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Cholestasis is derived from the Greek words chole meaning 
bile and stasis indicating halting (Noor 2015), and denotes 
any situation of impaired bile secretion with concomitant 
accumulation of bile acids in the liver or in the systemic 
circulation. A variety of factors may evoke cholestasis, 
including genetic disorders, metabolic pathologies, infec-
tious diseases, immunogenic stimuli and drugs (Anthérieu 
et al. 2013; Gossard and Talwalkar 2014; Nguyen et al. 
2014; Noor 2015). Drugs can induce either acute or chronic 
cholestasis, whereby symptoms resolve upon drug with-
drawal or persist for periods over 6 months despite drug 
retraction, respectively. Acute drug-induced cholestasis 
occurs most frequently and manifests with or without hepa-
tocellular and inflammatory injury, and is associated with 
vague symptoms, including nausea, malaise, anorexia and 
fatigue. Chronic drug-induced cholestasis occurs as a result 
of injury to bile ducts or ductules with clinical features such 
as pruritus, jaundice, melanoderma and xanthoma forma-
tion (Bhamidimarri and Schiff 2013; Gossard and Talwalkar 
2014; Yang et al. 2013).

Drug-induced cholestasis constitutes a subgroup of drug-
induced liver injury (DILI). DILI is a major reason of drug 
failure during premarketing and postmarketing phases, 

accounting for up to 29% of all drug withdrawals (Lee 2013; 
Van den Hof et al. 2015). In addition to its pharmaceuti-
cal relevance, DILI is also of high clinical concern. Indeed, 
DILI is frequently misdiagnosed, yet it has been estimated 
to develop in 1 in 100 patients during hospitalization (Meier 
et al. 2005). Furthermore, DILI is responsible for more than 
50% of all cases of acute liver failure (Goldberg et al. 2015). 
As such, 20–40% and 12–20% of DILI patients presents a 
cholestatic and mixed hepatocellular/cholestatic injury pat-
tern, respectively (Bhamidimarri and Schiff 2013; Sharanek 
et al. 2016). Cholestatic DILI is seen most frequently among 
men over 60 years old (Meier et al. 2005). The overall mor-
tality rate of DILI attributed to cholestasis is 2.5–7.8% 
(Bhamidimarri and Schiff 2013; Björnsson and Olsson 
2005; Noor 2015; Sharanek et al. 2016; Wolters et al. 2016). 
Although more than 1 drug can be involved in DILI, single 
prescription medication underlies 73% of all drug-induced 
cholestasis cases. More than 1000 drugs have been associ-
ated with cholestatic liver injury, including anti-infectious 
drugs, anti-diabetics, anti-inflammatory drugs, psychotropic 
drugs, cardiovascular drugs and steroids (Bhamidimarri and 
Schiff 2013; Parmentier et al. 2017).

Preclinical animal models only allow to predict 50–60% 
of human DILI cases because of interspecies differences. 
Likewise, current human-based hepatic in vitro models 
merely pick up half of clinical DILI events (Laverty et al. 
2010; Xu et al. 2004). The latter obviously can be attrib-
uted to overall in vitro–in vivo differences, but may also be 
due to gaps in the mechanistic understanding of DILI, in 
casu cholestasis. A pragmatic tool to rationally and visually 
capture existing knowledge regarding the mechanistic basis 
of toxicity includes the so-called adverse outcome pathway 
(AOP), which starts from a molecular initiating event (MIE) 
(i.e. a trigger of toxicity) and that relies on a series of key 
events (KEs), linked by key event relationships (KERs), 
ultimately resulting in a specific toxicological effect (Ank-
ley et al. 2010; Gijbels and Vinken 2017; Leist et al. 2017; 
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Vinken et al. 2017; Vinken 2013, 2015, 2016). A number 
of AOPs related to hepatotoxicity, including liver steatosis, 
liver fibrosis and cholestasis, have been proposed (Gijbels 
and Vinken 2017). Most currently available AOPs consider 
only 1 MIE. Clearly, this is not a full reflection of the actual 
in vivo situation, as toxicological effects are not as straight-
forward as depicted in AOPs. An improvement came with 
the introduction of AOP networks, which combine different 
AOPs that share at least 1 KE (Villeneuve et al. 2014). Such 
AOP networks have been described for liver steatosis and 
seem to provide an in vivo-complying mechanistic scenario 
(Mellor et al. 2016). Other types of hepatotoxicity, however, 
in particular cholestasis, are more complex. Indeed, bile 
accumulation triggers 2 types of cellular responses, namely 
an adverse response and an adaptive response, which occur 
in parallel and that each are typified by a number of KEs 
(Vinken et al. 2013). Thus, the adverse response is accompa-
nied by the onset of processes such as oxidative stress (Allen 
et al. 2010; Cai et al. 2017; Kim et al. 2006; Tan et al. 2010; 
Woolbright and Jaeschke 2012), inflammation (Gong et al. 
2016; Li et al. 2017) and different cell death modes (Gujral 
et al. 2004; Mitchell et al. 2011; Woolbright et al. 2013, 
2015). On the other hand, the adaptive response, aimed at 
decreasing the uptake and increasing the export of bile acids 
into and from hepatocytes, respectively, depends on the acti-
vation of several nuclear receptors, including the farnesoid 
X receptor, the pregnane X receptor and the constitutive 
androstane receptor (Boyer 2009; Cuperus et al. 2014; Wag-
ner et al. 2009; Zollner and Trauner 2006, 2008). As a result, 
mechanistic modelling of cholestasis in AOP networks is 
challenging, as this should take into account the entangled 
pathways that drive these cellular responses as taking place 
in vivo. Furthermore, a number of potentially new choles-
tatic MIEs, like altered bile canaliculi dynamics (Burban 
et al. 2017; Burbank et al. 2016; Sharanek et al. 2016), as 
well as KEs, such as necroptosis and autophagy (Afonso 
et al. 2016; Gao et al. 2014; Lin et al. 2012; Manley et al. 
2014; Sasaki et al. 2015), have been identified in the last few 
years. This adds to the mechanistic complexity of cholestasis 
and more mechanisms may emerge in the upcoming years 
given the worldwide increasing research efforts in this area.

