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Abstract
In this paper,we consider the problemof the existence and the uniqueness of a recursive
utility function defined on intertemporal lotteries. The purpose of this paper is to
provide the results of the existence and the uniqueness of a recursive utility function.
The utility function is obtained as the limit of iterations on a nonlinear operator and
is independent on initial starting points, with iterations converging at an exponential
rate. We also find the maximum utility and an optimal strategy by means of iterations
of the Bellman operator.

Keywords Recursive utilities · Dynamic programming · Epstein–Zin preferences ·
Certainty equivalent · Solid cone · Attracting property
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1 Introduction

Dynamic models in economics often assume the utility functions defined over
sequences of random consumptions are represented by a time-additive expected over-
all utility which discounts future temporal utilities at a constant rate. The existing
literature clearly shows that this standard utility assumption is restrictive in numerous
economic situations.1 To name just few limitations, first in the standard case, the elas-
ticity of intertemporal substitution (EIS) is equal to the inverse of the risk aversion
coefficient. As a result, the standard utility formulation cannot explain many impor-
tant puzzles in the literature (e.g., the equity premium puzzle postulated byMehra and
Prescott (1985) in the literature on asset pricing). Additionally, there is strong evidence
that some decision makers prefer to know the realization of uncertainty as quickly as

1 The reader is referred to Chapter 20 in Miao (2014) for more arguments.
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possible, while others prefer to know the realization of uncertainty at a later date.
Again, this situation cannot be captured within the standard utility framework [see
Kreps and Porteus (1978), Chew and Epstein (1989) as well as Klibanoff and Ozde-
noren (2007)]. Finally, it is worth mentioning that the standard utility formulation is
incompatible with confirmed important “paradoxes” in the experimental economics
literature (e.g., the Allais paradox and the Ellsberg paradox).

Principle of optimality in dynamic programming together with the Bellman equa-
tion assure overall utility from today onward which can be expressed as a linear
transformation of today’s temporal utility and the overall utility from future peri-
ods. In the standard discounted utility model, Koopmans (1960) formulated the set of
axioms on the aggregator that connected the today’s temporal utility with the utility
from future (continuation) periods. Similar class of recursive utilities provide Asheim
et al. (2012) by proposing another axioms of sustainable recursive preferences. The set
of deterministic recursive utilities, defined as such, included the standard discounted
utility model as a special case. The ideas by Koopmans (1960) were extended by
Kreps and Porteus (1978) to models with uncertainty with the finite time horizon
and by Epstein and Zin (1989) to models with the infinite time horizon, in each case
defining recursive utilities on a set of lotteries. Whereas Kreps and Porteus (1978)
and Klibanoff and Ozdenoren (2007) parametrized a utility from future periods by
means of the expected value, Epstein and Zin (1989) used the most general concept
of Conditional Certainty Equivalent (henceforth, CCE for short).

A large body of the literature has already established extensions of the standard
discounted utility model toward nonadditive aggregators under both deterministic and
stochastic settings. Deterministic utility functions based on Koopmans equations can
be found in numerous papers in the literature, including works by Boyd-III (2006),
Bich et al. (2018), Duran (2000), Le-Van and Vailakis (2005), Martins-da-Rocha and
Vailakis (2010), Jaśkiewicz et al. (2014), among others, while the utility function
based on Epstein and Zin (1989) equations can be found in the work of Weil (1993),
Skiadas (2015), Bäuerle and Jaskiewicz (2018), Marinacci and Montrucchio (2010),
Ozaki and Streufert (1996), and Bloise and Vailakis (2018).

There are three fundamental questions associated with the specification of a recur-
sive utility. First, whether the (recursive utility) function exists and is unique? Second,
whether the optimal value is a fixed point of the corresponding Bellman operator and
third, whether the optimal value function is a global attractor, i.e., whether a sequence
of iterations defined on the Bellman operator uniformly converges to the recursive
utility function regardless of the starting point? In this paper, we consider all three
aforementioned questions using a nonlinear aggregator and a sub-homogeneous CCE.
Clearly, apart from deterministic models, the standard expected utility operator is
homogenous, and a lot of quasilinear models [as in Chew (1983), for example] are
sub-homogenous. Moreover, a measure of risk sensitivity postulated in Weil (1993)
is a special case in our formulation of CCE. Finally, it bears mentioning that the
sub-homogeneity here encompasses a large class of aggregators including Kreps and
Porteus (1978), Klibanoff andOzdenoren (2007) as well as most of “Thompson aggre-
gators” used by Marinacci and Montrucchio (2010).

From a technical perspective, we reduce the question of finding a recursive utility
to finding a fixed point of an appropriately defined nonlinear operator. To the study of
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the set of fixed points of this operator, we apply a key theorem in Guo et al. (2004)
on the cone of nonnegative functions. This theorem gives sufficient conditions for the
existence and the uniqueness of fixed points, as well as provides the results on the
global convergence of iterations.2

This approach is new in the literature. For example, some authors (e.g., Ozaki
and Streufert 1996) use Knaster–Tarski Theorem (see Tarski 1955). In Jaśkiewicz
et al. (2014), the authors use Matkowski Theorem (see Matkowski 1975). Becker
and Rincón-Zapatero (2016) and Bloise and Vailakis (2018) used the geometric fixed
point theorem byKrasnoselski and Zabreiko (1984). Indirect methods via iterations on
extreme selections have been proposed in Le-Van and Vailakis (2005). The approach
proposed in this paper is different. Finally, in this paper, we provide specific examples
where neither Banach Fixed Point Theorem, nor its extension inMatkowski’s Theorem
(Matkowski 1975), can be applied.

The rest of the paper is organized as follows: Sect. 2 contains preliminary informa-
tion on cones, as well as a statement of Guo–Cho–Zhu Theorem. Section 3 contains
a description of the model and the fundamental assumptions. The main results are
included in Sects. 4 and 5. In Sect. 4, the existence, the uniqueness, and the global
convergence results are proven. In Sect. 5, by means of Bellman equations, we obtain
similar results for the optimal value of the recursive utility formulation. The proofs of
all Lemmas and Propositions can be found in “Appendix”.

2 Preliminaries

2.1 Fixed point theorems on solid normal cones

Let (V , || · ||) be a Banach space with 0 ∈ V as its zero vector.

