, we construct some
new examples of free boundaries with degenerate points.

1. Introduction

The Signorini problem (also known as the thin or boundary obstacle problem)
is a classical free boundary problem that was originally studied by Antonio Sig-
norini in connection with linear elasticity [27,39,40]. The problem gained further
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attention in the seventies due to its connection to mechanics, biology, and even
finance—see [11,14,34], and [17,37]—, and since then it has been widely stud-
ied in themathematical community; see [2,3,7,9,10,12,18,20,22,26,29,30,36,38]
and references therein.

The main goal of this work is to better understand the size and structure of the
non-regular part of the free boundary for such problem.

In particular, our goal is to prove for the first time that, for almost every solution
(seeRemark 1.2), the set of non-regular points is small. As explained in detail below,
this is completely new even when the obstacle ϕ is analytic or when it satisfies
�ϕ < 0.

1.1. The Signorini Problem

Let us denote x = (x ′, xn+1) ∈ R
n × R and B+

1 = B1 ∩ {xn+1 > 0}. We say
that u ∈ H1(B+

1 ) is a solution to the Signorini problem with a smooth obstacle ϕ

defined on B ′
1 := B1 ∩ {xn+1 = 0} if u solves

{
�u = 0 in B+

1
min{−∂xn+1u, u − ϕ} = 0 on B1 ∩ {xn+1 = 0}, (1.1)

in the weak sense, for some boundary data g ∈ C0(∂ B1 ∩ {xn+1 ≥ 0}). Solutions
to the Signorini problem are minimizers of the Dirichlet energy

∫
B+
1

|∇u|2,

under the constraint, u ≥ ϕ on {xn+1 = 0}, and with boundary conditions u = g
on ∂ B1 ∩ {xn+1 > 0}.

Problem (1.1) is a free boundary problem, i.e., the unknowns of the problem
are the solution itself, and the contact set

�(u) := {
x ′ ∈ R

n : u(x ′, 0) = ϕ(x ′)
} × {0} ⊂ R

n+1,

whose topological boundary in the relative topologyofRn , whichwedenote�(u) =
∂�(u) = ∂{x ′ ∈ R

n : u(x ′, 0) = ϕ(x ′)} × {0}, is known as the free boundary.

Solutions to (1.1) are known to be C1, 12 (see [2]), and this is optimal.

1.2. The Free Boundary

While the optimal regularity of the solution is already known, the structure and
regularity of the free boundary is still not completely understood. The main known
results are as follows:

The free boundary can be divided into two sets,

�(u) = Reg(u) ∪ Deg(u),
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the set of regular points,

Reg(u) :=
{

x = (x ′, 0) ∈ �(u) : 0 < cr3/2 � sup
B′

r (x ′)
(u − ϕ) � Cr3/2, ∀r ∈ (0, r◦)

}
,

and the set of non-regular points or degenerate points

Deg(u) :=
{

x = (x ′, 0) ∈ �(u) : 0 � sup
B′

r (x ′)
(u − ϕ) � Cr2, ∀r ∈ (0, r◦)

}
, (1.2)

(see [3]). Alternatively, each of the subsets can be defined according to the order of
the blow-up at that point. Namely, the set of regular points are those whose blow-up
is of order 3

2 , and the set of degenerate points are those whose blow-up is of order
κ for some κ ∈ [2,∞].

Let us denote �κ the set of free boundary points of order κ . That is, those points
whose blow-up is homogeneous of order κ (we will be more precise about it later
on, in Section 2; the definition of �∞ is slightly different). Then, it is well known
that the free boundary can be divided as

�(u) = �3/2 ∪ �even ∪ �odd ∪ �half ∪ �∗ ∪ �∞, (1.3)

where

• �3/2 = Reg(u) is the set of regular points. They are an open (n−1)-dimensional
subset of �(u), and it is C∞ (see [3,13,29]).

• �even = ⋃
m≥1 �2m(u) denotes the set of points whose blow-ups have even

homogeneity. Equivalently, they can also be characterised as those points of
the free boundary where the contact set has zero density, and they are often
called singular points. They are contained in the countable union of C1 (n −1)-
dimensional manifolds; see [18,22].

• �odd = ⋃
m≥1 �2m+1(u) is, a priori, also an at most (n −1)-dimensional subset

of the free boundary and it is (n − 1)-rectifiable (see [19–21,31]), although it
is not actually known whether it exists.

• �half = ⋃
m≥1 �2m+3/2(u) corresponds to those points with blow-up of order

7
2 ,

11
2 , etc. They are much less understood than regular points. The set �half is

an (n − 1)-dimensional subset of the free boundary and it is (n − 1)-rectifiable
(see [20,21,31]).

• �∗ is the set of all points with homogeneities κ ∈ (2,∞), with κ /∈ N and
κ /∈ 2N − 1

2 . This set has Hausdorff dimension at most n − 2, so it is always
small, see [20,21,31].

• �∞ is the set of points with infinite order (namely, those points at which u − ϕ

vanishes at infinite order, see (2.11)). For general C∞ obstacles it could be a
huge set, even a fractal set of infinite perimeter with dimension exceeding n−1.
When ϕ is analytic, instead, �∞ is empty.

Overall, we see that, for generalC∞ obstacles, the free boundary could be really
irregular.

The only two assumptions under which a better regularity is known are



422 X. Fernández-Real & X. Ros-Oton

• �ϕ < 0 on B ′
1 and u = 0 on ∂ B1 ∩{xn+1 > 0}. In this case, �(u) = �3/2 ∪�2

and the set of degenerate points is locally contained in a C1 manifold; see [5].
• ϕ is analytic. In this case, �∞ = ∅ and � is (n − 1)-rectifiable, in the sense

that it is contained in a countable union of C1 manifolds, up to a set of zero
Hn−1-measure, see [20,31].

The goal of this paper is to show that, actually, for most solutions, all the sets
�even, �odd, �half , and �∞ are small, namely, of dimension at most n − 2. This is
new even in case that ϕ is analytic and �ϕ < 0.

1.3. Our Results

We will prove here that, even if degenerate points could potentially constitute
a large part of the free boundary (of the same dimension as the regular part, or
even higher), they are not common. More precisely, for almost every obstacle (or
for almost every boundary datum), the set of degenerate points is small. This is the
first result in this direction for the Signorini problem, even for zero obstacle.

Let gλ ∈ C0(∂ B1) for λ ∈ [0, 1], and let us denote by uλ the family of solutions
to (1.1) satisfying

uλ = gλ, on ∂ B1 ∩ {xn+1 > 0}, (1.4)

with gλ satisfying

gλ+ε ≥ gλ, on ∂ B1 ∩ {xn+1 > 0}
gλ+ε ≥ gλ + ε on ∂ B1 ∩ {

xn+1 ≥ 1
2

}
,

(1.5)

for all λ ∈ [0, 1), ε ∈ (0, 1 − λ).
Our main result reads as follows:

Theorem 1.1. Let uλ be any family of solutions of (1.1) satisfying (1.4)–(1.5), for
some obstacle ϕ ∈ C∞. Then, we have

dimH
(
Deg(uλ)

)
� n − 2 for a.e. λ ∈ [0, 1],

where Deg(uλ) is defined by (1.2).
In other words, for a.e. λ ∈ [0, 1], the free boundary �(uλ) is a C∞ (n − 1)-

dimensional manifold, up to a closed subset of Hausdorff dimension n − 2.

This result is completely new even for analytic obstacles, or for ϕ = 0. No
result of this type was known for the Signorini problem.

The results we prove (see Theorem 4.4 and Proposition 4.8) are actually more
precise and concern the Hausdorff dimension of �≥κ(uλ), the set of points of order
greater or equal than κ . We will show that, if 3 � κ � n + 1, then �≥κ(uλ) has
dimension n − κ + 1, while for κ > n + 1, then �≥κ(uλ) is empty for almost every
λ ∈ [0, 1]. We refer to [32, Chapter 4] for the definition of Hausdorff dimension.

Theorem 1.1 also holds true for non-smooth obstacles. Namely, we will prove
that for ϕ ∈ C3,1 we have dimH (Deg(uλ)) � n−2 for a.e. λ ∈ [0, 1]. In particular,
the free boundary�(uλ) isC2,α up to a subset of dimension n−2 for a.e. λ ∈ [0, 1];
see [1,26,29].
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Remark 1.2. In the context of the theory of prevalence, [25] (see also [35]), The-
orem 1.1 says that the set of solutions satisfying that the free boundary has a
small degenerate set is prevalent within the set of solutions (say, given by C0 or
L∞ boundary data). Alternatively, the set of solutions whose degenerate set is not
lower dimensional is shy.

In particular, we can say that for almost every boundary data (see [35, Definition
3.1]) the corresponding solution has a lower dimensional degenerate set. This is
because adding a constant as in (1.5) is a 1-probe (see [35, Definition 3.5]) for the
set of boundary data, thanks to Theorem 1.1.

We will establish a finer result regarding the set �∞(uλ). While it is known that
it can certainly exist for some solutions uλ (see Proposition 1.9), we show that it
will be empty for almost every λ ∈ [0, 1].
Theorem 1.3. Let uλ be any family of solutions of (1.1) satisfying (1.4)–(1.5), for
some obstacle ϕ ∈ C∞. Then, there exists E ⊂ [0, 1] such that dimH E = 0 and

�∞(uλ) = ∅

for every λ ∈ [0, 1] \ E .
Furthermore, for every h > 0, there exists some Eh ⊂ [0, 1] such that

dimM Eh = 0 and

�∞(uλ) ∩ B1−h = ∅

for every λ ∈ [0, 1] \ Eh.

We remark that in the previous result, dimH denotes the Hausdorff dimension,
whereas dimM denotes the Minkowski dimension (we refer to [32, Chapters 4 and
5]). As such, the second part of the result is much stronger than the first one (e.g.,
0 = dimH

(
Q ∩ [0, 1]) < dimM

(
Q ∩ [0, 1]) = 1).

Let us briefly comment on the condition (1.5). Notice that such condition can be
reformulated inmanyways. In the simplest case, one could simply take gλ = g0±λ.
Alternatively, one could take a family of obstaclesϕλ = ϕ0±λ (with fixed boundary
conditions); this is equivalent to fixing the obstacle ϕ0 and moving the boundary
data gλ = g ∓ λ. Furthermore, one could also consider gλ = g0 + λ� for any
� ≥ 0, � �≡ 0. Then, even if the second condition in (1.5) is not directly fulfilled,
a simple use of strong maximum principle makes it true in some smaller ball B1−ρ ,
so that gλ+ε ≥ gλ+c(ρ)ε on ∂ B1−ρ ∩{xn+1 ≥ 1

2 −ρ/2}. By rescaling the function
and the domain, we can rewrite it as (1.5).

Regularity results for almost every solution have been established before in the
context of the classical obstacle problem by Monneau in [33]. In such problem,
however, all free boundary points have homogeneity 2, and non-regular points are
characterised by the density of the contact set around them: non-regular points are
those at which the contact set has density zero. In the Signorini problem, instead,
the structure of non-regular points is quite different, and they are characterised by
the growth of u around them (recall (1.2) and the definition of �even, �odd, �half ,
and �∞). This is why the approach of [33] cannot work in the present context.
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More recently, the results of Monneau for the classical obstacle problem have
been widely improved by Figalli, the second author, and Serra in [19]. The results
in [19] are based on very fine higher order expansions at singular points, which
then lead to a better understanding of solutions around them, combined with new
dimension reduction arguments and a cleaning lemma to get improved bounds on
higher order expansions.

Here, due to the different nature of the problem, we do not need any fine expan-
sion at non-regular points nor any dimension reduction. Most of our arguments
require only the growth of solutions at different types of degenerate points, com-
bined with appropriate barriers, and Harnack-type inequalities. The starting point
of our results is to use a simple (but key) GMT lemma from [19] (see Lemma 4.1
below).

1.4. Parabolic Signorini Problem

The previous results use rather general techniques that suitably modified can
be applied to other situations. We show here that using a similar approach as in the
elliptic case, one can deduce results regarding the size of the non-regular part of the
free boundary for the parabolic version of the Signorini problem, for almost every
time t .

We say that a function u = u(x, t) ∈ H1,0(B+
1 × (−1, 0]) (see [12, Chapter

2]) solves the parabolic Signorini problem with stationary obstacle ϕ = ϕ(x) if u
solves {

∂t u − �u = 0 in B+
1 × (−1, 0]

min{−∂xn+1u, u − ϕ} = 0 on B1 ∩ {xn+1 = 0} × (−1, 0] (1.6)

in the weak sense (cf. (1.1)). A thorough study of the parabolic Signorini problem
was made by Danielli, Garofalo, Petrosyan, and To, in [12].

The parabolic Signorini problem is a free boundary problem, where the free
boundary belongs to B ′

1 × (−1, 0] and is defined by

�(u) := ∂B′
1×(−1,0]

{
(x ′, t) ∈ B ′

1 × (−1, 0] : u(x ′, 0, t) > ϕ(x ′)
}
,

where ∂B′
1×(−1,0] denotes the boundary in the relative topology of B ′

1 × (−1, 0].
Analogously to the elliptic Signorini problem, the free boundary can be divided
into regular points and degenerate (or non-regular) points:

�(u) = Reg(u) ∪ Deg(u).

The set of regular points are thosewhere parabolic blow-ups are parabolically 3
2 -

homogeneous.On the other hand, degenerate points are thosewhere parabolic blow-
ups of the solution are parabolically κ-homogeneous, with κ ≥ 2 (alternatively,
the solution detaches at most quadratically from the obstacle in parabolic cylinders,
Br ×(−r2, 0]). Further stratifications according to the homogeneity of the parabolic
blow-ups can be done in an analogous way to the elliptic problem, see [12].

The set of regular points Reg(u) is a relatively open subset of �(u) and the
free boundary is smooth (C1,α) around them (see [12, Chapter 11]). The set of
degenerate points, however, could be even larger than the set of regular points.
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In this manuscript we show that, under the appropriate conditions, for a.e. time
t ∈ (−1, 0] the set of degenerate points has dimension (n−1−α◦) for some α◦ > 0
depending only on n. That is, for a.e. time, the free boundary is mostly comprised
of regular points, and therefore, it is smooth almost everywhere.

In order to be able to get results of this type we must impose some conditions
on the solution. We will assume that

ut > 0 in B+
1 ∪ [

(B ′
1 × (−1, 0]) ∩ {u > ϕ}] ; (1.7)

that is, wherever the solution u is not in contact with the obstacle ϕ, it is strictly
monotone. Alternatively, by the strong maximum principle, the condition can be
rewritten as

ut ≥ 0, in B+
1 × (−1, 0],

ut ≥ 1, in
(
B+
1 ∩ {xn+1 ≥ 1/2}) × (−1, 0],

up to a constant multiplicative factor.
Condition (1.7) is somewhat necessary. If the strict monotonicity was not

required, we could be dealing with a bad solution (with large non-regular set)
of the elliptic problem for a set of times of positive measure, and therefore, we
could not expect a result like the one we prove. On the other hand, if one allowed
changes in the sign of ut (alternatively, one allowed non-stationary obstacles), then
the result is also not true (see, for instance, the example discussed in [12, Figure
12.1]).

