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Abstract
A numerical one-step method of average voltage values in integration step, which allows to algebraize the differential equa-
tions for electric circuits of electromechanical systems with semiconductor converters, was described in the paper. The 
method is proposed for the creation of digital power circuit real-time models of electrical systems in hybrid models that 
combine digital and physical components. Digital models in hybrid systems must continuously function over a long time 
period in conjunction with physical objects. The indicated method provides stability of mathematical models, and is also 
effective in the sense of the amount of calculations. The article describes the application of the method of average volt-
age values in the integration step to create a hybrid model of power generation system for a ship’s power plant with diesel 
generator. The digital component of the hybrid model, in this case, is power conversion system that includes a synchronous 
generator driven by a diesel engine, while the physical part is real excitation controller of generator with automatic voltage 
regulator. The research results obtained on the hybrid model and their comparison with the results of the physical experiment 
at the laboratory plant are presented.

Keywords Numerical integration · Electric circuit · Power system · Real-time model

1 Introduction

Systems containing electric circuits are described by differ-
ential and algebraic equations, which are usually nonlinear. 
Their solution requires the application of numerical methods 
that carry out the algebraization of differential equations in 
integration step. The algebraization of equations for electric 
circuits by explicit methods is obviously complicated by the 
error of calculating currents, as a result of which, after mul-
tiple calculations, there is a deviation from the first Kirch-
hoff’s law. The algebraization of these equations by implicit 
methods is complicated by the error of calculating voltages, 
as a result of which, after multiple calculations, there is a 
deviation from the second Kirchhoff’s law. These deviations 
lead to instability of mathematical models, especially those 
that are used in conjunction with real objects, and in which 

the integration step is very small, and the calculation time 
is very long. Authors faced this problem, during the devel-
opment of hybrid models. Such problems are mentioned in 
[1–10]. In particular, it is noted that most of the electro-
technical objects are stiff systems [1], for which the use of 
explicit methods is not feasible, since it may cause numeri-
cal instability [2, 3, 6, 7]. Reducing the step of numerical 
integration for stiff systems, if explicit methods are used, 
slows down the calculation and complicates the real-time 
implementation of models that interact with real objects 
[4]. Expediency to use implicit methods for stiff systems is 
mentioned in [5–12], in particular the trapezoidal method, 
which is A-stable. At the same time, it is noted in [5] for 
power systems, that in the case of numerical integration 
step, increasing the trapezoid method gives a worse result 
in comparison with the explicit (forward) Euler method. 
Also, the numerical oscillations of frequency at 1/(2Δt) 
(Δt—the numerical integration step), which are relevant for 
trapezoid method in case of stiff systems and which in some 
cases but not always can be eliminated by decreasing the 
step value, are noted in [1]. The disadvantage of using the 
trapezoidal method that appears in numerical oscillations 
in case of high-frequency current changes in circuits with 
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inductance or their breaks (for example, in case of triggering 
switches) is indicated in [6, 7]. In addition, implicit methods 
are known to require additional computations at the integra-
tion step, which slows down the calculation. To increase the 
accuracy of numerical integration, it is required to decrease 
the step. However, long-term calculations with a small step 
lead to accumulation of roundoff errors [8] and significant 
increase of calculation time. To eliminate this contradiction, 
methods of integrating with a variable step or procedures 
for changing the integration method during the calculation 
are proposed in [10, 11]. However, we note that the use of 
such methods for hybrid models is complicated, since the 
step in a real-time model is determined by performance of 
the processor. In addition, in case of the analysis of electric 
circuits with semiconductor gates, the step change is neces-
sary to find the moment of gate turning-off when the gate 
current passes through zero.

The peculiarities of using the numerical integration meth-
ods for hybrid systems are discussed in [13, 14]. In particu-
lar, it is noted the need for numerical integration with the 
increased step, due to the limited processor performance, as 
a result of which explicit methods give significant errors. 
Also, it was noted that using of methods which are abso-
lutely stable for numerical systems was not always stable 
in case of hybrid systems that contain an analog compo-
nent (stability in this case depends on the step of numerical 
integration). According to the analysis carried out in [13], 
the advantage of using trapezoidal methods and backward 
differentiation formulas for hybrid systems was claimed, 
which gives a better result than implicit Euler method, as 
an example.