Definition 1 A subsetC ⊂ V is said to be a cone, if the following axioms are satisfied:

– If v ∈ C and t ∈ R+, then tv ∈ C .
– If v ∈ C and −v ∈ C , then v = 0.

Each cone generates a relation of partial ordering ≤C in the following way: v ≤C w,
iff w − v ∈ C .

Definition 2 A cone C ⊂ V is said to be solid, if its interior3 int(C) is nonempty. A
cone C is said to be normal, if for all v ∈ C and w ∈ C4

if 0 ≤C v ≤C w, then ||v|| ≤ ||w||.

Definition 3 Let (V , || · ||) be a Banach space. Let V0 ⊂ V , and let T : V0 → V0 be
an operator. Let v∗ ∈ V0 be a fixed point of T . The fixed point v∗ is said to have a

2 This theorem has been applied in the literature, for example, in stochastic OLG models with limited
commitment (e.g., Balbus et al. 2012, 2013).
3 i.e., The greatest open set included in C .
4 In fact, Guo et al. (2004) introduce the normality of the cone as ||v|| ≤ N ||v|| where N is the index of
normality. Let us focus attention on N = 1.
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global attracting property (or global attractivity) on V0, if for all v0 ∈ V0, it holds
limn→∞ ||T nv0 − v∗|| = 0, where T n := T ◦ · · · ◦ T .

Let us introduce a few definitions.

Definition 4 Let (V , || · ||) be a Banach space, and let C be a cone generating an order
on V . A set V0 is said to be a countably chain complete subset of V if each countable
chain of elements of V0 (i.e., totally ordered subset of V0) has a supremum and an
infimum in V0.

Definition 5 Let (V , || · ||) be a Banach space, and let C be a cone generating an order
on V . Let V0 be a countably chain complete subset of V . An operator T : V0 	→ V0 is
monotonically sup-preserving (monotonically inf-preserving) if for any countable
chain Ṽ of elements ofV0, the equality T (sup Ṽ ) = sup T (Ṽ ) (T (sup Ṽ ) = sup T (Ṽ ))
holds.

We introduce the following fixed point theorem that we appeal to in Sects. 4 and 5 to
prove the existence, the uniqueness, and the global attractivity of a recursive utility
function (Theorem 2). Moreover, we prove the global attractivity of the optimal value
function (Theorems 3 and 4).

Theorem 1 [Theorem 3.1.7. in Guo et al. (2004)]
Let (V , || · ||) be a Banach space. Assume C ⊂ V is a solid and normal cone

generating a partial ordering≤C . Let T : int(C) → int(C) be an increasing operator5

such that there exists r ∈]0, 1[ such that for all v ∈ int(C), t ∈]0, 1] it holds

T (tv) ≥C tr T (v).

Then, T has a unique fixed point v∗ ∈ int(C), with the global attracting property and
the estimation rate of convergence:

||T nv0 − v∗|| ≤ M
(
1 − αrn

)
for all n ∈ N.

Here, M = 2||v0||, α = t0
s0
, and t0 and s0 are chosen in the following way:

0 < t0 < 1 < s0, and t1−r
0 v0 ≤C T (v0) ≤C s1−r

0 v0.

It should be noted that the operator T in Theorem 1 maps an open set into itself.
(Hence, a continuous extension of T to the closure of C can have additional fixed
points.) For example, T : R+ → R+ with T (x) = √

x has two fixed points, but only
one in the interior. Hence, neither Banach Contraction Theorem nor its extensions
(like Matkowski 1975) are applicable in this case.

5 In the rest of the paper, the term of increasing function means an order preserving function, i.e., x ≤ y
implies that f (x) ≤ f (y).
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2.2 Basic notations and definitions in a space of functions andmeasures

In this section, we introduce some notations used throughout the paper. As usual, put
R+ := [0,∞[, R++ :=]0,∞[, and let 0 and 1 be zero and unit constant functions,
respectively. Moreover, we introduce the following notation.

– Let Θ be a metric space.

– B(Θ) is the collection of Borel subsets of Θ .
– B(Θ) is the set of all Borel measurable, bounded, and real-valued functions
on Θ . Clearly, B(Θ) is a Banach space equipped with the sup-norm || · ||Θ ,
i.e.,

||v||Θ := sup
θ∈Θ

|v(θ)|,

and by ⇒, we denote the convergence in the topology induced by this norm
(i.e., uniform convergence on Θ).

– By [·]Θ , we denote the infimum operator on B(Θ), i.e.,

[v]Θ = inf
θ∈Θ

v(θ).

– IfΘ is a Polish space, thenΔ(Θ) denotes the set of all Borel probability measures
on Θ .

We now introduce the notion of a generalized mean-valued operator referred as Con-
ditional Certainty Equivalent (CCE).

Definition 6 (Conditional Certainty Equivalent (CCE)) Let F be a set such that F ⊃
B(Θ). An operator M : F 	→ F is said to be a Conditional Certainty Equivalent
(CCE) if the following conditions hold:

(i) Monotonicity: for each f1 ∈ F and f2 ∈ F

if f1(·) ≤ f2(·), then M( f1)(·) ≤ M( f2)(·).

(ii) Constant preserving property: for each γ ∈ R, M(γ )(·) ≡ γ .

For each f ∈ F and θ ∈ Θ , denote Mθ ( f ) := M( f )(θ).

3 Themodel

3.1 Description of themodel

Consider a dynamical system specified by the following objects (X , Γ , Ω , u, q, W ,
M) where:

– X ⊂ R denotes the space of all possible capital levels. Suppose that X = [0, x̄],
where x̄ ∈ R+ or X = [0,∞[.
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– For each x ∈ X , let Γ (x) := [0, x] be the set of feasible investment levels when
the current capital level is x .

– Ω := [ω,ω] (here 0 < ω ≤ ω) is the space of random shocks endowed with a
Borel probability measure ρ.

– q : X × Ω → R denotes a random production function.
– u : X → R+ is a temporal utility function (one-period utility).
– W : R+ × R+ → R+ is called an aggregator function.
– M : B(X) → B(X) is a Conditional Certainty Equivalent (CCE) depending on
q in the following way: if f1 ∈ B(X), f2 ∈ B(X), y ∈ X , and f1(q(y, ω)) =
f2(q(y, ω)) for ρ−a.a. ω ∈ Ω , then

My( f1) = My( f2).