Condition (1.7) is actually quite natural. One of the main applications of the
parabolic Signorini problem is the study of semi-permeable membranes (see [14,
Section 2.2]):

We consider a domain (B+
1 ) and a thin membrane (B ′

1), which is semi-
permeable: that is, a fluid can pass through B ′

1 into B+
1 freely, but outflow of

the fluid is prevented by the membrane. If we suppose that there is a given liquid
pressure applied to the membrane B ′

1 given by ϕ, and we denote u(x, t) the inside
pressure of the liquid in B+

1 , then the parabolic Signorini problem (1.6) describes
the evolution of the inside pressure with time. In particular, since liquid can only
enter B+

1 (and we assume no liquid can leave from the other parts of the bound-
ary), pressure inside the domain can only become higher, and the solution will be
such that ut > 0. The same condition also appears in volume injection through a
semi-permeable wall ( [14, subsections 2.2.3 and 2.2.4]).

Our result reads as follows:

Theorem 1.4. Let ϕ ∈ C∞ and let u be a solution to (1.6) satisfying (1.7). Then,

dimH
(
Deg(u) ∩ {t = t◦}

)
� n − 1 − α◦ for a.e. t◦ ∈ (−1, 0]

for some α◦ > 0 depending only on n.
In particular, for a.e. t◦ ∈ (−1, 0] the free boundary �(u) ∩ {t = t◦} is a

C1,α (n − 1)-dimensional manifold, up to a closed subset of Hausdorff dimension
n − 1 − α0.
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Whenϕ is analytic, then the free boundary is actuallyC∞ around regular points.
Higher regularity of the free boundary is also expected for smooth obstacles, but
so far it is only known when ϕ is analytic; see [4].

It is important to remark that the parabolic case presents some extra difficulties
with respect to the elliptic one, and in fact we do not know if a result analogous to
Theorem 1.3 holds in this context. This means that points of order ∞ could a priori
still appear for all times (even though by Theorem 1.4 they are lower-dimensional
for almost every time).

1.5. The Fractional Obstacle Problem

The Signorini problem in R
n+1 can be reformulated in terms of a fractional

obstacle problemwith operator (−�)
1
2 inR

n . Conversely, fractional obstacle prob-
lems (with the operator (−�)s , s ∈ (0, 1)) can also be reformulated in terms of
thin obstacle problems with weights. In this work we will generally deal with the
thin obstacle problem with a weight, so that the results from Section 1.3 can also
be formulated for the fractional obstacle problem.

Given an obstacle ϕ ∈ C∞(Rn) such that

{ϕ > 0} ⊂⊂ R
n, (1.8)

the fractional obstacle problem with obstacle ϕ in R
n (n ≥ 2) is⎧⎪⎪⎨

⎪⎪⎩

(−�)sv = 0 in R
n \ {v = ϕ}

(−�)sv ≥ 0 in R
n

v ≥ ϕ in R
n

v(x) → 0 as |x | → ∞.

(1.9)

Solutions to the fractional obstacle problem are C1,s (see [8]). We denote
�(v) = {v = ϕ} the contact set, and �(v) = ∂�(v) the free boundary. As in
the Signorini problem (which corresponds to s = 1

2 ) the free boundary can be
partitioned into regular points

Reg(v) :=
{

x ′ ∈ �(v) : 0 < cr1+s � sup
B′

r (x ′)
(v − ϕ) � Cr1+s, ∀r ∈ (0, r◦)

}
,

and non-regular (or degenerate) points,

Deg(v) :=
{

x ′ ∈ �(v) : 0 � sup
B′

r (x ′)
(v − ϕ) � Cr2, ∀r ∈ (0, r◦)

}
. (1.10)

More precisely, if we denote by �κ(v) the free boundary points of order κ , then the
free boundary �(v) can be further stratified analogously to (1.3) as

�(v) = �1+s ∪
( ⋃

m≥1

�2m

)
∪
( ⋃

m≥1

�2m+2s

)
∪
( ⋃

m≥1

�2m+1+s

)
∪ �∗ ∪ �∞.

(1.11)
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Here, �1+s = Reg(v) is the set of regular points ([8,41]). Again, it is an open
subset of the free boundary, which is smooth. Similarly, �2m for m ≥ 1 are often
called singular points, and are those where the contact set has zero measure (see
[23]). Together with the sets �2m+2s and �2m+1+s for m ≥ 1, they are an (n − 1)-
dimensional rectifiable subset of the free boundary, [21,23]. Finally, �∗ denotes the
set containing the remaining homogeneities (except infinite), and has dimension
n − 2; and �∞ denotes those boundary points where the solution is approaching
the obstacle faster than any power (i.e., at infinite order). As before, the set �∞
could have dimension even higher than n − 1.

The type of result we want to prove in this setting regarding regularity for
most solutions is concerned with global perturbations of the obstacle (rather than
boundary perturbations, as before). That is, we will consider obstacles fulfilling
(1.8).

We define the set of solutions indexed by λ ∈ [0, 1] to the fractional obstacle
problem as ⎧⎪⎪⎨

⎪⎪⎩

(−�)svλ = 0 in R
n \ {vλ = ϕ}

(−�)svλ ≥ 0 in R
n

vλ ≥ ϕ − λ in R
n

vλ(x) → 0 as |x | → ∞.

(1.12)

Then, our main result reads as follows:

Theorem 1.5. Let vλ be any family of solutions solving (1.12), for some obstacle
ϕ ∈ C∞ fulfilling (1.8). Then, we have

dimH
(
Deg(vλ)

)
� n − 2, for a.e. λ ∈ [0, 1],

where Deg(vλ) is defined by (1.10).
In other words, for a.e. λ ∈ [0, 1], the free boundary �(vλ) is a C∞ (n − 1)-

dimensional manifold, up to a closed subset of Hausdorff dimension n − 2.

As before, we actually prove more precise results (see Theorem 4.4 and Propo-
sition 4.8). We establish an estimate for the Hausdorff dimension of �≥κ(vλ). We
show that, for 2 � κ − 2s � n, then dimH �≥κ(vλ) � n − κ + 2s, and if
κ > n + 2s, then �≥κ(vλ) is empty for almost every λ ∈ [0, 1]. Similarly, we can
also reduce the regularity of the obstacle to ϕ ∈ C4,α so that, for a.e. λ ∈ [0, 1],
dimH (Deg(vλ)) � n − 2 (in particular, the free boundary �(vλ) is C3,α up to a
subset of dimension n − 2 for a.e. λ ∈ [0, 1]; see [1,26]).

Theorem 1.5 is analogous to Theorem 1.1. On the other hand, we also have

Theorem 1.6. Let vλ be any family of solutions solving (1.12), for some obstacle
ϕ ∈ C∞ fulfilling (1.8). Then, there exists E ⊂ [0, 1] such that dimH E = 0 and

�∞(vλ) = ∅,

for all λ ∈ [0, 1] \ E .
Furthermore, for every h > 0, there exists some Eh ⊂ [0, 1] such that

dimM Eh = 0 and

�∞(vλ) ∩ B1−h = ∅,
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for every λ ∈ [0, 1] \ Eh.

That is, analogously to Theorem 1.3, we can also control the size of λ for which
the free boundary points of infinite order exist.

1.6. Examples of Degenerate Free Boundary Points

Let us finally comment on the non-regular part of the free boundary, that is,

Deg(u) = �even ∪ �odd ∪ �half ∪ �∗ ∪ �∞. (1.13)

The main open questions regarding each of the subsets of the degenerate part
of the free boundary are
Q1: Are there non-trivial examples (e.g., the limit of regular points) of singular
points in �even?
Q2: Do points in �odd exist?
Q3: Can one construct arbitrary contact sets with free boundary formed entirely of
�half (alternatively, do they exist apart from the homogeneous solutions)?
Q4: Do points in �∗ exist?
Q5: How big can the set �∞ be?
In this paper, we answer questions Q1, Q3, and Q5. (Questions Q2 and Q4 remain
open.)

Let us start with Q1. The set �even = ⋃
m≥1 �2m , often called the set of sin-

gular points, is an (n − 1)-dimensional subset of the free boundary. Examples
of free boundary points belonging to �even are easy to construct as level sets of
homogeneous harmonic polynomials, such as x21 − x2n+1, in which case we have
� = �even = {x1 = 0}. They are also expected to appear in less trivial situations
but, as far as we know, none has been constructed so far that appears as limit of
regular points (i.e., on the boundary of the interior of the contact set). Here, we
show

Proposition 1.7. There exists a boundary data g such that the free boundary of the
solution to the Signorini problem (1.1) with ϕ = 0 has a sequence of regular points
(of order 3/2) converging to a singular point (of order 2).

The proof of the previous result is given in Section 5. In contrast to what occurs
with the classical obstacle problem, the construction of singular points does not
seem to immediately arise from continuous perturbations of the boundary value
under symmetry assumptions. Instead, one has to be aware that there could appear
other points (different from regular, but not in �even). Thus, our strategy is based on
being in a special setting that avoids the appearance of higher order free boundary
points.

On the other hand, regarding question Q3, it is known that examples of such
points can be constructed through homogeneous solutions, in which case they can
even appear as limit of regular (or lower frequency) points (see [10, Example 1]).
Until now, however, it was not clear whether such points could appear in non-trivial
(say, non-homogeneous) situations.
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We show that, given any smooth domain 
 ⊂ R
n , one can find a solution to

the Signorini problem whose contact set is exactly given by 
, and whose free
boundary is entirely made of points of order 7

2 (or 11
2 , etc.). More generally, we

show that given 
, the contact set for the fractional obstacle problem can be made
up entirely of points belonging to

⋃
m≥1 �2m+1+s (the case s = 1

2 corresponding
to the Signorini problem).

Proposition 1.8. Let 
 ⊂ R
n be any given C∞ bounded domain, and let m ∈ N.

Then, there exists an obstacle ϕ ∈ C∞(Rn) with ϕ → 0 at ∞, and a global solution
to the obstacle problem ⎧⎪⎪⎨

⎪⎪⎩

(−�)su ≥ 0 in R
n

(−�)su = 0 in {u > ϕ}
u ≥ ϕ in R

n,

u(x) → 0 as |x | → ∞,

such that the contact set is �(u) = {u = ϕ} = 
, and all the points on the free
boundary ∂�(u) have frequency 2m + 1 + s.

The proof of the previous proposition is constructive: we show a way in which such
solutions can be constructed, using some results from [1,24].

Finally, we also answer question Q5, that deals with the set �∞. Not much has
been discussed about it in the literature, though its lack of structure was somewhat
known by the community. For instance, the following result is not difficult to prove:

Proposition 1.9. For any ε > 0 there exists a non-trivial solution u and an obstacle
ϕ ∈ C∞(Rn) such that ⎧⎨

⎩
(−�)su ≥ 0 in R

n

(−�)su = 0 in {u > ϕ}
u ≥ ϕ in R

n,

and the boundary of the contact set, �(u) = {u = ϕ}, fulfils

dimH ∂�(u) ≥ n − ε.

This shows that, in general, there is no hope to get nice structure results for the
full free boundary for C∞ obstacles. However, thanks to Theorem 1.6 above we
know that such behaviour is extremely rare. As before, we are answering question
Q5 in the generality of the fractional obstacle problem; the Signorini problem
corresponds to the case s = 1

2 .

1.7. Organization of the Paper

The paper is organised as follows:
In Section 2 we study the behaviour of degenerate points under perturbation.

In particular, we show how the free boundary moves around them when perturbing
monotonically the solution to the obstacle problem. We treat separately general
degenerate points, and those of order 2. In Section 3 we study the dimension of
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the set �2 by means of an appropriate application of Whitney’s extension theorem.
In Section 4 we prove the main results of this work, Theorems 1.1, 1.3, 1.5, and
1.6. In Section 5 we construct the examples of degenerate points introduced in
Section 1.6, proving Propositions 1.7, 1.8, and 1.9 . Finally, in Section 6 we deal
with the parabolic Signorini problem and prove Theorem 1.4.

2. Behaviour of Non-regular Points Under Perturbations

Let B1 ⊂ R
n+1, B ′

1 = {x ′ ∈ R
n : |x ′| < 1} ⊂ R

n and let

ϕ : B ′
1 → R, ϕ ∈ Cτ,α(B ′

1), τ ∈ N≥2, α ∈ (0, 1] (2.1)

be our obstacle on the thin space. Let us consider the fractional operator

Lau := div(|xn+1|a∇u) = div(|xn+1|1−2s∇u), a := 1 − 2s,

with a ∈ (−1, 1), and (0, 1) � s = 1−a
2 . We will interchangeably use both a and s

depending on the situation. (In general, we will use a for the weight exponent, and
s for all the other situations.)

Let us suppose that we have a family of increasing even solutions uλ for 0 �
λ � 1 to the fractional obstacle problem

⎧⎨
⎩

Lauλ = 0 in B1 \ ({xn+1 = 0} ∩ {uλ = ϕ})
Lauλ � 0 in B1

uλ ≥ ϕ on {xn+1 = 0},
(2.2)

for a given obstacle ϕ satisfying (2.1). In particular, {uλ}0�λ�1 satisfy

uλ(x ′, xn+1) = uλ(x ′,−xn+1) in B1, for λ ≥ 0
uλ′ ≥ uλ in B1, for λ′ ≥ λ

uλ+ε ≥ uλ + ε in B1 ∩ {|xn+1| ≥ 1
2

}
, for λ, ε ≥ 0

‖uλ‖C2s (B1)
� M, in B1 for λ ≥ 0,

(2.3)

for some constant M independent of λ, that will depend on the obstacle (see (2.6)–

(2.7) below). Notice that solutions are C1,s in B ′
1/2 (or in B+

1/2), but only C2s in B1

(C0,1 when s = 1
2 ).

We denote�(uλ) := {x ′ : uλ(x ′, 0) = ϕ(x ′)}×{0} ⊂ R
n the contact set, and its

boundary in the relative topology of R
n , ∂�(uλ) = ∂{x ′ : uλ(x ′, 0) = ϕ(x ′)}×{0}

is the free boundary. Note that, from the monotonicity assumption,

�(uλ) ⊂ �(uλ′) for λ ≥ λ′. (2.4)
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Lemma 2.1. Let uλ denote the family of solutions to (2.2)–(2.3). Then, for any
h > 0 small, x◦ ∈ B1−h, and ε > 0,

uλ+ε(x◦) − uλ(x◦)
ε

≥ c dist2s(x◦,�(uλ)),

for some constant c > 0 depending only on n, s, and h. In particular,

∂+
λ uλ(x◦) := lim inf

ε↓0
uλ+ε(x◦) − uλ(x◦)

ε
≥ c dist2s(x◦,�(uλ))

for some constant c > 0 depending only on n, s, and h.