These problems are overcame by the authors using the 
method of average voltage values in the integration step, 
which ensures the stability of mathematical models in the 
indicated sense, and is also effective in terms of the amount 
of calculations. This method appeared as a result of the 
need to avoid problems in hybrid models of power genera-
tion units in which the generator excitation system is a real 
object, and the power scheme “turbogenerator—block trans-
former—power line” is a mathematical model. The basis of 
this method is first described in [15]. The method allows 
algebraizing differential equations of an electromechanical 
system with semiconductor converters in the integration 
step.

The authors for a long time participated in the projects 
concerned with simulation of electromechanical systems in 
the field of electric power and transport [16] in the former 
USSR, Ukraine, Russia, and Poland, in which they used one-
step methods of the Runge–Kutta, Adams, and trapezes. To 
calculate the transients in these projects, the use of men-
tioned methods was effective. In the real-time models, their 
operation was limited to 15–20 min, as a result of numerical 
disturbance related to the algebraization of the equations by 

the mentioned methods. Thus, using the explicit method, 
errors arise in the equations that correspond to the first 
Kirchhoff law, and in case of implicit method—in equations 
which correspond to the second Kirchhoff law. The problem 
was solved using the method of average voltage values in the 
integration step of the second order, which has the features 
of explicit and implicit methods and simultaneously elimi-
nates mentioned drawbacks of explicit and implicit methods 
which take place in real-time models of electromechanical 
systems electric circuits.

Note, that the trapezoidal method, which is widely used 
in mathematical models, is equivalent in sense of accuracy 
to the first order method of medium voltage in the integra-
tion step, assuming that electrical circuits not include L, C 
elements connected in series and constraints are linear. In 
other cases, trapezoidal method is less accurate.

2  Genesis of the method of average 
voltage values in integration step 
for the algebraization of the equations 
for an electric circle

The equations for a branch of an electric circuit contain-
ing time dependencies of: electromotive force e(t) source, 
voltage on resistance Ri(t), induced voltage d�

dt
 , voltage on 

capacitance uC(t), and to which voltage u(t) is applied as a 
result of the influence of the electric circuit for this branch, 
are as follows:

We accept that in the integration step, Δt, R and C are 
constant. Flux linkages ψ is a function of the current in a 
branch and of other factors taken into consideration by the 
vector of variables q⃗.

By integration of the first Eq. (1), the following equation 
is obtained:

where U, UR, UC, UL, and E are the average values of volt-
ages and electromotive force in the integration step Δt:

(1)
u(t) − Ri(t) −

d𝜓

dt
− uC(t) + e(t) = 0,

duC(t)

dt
=

i(t)

C
, 𝜓 = f

(
i, q⃗

)
.

(2)U − UR − UC − UL + E = 0,

U =
1

Δt

t0+Δt

∫
t0

u(t)dt, UR =
1

Δt

t0+Δt

∫
t0

uR(t)dt

UC =
1

Δt

t0+Δt

∫
t0

uC(t)dt, UL =
1

Δt

(
�1 − �0

)
, E =

1

Δt

t0+Δt

∫
t0

e(t)dt.
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Representing the integration for the voltages UR and UC 
by a Taylor’s series, the following equations are obtained:

Equation (3) after the transformation is written as:

where m is number of members of a Taylor series taken 
into consideration, which corresponds to the order of the 
method of average voltages in the integration step. Thus, 
when m = 1—is the first order method, when m = 2—is the 
second-order method, etc. When m = 1, the current of the 
branch in a step is a straight line, and the voltage on the 
capacitance is a parabola. When m = 2, the current of the 
branch in a step is a parabola, and the voltage on the capaci-
tance is described by a third-order polynomial.

3  The equation of an electric circle 
in the method of average voltage values 
in integration step

The first Eq. (4) corresponds to the one shown in Fig. 1 
which is the equivalent circuit, for the analysis of which 
the methods of the DC circuit theory can be applied. This 
scheme allows to determine the current of the branch at the 
end of the integration step.

This branch is described by the following equations:

(3)

U + E − u
R0 − u

C0 −

∞∑
k=1

Δtk

(k + 1)!

(
d
k
u
R0

dtk
+

dku
C0

dtk

)
−

1

Δt

(
�1 − �0

)
= 0

u
C1 = u

C0 +
1

C

t0+Δt

∫
t0

idt = 0.