In other words, we consider a model in which the decision maker chooses a consump-
tion level in each period n ∈ N. If x1 ∈ X is an initial capital level, then the agent
chooses a level of the investment y1 from the set Γ (x1) := [0, x1], which implies
the leftover c1 := x1 − y1 is called a consumption level. Then, the temporal utility
for this agent u(c1) is generated, and the next capital level is produced by the for-
mula x2 = q(y1, ω1), where ω1 is a random shock unobservable in state 1, whose
distribution is ρ. In state x2, again, two things happen: the agent selects an invest-
ment level y2 ∈ [0, x2] and a consumption level c2 := x2 − y2, and the utility u(c2)
is incurred. The capital level y2 determines the next capital level according to the
formula x3 = q(y2, ω2). Here, ω1 and ω2 are equal in law, and both ω1 and ω2 are
independent random variables. Recursively, let (xn, yn)n∈N be a history on the capital
investment system. At the same time, the sequence of independent random variables
(ωn)n∈N having the distribution ρ is generated.

Let H be the set of all feasible histories.Mathematically, H is the set of all sequences
h := (xn, yn)∞n=1 ∈ Gr(Γ )∞. Endow H with the natural Borel product σ− algebra on
(Gr(Γ ))∞. For n > 1, we denote Hn := Gr(Γ )n−1 as the set of all feasible histories
before step n. A policy is a sequence of jointly Borel measurable6 mappings such that
σ1 : X → Δ(Y ), σ1(Γ (x)|x) = 1 for each x ∈ X , and for n > 1, σn : Hn × X →
Δ(Y ) is such that for each (hn, x) ∈ Hn × X , it holds σn(Γ (xn)|hn, xn) = 1. Let Σ

denote the set of all policies. A policy σ is said to be pure if for each n ∈ N, hn ∈ Hn ,
x ∈ X there is y ∈ Y such that σn({y}|hn, x) = 1. A Markov policy is such that
σn(·|hn, x) = fn(·), where fn : X → Δ(Y ) is a Borel measurable function. The
Markov policy is stationary if σn = f (n ∈ N) for some Borel measurable function
f : X → Δ(Y ). The stationary Markov policy is identified with f . Let x ∈ X be an
initial state, and let (σn)n∈N be an arbitrary policy. By Ionescu–Tulcea Theorem (see
Neveu 1965), the production function q, the initial capital x ∈ X , and the policy σ

induce a unique probability measure Pσ
x on H .

For each σ ∈ Σ and n > 1, let σ n : Hn → Σ be defined as σ n := (σn+τ )
∞
τ=0. Here,

σ n is called a n−th shift policy, i.e., the policy from the period n onward. Observe
that σ is a Markov policy if and only if for each n ≥ 1, the σ n does not depend on Hn

(i.e., is a “constant” strategy).

6 That is Borel measurable with respect to the corresponding product topology.
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3.2 Construction of a recursive utility function: basic assumptions and a literature
review

The purpose of this section is a construction of a recursive utility function.We startwith
a list of assumptions on the temporal utility, the aggregator, the production function,
and CCE that are sufficient for the existence and the global attracting property of any
recursive utility function.

Assumption 1 (Measurability and sub-homogeneity of CCE)M obeys the following
conditions:

(i) Measurability: let k ∈ N and Z ∈ B(Rk), and suppose that f : X × Z → R is a
jointly measurable function. Then,

(y, z) ∈ X × Z → My( f (·, z)),

is jointly measurable.
(ii) Sub-homogeneity: for each y ∈ X , the operator My is sub-homogenous, i.e.,

if v ∈ B(X) and t ∈ [0, 1], then My(tv) ≥ tMy(v).

For the construction of a recursive utility function, the measurability assumption of
CCE is crucial. Following Hansen and Sargent (1995), for any initial state x ∈ X and
σ ∈ Σ , we define an overall utility for the agent as an approach of overall utilities in
n-stage models. More precisely, the n− stage overall utility is defined recursively as
follows:

J1(x, σ ) :=
∫

Γ (x)

W (u(x − y), 0)σ1(dy|x),

and for each n > 1

Jn(x, σ ) :=
∫

Γ (x)

W
(
u(x − y),My(Jn−1(·, σ 2(x, y)))

)
σ1(dy|x).

Then, the overall utility (if exists) is defined as follows:

J (x, σ ) = lim
n→∞ Jn(x, σ ). (1)

Observe that if σ ∈ Σ , then (x ′, x, y) ∈ X × H2 → J1(x ′, σ 2(x, y)) must be jointly
measurable. Hence,

(y′, x, y) ∈ X × H2 → My′(J1(·, σ 2(x, y)))

must be jointly measurable by (Measurability) Assumption 1. Consequently, J2 is
jointly measurable. Then, by induction, we can conclude the joint measurability of

123



558 Ł. Balbus

any Jn and hence also of its supremum over n ∈ N. Since W is nonnegative value,
increasing in the second argument, andMy(·) is increasing for each y ∈ X , it is easy
to verify that J1 ≤ J2 ≤ · · · Jn ≤ · · · . As a result, the limit in (1) always exists
(although it may be infinite).
Observe that if W (v1, v2) = v1 + βv2, and if

My(v) = Ey(v) :=
∫

Ω

v(q(y, ·))dρ(·) (2)

then, J is the standard β− discounted utility function.

Assumption 2 (Temporal utility) Assume u : X 	→ R is a strictly increasing,
bounded, and continuous function such that u(0) ≥ 0.

Assumption 3 (Aggregator) Assume that the aggregator W obeys the following con-
ditions:

– W is increasing in both arguments.
– W is jointly continuous.
– W (v1, v2) = 0 if and only if v1 = v2 = 0.
– There exists a constant r ∈]0, 1[ such that for all v1 ≥ u(0), v2 > 0 and t ∈]0, 1[,
it holds

W (v1, tv2) ≥ trW (v1, v2). (3)

Assumption 4 (Production function) Suppose that the production function q obeys
the following conditions:

– For each ω ∈ Ω , q(·, ω) is a strictly increasing and continuous function such that
q(0, ω) = 0.

– There exists an increasing function K : Ω → R++ such that q(x, ω) > x for all
x ∈]0, K (ω)[ and q(x, ω) ≤ x for all x ∈ [K (ω),∞[.

The following assumption is needed for proving that there exists an optimal policy
in the finite horizon model. Moreover, with this assumption the optimal value of the
function J in the infinite time horizon model can be approximated by the n-stage
optimal value function for sufficiently large n.