AOPs and their networks can serve as the basis for set-
ting up batteries of in vitro tests, each that detects 1 or 
more KEs, and which collectively may enable accurate 
prediction of toxicity inflicted by chemicals. A prereq-
uisite in this respect is the use of in vitro models that 
appropriate reproduce in vivo cholestatic liver injury. A 
number of state-of-the-art in vitro models to study hepa-
totoxicity induced by chemicals belonging to 2 classes are 
presently available, namely liver-derived in vitro models 
and stem cell-derived in vitro models. Stem cell-derived 
in vitro models have shown their value for studying differ-
ent types of liver toxicity, including liver steatosis (Pradip 

et al. 2015; Rodrigues et al. 2014). However, although 
some studies demonstrated their promise (Ghodsizadeh 
et al. 2010; Imagawa et al. 2017), hepatocyte-like cells 
derived from induced pluripotent stem cells have been 
reported not to be the most appropriate in vitro systems for 
the detection of cholestatic chemicals (Bell et al. 2017), 
which is due in part to their inability to properly trigger 
the adaptive response, being critical for the actual mani-
festation of cholestatic liver toxicity. This is unlike most 
liver-derived in vitro models (Godoy et al. 2013), which 
are more suitable tools for the screening of cholestatic 
compounds. These liver-derived in vitro models include 
cultures of human hepatoma HepaRG cells (Woolbright 
et al. 2016), freshly isolated human liver slices (Vatakuti 
et al. 2017), primary human hepatocytes “sandwiched” 
(i.e. cultured) between 2 layers of extracellular matrix 
components (Chatterjee et al. 2014; Oorts et al. 2016) 
and spheroid cultures of primary human hepatocytes (Bell 
et al. 2016; Hendriks et al. 2016). Because of their lon-
gevity, the presence of an in vivo-like tridimensional cel-
lular configuration and cellular interactions as well as of 
bile ductules (Fraczek et al. 2013), sandwich and spheroid 
cultures of primary human hepatocytes are currently con-
sidered as the best performing in vitro systems to detect 
cholestatic compounds. In fact, it has been shown that the 
sensitivity for cholestatic effects in spheroid cultures of 
primary human hepatocytes increases with exposure time 
(Hendriks et al. 2016), which may be associated with the 
occurrence of the adaptive response.

Future strategies to improve in vitro predictivity of 
in vivo drug-induced cholestatic liver injury should in 
first instance focus on the full elucidation of the under-
lying mechanisms of cholestasis in an AOP network 
framework. This will yield series of KE-specific bio-
markers, which can be picked up by “omics” technologies 
and that altogether can form a mechanistic signature of 
drug-induced cholestatic liver injury. The resulting AOP 
network on cholestasis should be ideally embedded in 
structures that also consider other aspects of toxicity, in 
particular kinetics and exposure parameters. Simultane-
ously, current in vitro models must be further improved 
for application in the detection of cholestatic potential of 
chemicals. This particularly holds for stem cell-derived 
in vitro models. Furthermore, in vitro testing approaches 
should be complemented with emerging in silico methods 
that computationally predict cholestatic potential based 
on chemical structures and/or physico-chemical profiles. 
It can be anticipated that full integration of new knowl-
edge and methodologies in the upcoming years will enable 
early and accurate detection of the cholestatic potential of 
drugs and chemicals in general. This will not only increase 
human chemical safety as such, but will equally reduce and 
even fully replace the use of animals for toxicity testing.
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