Proof. Fix some λ > 0 and ε > 0, and define

δλ,εuλ(x) = uλ+ε(x) − uλ(x)

ε
.

We will show that the result holds for δλ,εuλ for some constant c independent of
ε > 0, and in particular, it also holds after taking the lim inf.

Notice that δλ,εuλ(x) ≥ 0 from the monotonicity of uλ in λ. Notice, also, that
δλ,εuλ ≥ 1 in B1 ∩ {xn+1 ≥ 1

2 }, form the third condition in (2.3). On the other
hand,

Laδλ,εuλ = 0 in B1 \ �(uλ),

thanks to (2.4). Now, let

r := h

4
dist(x◦,�(uλ)),

and we define the barrier function ψ : B1 → R as the solution to⎧⎪⎪⎨
⎪⎪⎩

Laψ = 0 in B1 \ {xn+1 = 0}
ψ = 0 on {xn+1 = 0}
ψ = 1 on ∂ B1 ∩ {|xn+1| ≥ 1

2

}
ψ = 0 on ∂ B1 ∩ {|xn+1| < 1

2

}
.

Then, by maximum principle,

δλ,εuλ ≥ ψ in B1.

Notice that, by the boundary Harnack inequality for Muckenhoupt weights A2 (see
[15]),ψ is comparable to |xn+1|2s (since both vanish continuously at xn+1 = 0, and
both are a-harmonic), and in particular, there exists some c′ > 0 small depending
only on n, s, and h, such that ψ ≥ c′|xn+1|2s in Br (x◦). We have that

Laδλ,εuλ = 0, δλ,εuλ ≥ ψ ≥ c′|xn+1|2s in Br (x◦).

Now, if x◦ = (x ′◦, x◦,n+1) is such that |x◦,n+1| ≥ r
4 , it is clear that δλ,εuλ(x◦) ≥

cr2s . On the other hand, if |x◦,n+1| � r
4 , then Laδλ,εuλ = 0 in Br/2((x ′◦, 0)), so

that applying Harnack’s inequality in Br/4((x ′◦, 0)) to δλ,εuλ,

δλ,εuλ(x◦) ≥ inf
Br/4((x ′◦,0))

δλ,εuλ ≥ 1

C
sup

Br/4((x ′◦,0))
δλ,εuλ ≥ c′r2s

42sC
= cr2s
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for some c depending only on n, s, and h. Thus,

δλ,εuλ(x◦) ≥ cr2s = c dist2s(x◦,�(uλ)),

as we wanted to see. ��
Let 0 ∈ ∂�(uλ) be a free boundary point for uλ. Let us denote Qτ (x ′) the

Taylor expansion of ϕ(x ′) around 0 up to order τ , and we denote Qa
τ (x) its unique

even a-harmonic extension (see [23, Lemma 5.2]) to R
n+1 (La Qa

τ (x) = 0, and
Qa

τ (x ′, 0) = Qτ (x ′)). Let us define

ūλ(x ′, xn+1) = uλ(x ′, xn+1) − Qa
τ (x ′, xn+1) + Qτ (x ′) − ϕ(x ′).

Then ūλ(x ′, xn+1) solves the zero obstacle problem with a right-hand side
⎧⎨
⎩

Laūλ = |xn+1|a f in B1 \ ({xn+1 = 0} ∩ {ūλ = 0})
Laūλ � |xn+1|a f in B1

ūλ ≥ 0 on {xn+1 = 0},
(2.5)

where

f = f (x ′) = �x ′(Qτ (x ′) − ϕ(x ′)). (2.6)

In particular, notice that since Qτ (x ′) is the Taylor approximation of ϕ up to order
τ , we have that

| f (x ′)| � M |x ′|τ+α−2 (2.7)

for some M > 0 depending only on ϕ. We take M larger if necessary, so that it
coincides with the one of (2.3).

We consider the generalized frequency formula, for θ ∈ (0, α), and for some
Cθ (that is independent of the point around which is taken)

�τ,α,θ (r, ūλ) := (r + Cθr1+θ )
d

dr
logmax

{
H(r), rn+a+2(τ+α−θ)

}
, (2.8)

where

H(r) :=
∫

∂ Br

ū2
λ|xn+1|a .

Then, by [23, Proposition 6.1] (see also [8,22]) we know that �τ,α,θ (r, ūλ) is
nondecreasing for 0 < r < r◦ for some r◦. In particular, �τ,α,θ (0+, ūλ) is well
defined, and by [22, Lemma 2.3.2],

n + 3 � �τ,α,θ (0
+, ūλ) � n + a + 2(τ + α − θ).

Wesay that 0 ∈ ∂�(uλ) is a point of order κ if�τ,α,θ (0+, ūλ) = n+1−2s+2κ .
In particular, by the previous inequalities

1 + s � κ � τ + α − θ
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Thanks to [23, Lemma 6.4] (see, also, [5, Lemma 7.1]) we know that for a point of
order greater or equal than κ , for κ < τ + α − θ , then we have

sup
Br

|ūλ| � CMrκ , (2.9)

for some constant CM depending only on M , τ , α, θ .
In general, for any point x◦ ∈ ∂�(uλ), we can define ūx◦

λ analogously to before,
as follows:

Definition 2.2. Let x◦ ∈ ∂�(uλ). We define,

ūx◦
λ (x) = uλ(x ′ + x ′◦, xn+1) − Qa,x◦

τ (x ′, xn+1) + Qx◦
τ (x ′) − ϕ(x ′ + x ′◦),

(2.10)

where Qx◦
τ (x ′) is the Taylor expansion of order τ of ϕ(x ′◦ + x ′), and Qa,x◦

τ (x ′) is
its unique even harmonic extension to R

n+1.

(Notice that, on the thin space, ūx◦
λ (x ′, 0) = ūλ(x ′ + x ′◦, 0), but this is not true

outside the thin space.) Then, ūx◦
λ (x) solves a zero obstacle problem with a right-

hand side in B1−|x◦| (in fact, in x◦ + B1). With this, we can define the free boundary
points of uλ of order κ , with 1 + s � κ < τ + α − θ , as

�λ
κ := {x◦ ∈ ∂�(uλ) : �τ,α,θ (0

+, ūx◦
λ ) = n + 1 − 2s + 2κ},

and similarly,

�λ≥κ := {x◦ ∈ ∂�(uλ) : �τ,α,θ (0
+, ūx◦

λ ) ≥ n + 1 − 2s + 2κ}.
Equivalently, one can define �λ≥κ as those points where (2.9) occurs.

Notice that the previous sets are consistently defined, in the sense that if x◦ is a
free boundary point for uλ, and τ ′ ∈ N, α′ ∈ (0, 1) are such that τ ′ + α′ � τ + α,
then

�τ ′,α′,θ (0
+, ūx◦

λ ) = min

{
�τ,α,θ (0

+, ūx◦
λ ), n + 1 − 2s + 2(τ ′ + α′ − θ)

}
,

(cf. [22, Lemma 2.3.1]), i.e., the definition of free boundary points of order κ does
not depend on which regularity of the obstacle we consider. In particular, for C∞
obstacles we can define the points of infinite order as

�λ∞ :=
⋂
κ≥2

�λ≥κ . (2.11)

We will need the following lemma, similar to [3, Lemma 4] and analogous to
[8, Lemma 7.2]:

Lemma 2.3. Let w ∈ C0(B1), and let � ⊂ B1 ∩ {xn+1 = 0}. There exists some
ε◦ > 0, depending only on n and a, such that if 0 < ε < ε◦ and⎧⎪⎪⎨

⎪⎪⎩

w ≥ 1 in B1 ∩ {|xn+1| ≥ ε}
w ≥ −ε in B1

|Law| � ε|xn+1|a in B1 \ �

w ≥ 0 on �,

then w > 0 in B1/2.
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Proof. Suppose that it is not true. In particular, suppose that there exists some
z = (z′, zn+1) ∈ B1/2 \ {xn+1 = 0} such that w(z) = 0. Let us define the cylinder

Q :=
{

x = (x ′, xn+1) ∈ B1 : |x ′ − z′| <
1

2
, |xn+1 − zn+1| <

√
1 + a

4

}
,

and let

P(x) = P(x ′, xn+1) := |x ′ − z′|2 − n

1 + a
x2n+1

so that La P = 0. Let

v(x) := w(x) + 1

n
P(x) − ε

1 + a
x2n+1.

Notice that v(z) = − n
n(1+a)

z2n+1 − ε
1+a z2n+1 < 0. We also have that

Lav = Law − 2ε|xn+1|a � −ε|xn+1|a < 0 in B1 \ �,

and

v ≥ 0 on �.

That is, v is super- a-harmonic and is negative at z ∈ Q, then it must be negative
somewhere on ∂ Q. Let us check that this is not the case, to reach a contradiction.

First, notice that, assuming ε◦ <
√
1+a
4 , on ∂ Q ∩ {|xn+1| ≥ ε} we have

v ≥ 1 − n

16(n + 1)
− ε

16
≥ 0.

On the other hand, on
{|x ′ − z′| = 1

2

} ∩ {|xn+1| � ε} we have

v ≥ −ε + 1

n + 1

(
1

4
− n

1 + a
ε2
)

− ε3

1 + a
> 0,

if ε is small enough depending only on n and a. Thus, v ≥ 0 on ∂ Q and on �,
and is super- a-harmonic in Q \ �, so we must have v ≥ 0 in Q, contradicting
v(z) < 0. ��

Let us now show the following proposition:

Proposition 2.4. Let uλ satisfy (2.2)–(2.3), and let ϕ satisfy (2.1). Let h > 0 small,
and let x◦ ∈ B1−h ∩ �λ≥κ with κ � τ + α − a and κ < τ + α. Then,

uλ+C∗rκ−2s > ϕ in B ′
r (x ′◦), for all r <

h

4
,

for some C∗ depending only on n, s, M, κ , τ , α, and h.
In particular, if x◦ ∈ B1−h ∩ �λ, then

uλ+C∗r1−s > ϕ in B ′
r (x ′◦), for all r <

h

4
, (2.12)

for some C∗ depending only on n, s, M, κ , τ , α, and h.
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Proof. Let us assume that r < h
4 , and let us establish some properties of ūx◦

λ+C∗rκ−2s

in Br (0) (see Definition 2.2), for C∗ yet to be chosen.
From Lemma 2.1 we know that, for any z ∈ Bh/2,

ūx◦
λ+ε(z) − ūx◦

λ (z)

ε
= uλ+ε(x◦ + z) − uλ(x◦ + z)

ε

≥ c dist2s(x◦ + z,�(uλ))

= c dist2s(z,�(ūx◦
λ )).

From the previous inequality applied at x ∈ Br (0)∩{|xn+1| ≥ rσ }, for some σ > 0
to be chosen, for r < h

4 , and with ε = C∗rκ−2s for some C∗ to be chosen,

ūx◦
λ+C∗rκ−2s (x) ≥ c C∗rκ−2s(rσ)2s + ūx◦

λ (x) for x ∈ Br (0) ∩ {|xn+1| ≥ rσ }.
On the other hand, notice that 0 is a free boundary point of ūx◦

λ of order greater or
equal than κ . In particular, from the growth estimate (2.9), we know that

ūx◦
λ ≥ −Crκ in Br (0), for r <

h

4
,

for some C depending only on n, M , s, τ , α, θ , and h. By choosing, for example,
θ = min{α

2 , τ+α−κ
2 } in the definition of the generalized frequency function, (2.8),

we can get rid of the dependence on θ . That is,

ūx◦
λ+C∗rκ−2s (x) ≥ c C∗rκσ 2s − Crκ for x ∈ Br (0) ∩ {|xn+1| ≥ rσ }.

Moreover, since ūx◦
λ+C∗rκ−2s ≥ ūx◦

λ ,

ūx◦
λ+C∗rκ−2s ≥ −Crκ in Br (0), for r <

h

4
.

Notice, also, that

|Laūx◦
λ+C∗rκ−2s | � M |xn+1|ar τ+α−2 in Br (0) \ �(ūx◦

λ+C∗rκ−2s ).

Let us rescale in domain. We denote

w(x) := ūx◦
λ+C∗rκ−2s (r x).

Then w is a solution to a thin obstacle problem with right-hand side and with zero
obstacle in the ball B1, such that⎧⎨

⎩
w ≥ (c C∗σ 2s − C)rκ in B1(0) ∩ {|xn+1| ≥ σ }
w ≥ −Crκ in B1(0)

|Law| � M |xn+1|ar τ+α−a in B1 \ ({xn+1 = 0} ∩ {w = 0}).
In particular, if we take w̃ := w

(c C∗σ 2s−C)rκ , then⎧⎪⎨
⎪⎩

w̃ ≥ 1 in B1(0) ∩ {|xn+1| ≥ σ }
w̃ ≥ − C

c C∗σ 2s−C
in B1(0)

|Law̃| � M
c C∗σ 2s−C

|xn+1|ar τ+α−a−κ in B1 \ ({xn+1 = 0} ∩ {w̃ = 0}).
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(Notice that τ +α −a −κ ≥ 0 by assumption.) We now want to apply Lemma 2.3.
We need to choose σ < ε◦(n, a), and C∗ such that

C

c C∗σ 2s − C
< ε◦,

M

c C∗σ 2s − C
< ε◦.

By choosingC∗ � ε−1−2s◦ weget that suchC∗ exists independently of r , depending
only on n, M , s, κ , τ , α, and h.

From Lemma 2.3, we deduce that w̃ > 0 in B1/2, so that ūx◦
λ+C∗rκ−2s > 0

in Br/2(0). Since r < h/4, we get the desired result, noticing that ūx◦
λ+C∗rκ−2s =

(uλ+C∗rκ−2s − ϕ)(· + x◦) on B ′
r .

Finally, notice that thanks to the optimal regularity of solutions, if x◦ ∈ �λ,
then x◦ ∈ �λ≥1+s , so that applying the previous result we are done. ��

The following corollary will be useful below:

Corollary 2.5. Let u(1) and u(2) denote two solutions to

⎧⎨
⎩

Lau(i) = 0 in B1 \ ({xn+1 = 0} ∩ {u(i) = ϕ})
Lau(i) � 0 in B1

u(i) ≥ ϕ on {xn+1 = 0},
for i ∈ {1, 2}. (2.13)

Then, for any ε◦ > 0 and h > 0, there exists a δ > 0 such that if

u(2) ≥ u(1), and u(2) ≥ u(1) + ε◦ in {|xn+1| > 1/2},

then

inf

{
|x1 − x2| : x1 ∈ ∂�(u(1)) ∩ B1−h, x2 ∈ ∂�(u(2)) ∩ B1−h

}
≥ δ.