Assumption 5 (Continuity of CCE) Assume that for each y ∈ X , My satisfies:

(i) My is a monotonically sup-preserving operator.
(ii) The operator y ∈ X 	→ My(v) is continuous whenever v is continuous.

A few comments are in order. Assumption 2 is standard. Assumption 3 is satisfied
(under smoothness of W ) whenever the elasticity of the aggregator with respect to its
second argument has a supremum strictly less than one. More precisely, let v1 ≥ u(0),
v2 > 0, and t ∈]0, 1[. Let us define an auxiliary function f :]0, 1] → R as follows:

f (t) := ln (W (v1, tv2)) − r ln(t).
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Then, we can obtain inequality (3) whenever f is an increasing function with each
fixed pair (v1, v2). Let

EW := sup
v1≥u(0),v2>0

∂W
∂v2

(v1, v2)

W (v1, v2)
v2.

Observe,

f ′(t) = 1

t

(
∂W
∂v2

(v1, tv2)tv2

W (v1, tv2)
− r

)
≤ 1

t
(EW − r) ≤ 0

whenever EW ≤ r . Hence, if EW < 1, thenAssumption 3 is satisfiedwith r sufficiently
close to 1. Assumption 4means the production function is generally disturbed by a ran-
dom noise. Further, at each step, the noise is independent of noises at each other steps.
A classic example is the Cobb–Douglas production function in case of deterministic
model, i.e., Ω is a singleton. A random production function satisfying Assumption 4
can be found in many papers on the growth models. The standard expectation operator
is a classic example of CCE. The expectation operator is homogenous and addition-
ally obeys Assumption 5. More generally, CCE so called a quasilinear mean can be
found in the papers by Chew (1983) and Dekel (1986). Similar (homogeneity) prop-
erty has CCE based on maxmin utility considered by Gilboa and Schmeidler (1989),
or on maxmax utility considered by Saponara (2018), as well as on Choquet Integral7

considered by Schmeidler (1989), Qu (2017), or Asano and Kojima (2019).

Example 1 The quasilinear mean has the following form:

My(v) = φ−1 (
Ey(φ ◦ v)

)
(4)

where Ey(·) is defined in Eq. (2) and φ is strictly monotone and continuous. Observe
the quasilinear mean in Eq. (4) satisfies (Measurability) Assumptions 1 and 5, but the
sub-homogeneity holds only in some special cases of φ.

The following proposition yields a list of properties of φ that are sufficient for sub-
homogeneity of the quasilinear mean in (4).

Proposition 1 Suppose that M has a form as in (4). Let η > 0 and suppose that
φ : [0, η] → R+ is continuous, strictly monotone, and is differentiable on ]0, η[ with
a continuous and bounded derivative. Assume additionally φ′(x) �= 0 for x �= 0, and
at least one of the following alternatives are true:

(i) φ is strictly increasing, and the function φ′(φ−1(·))φ−1(·) is concave.
(ii) Or φ is strictly decreasing, and the function φ′(φ−1(·))φ−1(·) is convex.
Then, for each y ∈ X,My(·) is sub-homogenous and consequently satisfies Assump-
tion 1.

7 Unlike the standard integral, Choquet Integral can explain Ellsberg paradox. See Schmeidler (1989) or
Asano and Kojima (2019) for details.
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By Proposition 1, it is easy to verify the class of CCE in Eq. (4) withφ(t) = tγ (γ > 0)
satisfies Assumption 1. The class of CCE with φ(t) = e−γ t (γ > 0, and t > 0)
called a risk measure also satisfies Assumption 1. Indeed, φ is strictly decreasing, and
φ−1(τ ) = − 1

γ
ln(γ τ) for τ ∈]0, 1

γ
]. Note further that

φ′ (φ−1(t)
)

φ−1(t) = γ t ln(γ t)

is convex. Hence, by Proposition 1 it follows that the risk measure satisfies Assump-
tion 1.

Example 2 It should be noted that the aggregator W in Eq. (1) is not uniquely deter-
mined. The “natural” aggregator W does not obey Assumption 3, but there exists
another aggregator which does obey this assumption and yields the same output as
W in Eq. (1). For example, consider the case W (v1, v2) = v1 + βv2. Assume u is
bounded above by ū and u(0) := δ > 0. Then, EW = 1 and Assumption 3 is not
satisfied. On the other hand, J (x, σ ) ≤ ū

1−β
:= Ū for each x ∈ X and σ ∈ Σ . Put

W̃ (v1, v2) := W (v1,min(v2, Ū )). (5)

Hence, both W and W̃ yield the same output in Eq. (1). Then, EW̃ = βŪ
ε+βŪ

< 1.

Therefore, Assumption 3 is satisfied. Similar transformation works for other aggrega-
tors where Ū is the least fixed point of W (ū, ·).
Finally, let us comment on Assumption 3. Observe that the paper by Marinacci and
Montrucchio (2010) includes a few aggregators which satisfy Assumption 3.

Example 3 Consider a class of Thompson aggregators8 in the following form:

W (v1, v2) =
(
v

ξ
1 + βv

η
2

) 1
p
, (6)

where ξ > 0, 0 < η < p, and β ∈]0, 1[. Indeed, for each v1 > 0, v2 > 0, and
t ∈]0, 1[, we have

∂
∂v2

W (v1, v2)

W (v1, v2)
v2 = η

p

βv
η
2

v
ξ
1 + βv

η
2

≤ η

p
< 1.

As a result, this aggregator satisfies Assumption 3.

The next aggregator is a modification of the aggregator by Koopmans et al. (1964).

8 According to Marinacci and Montrucchio (2010) terminology, Thompson aggregator means that is
increasing in both arguments, W (v1, 0) > 0 whenever v1 > 0 and is concave at 0, i.e., W (v1, tv2) ≥
tW (v1, v2) + (1 − t)W (v1, 0) for all v1, v2 ≥ 0 and t ∈ [0, 1].
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Example 4 Consider the aggregator in the following form:

W (v1, y2) = 1

θ
log

(
1 + v

ξ
1 + βv

η
2

)
,

with θ > 0, ξ > 0, and η ∈]0, 1[. We have in this case

∂
∂v2

W (v1, v2)

W (v1, v2)
v2 = η

βv
η
2

(1 + v
ξ
1 + βv

η
2 ) log(1 + v

ξ
1 + βv

η
2 )

≤ η sup
x>0

x

(1 + x) log(1 + x)
< 1.