(4)

U + E − u
R0 − u

C0 +

(
R

m + 1
+

Δt

C
⋅

2 − (m + 1)(m + 2)

2(m + 1)(m + 2)

)
i0 +

�0

Δt

−

m−1∑
k=1

(
RΔtk

(k + 1)!
⋅

m − k

m + 1
+

Δtk+1

C(k + 2)!
⋅

(m + 1)(m + 2) − (k + 1)(k + 2)

(m + 1)(m + 2)

)
d
k
i0

dtk

−

(
R

m + 1
+

Δt

C(m + 1)(m + 2)

)
i1 −

�1

Δt
= 0,

u
C1 = u

C0 +
Δt

C(m + 1)

(
mi0 + i1

)
+

m−1∑
k=1

Δtk+1

(k + 1)!

1

C

m − k

m + 1

dki0

dtk
= 0,

(5)
U − RSi1 + ES −

𝜓1

Δt
= 0

𝜓1 = f
(
i1, q⃗1

)
,

where RS is the step resistance of the branch:

ES—is the step electromotive force (e.m.f.), which is deter-
mined by the initial conditions for the integration step:

i1, ψ1, and q⃗1 are the variable values at the end of integra-
tion step.

The electrical circuit is described by Eq. (5) for each of 
the branches, as well as by the algebraic equations based on 
the first Kirchhoff’s law for currents in independent nodes 
at the end of the integration step. These equations form a 
system of electric equilibrium equations.

In case of the presence of electrical machines in the sys-
tem, the equations system is supplemented by magnetic 
equilibrium equations, as well as by mechanic equilibrium 
equations, which allow to calculate the flux linkages of the 
branches based on the currents of the branches and their 
mutual placement.

In general, the system of equations is nonlinear and is 
solved by the Newton method. The algorithm for solving by 
the Newton method will be explained in a simplified exam-
ple for one branch in which U and q⃗1 are known.

To do this, we shall designate:

F⃗
(
i1,𝜓1

)
=

[
U − RSi1 + ES −

𝜓1

Δt

𝜓1 − 𝜓1

(
i1, q⃗1

)
]
=

[
F1

F2

]
.

The increments of current and flux linkages on each itera-
tion are determined as:[

Δi1
Δ�1

]
= −

[ �F1

�i1

�F1

��1
�F2

�i1

�F2

��1

]−1

×

[
F1

(
i0
1
,�0

1

)
F2

(
i0
1
,�0

1

)
]
,where i0

1
,�0

1
 

are zeroth approximations for the current and flux linkage:

�F1

�i1
= −RS , 

�F1

��1

= −
1

Δt
 , 𝜕F2

𝜕i1
= −

d𝜓1(i1,q⃗1)
di1

= −L𝜕—is the 
dynamic inductance of the electric branch as a function of 
current i1, 

�F2

��1

= 1.
Therefore:

The values of current and flux linkage at the first approxi-
mation are written as:

RS =
R

m + 1
+

Δt

C(m + 1)(m + 2)
- unit of measurement is [Ω];

E
S
= E − u

R0 − u
C0 +

(
R

m + 1
+

Δt

C
⋅

2 − (m + 1)(m + 2)

2(m + 1)(m + 2)

)
i0 +

�0

Δt

−

m−1∑
k=1

(
RΔtk

(k + 1)!
⋅

m − k

m + 1
+

Δtk+1

C(k + 2)!
⋅

(m + 1)(m + 2) − (k + 1)(k + 2)

(m + 1)(m + 2)

)
d
k
i0

dtk
;

F1

(
i0
1
,𝜓0

1

)
= U − RSi

0
1
+ ES −

𝜓0
1

Δt
,

F2

(
i0
1
,𝜓0

1

)
= 𝜓0

1
− 𝜓1

(
i0
1
, q⃗
)
,

(6)
[
Δi1
Δ�1

]
= −

[
−RS −

1

Δt

−L� 1

]−1
×

[
F1

(
i0
1
,�0

1

)
F2

(
i0
1
,�0

1

)
]
.

Fig. 1 E  quivalent circuit of the branch
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The next approximation is implemented according to the 
algorithm described for the previous approximation. If the 
flux linkage is a linear function of current, the algorithm is 
reduced to a single zeroth iteration.