Proof. The proof follows by Proposition 2.4. Let us denote u(1)
λ the solution to the

thin obstacle problem (2.2) with boundary data equal to u(1) on ∂ B1 ∩ {|xn+1| �
1/2}, and u(1)

λ + λε◦ on ∂ B1 ∩ {|xn+1| > 1/2}. In particular, u(1) = u(1)
0 � u(1)

1 �
u(2). Moreover, thanks to the Harnack inequality we know that u(1)

λ+ε ≥ u(1)
λ + cεε◦

for ε > 0 in B1 ∩ {|xn+1| ≥ 1
2 }, for some constant c. Thus, if we define

wλ := (cε◦)−1u(1)
λ ,

then wλ fulfil (2.3). The result now follows applying Proposition 2.4 to wλ and
using that u(1) = cε◦w0 � cε◦wλ � u(2) for λ ∈ [0, 1]. ��

As a direct consequence of Proposition 2.4 (in particular, of (2.12)), we get that
if 0 ∈ ∂�(uλ), then 0 /∈ ∂�(uλ̄) for λ̄ �= λ (since uλ+C∗δ1−s > ϕ in Bδ for δ > 0
small enough).

In particular, we have
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Definition 2.6. We define

�κ :=
⋃

λ∈[0,1]
�λ

κ , �≥κ :=
⋃

λ∈[0,1]
�λ≥κ , and � :=

⋃
λ∈[0,1]

�λ.

We also define

λ(x◦) := {
λ ∈ [0, 1] : x◦ ∈ ∂�(uλ)

}
, (2.14)

which is uniquely defined on �.

The fact that λ(x◦) is uniquely defined for x◦ ∈ � follows since �κ ∩ �κ̄ = ∅

if κ �= κ̄ . In particular, if x◦ ∈ �κ then x◦ ∈ �λ(x◦) = ∂�(uλ(x◦)).
A direct consequence of Proposition 2.4 is that � � x◦ �→ λ(x◦) is continuous:

Corollary 2.7. Let uλ satisfy (2.2)–(2.3), and let ϕ satisfy (2.1). The function

� � x◦ �→ λ(x◦)

for λ(x◦) defined by (2.14) is continuous. Moreover, for each h > 0,

� ∩ B1−h � x◦ �→ ūx◦
λ(x◦)

is continuous in the C0-norm.

Proof. Let us start with the first statement. If x1, x2 ∈ � are such that |x1−x2| � δ
2

for δ > 0 small enough, and λ(x1) ≥ λ(x2), then

uλ(x2)+C∗δ1−s > ϕ in Bδ(x◦)

by Proposition 2.4. In particular, λ(y) < λ(x2) + C∗δ1−s for any y ∈ Bδ(x2), so
that λ(x1) < λ(x2) + C∗δ1−s . That is,

|λ(x1) − λ(x2)| � C∗δ1−s

and λ(x) is continuous (in fact, it is (1 − s)-Hölder continuous).
Let us now show that

� ∩ B1−h � x◦ �→ ūx◦
λ(x◦)

is also continuous (in the C0-norm). From the definition of ūx◦
λ(x◦), Definition 2.2,

and since ϕ is continuous, it is enough to show that�∩ B1−h � x◦ �→ uλ(x◦)(x◦+ ·)
is continuous.Moreover, since each uλ is continuous (and in fact, they are uniformly
C2s), we will show that � � x◦ �→ uλ(x◦) is continuous, in the sense that, for every
ε > 0, there exists some δ > 0 such that if x, z ∈ � ∩ B1−h (for some h > 0),
|x − z| � δ, then

sup
B1

|uλ(x) − uλ(z)| � ε.
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Let us argue by contradiction. Suppose that it is not true, and that there exist
sequences xi , zi ∈ B1−h ∩ � such that |xi − zi | � 1

i and

sup
B1

|uλ(xi ) − uλ(zi )| ≥ ε◦ > 0

for some ε◦ > 0. In particular, let us assume that λ(xi ) > λ(zi ), so that uλ(xi ) ≥
uλ(zi ). After taking a subsequence (by compactness, using also that ‖uλ‖C2s (B1)

�
M), we can assume that there exists some ball Bρ(y) ⊂ B1 such that

uλ(xi ) ≥ uλ(zi ) + ε◦
2

in Bρ(y) ⊂ B1

for all i ∈ N. (The radius ρ depends only on n, ε◦, and M .) By interior Harnack’s
inequality, we have that

uλ(xi ) ≥ uλ(zi ) + c
ε◦
2

in Bh/2(zi ) ∩ {|xn+1| ≥ h/4}

for some constant c depending on ρ and h. After translating and scaling, we are in
a situation to apply Corollary 2.5. In particular, for some δ > 0 (depending on ε◦
and h), |xi − zi | ≥ δ > 0. This is a contradiction with |xi − zi | � 1

i for i ∈ N large
enough. Therefore, x◦ �→ ūx◦

λ(x◦) is continuous. ��
The following lemma improves Lemma 2.1 in case x◦ ∈ �2 (we denote here

that a− := max{0,−a}):
Lemma 2.8. Let uλ satisfy (2.2)–(2.3), and let ϕ satisfy (2.1). Let n ≥ 2, and h > 0
small. Let x◦ ∈ B1−h ∩ �λ

2 . Then, for each η > 0 small, and for μ > λ,

(i) if s ≥ 1
2 ,

∂+
λ ūx◦

μ (0) = ∂+
λ uμ(x◦) ≥ c distη+a−(x◦,�(uμ)) = c distη−a(0,�(ūx◦

μ )),

(ii) if s � 1
2 ,

∂+
λ ūx◦

μ (0) = ∂+
λ uμ(x◦) ≥ c distη+a−(x◦,�(uμ)) = c distη(0,�(ūx◦

μ )),

for some constant c > 0 independent of λ and μ (but possibly depending on
everything else).

Proof. Fix some μ > 0 and ε > 0 small, and define

δλ,εūx◦
μ (x) = ūx◦

μ+ε(x) − ūx◦
μ (x)

ε
= uμ+ε(x + x◦) − uμ(x + x◦)

ε
.

As in the proof of Lemma 2.1, we know that δλ,εūx◦
μ (x) ≥ 0, δλ,εūx◦

μ ≥ 1 on
(−x◦ + ∂ B1) ∩ {|xn+1| ≥ 1

2 }, and
Laδλ,εūx◦

μ = 0 in (−x◦ + B1) \ �(ūx◦
μ ) ⊃ (−x◦ + B1) \ �(ūx◦

λ ). (2.15)
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Let us start by showing that, for every A > 0, there exists some ρA > 0
(independent of μ) such that, after a rotation,

�(ūx◦
μ ) ∩ BρA ⊂ {|x ′|2 ≥ Ax21 }. (2.16)

In particular, we will show that, for every A > 0, there exists some ρA > 0 such
that, after a rotation,

�(ūx◦
λ ) ∩ BρA ⊂ {|x ′|2 ≥ Ax21 }. (2.17)

(Notice that now we have taken μ ↓ λ, and since the contact set is decreasing in λ,
(2.17) implies (2.16).)

Indeed, by [23, Theorem 8.2], we know that

ūx◦
λ (x) = p2(x) + o(|x |2)

for some 2-homogeneous, a-harmonic polynomial, such that p2 ≥ 0 on {xn+1 = 0}
(recall that we are assuming that x◦ ∈ �λ

2 ) and p2 �≡ 0. After a rotation, thus, we
may assume that p2(x ′, 0) ≥ cx21 . That is,

ūx◦
λ (x ′, 0) ≥ cx21 + o(|x ′|2) >

c

A
|x ′|2 + o(|x ′|2) > 0 in BρA ∩ {|x ′|2 < Ax21 }

if ρA is small enough (depending on A, but also on the point x◦, and the function
ūx◦

λ ). That is, (2.17), and in particular, (2.16), holds. Considering again the xn+1
direction, we know that for every A > 0 there exists some ρA such that, after a
rotation,

�(ūx◦
μ ) ∩ BρA ⊂ {x21 + x2n+1 � A−1|x ′|2} =: CA. (2.18)

Notice that ρA ↓ 0 as A → ∞. Let us suppose that we are always in the rotated set-
ting so that the previous inclusion holds. Let us denoteψA the unique homogeneous
solution to ⎧⎨

⎩
LaψA = 0 in R

n \ CA/2
ψA = 0 in CA/2
ψA ≥ 0 in R

n,

such that sup∂ B1
ψA = 1.

Let η◦ > 0 denote the homogeneity of ψA (i.e., ψA(t x) = tη◦ψA(x)). It
corresponds to the first eigenvalue on the sphere S

n of La with zero boundary
condition on CA/2. Alternatively, it corresponds to the infimumof the corresponding
Rayleigh quotient among functions with the same boundary values. Notice that, as
A → ∞, CA/2 → {x1 = xn+1 = 0} locally uniformly in the Hausdorff distance,
and {x1 = xn+1 = 0} has zero a-harmonic capacity when s � 1

2 (see [28, Corollary
2.12]). Thus, when s � 1

2 the infimum of the Rayleigh quotient converges to the
first eigenvalue of La on the sphere without boundary conditions (namely, 0), and
thus, η◦ ↓ 0 as A → ∞ if a ≥ 0. Alternatively, if s > 1

2 the first eigenvalue
corresponds to the homogeneity −a (attained by the function (x21 + x2n+1)

−a/2), so
that η◦ ↓ −a as A → ∞ if a < 0. In all, η◦ ↓ a−, with a− = max{0,−a}.



440 X. Fernández-Real & X. Ros-Oton

Let us choose some A large enough such that η◦ < η + a−. Now, let

r := dist(x◦,�(uμ)) = dist(0,�(ūx◦
μ )),

and let ψA,r for r < ρA/2 denote the solution to⎧⎨
⎩

LaψA,r = 0 in Br ∪ (
BρA/2 \ CA/2

)
ψA,r = 0 in (BρA/2 ∩ CA/2) \ Br

ψA,r = ψA on ∂ BρA/2.

Let c̄ small enough (depending on ρA, A, h, n, s, M) such that c̄ψA � δλ,εūx◦
μ

on ∂ BρA/2. For instance, take

c̄ = inf
x∈∂ BρA/2∩Cc

A/2

δλ,εūx◦
μ (x) > 0,

which is positive since δλ,εuμ ≥ 0, δλ,εuμ ≥ 1 on ∂ B1 ∩ {|xn+1| = 0}, and
Laδλ,εuμ = 0 in (B1 \ {xn+1 = 0}) ∪ (BρA(x◦) \ CA) (recall δλ,εuμ = δλ,εūx◦

μ (· −
x◦)), and thus, by strong maximum principle (or Harnack’s inequality, see [16,
Theorem 2.3.8]) we must have c̄ > 0 depending only on ρA, A, h, n, s, M .

Now notice that c̄ψA,r � δλ,εūx◦
μ on ∂ BρA/2, c̄ψA,r � δλ,εūx◦

μ on BρA/2∩CA/2\
Br , and both c̄ψA,r and δλ,εūx◦

μ are a-harmonic in Br ∪ (BρA/2 \ CA/2) (thanks to
(2.15)–(2.18)). By comparison principle

c̄ψA � c̄ψA,r � δλ,εūx◦
μ in BρA/2.

By Harnack’s inequality, there exists a constant C depending only on n and s
such that

ψA,r (0) ≥ inf
Br/2(0)

ψA,r ≥ 1

C
sup

Br/2(0)
ψA,r ≥ 1

C
sup

Br/2(0)
ψA ≥ crη◦ ,

where in the last inequality we are using the η◦-homogeneity of ψA, and c depends
only on n and a. Thus,

δλ,εūx◦
μ (0) ≥ c̄ψA,r (0) ≥ cc̄rη◦ = c distη◦(x◦,�(uμ)) = c distη◦(0,�(ūx◦

μ )),

for some c > 0 that might depends on everything, but it is independent of μ and
λ, where we assumed r < ρA/2. We can reach all r > 0 by taking a smaller c > 0
(independent of λ andμ), thanks to Lemma 2.1. Recalling η◦ < η+a−, and letting
ε ↓ 0, this gives the desired result. ��

Using the previous lemma, combined with an ODE argument, we find the fol-
lowing:

Proposition 2.9. Let x◦ ∈ �λ
2 be any point of order 2. Then,

• If s � 1
2 , for every ε◦ > 0, there exists some δ◦ > 0 such that

�λ+δ2−ε◦
2 ∩ Bδ(x◦) = ∅,

for all δ ∈ (0, δ◦).
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• If s > 1
2 , for every ε◦ > 0, there exists some δ◦ > 0 such that

�λ+δ
2 2−s
1+s −ε◦

2 ∩ Bδ(x◦) = ∅,

for all δ ∈ (0, δ◦).

Proof. We use Lemma 2.8. We know that, for each η > 0 small,

∂+
λ ūx◦

μ (0) ≥ c distη+a−(0,�(ūx◦
μ )) for μ > λ.

On the other hand, from the optimal regularity for the thin obstacle problem, we
know that

ūx◦
μ (0) � Cdist1+s(0,�(ūx◦

μ )),

which gives

∂+
λ ūx◦

μ (0) ≥ c(ūx◦
μ (0))

η+a−
1+s .

Solving the ODE between λ and μ, this yields

ūx◦
μ (0)1−

η+a−
1+s ≥ c(μ − λ) ⇐⇒ ūx◦

μ (0) ≥ c(μ − λ)
2+2s

3−2η−|a| .

Let us now suppose that there exists some z◦ ∈ Bδ(x◦) ∩ �
μ
2 . Notice that ūz◦

μ

has quadratic growth around zero (since z◦ is a singular point of order 2), that is
ūz◦

μ � Cρ2 in B ′
ρ × {0} for ρ > 0. Thus, using that ūx◦

μ = ūz◦
μ (· + x◦ − z◦) in B ′

1

Cδ2 ≥ ūz◦
μ (x◦ − z◦) = ūx◦

μ (0) ≥ c(μ − λ)
2+2s

3−2η−|a| ,

that is, μ − λ � Cδ
3−2η−|a|

1+s . In particular, whenever μ − λ > Cδ
3−2η−|a|

1+s then
Bδ(x◦) ∩ �

μ
2 = ∅.

Taking δ and η small enough we get the desired result. ��

3. Dimension of �2

In this section we prove that �2 = ⋃
λ∈[0,1] �λ

2 has dimension at most n − 1.

Proposition 3.1. Let m ∈ N, and suppose 2m < τ + α. Let us denote px◦
2m the

blow-up of ūx◦
λ(x◦) at x◦ ∈ �2m. Then, the mapping �2m � x◦ �→ px◦

2m is continuous.
Moreover, for any compact set K ⊂ �2m there exists a modulus of continuity σK

such that

|ūx◦
λ(x◦)(x) − px◦

2m(x)| � σK (|x |)|x |2m

for any x◦ ∈ K .