As a result, Assumption 3 is satisfied also in this case.

The following proposition states that Thompson aggregators in fact obeyAssumption 3
whenever u(0) = δ > 0.

Proposition 2 Assume W is Thompson, u(0) = δ > 0 and ||u||X = ū. Let Ū be
the least fixed point of W (ū, ·) and let us define W̃ as in Eq. (5). Then, W̃ obeys
Assumption 3.

Another example shows that Assumption 3 does not imply Thompson property.
Namely, in this example, the concavity at 0 is violated.

Example 5 Let ψ : [0,∞[→ [0,∞[ be defined as follows: ψ(x) = 4
√
x if x ∈ [0, 1[

and ψ(x) = √
x otherwise. Consider the aggregator of the formW (v1, v2) = ψ(v1 +

v2). Clearly, such W satisfies Assumption 3 since for each t ∈]0, 1[

ψ(v1 + tv2) ≥ ψ(t(v1 + v2)) ≥ t
1
2 ψ(v1 + v2).

Observe, however, W is not concave at 0. Put v1 = 0.9, v2 = 1.1, and t = 1/11.
Then, v1 + v2 = 2 and v1 + tv2 = 1. Hence, W (v1, tv2) = 1, but

tW (v1, v2) + (1 − t)W (v1, 0) = 1

11

√
2 + 10

11
4
√
0.9 ≈ 1.04 > 1 = W (v1, tv2),

which contradicts the concavity at 0. We can obtain similar results for the aggregator
ψ(v1 + βv2) where β ∈]0, 1[.

4 Existence and global attracting property of a recursive utility
function

In this section, we prove the existence and the global attractivity of a recursive utility
function.
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First, we need to construct a universal set for desired functions. For each h ∈ H ,

and n ∈ N, let hn be the natural projection of h on Hn . Define

U := {U : X × Σ → R : U is bounded, and for each σ ∈ Σ, n ∈ N

U (xn, σ
n(hn)) is jointly measurable in (hn, xn) ∈ Hn × X}.

Clearly, U endowed with the natural sup-norm topology

||U ||X×Σ := sup
(x,σ )∈X×Σ

|U (x, σ )|

is a Banach space. (More precisely, it is a closed subspace of the Banach space of
bounded functions defined on X × Σ).
Put U+ as the set of nonnegative functions from U. Then, U+ is a normal cone.
Moreover, it induces the standard component-wise order, that is U1 ≤ U2 iff
U1(x, σ ) ≤ U2(x, σ ) for each (x, σ ) ∈ X × Σ .
Clearly, U+ is a solid cone, and

int(U+) :=
{
U ∈ U+ : inf

(x,σ )∈X×Σ
U (x, σ ) > 0

}
. (7)

According to Koopmans (1960), Epstein and Zin (1989), or Marinacci and Montruc-
chio (2010), among others, we introduce the following definition:

Definition 7 U∗ ∈ U+ is said to be a recursive utility function if for any policy
σ ∈ Σ , and any initial state x ∈ X , the following holds:

U∗(x, σ ) =
∫

Γ (x)
W

(
u(x − y),My(U

∗(·, σ 2(x, y)))
)

σ1(dy|x).

Observe a recursive utility function U∗ (if it exists) is a fixed point of the following
operator:

TW (U )(x, σ ) :=
∫

Γ (x)
W

(
u(x − y),My(U (·, σ 2(x, y)))

)
σ1(dy|x).

For all δ ≥ 0, put

T δ
W (U )(x, σ ) :=

∫

Γ (x)
W

(
uδ(x − y),My(U (·, σ 2(x, y)))

)
σ1(dy|x),

where uδ(x−y) = max (u(x − y), δ). Obviously, u0 ≡ u. If u(0) > 0, then T δ
W ≡ TW

for δ < u(0). The purpose of this section is to construct a recursive utility function and
find its relationship with the function J defined in (1). In the first main result below,
we state the existence and the global attracting property of a bounded recursive utility
function.
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Theorem 2 Suppose Assumptions 1, 2, 3, and 4 are satisfied. Then, there exists a
unique recursive utility function such that U∗ ∈ int(U+). Moreover,

(i) U∗ is globally attractive on int(U+), i.e.,

lim
n→∞ ||U∗ − T n

W (U )||X×Σ = 0

whenever U ∈ int(U+).
(ii) The truncation error satisfies:

||T n
W (U ) −U∗||X×Σ ≤ M

(
1 − αrn

)
for all n ∈ N

wheneverU ∈ int(U+). Here, M = 2||U ||X×Σ , α = t0
s0
, and t0 and s0 are chosen

in the following way:

0 < t0 < 1 < s0, and it holds t1−r
0 U (·) ≤ TW (U )(·) ≤ s1−r

0 U (·).

(iii) J is a recursive utility function. Moreover, J (x, σ ) ≤ U∗(x, σ ) for each x ∈ X
and σ ∈ Σ , and J (x, σ ) = U∗(x, σ ) whenever x > 0 and σ ∈ Σx,δ .

To prove Theorem 2, we need to prove some auxiliary results, namely Lemma 1 and
Lemma 2. Proofs of both Lemmas are in the “Appendix”.

Lemma 1 Let Assumptions 1, 2, 3, and 4 be satisfied. Then, for each δ ≥ 0,

(i) T δ
W maps both U+ and int(U+) into itself.

(ii) T δ
W (·) is an increasing operator, and for each U ∈ U+ the function T δ

W (U ) is
increasing in δ.

(iii) If δ > 0, then T δ
W (0)(x, σ ) ≥ W (δ, 0) > 0.

(iv) J is well defined, and if U is any fixed point of T δ
W , then J ≤ U .

For each x > 0 and δ > 0, let

Σx,δ :=
{
σ ∈ Σ : Pσ

x

({
h := (xn, yn)n∈N : inf

n∈N u(xn − yn) ≥ δ

})
= 1

}
.

The next lemma shows that if a capital level x ∈ X is strictly positive, and then, we
can guarantee the our temporal utility is never below some fixed value.

Lemma 2 Let x > 0 and suppose that Assumptions 1, 2, 3, and 4 hold. Then, there
exists δ > 0 such that Σx,δ �= ∅.
Now, we prove Theorem 2.