4  Application of the method of average 
voltage values in integration step

4.1  Description of the scheme

The described method was repeatedly used by the authors to 
create hybrid models that combine physical and computer 
(digital) parts. One example was the model of power genera-
tion system of the ship’s power plant with a diesel generator. 
The digital component of the hybrid model (Fig. 2) is power 
conversion system that contains the synchronous generator 
G, driven by a diesel engine D with a speed control system, 
as well as an autonomous load consisting of the synchro-
nous machine G2 and RL branches. The physical part of 
the hybrid model is the real generator’s excitation controller 
of type Digital AVR DECS 200 with an automatic voltage 
regulator. The signals of voltage Ug and stator’s current Ig 
of generator are emitted from the computer model to the 
physical excitation controller. The output control signal of 
the pulse-width converter, which forms the pulse excitation 
voltage of generator, is sent to the computer model from the 
excitation controller. For the transmission of signals between 
physical and digital parts, the galvanic separation devices 
were used; these are not shown in the diagram.

(7)
[
i1
1

�1
1

]
=

[
i0
1

�0
1

]
+

[
Δi1
Δ�1

]
.

4.2  The calculation of voltages and derivatives 
of currents

The calculation scheme of the power conversation sys-
tem implemented by the digital model is shown in Fig. 3. 
This scheme is used for calculation of voltages and current 
derivative. The scheme consists of six branches that simulate 
the phases A, B, and C of the stator winding, the excitation 
winding, and the damping system (the damping system is 
modeled by two short-circuited RL branches on the axes 
d and q) of synchronous generator. The inductance and 
resistance of load are taken into consideration in the induct-
ances and resistances of the stator windings. In addition, the 
branches of stator windings contain capacitors which take 
into consideration the load capacity.

The authors use the second-order method of averages 
voltages in integration step (m = 2). This method requires 
the calculation of currents derivative in the branches.

The presented scheme is described by the following vec-
tor equation according to the second Kirchhoff’s law:

where ⃗u =
(
uA, uB, uC, uf , uD, uQ

)T—is the vector of the volt-
ages on the branches; ⃗i =

(
iA, iB, iC, if , iD, iQ

)T—is the vector 
of the currents in the branches; e⃗tr = �𝜕 d⃗i

dt
—is the vector of 

the transformation e.m.f., ��—is the matrix of the dynamic 
inductances of the branches; e⃗r = p𝜔

d�

d𝛾
i⃗—is the vector of 

the rotation e.m.f., L—is the matrix of the static inductances 
of the branches, ω—is the angular speed, p—is the number 
of pairs of the poles, γ—is the rotation angle; 
u⃗C =

(
uCA, uCB, uCC, 0, 0, 0

)T—is the vector of the voltages 
on the capacitors; e⃗ =

(
0, 0, 0, ef , 0, 0

)T—is the vector of the 
e.m.f. applied to the branches.

(8)u⃗ − �i⃗ − e⃗tr − e⃗r − u⃗C + e⃗ = 0,

Fig. 2  Functional scheme of 
the hybrid model of the power 
generation system of the ship’s 
power plant
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The relation between the voltages on the branches and 
the potentials of the independent nodes v is described by the 
following expression:

where � =
[
1 1 1 0 0 0

]
—is the incidence matrix.

Equations for the derivatives of currents according to 
Kirchhoff’s first law is as follows:

From Eqs. (8) and (9), the derivatives of currents are 
obtained:

After substitution (11) into (10), the following equation 
is obtained:

(9)u⃗ = �
Tv,

(10)�
d⃗i

dt
= 0.

(11)
d⃗i

dt
= �

𝜕−1

(
�

Tv − �i⃗ − p𝜔
d�

d𝛾
i⃗ − u⃗C + e⃗

)

(12)

� ⋅ �
𝜕−1

�
Tv −� ⋅ �

𝜕−1

(
�i⃗ + p𝜔

d�

d𝛾
i⃗ + u⃗C − e⃗

)
= 0.

The potential of the independent node v is determined 
from Eq. (12), and then, the voltage on the branches is deter-
mined from Eq. (9) and the derivatives of the currents are 
determined from Eq. (11).

4.3  The calculation of the currents by the method 
of averages voltages in integration step

The calculation scheme of the power conversion system, 
taking into consideration the statements of the method of 
average voltage in integration step, is shown in Fig. 4.