Proof. This follows exactly as the proof of [22, Theorem 2.8.4] (or [23, Theorem
8.2]) using that �2m � x◦ �→ λ(x◦) and �2m � x◦ �→ ūx◦

λ(x◦) are continuous (see
Corollary 2.7). ��
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Singular points (that is, points of order 2m < τ + α) have a non-degeneracy
property. Namely, as proved in [23, Lemma 8.1], if x◦ ∈ �λ

2m , then there exists
some constant C > 0 (depending on the point x◦) such that

C−1r2m � sup
∂ Br

|ūx◦
λ | � Cr2m .

In particular,we can further divide the set�2m according to the degree of degeneracy
of the singular point. That is, let us define

�2m, j := {x◦ ∈ B1− j−1 ∩ �2m : j−1r2m � sup
∂ Br

|ūx◦
λ(x◦)| � jr2m for all r � (2 j)−1},

so that

�2m =
⋃
j∈N

�2m, j ,

and each �2m, j ⊂ �2m is compact (see [22, Lemma 2.8.2], which only uses the
upper semi-continuity of the frequency formula with respect to the point).

In the next proposition we are going to use a Monneau-type monotonicity
formula. In particular, we will use that, if we define for m ∈ N, x◦ ∈ �λ

2m ,

Mm(r, ūx◦
λ , p2m) := 1

rn+a+4m

∫
∂ Br

(ūx◦
λ − p2m)2|xn+1|a, (3.1)

for any 2m-homogeneous, a-harmonic, even polynomial p2m with p2m(x ′, 0) ≥ 0,
such that p2m � C for some universal bound C , then

d

dr
Mm(r, ūx◦

λ , p2m) ≥ −CMrα−1 (3.2)

for someconstantCM independent ofλ. (See [23, Proposition 7.2] and [22,Theorem
2.7.2].)

Proposition 3.2. Let m ∈ N, and suppose 2m < τ + α. Let us denote px◦
2m the

blow-up of ūx◦
λ(x◦) at x◦ ∈ �2m. Then, for each j ∈ N there exists a modulus of

continuity σ j such that

‖px◦
2m − pz◦

2m‖L2(∂ B1,|xn+1|a) � σ j (|x◦ − z◦|)
for all x◦, z◦ ∈ �2m, j .

Proof. Suppose it is not true. That is, suppose that there exist sequences xk, zk ∈
�2m, j with k ∈ N, such that |xk − zk | → 0 and

‖pxk
2m − pzk

2m‖L2(∂ B1,|xn+1|a) ≥ δ > 0 (3.3)

for some δ > 0. Suppose also that λ(xk) � λ(zk).
Let ρk := |xk − zk | ↓ 0 as k → ∞. Let us define

vk
x (x) := ūxk

λ(xk )
(ρk x)

ρ2m
k

and vk
z (x) := ūzk

λ(zk )
(ρk x + xk − zk)

ρ2m
k

.
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We have that

vk
z (x) − vk

x (x) = ρ−2m
k

{
uλ(zk )(ρk x + xk) − uλ(xk)(ρk x + xk) + Qxk

τ (ρk x ′)
− Qzk

τ (ρk x ′ + x ′
k − z′

k) − Exta(Qxk
τ (ρk ·)

− Qzk
τ (ρk · +x ′

k − z′
k))(x ′, xn+1)

}
,

where, if p = p(x ′) : R
n → R is a polynomial, Exta(p)(x ′, xn+1) denotes its

unique even a-harmonic extension.
Notice that uλ(zk ) ≥ uλ(xk) (sinceλ(zk) ≥ λ(xk)). On the other hand, let us study

the convergence of the degree τ polynomials Pk
τ (x ′) = Qxk

τ (ρk x ′) − Qzk
τ (ρk x ′ +

x ′
k − z′

k). First, observe that

|Pk
τ (0)| = |Qxk

τ (0) − Qzk
τ (x ′

k − z′
k)| = |ϕ(x ′

k) − Qzk
τ (x ′

k − z′
k)| = o(ρτ

k ),

since Qxk
τ and Qzk

τ are theTaylor expansions ofϕ of order τ at xk and zk respectively,
and |x ′

k − z′
k | = ρk . Similarly, for any multi-index β = (β1, . . . , βn−1) with

|β| � τ ,

|Dβ Pk
τ (0)| = ρ

|β|
k

∣∣Dβϕ(xk) − Dβ Qzk
τ (x ′

k − z′
k)
∣∣ = o(ρτ

k ).

Thus, the Pk
τ = o(ρτ

k ) (say, in any norm in B ′
1), and so the same occurs with the

a-harmonic extension. Notice, also, that by assumption, 2m � τ . In all, we have
that

vk
z (x) − vk

x (x) ≥ o(1). (3.4)

On the other hand, we have

|vk
x (x) − pxk

2m(x)| � σK , j (ρk |x |)|x |2m (3.5)

thanks to Proposition 3.1 with K = �2m, j , and for some modulus of continuity
σK , j depending on j . Similarly, if we denote

ξk = zk − xk

ρk
∈ S

n,

then

|vk
z (x) − pzk

2m(x − ξk)| � σK , j (ρk |x − ξk |)|x − ξk |2m . (3.6)

From the definition of �2m, j we know that

j−1r2m � sup
∂ Br

|pxk
2m | � jr2m . (3.7)

In particular, up to subsequences, pxk
2m → px uniformly for some 2m-homogeneous

polynomial px , a-harmonic, such that px (x ′, 0) ≥ 0, and

j−1r2m � sup
∂ Br

|px | � jr2m . (3.8)
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Notice that both bounds (3.7) are crucial: the bound from above allows a conver-
gence, and the bound from below avoid getting as a limit the zero polynomial.
We similarly have that pzk

2m → pz for some pz 2m-homogeneous polynomial,
a-harmonic, with pz(x ′, 0) ≥ 0 and such that (3.8) holds for pz .

Combining the convergences of pxk
2m and pzk

2m to px and pz with (3.5)–(3.6) we
obtain that

vk
x → px , vk

z → pz(· − ξ◦), uniformly,

for some ξ◦ = (ξ ′◦, 0) ∈ S
n . On the other hand, from (3.4), we know that px ≥

pz(· − ξ◦).
Thus, px − pz(·−ξ◦) ≥ 0, and is a-harmonic, therefore by Lioville’s theorem is

constant. Moreover, both terms are non-negative on the thin space, and both attain
the value 0 (since they are homogeneous), therefore, px = pz(· − ξ◦). Since both
px and pz are homogeneous of the same degree, this implies that px = pz .

Let us now use theMonneau-typemonotonicity formula, (3.1)–(3.2), with poly-
nomials px and pz :∫

∂ B1

(vk
x − px )

2|xn+1|a = Mm(ρk, ūxk
λ(xk )

, px )

≥ Mm(0+, ūxk
λ(xk )

, px ) − CMρα
k

=
∫

∂ B1

(pxk
2m − px )

2|xn+1|a − CMρα
k ,

where we are using that ρ−2mūλ(xk )(ρx) → pxk
2m as ρ ↓ 0. Letting k → ∞ (so

ρk ↓ 0), since vk
x → px we get that

∫
∂ B1

(pxk
2m − px )

2|xn+1|a → 0.

On the other hand, proceeding analogously,
∫

∂ B1

(vk
z (· + ξk) − pz)

2|xn+1|a ≥
∫

∂ B1

(pzk
2m − pz)

2|xn+1|a − CMρα
k ,

and since vk
z → pz(· − ξ◦),

∫
∂ B1

(pzk
2m − pz)

2|xn+1|a → 0.

Thus, since px = pz , we obtain that
∫

∂ B1

(pzk
2m − pxk

2m)2|xn+1|a → 0,

which is a contradiction with (3.3). ��
Finally, we prove the following:
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Proposition 3.3. Let m ∈ N, and suppose 2m < τ + α. Then, �2m is contained in
a countable union of (n − 1)-dimensional C1 manifolds.

Proof. The proof is now standard, and it follows applying the Whitney extension
theorem, which can be applied thanks to Proposition 3.2. We refer the reader to the
proof of [22, Theorem 1.3.8], which we summarise here for completeness.

Indeed, if x◦ ∈ �2m , and β = (β1, . . . , βn+1) is a multi-index, we denote

px◦
2m(x) =

∑
|β|=2m

aβ(x◦)
β! xβ

so that a(x◦) (the coefficients) are continuous on�2m, j by Proposition 3.2. Arguing
as in [22, Lemma 1.5.6] (by means of Proposition 3.1) the function fβ defined for
the multi-index β, with |β| � 2m,

fβ(x) =
{
0 if |β| < 2m,

aβ(x) if |β| = 2m,

for x ∈ �2m , fulfils the compatibility conditions to apply Whitney’s extension
theorem on �2m, j . That is, there exists some F ∈ C2m(Rn+1) such that

d |β|

dxβ
F = fβ on �2m, j ,

for any |β| � 2m.
Now, for any x◦ ∈ �2m, j , since px◦

2m �= 0, there exists some ν ∈ R
n such that

ν · ∇x ′ px◦
2m(x ′, 0) �= 0 on R

n .

In particular, for some multi-index β◦ with |β◦| = 2m − 1,

ν · ∇x ′∂β◦ F(x◦) = ν · ∇x ′∂β◦ px◦
2m(0) �= 0, (3.9)

where ∂β◦ := d |β◦|
dxβ◦ . On the other hand,

�2m, j ⊂
⋂

|β|=2m−1

{∂β F = 0} ⊂ {∂β◦ F = 0},

so that, thanks to (3.9), by the implicit function theorem �2m, j is locally contained
in a (n −1)-dimensional C1 manifold. Thus, �2m is contained in a countable union
of (n − 1)-dimensional C1 manifolds. ��
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4. Proof of Main Results

Finally, in this section we prove the main results. To do this, the starting point
is the following GMT lemma from [19]:

Lemma 4.1. [19] Consider the family {Eλ}λ∈[0,1] with Eλ ⊂ R
n. and let us denote

R
n ⊃ E := ⋃

λ∈[0,1] Eλ.
Suppose that for some β ∈ (0, n] and γ ≥ 1, we have

• dimH E � β,
• for any ε > 0, and for any x◦ ∈ Eλ◦ for some λ◦ ∈ [0, 1], there exists some

ρ = ρ(ε, x◦, λ◦) > 0 such that

Br (x◦) ∩ Eλ = ∅ for all r < ρ, and λ > λ◦ + rγ−ε.

Then,

(1) If β < γ , then dimH({λ : Eλ �= ∅}) � β/γ < 1.
(2) If β ≥ γ , then for H1-a.e. λ ∈ R, we have dimH(Eλ) � β − γ .

We will also use the following lemma, analogous to the first part of Lemma 4.1
but dealingwith the upperMinkowski dimension instead (whichwe denote dimM).
We refer to [32, Chapter 5] for more details on the upper/lower Minkowski content
and dimension.

Lemma 4.2. Consider the family {Eλ}λ∈[0,1] with Eλ ⊂ R
n. and let us denote

R
n ⊃ E := ⋃

λ∈[0,1] Eλ.
Suppose that for some β ∈ [1, n] and γ > β, we have

• dimME � β,
• for any ε > 0, and for any x◦ ∈ Eλ◦ for some λ◦ ∈ [0, 1], there exists some

ρ = ρ(ε) > 0 such that

Br (x◦) ∩ Eλ = ∅ for all r < ρ, and λ > λ◦ + rγ−ε.

Then, dimM({λ : Eλ �= ∅}) � β/γ < 1.

Proof. Given A ⊂ R
n , let us denote

N (A, r) := min
{

k : A ⊂ ∪k
i=1Br (xi ) for some xi ∈ R

n
}

, (4.1)

the smallest number of r -balls needed to cover A. The upper Minkowski dimension
of A can then be defined as

dimMA := inf

{
s : lim sup

r↓0
N (A, r)rs = 0

}

(see [32]). Notice that the definition of upperMinkowski dimension does not change
if we assume that the balls Br (xi ) from (4.1) are centered at points in A (by taking,
for instance, balls with twice the radius).
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Since dimME � β, we have that for any δ > 0, N (E, r) = o(rβ+δ). Let us
consider N (E, r) balls of radius r centered at E , Br (xi ), with xi ∈ E . Thanks to
our second hypothesis we have that

⋃
λ∈[0,1]

{λ} × Eλ ⊂
N (E,r)⋃

i=1

(λ(xi ) − rγ−ε, λ(xi ) + rγ−ε) × Br (xi ),

where xi ∈ Eλ(xi ). Thus,

{λ ∈ [0, 1] : Eλ �= ∅} ⊂
N (E,r)⋃

i=1

(λ(xi ) − rγ−ε, λ(xi ) + rγ−ε),

where the intervals are balls of radius rγ−ε. In particular, using that N (E, r) =
o(rβ+δ), we deduce that

dimM {λ ∈ [0, 1] : Eλ �= ∅} � β + δ

γ − ε
.

Since this works for any δ, ε > 0, we deduce the desired result. ��
Remark 4.3. Notice that Lemma 4.1 is somehow a generalization of the coarea
formula. Namely, if we consider the case γ = 1, β = n, and ε = 0, and we denote
Eλ the level sets of a Lipschitz function f = f (λ) (Eλ = f −1(λ)), the the coarea
formula says that

∫ 1

0
Hn−1

(
f −1(λ)

)
dλ =

∫
B1

|∇ f | < ∞,

since f is Lipschitz by assumption. In particular,Hn−1
(

f −1(λ)
)

< ∞ forH1-a.e.
λ ∈ [0, 1]. This is used by Monneau in [33] for the classical obstacle problem.

This observation is also the reason why we do not expect to have a Minkowski
analogous to Lemma 4.1 (2), as we did in Lemma 4.2 for part (1).

By applying the previous lemmas together with Proposition 2.4 we obtain the
following result.

Theorem 4.4. Let uλ solve (2.2)–(2.3). Let ϕ ∈ Cτ,α , and let κ < τ + α and
κ � τ + α − a.

If 2 + 2s � κ � n + 2s, then,

dimH(�λ≥κ) � n − κ + 2s for a.e. λ ∈ [0, 1],
On the other hand, if κ > n + 2s, then

�λ≥κ = ∅ for all λ ∈ [0, 1] \ Eκ ,

where Eκ ⊂ [0, 1] is such that dimH(Eκ) � n
κ−2s .

Furthermore, for any h > 0, if κ > n + 2s, then

�λ≥κ ∩ B1−h = ∅ for all λ ∈ [0, 1] \ Eκ,h,

where Eκ,h ⊂ [0, 1] is such that dimM(Eκ,h) � n
κ−2s .
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Proof. The proof of this result follows applying Lemmas 4.1 and 4.2 to the right
sets. Indeed, we consider the sets

Eλ := �λ≥κ , E :=
⋃

λ∈[0,1]
Eλ.