Proof of Theorem 2 Let us prove (i) and (ii) together.Moreover,weprove similar results
for all operators T δ

W (δ ≥ 0). Put t ∈]0, 1[, U ∈ int(U+), and (x, σ ) ∈ X × Σ . From
the sub-homogeneity ofMy (Assumption 1) and from Assumption 3, it holds
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T δ
W (tU )(x, σ ) ≥ tr

∫

Γ (x)
W

(
uδ(x − y),My(U (·, σ 2(x, y)))

)
σ1(dy|x)

= tr T δ
W (U )(x, σ ).

As a result, by Theorem 1, there is a unique U δ ∈ int(U+) such that U δ is a fixed
point of T δ

W . In particular, we put U∗ := U 0, which satisfies (i) and (ii).
Proof of (iii). For all n ∈ N, x ∈ X , σ ∈ Σ , and δ ≥ 0 define J δ

n (x, σ ) :=
(T δ

W )n(0)(x, σ ) (the nth composition of 0-function). By Lemma 1, J δ
n ∈ int(U+)

whenever δ > 0. By Theorem 1,

lim
n→∞ ||J δ

n −U δ||X×Σ = 0, (8)

and U δ satisfies (i) and (ii) of this theorem.
By Lemma 1 (iv), it holds J ≤ U∗. Hence, J is always bounded. We show that
J (x, σ ) ≥ U∗(x, σ ) if x > 0, and σ ∈ Σx,δ where δ > 0 is defined in such a
way Σx,δ �= ∅. Observe that by Lemma 2, such δ exists. We need to show that
Jn(x, σ ) = (T δ

W )n(0)(x, σ ) for any n ≥ 1, x > 0, and σ ∈ Σx,δ . We prove this fact
by induction on n. By the definition of J1, uδ , and the definition of Σx,δ , we have

J1(x, σ ) =
∫

Γ (x)
W (uδ(x − y), 0)σ1(dy|x) = T δ

W (0)(x, σ ).

Suppose that

Jk(x
′, σ ′) = (T δ

W )k(0)(x ′, σ ′) (9)

for some integer k and each x ′ ∈ X , σ ′ ∈ Σx ′,δ . Since σ ∈ Σx,δ , σ(x, y) ∈ Σx ′,δ for
P2− a.a. (x, y, x ′) ∈ H2 × X , where P2 is the marginal of Pσ

x on H2 × X . Hence, by
(9) we have

Jk+1(x, σ ) =
∫

Γ (x)
W (u(x − y),My(Jk(·, σ 2(x, y))))σ1(dy|x)

= (T δ
W )k+1(0)(x, σ ).

As a result, for each k it holds Jk(x, σ ) = (T δ
W )k(0)(x, σ ). Hence, by (8), J (x, σ )

coincides withU δ for x > 0 and σ ∈ Σx,δ . As a result, by the point (i) of this theorem
J (x, σ ) ≥ U∗(x, σ ) for such σ . ��

5 Bellman equation and the existence of an optimal program

In this section, we study the maximization problem of the utility J . The so-called
J -optimal value function is defined as follows
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x ∈ X 	→ sup
σ∈Σ

J (x, σ ). (10)

With the aforementioned optimization problem is associated a dual maximization
problem of U∗, where U∗ a unique recursive utility from int(U) which exists by
Theorem 2. The so-called U -optimal value in the dual problem is defined as follows

x ∈ X 	→ sup
σ∈Σ

U∗(x, σ ). (11)

In this section, we show that both U-optimal and J-optimal value functions satisfy the
corresponding Bellman equation, i.e.,

v(x) = sup
y∈Γ (x)

W (u(x − y),My(v)),

whenever v is the U-optimal or the J-optimal value function.
Let

BP(v)(x) = sup
y∈Γ (x)

W (u(x − y),My(v)).

The main results of this section are established in Theorems 3 and 4. In Theorem 3,
we consider some properties of the U-optimal value function, and we show that it
obeys the Bellman equation and establish the existence of a U-optimal policy. In turn,
in Theorem 4, we then consider some properties of J-optimal value function, and we
show that it satisfies the Bellman equation.

In the remaining part of this paper, we use the following notation B+ := B+(X)

and Bo+ := int(B+(X)) for short.

Theorem 3 Under Assumptions 1, 2, 3, 4, BP maps Bo+ into itself and it is an increas-
ing operator. Moreover,

(i) There exists a function ṽ that is a unique fixed point of BP such that ṽ ∈ Bo+,
and such that for each v ∈ Bo+

lim
n→∞ ||BPn(v) − ṽ||X = 0,

with the truncation error satisfying

||BPn(v) − ṽ||X ≤ M
(
1 − αrn

)
for all n ∈ N,

where M = 2||v||X , α = t0
s0
, and t0 and s0 are chosen in the following way:

0 < t0 < 1 < s0, and it holds t1−r
0 v(·) ≤ BP(v)(·) ≤ s1−r

0 v(·).

(ii) ṽ is increasing. Moreover, if additionally Assumption 5 holds, ṽ is continuous.

123



566 Ł. Balbus

(iii) If Assumption 5 holds, then for each x ∈ X

ṽ(x) = sup
σ∈Σ

U∗(x, σ ),

and there exists a stationary and pure U-optimal policy σ̃ ∈ Σ satisfying

ṽ(x) = W (x − σ̃ (x),Mσ̃ (x)(ṽ)) = sup
y∈Γ (x)

W (u(x − y),My(ṽ)). (12)

Corollary 1 Suppose that Assumptions 1, 2, 3, 4, and 5 hold. Furthermore, suppose
that u ∈ Bo+. Then, the set of U-optimal and J-optimal policies are nonempty and
coincide. As a result,

sup
σ∈Σ

J (x, σ ) = sup
σ∈Σ

U∗(x, σ ) and x ∈ X .

Moreover,

ṽ(x) = W (u(x − σ̃ (x)),Mσ̃ (x)(ṽ)) = BP(ṽ)(x). (13)

Let us first introduce the following notation. For each sequence (xn)n∈N, let the

sequence x (n) :=
(
x (n)
k

)
k∈N be defined in the following way: x (n)

k = xk for k ≤ n and

x (n)
k = 0 for k ≥ n + 1. In turn, the sequence x (−n) is defined in the following way:

x (−n)
k = xn−k+1 if k ≤ n and x (−n)

k = 0 for k ≥ n + 1. Now, consider the n−period
horizon model. Each policy π in the n-step model is identified with σ (n) for some
policy σ ∈ Σ . Observe if π is a policy in the n-step model, then π can be embedded
into Σ in the canonical way. Hence, we can write Jn(x, π) = J (x, σ (n)).