If given (5), the vector equation for this scheme is as 
follows:

where the matrix of step resistance:

in which RA, RB, and RC are the total resistances of branches 
consisting of the stator winding and generator load; Rf is 
the resistance of the excitation winding; RD and RQ are 
the resistances of branches represented the synchronous 
machine damping system; vector of the step e.m.f:

the vector of flux linkages (value at the end of the integra-
tion step):

the vector of flux linkages (value at the beginning of the 
integration step):

the vector of currents (value at the end of the integration 
step):

the vector of the average at the integration step values 
of voltage:

(13)U⃗ + E⃗S − �Si⃗1 −
�⃗�1

Δt
= 0,

(14)

�S = diag

[
RA

3
+

Δt

12CA

,
RB

3
+

Δt

12CB

,
RC

3
+

Δt

12CC

,
Rf

3
,
RD

3
,
RQ

3

]
,

(15)

E⃗S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−uRA0 − uCA0 +
�

RA

3
−

5Δt

12CA

�
iA0 +

𝜓A0

Δt
−

�
RAΔt

6
+

Δt2

12CA

�
diA

dt

−uRB0 − uCB0 +
�

RB

3
−

5Δt

12CB

�
iB0 +

𝜓B0

Δt
−

�
RBΔt

6
+

Δt2

12CB

�
diB

dt

−uRC0 − uCC0 +
�

RC

3
−

5Δt

12CA

�
iC0 +

𝜓C0

Δt
−

�
RCΔt

6
+

Δt2

12CC

�
diC

dt

Ef − uRf0 +
Rf

3
if0 +

𝜓f0

Δt
−

RfΔt

6

dif

dt

−uRD0 +
RD

3
iD0 +

𝜓D0

Δt
−

RDΔt

6

diD

dt

−uRQ0 +
RQ

3
iQ0 +

𝜓Q0

Δt
−

RQΔt

6

diQ

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

�⃗�1 =
(
𝜓A1,𝜓B1,𝜓C1,𝜓f1,𝜓D1,𝜓Q1

)T
;

�⃗�0 =
(
𝜓A0,𝜓B0,𝜓C0,𝜓f0,𝜓D0,𝜓Q0

)T
;

i⃗1 =
(
iA1, iB1, iC1, if1, iD1, iQ1

)T
;

Fig. 3  Calculation scheme of the power conversation system for the 
calculation of voltages and derivatives of currents
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Equation (13) is supplemented by the equation for the 
currents according to Kirchhoff’s first law:

where � =
[
1 1 1 0 0 0

]
—is the incident matrix.

The flux linkages in Eq. (13) are a function of the currents 
and the rotation angle γ:

The relation between the average in the integration step 
values of the branch voltages and the potentials of independ-
ent nodes is described by the equations:

U⃗ =
(
UA,UB,UC,Uf ,UD,UQ

)T
.

(16)�i⃗ = 0,

(17)�⃗�1 = f
(
i⃗1, 𝛾

)
.

The system of Eqs. (13), (16)–(18) is a mathematical 
model of the presented system. This system of equations is 
nonlinear and Newton’s method is used to solve it.

Denote for initial approximation:

where:

The vector equation for sequential approximations is as 
follows:

where F⃗ =

[
F1

F2

]
 , x⃗ =

[
i⃗1
V

]
,

The increments of currents and average on the step value 
of voltage (potential of an independent node) on each itera-
tion are determined as:

Δx⃗ =

�
Δi⃗1
ΔV

�
= −

⎡⎢⎢⎣

𝜕F1

𝜕i⃗1

𝜕F1

𝜕V
𝜕F2

𝜕i⃗1

𝜕F2

𝜕V

⎤⎥⎥⎦

−1

×

�
F0
1

F0
2

�
, w h e r e 

𝜕F1

𝜕i⃗1
= −�S −

1

Δt
�𝜕 = � , �F1

�V
= �

T , 𝜕F2

𝜕i⃗1
= � , �F2

�V
= 0.

Thus, Eq. (22) is written as:

From the system of Eq. (23), the following equation is 
obtained:

where

The algorithm of mathematical modeling is cyclic and 
consists of the following actions:

(18)U⃗ = �
TV , V =

1

Δt

t0+Δt

∫
t0

𝜐dt

(19)U⃗0 + E⃗S − �Si⃗
0
1
−

�⃗�0
1

Δt
= F0

1
,

(20)�i⃗0
1
= F0

2
,

(21)�⃗�0
1
= �i⃗0

1
, U⃗0 = �

TV0.