Notice that E = �≥κ , and we can take β = n in Lemma 4.1. On the other hand,
we know that for any λ◦ ∈ [0, 1], x◦ ∈ Eλ◦ , there exists ρ = ρ(x◦, λ◦) > 0 such
that

Br (x◦) ∩ Eλ = ∅ for all r < ρ, and λ > λ◦ + C∗rκ−2s .

thanks to Proposition 2.4. That is, for any ε > 0 there exists some ρ =
ρ(ε, x◦, λ◦) > 0 such that

Br (x◦) ∩ Eλ = ∅ for all r < ρ, and λ > λ◦ + rκ−2s−ε.

and the hypotheses of Lemma 4.1 are fulfilled, with β = n and γ = κ − 2s. The
result now follows by Lemma 4.1.

The last part of the theorem follows by applying Lemma 4.2 instead of
Lemma 4.1. We notice in this case that the dependence of ρ on the point has
been removed, but now it depends on h > 0. This forces the result to hold only in
smaller balls B1−h . ��

In particular, we can also deal with the set of free boundary points of infinite
order.

Corollary 4.5. Let uλ solve (2.2)–(2.3). Let ϕ ∈ C∞, and let �λ∞ := ⋂
κ≥2 �λ≥κ .

Then,

�λ∞ = ∅ for all λ ∈ [0, 1] \ E,

where E ⊂ [0, 1] is such that dimH(E) = 0.
Furthermore, for any h > 0,

�λ∞ ∩ B1−h = ∅ for all λ ∈ [0, 1] \ Eh,

where Eh ⊂ [0, 1] is such that dimM(E) = 0.

Proof. Apply Theorem 4.4 to �λ≥κ and let κ → ∞. ��
And we get that the free boundary points of order greater or equal than 2 + 2s

are at most (n − 2)-dimensional, for almost every λ ∈ [0, 1].
Corollary 4.6. Let uλ solve (2.2)–(2.3). Let ϕ ∈ C4,α . Then,

dimH(�λ≥2+2s) � n − 2,

for almost every λ ∈ [0, 1].
Proof. This is simply Theorem 4.4 with κ = 2 + 2s. ��
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On the other hand, combining the results fromSections 2 and 3with Lemma 4.1,
we get the following regarding the free boundary points of order 2:

Theorem 4.7. Let uλ solve (2.2)–(2.3), and let n ≥ 2. Then

dimH(�λ
2 ) � n − 2 for a.e. λ ∈ [0, 1].

Proof. The proof of this result follows applying Lemma 4.1 to the right sets. We
consider

Eλ := �λ
2 , E :=

⋃
λ∈[0,1]

Eλ = �2.

Notice that E has dimensionH(E) = n −1 by Proposition 3.3, so that we can take
β = n − 1 in Lemma 4.1. On the other hand, we know that for any λ◦ ∈ [0, 1],
x◦ ∈ Eλ◦ , and any ε > 0, there exists ρ = ρ(ε, x◦, λ◦) > 0 such that

Br (x◦) ∩ Eλ = ∅ for all r < ρ, and λ > λ◦ + r.

thanks to Proposition 2.9 (notice that 2 2−s
1+s > 1 for all s ∈ (1/2, 1)). That is, the

hypotheses of Lemma 4.1 are fulfilled, with β = n − 1 and γ = 1. The result now
follows by Lemma 4.1. ��

In fact, the previous theorem is a particular case of the more general state-
ment involving singular points given by the following proposition (we give it for
completeness, although we do not need it in our analysis):

Proposition 4.8. Let uλ solve (2.2)–(2.3). Let n ≥ 2 and let ϕ ∈ Cτ,α for some
τ ∈ N≥4 and α ∈ (0, 1). Then, if s � 1

2 ,

dimH(�λ
2 ) � n − 3 for a.e. λ ∈ [0, 1].

Alternatively, if s > 1
2 ,

dimH(�λ
2 ) � n − 1 − 2

2 − s

1 + s
for a.e. λ ∈ [0, 1].

Finally, if m ∈ N is such that 2m � τ ,

dimH(�λ
2m) � n − 1 − 2m + 2s for a.e. λ ∈ [0, 1].

Proof. This proof simply follows by analysing the previous results more carefully.
The first part follows exactly as Theorem 4.7, using Proposition 2.9 and looking at
each case separately.

Finally, regarding general singular points of order 2m, the proof follows exactly
as Theorem 4.4 using that �2m has dimension n − 1 instead of n thanks to Propo-
sition 3.3. ��

Finally, in order to control the size of points of homogeneity in the interval
(2, 2 + 2s), we refer to the following result by Focardi–Spadaro, that establishes
that points in�∗ are lower dimensional with respect to the free boundary. The result
in [21] involves higher order points as well, but we state it in the explicit form in
which it will be used below.
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Proposition 4.9. [21] Let u be a solution to the fractional obstacle problem with
obstacle ϕ ∈ C4,α for some α ∈ (0, 1),⎧⎨

⎩
Lau = 0 in B1 \ ({xn+1 = 0} ∩ {u = ϕ})
Lau � 0 in B1

u ≥ ϕ on {xn+1 = 0}.
(4.2)

Let θ ∈ (0, α) and let us denote

�̃∗ :=
⋃

κ∈(2,2+2s)

{
x◦ ∈ ∂�(u) : �τ,α,θ (0

+, ūx◦) = n + 1 − 2s + 2κ

}
. (4.3)

Then

dimH �̃∗ � n − 2.

Moreover, if n = 2, �̃∗ is discrete.

Combining the previous results, we obtain the following:

Corollary 4.10. Let uλ solve (2.2)–(2.3). Let ϕ ∈ C4,α . Then,

dimH(Deg(uλ)) � n − 2,

for almost every λ ∈ [0, 1].
Proof. This follows by combining the previous results. Notice that

Deg(uλ) = �λ \ �λ
1+s = �λ

2 ∪ �̃∗(uλ) ∪ �λ≥2+2s .

The result now follows thanks to Proposition 4.9, Corollary 4.6, and Theorem 4.7.
��
Remark 4.11. Following the proofs carefully, one can see that the previous result
holds true for obstacles ϕ ∈ C3,1 if s � 1

2 . The condition ϕ ∈ C4,α is only used
whenever s > 1

2 , since otherwise, in this case the previous methods do not imply
the smallness of �̃∗.

We can now prove the main results.

Proof of Theorem 1.1. Notice that, by the Harnack inequality, there exists a con-
stant c such that uλ+ε ≥ gλ + cε in ∂ B1 ∩ {|xn+1| ≥ 1

2 }. Thus, let us consider
wλ = c−1uλ, so that wλ fulfils (2.3) and we can apply Corollary 4.10 to wλ. Since
�κ(wλ) = �κ(uλ) for all κ ∈ [3/2,∞], λ ∈ [0, 1],

dimH(�(uλ) \ �3/2(uλ)) � n − 2.

We finish by recalling that �3/2(uλ) = Reg(uλ) is open, and a C∞ (n − 1)-
dimensional manifold (see [3,13,29]). ��
Proof of Theorem 1.3. With the same transformation as in the previous proof, the
result now follows from Corollary 4.5. ��
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Proof of Theorem 1.5. Let us suppose that, after a rescaling if necessary, {ϕ >

0} ⊂ B ′
1 ⊂ R

n .
We define wλ = vλ + λ, which fulfils a fractional obstacle problem, with

obstacle ϕ, but with limiting value λ. Take the standard a-harmonic (i.e., with the
operator La) extension of wλ, which we denote w̃λ, from R

n to R
n+1. Thanks to

[9], w̃λ fulfils a problem of the form (2.2) in B1 ⊂ R
n+1.

Moreover, by the Harnack inequality, w̃λ+ε ≥ w̃λ + cε in B1 ∩ {|xn+1| ≥ 1
2 }

for some constant c. Now, the functions c−1w̃λ fulfil (2.3), so that we can apply
Corollary 4.10 to c−1w̃λ to obtain

dimH(Deg(vλ)) = dimH(�(vλ) \ �1+s(vλ)) � n − 2.

The result now follows since �1+s(vλ) = Reg(vλ) is open, and a C∞ (n − 1)-
dimensional manifold (see [3,26,30]). ��
Proof of Theorem 1.6. With the same transformation as in the previous proof, the
result follows from Corollary 4.5. ��

5. Examples of Degenerate Free Boundary Points

Let us consider the thin obstacle problem in a domain 
 ⊂ R
n+1, with zero

obstacle defined on xn+1 = 0; that is,
⎧⎪⎪⎨
⎪⎪⎩

−�u = 0 in 
 \ ({xn+1 = 0} ∩ {u = 0})
−�u ≥ 0 in 


u ≥ 0 on {xn+1 = 0}
u = g on ∂


(5.1)

for some continuous boundary values g ∈ C0(∂
) such that g > 0 on ∂
∩{xn+1 =
0}.
Proof of Proposition 1.7. Wewill show that there exists some domain
 and some
boundary data g such that the solution to (5.1) has a sequence of regular points (of
order 3/2) converging to a non-regular (singular) point (of order 2). Then, the
solution from Proposition 1.7 will be the solution here constructed restricted to
any ball inside 
 containing such singular point, with its own boundary data (and
appropriately rescaled, if necessary).

In order to build such a solution we will use [5, Lemma 3.2], which says that
solutions to ⎧⎪⎪⎨

⎪⎪⎩

−�u = 0 in 
 \ ({xn+1 = 0} ∩ {u = ϕ})
−�u ≥ 0 in 


u ≥ ϕ on {xn+1 = 0}
u = 0 on ∂
,

(5.2)

with �x ′ϕ � −c0 < 0 and 
 convex and even in xn+1 have a free boundary
containing only regular points (frequency 3/2) and singular points of frequency
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2. In particular, they establish a non-degeneracy result stating that, for any x◦ =
(x ′◦, 0) ∈ �(u),

sup
B′

r (x ′◦)
(u − ϕ) ≥ c1r2 for all r ∈ (0, r1), (5.3)

for some r1, c1 that do not depend on the point x◦. More precisely, they show it
around points x ∈ {u > ϕ} and then take the limit x → x◦ ∈ �(u).

On the other hand, from their proof one can also show that in fact, the convexity
on 
 can be weakened to convexity in 
 in the en+1 direction.

Let us fix n = 2. Up to subtracting the right obstacle, we consider the problem
⎧⎪⎪⎨
⎪⎪⎩

−�u = 0 in 
 \ ({x3 = 0} ∩ {u = 0})
−�u ≥ 0 in 


u ≥ ϕt on {x3 = 0}
u = 0 on ∂


(5.4)

for some analytic obstacle ϕt , and some domain 
 smooth, convex and even in x3,
to be chosen.

Let ϕt (x) = t − (1 − x21 )
2 − 4x22 . Notice that, in the thin space, �x ′ϕt =

−12x21 − 4 � −4, so that, by the result in [5], under the appropriate domain 
,
the points on the free boundary �(ut ) are either regular (with frequency 3/2) or
singular (with frequency 2), and we have non-degeneracy (5.3). Let 
′ := {x ′ ∈
R
2 : (1 − x21 )

2 + 4x22 � 2}, and take any bounded, convex in x3, and even in x3
extension of 
′, 
. Then, if t = 2 and 
 ⊂ {|x3| � 1}, the solution u2 to (5.4) is
exactly equal to the solution to

⎧⎨
⎩

�u2 = 0 in 
 \ {x3 = 0}
u2 = 0 on ∂


u2 = ϕ2 on {x3 = 0},
so that, in particular, the contact set is full.1

Notice that, when t < 0, the contact set is empty, �(ut ) = ∅, and when t = 0
the contact set is two points, p± = (±1, 0, 0) (which, in particular, are singular
points). Notice, also, that the contact set is always closed and is monotone in t , in
the sense that �(ut1) ⊆ �(ut2) if t1 � t2. Let us say that a set is p±-connected
if the points p+ and p− belong to the same connected component. Then, there
exists some t∗ ∈ (0, 2] such that �(ut ) is not p±-connected for t < t∗, and is
p±-connected for t > t∗. Notice, also, that since �(ut ) ⊂ {x ′ : ϕt ≥ 0} then
t∗ > 1.

We claim that�(ut∗) is p±-connected and has a set of regular points converging
to a singular point.

Let us first show that�(ut∗) is p±-connected. Suppose it is not. That is,�(ut∗)
is a closed set with p± on different connected components. On the other hand,

1 To see this, we compare u2 with the harmonic extension of ϕ2, ϕ̃2(x1, x2, x3) =
ϕ2(x1, x2) + 2x23 + 6x21 x23 − x43 .
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�(ut ) is compact and p±-connected for t > t∗, and nested (�(ut ) ⊂ �(ut ′) for
t < t ′). Take

�̃t∗ :=
⋂

t∈(t∗,2]
�(ut ),

then �̃t∗ is p±-connected (being the intersection of compact p±-connected nested
sets), and �(ut∗) � �̃t∗ , since �(ut∗) is not p±-connected. In particular, there
exists some x◦ ∈ �(ut ) for all t > t∗ such that x◦ �∈ �(ut∗). But, by continuity,
this is not possible: 0 < (ut∗ − ϕt∗)(x◦) = limt↓t∗(ut − ϕt )(x◦) = 0. Therefore,
�(ut∗) is p±-connected.