Let v∗
n(·) be the value function in the n-step model. That is

v∗
n(x) = sup

π∈Σn
Jn(x, π).

Here,Σn denotes the set of policies in the n− step game. Observe π ∈ Σn if and only
if π = σ (n) for some σ ∈ Σ .
In Theorem 4, we shall study some properties of the optimal value of J , and we argue
that under additional Assumption 5 the optimal values of U∗ and J coincide with
X \ {0}. We also establish some results of an existence of optimal policies in the
finite step model, and we show that the J-optimal policy obeys the Bellman equations.
Unfortunately, Theorem 4 does not establish the existence of a J-optimal policy, since
the optimal function need not be upper semicontinuous at x = 0.

Theorem 4 Let Assumptions 1, 2, 3, 4, and 5 be satisfied. Put v∗
0 = 0. Then,

(i) For all n ∈ N, v∗
n(·) is an increasing and continuous function. Furthermore, there

exists a sequence of Borel measurable functions (σ̂k)k∈N that are selections of Γ
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such that σ̂ (−n) is a Markov optimal policy in the n-step model, for each x ∈ X
it holds

v∗
n+1(x) = BP(v∗

n)(x), (14)

and for n ≥ 1, and v∗
1(x) ≤ v∗

2(x) ≤ · · · v∗
n(x) ≤ · · · . As a result, there exists a

limit

v∗(x) := lim
n→∞ vn(x). (15)

(ii) Let v be an arbitrary fixed point of BP. Then, v∗(·) ≤ v(·).
(iii) For each x ∈ X

v∗(x) = lim
n→∞ v∗

n(x) = sup
σ∈Σ

J (x, σ ). (16)

(iv) For each x ∈ X \ {0}, it holds ṽ(x) = v∗(x); as a result, v∗ is continuous on
X \ {0}.

The following corollary establishes the existence of the J-optimal policy. The following
corollary is immediate from Theorem 3(iv).

Corollary 2 If σ̃ be a stationary J-optimal policy, then it is also a U-optimal policy.

Remark 1 Observe that a U-optimal policy need not be J-optimal. On the other hand,
if (xn)n∈N is a sequence of capital levels generated by the policy σ̃ , and if

inf
n∈N u(xn − yn) > 0 for P σ̃

x − almost all histories h = (xn, yn)n∈N

then by Theorem 2 (iii), the utilityU (x, σ̃ ) coincides with J (x, σ̃ ), and consequently
σ̃ is a J-optimal policy. In particular, all the theses hold if u ∈ Bo+.

The following remark justifies some problems with the uniqueness of the solution
of Bellman equation.

Remark 2 It should be noted that BPn(1)(·) ⇒ ṽ(·), while (unless u(0) > 0)
BPn(0)(·) → v∗(·) pointwise only. The reason is neither of the function BPn(0)(·)
is an element of Bo+. Hence, theorem by Guo et al. (Theorem 1) does not work with 0
as a starting point.

Theorem 4 is applicable for many aggregators known in the literature. Sometimes, a
trick is needed.

Example 6 Koopmans et al. (1964) study the aggregator

W (v1, v2) = θ−1 ln
(
1 + v

ρ
1 + βv2

)
,
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with θ > 0 (small enough), and ρ, β > 0. Observe W (0, ·) has exactly one strictly
positive fixed point κ . Put W κ(v1, v2) := W (v1,max(v2, κ)).9 Observe

EW κ ≤ βκ

(1 + βκ) ln (1 + βκ)
< 1.

By Lemma 2, for any x0 ∈ X a ”constant” policy y∗(x0) is feasible and v∗(x0) ≥
J (x0, y∗(x0)) ≥ κ . Let J κ be defined as J whereW is substituted byW κ . Obviously,
J κ(·) ≥ J (·). Then, v∗(x) = supσ∈Σ J κ(x, σ ). Hence, all theses of Theorem 4 hold.

Sometimes, the trick from the previous remark is impossible. The next theorem estab-
lishes asymptotic properties of the optimal value function with varying lower bound
of the temporal utility. For any δ > 0, consider the dynamical system (X , Γ , Ω,

uδ, q, W , M) called a δ-model, i.e., the dynamical system where u is substituted by
uδ(·). Let vδ

n and vδ denote the optimal values in the n and, respectively, in the infinite
step model. This theorem extends the applicability toward all Thompson aggregators
without restrictions that u(0) > 0.

Theorem 5 (Asymptotic properties) Let assumptions of Theorem 4 be satisfied for
any δ-model with δ > 0. Then,

v∗(x) = sup
n∈N

inf
δ>0

vδ
n(x). (17)

For proving Theorems 3 and 4, we applied Theorem 1. Alternatively, we could try
to apply Knaster–Tarski Theorem (Tarski 1955). But in the next remark, we indicate
some problems with the applicability of Knaster–Tarski Theorem in this context.

Example 7 Let ε > 0 and N > 0 be such that ε < N . Let us define

Uε,N := {U ∈ U+ : U (x, σ ) ∈ [ε, N ] for each (x, σ ) ∈ X × Σ} .

Notice, for small enough ε and large enough N , the operator TW maps Uε,N into
itself. Also, note that Uε,N is not a complete lattice under the pointwise partial orders
(because of themeasurability requirement). Because of this fact, we cannot use directly
Knaster–Tarski Theorem. On the other hand, we can easily prove that the sequence
of iterations T n

W (N ) is decreasing in n and consequently the limit T∞
W (N ) exists and

belongs to Uε,N . At this stage, we cannot conclude that T∞
W (N ) is a fixed point of

TW as TW need not be an inf-preserving operator.10 For justifying this fact, consider
the following example. Let X = [0, 1], Ω = {

1 − 1
k : k ∈ N \ {0}}, ρ be a measure

supported on whole Ω , q(y, ω) := 1+ω
2

√
y, and

My( f ) := inf{ω∈Ω} f (q(y, ω)).

9 Compare with W̃ in Example 4.
10 By Lemma 3.1.3 in Guo et al. (2004), we only have a norm continuity of TW .
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We show that M is not inf-preserving. It is easy to see that M is a CCE satisfying
Assumption 1. But taking fn(x) = 1− xn and y = 1, we haveMy( fn) = 1 for each
n ∈ N while for f (x) = 1 − 1{1}(x), we have My( f ) = 0.11

Finally, we prove Theorems 3, 4, and next Theorem 5.