(22)F⃗0 +
dF⃗

dx⃗
Δx⃗ = 0,

(23)
�Δi⃗1 +�

T
ΔV + F0

1
= 0

�Δi⃗1 + F0
2
= 0.

(24)�SΔV + �S = 0,

(25)�S = � ⋅�
−1

⋅�
T ,�S = � ⋅�

−1F0
1
− F0

2
.

Fig. 4  Calculation scheme of the power conversation system for the 
current calculation



2419Electrical Engineering (2020) 102:2413–2422 

1 3

Set initial conditions (values of variables at the beginning 
of the step).
Define the parameters of the scheme in the step: �S , E⃗S.
Set the zeroth approximations for the currents i⃗0

1
 and the 

average potential V0 (for example, it can be equal to the 
values at the beginning of the step).

From (21), �⃗�0
1
 ,  U⃗0 are calculated.

From (19) and (20), F0
1
 and F0

2
 are obtained. If |||F0

1

||| < 𝜀 
and |||F0

2

||| < 𝜀 so, go to the next step of the calculation. 
Otherwise, proceed to the 3.3 and 3.4.
From Eq. (23) and (24), the increments ΔV  and Δi⃗1 
are calculated.
The variables at the end of the iteration V1 = V0 + ΔV , 
i⃗1
1
= i⃗0

1
+ Δi⃗1 are calculated. Proceeding to 3.1 with the 

changing of initial approximations.

After determining of the currents, the voltages on the 
capacitors are determined as:

uCA1 = uCA0 +
Δt

3CA

(
2iA0 + iA1

)
+

Δt2

6CA

diA0

dt
,

uCB1 = uCB0 +
Δt

3CB

(
2iB0 + iB1

)
+

Δt2

6CB

diB0

dt
,

uCc1 = uCc0 +
Δt

3Cc

(
2ic0 + ic1

)
+

Δt2

6Cc

dic0

dt
.

4.4  The modeling results

Figures 5, 6, 7, 8, 9 shows the results obtained on the devel-
oped hybrid model, compared with the results of a physical 

experiment on a laboratory plant where the synchronous 
generator of type GCf84a/4, 27 kVA was used. The research 
was carried out for the regime of initial excitation of the 
generator without a load (Figs. 5, 6), for the load decrement-
ing (Fig. 7), and for the load incrementing (Fig. 8) regimes, 
as well as for the steady-state regime (Fig. 9). The pre-
sented oscillograms show a high convergence of the results 
obtained on the hybrid model and on the physical plant. In 
particular, the maximum deviation is near 9%, and the aver-
age deviation is near 6%.

The other example of using the method of average volt-
ages in the integration step is described in [17]. In this case, 
the developed nonlinear mathematical model is used for syn-
thesis of fuzzy-control system for a power generation unit.

5  Conclusions

The application of the method of average voltages in the 
integration step to algebraize the differential equations 
describing the electrical circuits ensures the stability of 
mathematical models in their computer applications.

The combination of the method of average voltages in the 
integration step with the Newton method for solving sys-
tems of nonlinear algebraic equations allows to effectively 
simulate processes in nonlinear electromechanical systems.

In case of using the method in real-time models, the 
discretization step is determined by two factors: the rate of 

Fig. 5  Generator’s output voltage (instantaneous values) during the initial excitation: a computer simulation; b experiment (the measurement 
sampling corresponds to 150,000 points per 6 s)
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Fig. 6  Generator’s excite current during the initial excitation: a computer simulation; b experiment (the measurement sampling corresponds to 
150,000 points per 6 s)

Fig. 7  Generator’s excite current during the load dropping: a computer simulation; b experiment (the measurement sampling corresponds to 
100,000 points per 4 s)

Fig. 8  Generator’s excite current during the load-on: a computer simulation; b experiment (the measurement sampling corresponds to 100,000 
points per 4 s)
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change of variables and the sampling of the signals in the 
physical part of the hybrid model. Within the physical signal 
sample, the step for the second-order method determines the 
time range in which the currents are described by the sec-
ond-order polynomial and the voltages on the capacitances 
are described by the third-order polynomial.

The presented example is one of the numerous projects 
developed by the authors in the field of modeling of electro-
mechanical systems.
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