Take �p(ut∗) to be the connected component containing both p+ and p−.
Then, ∂�p(ut∗) must contain at least one singular point. Indeed, suppose it is not
true. In this case, all points in ∂�p(ut∗) are regular, and in particular, �p(ut∗) is
a compact connected set with smooth boundary, with all points of the boundary
having positive density (in {x3 = 0}), and therefore (�p(ut∗))

◦ is also connected.
Let us denote�

p
±(ut ) the corresponding connected components of�(ut ) containing

p± for t < t∗ (notice that, by definition of t∗, �p
+(ut ) �= �

p
−(ut ). Then,

�
p,◦
t<t∗ :=

(⋃
t<t∗

(
�

p
+(ut )

)◦) ∪
(⋃

t<t∗

(
�

p
−(ut )

)◦)
�

(
�p(ut∗)

)◦
,

given that the left-hand side is not connected, and the right-hand side is. Take
y◦ ∈ (�p(ut∗))

◦ \ �
p,◦
t<t∗ , so that around y◦ the non-degeneracy (5.3) holds for any

t < t∗. Then, there exists some r◦ > 0, r1 > r◦ (where r1 is defined in (5.3)) such
that B ′

r◦(y◦) ⊂ �p(ut∗), so that ut∗ − ϕt∗ |B′
r◦ (y◦) ≡ 0 and

0 < c1r2◦ � lim
t↑t∗

sup
B′

r (x ′◦)
(ut − ϕt ) = sup

B′
r (x ′◦)

(ut∗ − ϕt∗) = 0,

which is a contradiction. That is, not all points on ∂�p(ut∗) are regular. By [5],
then there exist some degenerate (singular) point of frequency 2, xD ∈ ∂�p(ut∗).
Now consider �D , the connected component in ∂�p(ut∗) containing xD . Since the
density of the contact set around singular points is zero, if �D consist exclusively
of singular points, then �D itself is the whole connected component �p(ut ), and
p± ∈ �D are singular points. Nonetheless, for small t > 0, �(ut ) contains a
neighbourhood of p±, which contradicts the singularity of p±. Therefore, �D is
not formed exclusively of singular points, and then there exists a sequence of regular
points converging to a singular point. ��

Now, before proving Proposition 1.8, let us show the following lemma:

Lemma 5.1. Let m ∈ N>0, and let η ∈ C∞
c (B2) such that η ≡ 1 in B1. Let

u+ = max{u, 0} and u− = −min{u, 0}. Then,

(−�)s
[
(x1)

2m+1+s+ η
]

− Cm,s(x1)
2m+1−s− ∈ C∞(B1/2),

for some positive constant Cm,s > 0 depending only on n, m, and s.
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Proof. We consider the extension problem fromR
n toR

n+1. Namely, let us denote
u1 the extension of (x1)

2m+1+s+ η, that is, u1 solves
⎧⎨
⎩

Lau1 = 0 in R
n+1 ∩ {xn+1 > 0}

u1(x ′, 0) = (x1)
2m+1+s+ η for x ′ ∈ R

n

u1(x) → 0 as |x | → ∞,

where a = 1 − 2s. Then, we know that{
(−�)s

[
(x1)

2m+1+s+ η
]}

(x ′) = lim
y↓0 ya∂xn+1u1(x ′, y)

for x ′ ∈ R
n . On the other hand, let u2 be the unique a-harmonic extension of

(x1)
2m+1+s+ from R

n to R
n+1. That is, u2 is homogeneous (of degree 2m + 1+ s),

and fulfils {
Lau2 = 0 in R

n+1 ∩ {xn+1 > 0}
u2(x ′, 0) = (x1)

2m+1+s+ for x ′ ∈ R
n .

The fact that such solution exists, and that limy↓0 ya∂xn+1u2(x ′, y) = 0 if x1 > 0,
follows, for example, from [20, Proposition A.1]. On the other hand, notice that,
since u2 is (2m + 1 + s)-homogeneous, we have that, limy↓0 ya∂xn+1u2(x ′, y) =
Cm,s |x1|2m+1−s for x1 < 0, so that, in all,

lim
y↓0 ya∂xn+1u2(x ′, y) = Cm,s(x1)

2m+1−s− .

Again, by [20, Proposition A.1] u2 is a solution to the thin obstacle problem with
operator La , so Cm,s > 0 (otherwise, it would not be a supersolution for La).

Let now v = u1 − u2. Notice that v fulfils
{

Lav = 0 in R
n+1 ∩ {xn+1 > 0}

v(x ′, 0) = (x1)
2m+1+s+ (η − 1) for x ′ ∈ R

n .

In particular, v(x ′, 0) = 0 in B ′
1. Let us denote Dα

x ′v a derivative in the x ′ ∈ R
n

direction of v, with multi-index α = (α1, α2, . . . , αn, 0). Then Dα
x ′v is such that

{
La Dα

x ′v = 0 in B1 ∩ {xn+1 > 0}
Dα

x ′v(x ′, 0) = 0 for x ′ ∈ B ′
1.

Then, by estimates for the operator La , we know that, if we define

wα(x ′) := lim
y↓0 ya∂xn+1 Dαv(x ′, y), w0(x ′) := lim

y↓0 ya∂xn+1v(x ′, y),

then wα satisfies wα ∈ Cβ(B1/2) for some β > 0 (see [8, Proposition 4.3]
or [26, Proposition 2.3]). In particular, since wα = Dαw0, we have that w0 ∈
C |α|+β(B1/2). Since this works for all multi-index α, w0 ∈ C∞(B1/2).

Thus, combining the previous steps,

(−�)s
[
(x1)

2m+1+s+ η
]

− Cm,s(x1)
2m+1−s− = lim

y↓0 ya∂xn+1(u1(x ′, y) − u2(x ′, y))
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= lim
y↓0 ya∂xn+1v(x ′, y)

= w0 ∈ C∞(B1/2),

as we wanted to see. ��
We are now in disposition to give the proof of Proposition 1.8.

Proof of Proposition 1.8. We divide the proof into two steps. In the first step, we
show the results holds up to an intermediate claim, that will be proved in the second
step.
Step 1. Thanks to [24, Theorem 4] or [1, Section 2], we have that (−�)s(dsη) ∈
C∞(
c) for any η ∈ C∞ with sufficient decay at infinity. Here, d denotes any C∞
function (with at most polynomial growth at infinity) such that in a neighbourhood
of 
 coincides with the distance to 
, and d|
 ≡ 0.

In particular, once d is fixed, we know that for any k ∈ N,

(−�)s(dk+s) = f ∈ C∞(
c),

and, if we make sure that d > 0 in 
c, with exponential decay at infinity, we get

| f (x)| � C

1 + |x |n+2s
.

Define, for some g with the previous decay, |g(x)| � C(1 + |x |n+2s)−1, ϕg such
that

(−�)sϕg = g,

that is, one can take

ϕg(x) = I2s g(x) := c
∫
Rn

g(y)

|x − y|n−2s
dy.

Notice that

|ϕg(x)| � C
∫
Rn

dy

(1 + |y|n+2s)|x − y|n−2s

� C
∫

|y−x |≥ |x |
2

dy

(1 + |y|n+2s)|x − y|n−2s

+ C
∫

|y−x |� |x |
2

dy

(1 + |y|n+2s)|x − y|n−2s

� C

|x |n−2s

∫
|y−x |≥ |x |

2

dy

1 + |y|n+2s
+ C

1 + |x |n+2s

∫
|y−x |� |x |

2

dy

|x − y|n−2s
,

where we are using that if |y − x | � |x |
2 then |y| ≥ |x |

2 by triangular inequality.
Notice also that∫

|y−x |� |x |
2

dy

|x − y|n−2s
=

∫
B|x |/2

dz

|z|n−2s
=

∫ |x |/2

0
r2s−1dr = C |x |2s .
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In all, also using that ϕ(x) is bounded around the origin, we obtain that

|ϕg(x)| � C

1 + |x |n−2s
.

Now let us define v = dk+s . We claim that, if k = 2m + 1 for some m ∈ N>0,
then v fulfils ⎧⎨

⎩
(−�)sv ≥ f̄ in R

n

(−�)sv = f̄ in {v > 0}
v ≥ 0 in R

n,

(5.5)

where f̄ is some appropriate C∞ extension of f inside 
. Then, if we define

u := v + ϕ− f̄ ,

u fulfils,
⎧⎨
⎩

(−�)su ≥ 0 in R
n

(−�)su = 0 in {u > ϕ− f̄ }
u ≥ ϕ− f̄ in R

n,

and notice that, since v > 0 in 
c and v = 0 in 
, by definition, we have that the
contact set is exactly equal to 
. Moreover, by the growth of v at the boundary, the
free boundary points are of frequency k + s. Also, by the decay at infinity of v and
ϕ− f̄ , u → 0 at infinity.

Step 2. We still have to show that, for an appropriate choice of f̄ , (5.5) holds for
k = 2m + 1. Notice that, in fact, in 
c we know that f is C∞. Moreover, we only
have to show the claim for a neighbourhood of ∂
 inside
, given that exactly at the
boundary we expect a unique extension of f (that is, all derivatives are prescribed
at the boundary).

That is, if we let 
δ := {x ∈ 
 : dist(x, ∂
) < δ}, we have to show that there
exists some δ > 0 small enough such that (−�)sv ≥ f̄ in 
δ , where we recall that
f̄ is a C∞ extension of f ∈ C∞(
c) inside 
.

Let z◦ ∈ ∂
. After a translation and a rotation, we assume that z◦ = 0 and
ν(0, ∂
) = e1, where ν(0, ∂
) denotes the outward normal to ∂
 at 0. After
rescaling if necessary, let us assume that we are working in B1, that each point
in B1 has a unique projection onto ∂
, and that d|B1∩
c = dist(·,
). Moreover,
again after a rescaling if necessary (since 
 is a C∞ domain), let us assume that

{y1 � −|(y2, . . . , yn)|2} ∩ B1 ⊂ 
 ∩ B1 ⊂ {y1 � |(y2, . . . , yn)|2} ∩ B1, (5.6)

so that, in particular, {−te1 : t ∈ (0, 1)} ⊂ 
.
Let η ∈ C∞

c (B2) such that η ≡ 1 in B1, and let u+ = max{u, 0} denote the
positive part, and u− = −min{u, 0} the negative part. Let α = 2m + 1 + s, and
define

u1(x) := (x1)
α+η, w(x) := v(x) − u1(x) = dα(x) − (x1)

α+η.
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Notice that, by Lemma 5.1,

(−�)su1(x) − Cm,s(x1)
2m+1−s− ∈ C∞(B1/2), (5.7)

for some positive constant Cm,s > 0.
We begin by claiming that

w1(x1) := [(−�)sw](x1, 0, . . . , 0) ∈ C2m+1−s+ε((−1/2, 1/2)), (5.8)

for some ε > 0.
Indeed, let any z1 ∈ (−1/2, 1/2). Let us denote for γ ∈ (0, 1], δ

(γ )

e1,h
the

incremental quotient in the e1 direction of length 0 < h < 1/4 and order γ ; that
is,

δ
(γ )

e1,h
F(y◦) := |F(y◦ + he1) − F(y◦)|

|h|γ .

Since d ≡ (x1)+ on {x2 = · · · = xn = 0} ∩ B1, we have that w(x1, 0, . . . , 0) = 0
on (−1, 1). Now notice that, for any � ∈ N, γ ∈ (0, 1],

δ
(γ )

e1,h
d�

dx�
1

w1(z1) =
{
δ
(γ )

e1,h
∂�
e1[(−�)sw]

}
(z1, 0, . . . , 0)

=
∫
Rn

δ
(γ )

e1,h
∂�
e1w(z̄1 + y)

|y|n+2s
dy, (5.9)

where z̄1 = {z1, 0, . . . , 0} ∈ R
n , and we are using that δ(γ )

e1,h
∂�
e1w(z̄1) = 0. In order

to show (5.8), we will bound

lim
h↓0

∣∣∣∣∣δ(γ )

e1,h
d�

dx�
1

w1(z1)

∣∣∣∣∣ � C in B1/2, (5.10)

for some C , for � = 2m and for γ = 1 − s + ε for some ε > 0.
We need to separate into different cases according to z̄1 + y. Notice that the

the integral in (5.9) is immediately bounded in R
n \ B1/2 because w ∈ Cα and the

integrand is thus bounded by C |y|−n−2s . We can, therefore, assume that y ∈ B1/2
so that z̄1 + y ∈ B1.

Let us start by noticing that, from (5.7), together with the fact that (−�)sv is
smooth in
c, we already know thatw1 ∈ C∞([0, 1/2)), so that we only care about
the case z1 < 0.

Let z1 < 0, so that z̄1 ∈ 
. If z̄1 + y ∈ 
 ∩ {x1 < 0} ∩ B1, then w(z̄1 +
y) = 0. If z̄1 + y ∈ 
 ∩ {x1 > 0} ∩ B1, then |w(z̄1 + y)| = |z1 + y1|α and
|∂�

e1w|(z̄1 + y) = C |z1 + y1|α−� � C |y|2(α−�); where we are using that z1 + y1 �
|(y2, . . . , yn)|2 � |y|2, see (5.6). Similarly, limh↓0 |δ(γ )

e1,h
∂�
e1w|(z̄1 + y) � C |z1 +

y1|α−�−γ � C |y|2(α−�−γ ).
Conversely, if z̄1 + y ∈ 
c ∩ {x1 < 0} ∩ B1, |w(z̄1 + y)| = dα(z̄1 + y) and

|∂�
e1w|(z̄1 + y) � Cdα−�(z̄1 + y) � C |y|2(α−�), where we are using (5.6) again.
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Taking the incremental quotients, limh↓0 |δ(γ )

e1,h
∂�
e1w|(z̄1+y) � Cdα−�−γ (z̄1+y) �

C |y|2(α−�−γ )

Finally, if z̄1 + y ∈ 
c ∩ {x1 > 0} ∩ B1, both terms in the expression of w are
relevant. Using that |aβ − bβ | � C |a − b||aβ−1 + bβ−1| we obtain that

|w(z̄1 + y)| � C |d − u1|
(

dα−1 + uα−1
1

)
(z̄1 + y).

Notice that on {x2 = · · · = xn = 0} ∩ B1, d = u1 and ∂i d = ∂i u = 0 for
2 � i � n, so that in fact |d − u1|(z̄1 + y) � C |y|2. On the other hand, we also
have that dα−1(z̄1 + y) � C |y|α−1, so that

|w(z̄1 + y)| � C |y|α+1. (5.11)

Notice, also, that w ∈ Cα (i.e., ∇�+1w ∈ Cs). By classical interpolation
inequalities for Hölder spaces (or fractional Sobolev spaces with p = ∞) we
know that, if 0 < γ < 1,

‖∇�w‖Cγ (Br (z̄1)) � C‖∇�+1w‖
�+γ
α

Cs (Br (z̄1))
‖w‖

1+s−γ
α

L∞(Br (z̄1))

(see, for instance, [6, Theorem 6.4.5]). Thus, in our case we have that

lim
h↓0

∣∣∣∣∣δ(γ )

e1,h
d�

dx�
1

w

∣∣∣∣∣ (z̄1 + y) � C |y|(α+1) 1+s−γ
α . (5.12)

Thus, putting all together we obtain that

lim
h↓0

∣∣∣δ(γ )

e1,h
∂�
e1w

∣∣∣ (z̄1 + y) � C max
{
|y|2(α−�−γ ), |y|(α+1) 1+s−γ

α

}
.

If we want (5.10) to hold, we need (by checking (5.9))

2(α − � − γ ) > 2s and (α + 1)
1 + s − γ

α
> 2s (5.13)

for some 1 − s < γ < 1, and � = 2m (recall we need to show γ = 1 − s + ε for
some ε > 0). The first inequality holds as long as γ < 1. The second inequality
will hold if

γ < 1 + s − 2sα

α + 1
= 1 − α − 1

α + 1
s.

Thus, we can choose γ = 1 − s + ε with 0 < ε < 2
α+1 s and (5.8) holds with this

ε.
Now, combining (5.8)–(5.7), we obtain that

fv := [(−�)sv](x1, 0, . . . , 0) − Cm,s(x1)
2m+1−s− ∈ C2m+1−s+ε((−1/2, 1/2)).

In particular, if we recall that f̄ ∈ C∞(B1) is a C∞ extension of (−�)sv inside 
,
and noticing that fv− f̄ (x1, 0, . . . , 0) ≡ 0 for x1 > 0,we have that f̄ (·, 0, . . . , 0)−
fv ∈ C2m+1−s+ε((−1/2, 1/2)) and

fv − f̄ (x1, 0, . . . , 0) = o(|x1|2m+1−s+ε),



Free Boundary Regularity for Almost Every Solution to the Signorini Problem 459

or

[(−�)sv](x1, 0, . . . , 0) = Cm,s(x1)
2m+1−s− + f̄ (x1, 0, . . . , 0) + o(|x1|2m+1−s+ε).

Thus, since Cm,s > 0, [(−�)sv](x1, 0, . . . , 0) ≥ f̄ (x1, 0, . . . , 0) if |x1| is small
enough (depending only on n, m, s, and 
), as we wanted to see.

We have that, for a fixed f̄ extension of f inside 
, (−�)sv ≥ f̄ in 
δ for
some small δ > 0 depending only on n, m, s, and
. Up to redefining f̄ in
\
δ/2,
we can easily build an f̄ ∈ C∞ such that (−�)sv ≥ f̄ in 
, as we wanted to see.
��

To finish, we study the points of order infinity. To do this, we start with the
following proposition:

Proposition 5.2. Let C ⊂ B1 ⊂ R
n be any closed set. Then, there exists a non-

trivial solution u and an obstacle ϕ ∈ C∞(Rn) such that

⎧⎨
⎩

(−�)su ≥ 0 in R
n

(−�)su = 0 in {u > ϕ}
u ≥ ϕ in R

n,

and �(u) ∩ B1 = {u = ϕ} ∩ B1 = C.

Proof. Take any obstacleψ ∈ C∞(Rn) such that suppψ ⊂⊂ B1(2e1), withψ > 0
somewhere, and take the non-trivial solution to

⎧⎨
⎩

(−�)su ≥ 0 in R
n

(−�)su = 0 in {u > ψ}
u ≥ ψ in R

n .

Notice that u > ψ in B1 (in particular, u ∈ C∞(B1)). Let fC be any C∞ function
such that 0 � fC � 1 and C = { fC = 0}.

Now let η ∈ C∞
c (B3/2) such that η ≥ 0 and η ≡ 1 in B1. Consider, as new

obstacle, ϕ = ψ + η(u − ψ)(1 − fC) ∈ C∞(B1). Notice that u − ϕ ≥ 0. Notice,
also, that for x ∈ B1, (u − ϕ)(x) = 0 if and only if x ∈ C. Thus, u with obstacle ϕ

gives the desired result. ��

And now we can provide the proof of Proposition 1.9:

Proof of Proposition 1.9. The proof is now immediate thanks to Proposition 5.2,
since we can choose as contact set any closed set with boundary of dimension
greater or equal than n − ε for any ε > 0, and points of finite order are at most
(n − 1)-dimensional. ��
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6. The Parabolic Signorini Problem

We consider now the parabolic version of the thin obstacle problem. Given
(x◦, t◦) ∈ R

n+1 × R, we will use the notation

Qr (x◦, t◦) := Br (x◦) × (t◦ − r2, t◦] ⊂ R
n+1 × R,

Q′
r (x ′◦, t◦) := B ′

r (x ′◦) × (t◦ − r2, t◦] ⊂ R
n × R,

Q+
r ((x ′◦, 0), t◦) := B+

r ((x ′◦, 0)) × (t◦ − r2, t◦] ⊂ R
n+1 × R.

We will denote, Qr = Qr (0, 0), Q′
r = Q′

r (0, 0) and Q+
r = Q+

r (0, 0). We
consider the problem posed in Q+

1 := B+
1 × (−1, 0] for some fixed obstacle

ϕ : B ′
1 → R, ϕ ∈ Cτ,α(B ′

1), τ ∈ N≥2, α ∈ (0, 1],
that is, {

∂t u − �u = 0, in Q,
1

min{u − ϕ, ∂xn+1u} = 0, on Q′
1.

(6.1)

The free boundary for (6.1) is given by

�(u) := ∂Q′
1
{(x ′, t) ∈ Q′

1 : u(x ′, 0, t) > ϕ(x ′)},
where ∂Q′

1
denotes the boundary in the relative topology of Q′

1. For this problem,
it is more convenient to study the extended free boundary, defined by

�(u) := ∂Q′
1
{(x ′, t) ∈ Q′

1 : u(x ′, 0, t) = ϕ(x ′), ∂xn+1u(x ′, 0, t) = 0},
so that �(u) ⊃ �(u). This distinction, however, will not come into play in this
work.

In order to study (6.1), one also needs to add some boundary condition on
(∂ B1 × (−1, 0])∩{xn+1 > 0}. Instead of doing that, we will assume the additional
hypothesis ut > 0 on (∂ B1 × (−1, 0]) ∩ {xn+1 > 0}. That is, there is actually
some time evolution, and it makes the solution grow. Recall that such hypothesis
is (somewhat) necessary, and natural in some applications (see Section 1.4).

Notice, also, that ifut > 0on the spatial boundary, by strongmaximumprinciple
applied to the caloric function ut in Q1 ∩ {xn+1 > 1

2 }, we know that ut > c > 0
for xn+1 > 1

2 . Thus, after dividing u by a constant, we may assume c = 1, and
thus, our problem reads as⎧⎪⎪⎨

⎪⎪⎩

ut − �u = 0 in Q+
1 × (−1, 0],

min{u − ϕ, ∂xn+1u} = 0 on Q′
1,

ut > 0 on (∂ B1 × (−1, 0]) ∩ {xn+1 > 0},
ut ≥ 1 in Q1 ∩ {

xn+1 > 1
2

}
.

(6.2)

In order to deal with the order of free boundary points, one requires the intro-
duction of heavy notation, analogous to what has been presented in the elliptic case,
but for the parabolic version. We will avoid this boundary by focusing on the main
property we require about the order of the extended free boundary points.
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Definition 6.1. Let (x◦, t◦) ∈ �(u) ∩ Q1−h be an extended free boundary point.
We define

ux◦,t◦(x, t) := u((x + x ′◦, xn+1), t + t◦) − ϕ(x ′ + x ′◦) + Qx◦
τ (x ′) − Qx◦,0

τ (x ′, xn+1),

where Qx◦
τ is the Taylor polynomial of order τ of ϕ at x◦, and Qx◦,0

τ is its harmonic
extension to R

n+1.
We say that (x◦, t◦) ∈ �(u)∩ Q1−h is an extended free boundary point of order

≥ κ , (x◦, t◦) ∈ �≥κ , where 2 � κ � τ , if

|ux◦,t◦ | � Crκ in Q+
r

for all r < h
2 , and for some constant C depending only on the solution u.

Notice that, in particular, the points of order greater or equal than κ as defined
in [12] fulfil the previous definition. Notice, also, that we have denoted by �≥κ the
set of points of order ≥ κ .

Thus, we can proceed to prove the following proposition, analogous to Propo-
sition 2.4:

Proposition 6.2. Let h > 0 small, and let (x◦, t◦) ∈ Q+
1−h ∩ �≥κ with t◦ < −h2,

where 2 � κ � 3. Then,

u(·, t◦ + C∗tκ−1) > ϕ in B ′
t (x ′◦), for all 0 < t < Th

for some constant C∗ depending only on n, h, u, and Th depending only on n, h, τ ,
κ , u.

Proof. Let us assume, for simplicity in the notation, that x◦ = 0, and t◦ = − 1
2 , and

we denote u := u0,−1/2. Notice that, by the parabolic Hopf Lemma, since ut ≥ 0
in Q1 and ut ≥ 1 in Q1 ∩ {xn+1 ≥ 1

2 } we have that for some constant c and for
any σ > 0,

ut ≥ cσ in (B+
1/2 ∩ {xn+1 ≥ σ }) × [−1/2, 0].

Notice, also, that since (0,−1/2) ∈ R
n+1 × R is an extended free boundary

point of order ≥ κ , we have that, for r > 0 small enough,

u(·,−1/2 + s) ≥ u(·,−1/2) ≥ −Crκ in B+
r , (6.3)

for s ≥ 0 by the monotonicity of the solution in time.
On the other hand, since ut ≥ crσ in {xn+1 ≥ rσ }, we have that
u(·,−1/2 + s) ≥ c(rσ)s + u(·,−1/2) in {xn+1 ≥ rσ } for s ≥ 0.

As in (6.3), this gives

u(·,−1/2 + s) ≥ c(rσ)s − Crκ in {xn+1 ≥ rσ } ∩ B+
r for s ≥ 0.

Let w(y, ζ ) = u(r y,−1/2 + r2ζ ). Then we have that

w(y, ζ ) ≥ −Crκ , for y ∈ B+
1 for ζ ≥ 0,
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and

w(y, ζ ) ≥ c(rσ)r2ζ − Crκ , for y ∈ {yn+1 ≥ σ } ∩ B+
1 for ζ ≥ 0.

Notice, also, that since

|(∂t − �)u| = o(r τ−2) in B+
r ,

then

|(∂ζ − �y)w| = o(r τ ) in B+
1 .

Considering now w̄(y, ζ ) := σ
Crκ w(y, ζ ), we have that

w̄(y, ζ ) ≥ −σ, for y ∈ B+
1 and ζ ≥ 0,

w̄(y, ζ ) ≥ cr3−κσ 2ζ − σ, for y ∈ {yn+1 ≥ σ } ∩ B+
1 and ζ ≥ 0,

and

|(∂ζ − �y)w̄| � σ in B+
1 ,

for r > 0 small enough. Let us take ζ = C∗rκ−3, for some C∗ depending on n and
σ such that cr3−κσ 2ζ −σ ≥ 1. Then, by [12, Lemma 11.5] (which is the parabolic
version of Lemma 2.3 for a = 0), there exists some σ◦ > 0 depending on n such

that if σ � σ◦, then w̄(·, C∗rκ−3) > 0 in B+
1/2. In particular, recalling the definition

of w̄, this yields the desired result. ��
As in the elliptic case, the non-regular part of the free boundary is �≥2 (see

[12, Proposition 10.8]). Thanks to Proposition 6.2 we will obtain a bound on the
dimension of �≥κ ∩ {t = t◦} for almost every time t◦ ∈ (−1, 0] if κ > 2. For the
limiting case, κ = 2, one has to proceed differently, analogous to what has been
done in the elliptic case.

Let us start by defining the set �2. We say that a point (x◦, t◦) ∈ �(u) ∩ Q+
1−h

belongs to �2, (x◦, t◦) ∈ �2 ∩ Q+
1−h , if parabolic blow-ups around that point

converge uniformly to a parabolic 2-homogeneous polynomial.
Namely, consider a fixed test function ψ ∈ C∞

c (Rn) such that suppψ ⊂ Bh ,
0 � ψ � 1, ψ ≡ 1 in Bh/2, and ψ(x ′, xn+1) = ψ(x ′,−xn+1). Then
ux◦,t◦(x, t)ψ(x) can be considered to be defined in R

n+ × (−h2, 0], and we denote

H x◦,t◦
u (r) := 1

r2

∫ 0

−r2

∫
R

n+
ūx◦,t◦(x, t)ψ(x)G(x, t) dx dt,

where G(x, t) is the backward heat kernel in R
n+1 × R,

G(x, t) =
{

(−4π t)− n+1
2 e

|x |2
4t if t < 0,

0 if t ≥ 0.

We then define the rescalings

ux◦,t◦
r (x, t) := ūx◦,t◦(r x, r2t)

H x◦,t◦
u (r)1/2

.
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Then, we say that (x◦, t◦) ∈ �2 if for every r j ↓ 0, there exists some subsequence
r jk ↓ 0 such that

ux◦,t◦
r jk

→ px◦,t◦
2 uniformly in compact sets,

for some parabolic 2-homogeneous caloric polynomial px◦,t◦
2 = px◦,t◦

2 (x, t) (i.e.,
p2(λx, λ2t) = λ2 p2(x, t) for λ > 0), which is a global solution to the parabolic
Signorini problem. The existence of such polynomial, the uniqueness of the limit,
and its properties, are shown in [12, Proposition 12.2, Lemma 12.3, Theorem 12.6].
Moreover, by the classification of free boundary points performed in [12] we know
that

�(u) = Reg(u) ∪ �≥2.

In addition, by [38, Proposition 4.5] there are no free boundary points with
frequency belonging to the interval (2, 2 + α◦) for some α◦ > 0 depending only
on n. Thus,

�(u) = Reg(u) ∪ �2 ∪ �≥2+α◦ . (6.4)

Proposition 6.3. The set �2 defined as above is such that

dimH(�2 ∩ {t = t◦}) � n − 2, for a.e. t◦ ∈ (−1, 0].
Proof. We separate the proof into two steps.
Step 1. By [12, Theorem 12.6], we know that

ūx◦,t◦(x, t) = px◦,t◦
2 (x, t) + o(‖(x, t)‖2),

where ‖(x, t)‖ = (|x |2 +|t |)1/2 is the parabolic norm. Here px◦,t◦
2 is a polynomial,

parabolic 2-homogeneous global solution to the parabolic Signorini problem. In
particular, it is at most linear in time. On the other, since ut ≥ 0 everywhere,
the same occurs with the parabolic blow-up up, i.e., px◦,t◦

2 is non-decreasing in
time. All this implies that px◦,t◦

2 is actually constant in time, so that we have that
px◦,t◦
2 = px◦,t◦

2 (x) is an harmonic, second-order polynomial in x , non-negative on
the thin space {xn+1 = 0}, and we have

ūx◦,t◦(x, t) = px◦,t◦
2 (x) + o(‖(x, t)‖2).

On the other hand, also from [12, Theorem 12.6], �2 � (x◦, t◦) �→ px◦,t◦
2 is

continuous. These last two conditions correspond to Proposition 3.1 and Propo-
sition 3.2 from the elliptic case. In particular, one can apply Whitney’s extension
theorem as in Proposition 3.3 to obtain that the set

πx�2 := {x ∈ R
n+1 : (x, t) ∈ �2 for some t ∈ (−1, 0]},

is contained in the countable union of (n − 1)-dimensional C1 manifolds. That is,

dimH(πx�2) � n − 1,
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πx�2 is (n − 1)-dimensional.
Step 2. Thanks to Step 1, and by Proposition 6.2 with κ = 2, proceeding analo-
gously to Theorem 4.4 by means of Lemma 4.1, we reach the desired result. ��
Proposition 6.4. Let a > 0. Then,

dimH(�≥2+a ∩ {t = t◦}) � n − 1 − a, for a.e. t◦ ∈ (−1, 0],
Proof. The result follows by Proposition 6.2 with κ = 2 + a, proceeding analo-
gously to Theorem 4.4 by means of Lemma 4.1. ��

We can now give the proof of the main result regarding the parabolic Signorini
problem.

Proof of Theorem 1.4. Is a direct consequence of (6.4), Proposition 6.3, and
Proposition 6.4 with a = α◦ depending only on n, given by [38, Proposition 4.5].
The regularity of the free boundary follows from [12, Theorem 11.6]. ��
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