Proof of Theorem 3 We shall prove all the points separately. Clearly, BP is an increas-
ing operator on B+.

Proof of (i). First, we show that BP maps Bo+ into itself. Indeed, if v ∈ Bo+, then
||v||X < ∞, [v]X > 0, and for each (x, y) ∈ Gr(Γ )

BP(v)(x) ≥ W (u(x − y),My(v)) ≥ W (0, [v]X ) > 0.

Moreover,

BP(v) ≤ W (||u||X , ||v||X ) < ∞.

Observe that, by Assumptions 2, the function BP(v)(·) must be increasing and hence
Borel measurable. Therefore, BP(v) ∈ Bo+. So, BP maps Bo+ into itself. It is easy to
see that BP(·) is an increasing operator. By Assumption 3 and (the sub-homogeneity)
Assumption 1, we conclude BP(tv)(·) ≥ tr BP(v)(·) for each v ∈ Bo+ and t ∈]0, 1[.
Then, as a result of Theorem 1, the proof of (i) is complete.

Proof of (ii). It is clear that ṽ is increasing. Indeed, in the point (i) of this theorem,
we have already established that the range of BP(·) is included in the set of increasing
functions.
Now, suppose Assumption 5 holds. We show that ṽ is continuous. First, we need
to demonstrate that B(v)(·) is a continuous function whenever v is. Indeed, if v is
continuous, then from Assumption 5 the function y ∈ X 	→ My(v) is continuous.
Therefore, (x, y) ∈ Gr(Γ ) 	→ W (u(x − y),My(v)) is jointly continuous. Hence, by
BergeMaximumTheorem [Theorem17.31 inAliprantis andBorder (2006)], it follows
that BP(v)(·) is continuous. Consequently, BP(1)(·) is continuous, and hence, for
each n ∈ N, BPn(1)(·) is continuous. By the point (i) of this theorem, it follows that
BPn(1)(·) ⇒ ṽ(·). Hence, ṽ(·) must be continuous.

Proof of (iii). From the point (ii) of this theorem, Assumptions 2, 3, 5, and Measur-
able Maximum Theorem [see Theorem 18.19 in Aliprantis and Border (2006)], there
exists a measurable function σ̃ : X 	→ Y (a selection of Γ ) such that σ̃ and ṽ satisfy
Eq. (12). We shall show that σ̃ is U-optimal. Consider another policy σ ∈ Σ . Let
h = (xn, yn)n∈N be a history generated by σ such that x1 = x . Then,

ṽ(xτ ) ≥ W (u(xτ − yτ ),Myτ (ṽ))

11 This example has an economic motivation and is inherited from Gilboa and Schmeidler (1989) and
studied later by Qu (2017). It shows that the results in this paper are useful not only in Markov decision
problems but also in a large literature on robust control. For a survey of the literature on this topic, the
reader is referred to Hansen and Sargent (2001), Maccheroni et al. (2006), Balbus et al. (2014), Drugeon
et al. (2019), and the references cited therein. Alternatively, we can consider also the optimistic point of
view and change inf into sup by the adaptation of the idea of Saponara (2018).
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for each τ ∈ N. Hence, by the definition of CCE and Assumption 3

ṽ(x) ≥ T n
W (ṽ)(x, σ )

for each n ∈ N. Note that ṽ may be embedded into int(U+). Indeed, ṽ is Borel
measurable as a function of the initial state, and ṽ does not depend on σ . Hence,
taking the limit n → ∞ and applying Theorem 2 we have ṽ(x) ≥ U∗(x, σ ). On the
other hand,

ṽ(xτ ) = W (u(xτ − σ̃ (xτ )),Mσ̃ (xτ )(ṽ))

for each τ ∈ N and for each n ∈ N, and it holds

ṽ(x) = T n
W (ṽ)(x, σ̃ ).

Hence, taking the limit n → ∞ and applying Theorem 2 we have ṽ(x) = U∗(x, σ̃ ).
As a result, U∗(x, σ̃ ) ≥ U∗(x, σ ) for each σ ∈ Σ . ��
Proof of Theorem 4 Proof of (i). For each n ∈ N, we construct a sequence of measur-
able functions (σ̂n)n∈N that are selections of Γ and satisfy the following conditions:

– σ̂1(x) = 0 for each x ∈ X , and σ̂n(·) is a Borel measurable selection of Γ

satisfying:

W (u(x − σ̂n(x)),Mσ̂n(x)(v
∗
n−1)) = max

y∈Γ (x)
W (u(x − y),My(v

∗
n−1)). (18)

– For each n ∈ N, σ̂ (−n) = (σ̂n, σ̂n−1, . . . , σ̂1) is an optimal policy in the n-step
model.

For n = 1, σ̂1 and v∗
0 are both continuous functions, and Eq. (18) holds. Moreover,

σ̂ (−1)(·) = σ̂1(·)must be optimal in the 1-stepmodel. Suppose that v∗
k−1 is continuous,

σ̂k is measurable for all k ≤ n, Eq. (18) holds for n, and σ̂ (−n) is an optimal policy
in the n step model. We shall show that all these theses hold for n + 1. Since v∗

n is
continuous, by Assumptions 3 and 5, (x, y) ∈ Gr(Γ ) 	→ W (u(x − y),My(v

∗
n))

is jointly continuous. As a result, by Measurable Maximum Theorem [see Theorem
18.19 in Aliprantis and Border (2006)] there is a measurable σ̂n+1—a solution of
the maximization problem in ( 18) with n = k + 1. By the induction hypothesis,
v∗
n(x) = Jn(x, σ̂ (−n)). Take another policy π in the n + 1 step model. Then, for
each initial state x and y ∈ Γ (x), π2(x, y) is a policy in the n step model, and by
the induction hypothesis v∗

n(x
′) = Jn(x ′, σ̂ (−n)) ≥ Jn(x ′, π2(x, y)) for each state

x ′ ∈ X . Hence, by the definition of σ̂n+1 and (18) it follows that

Jn+1(x, σ̂
(−n−1)) = W (u(x − σ̂n+1(x)),Mσ̂n+1(x)(v

∗
n))

≥
∫

Γ (x)
W (u(x − y),My(v

∗
n))π(dy|x)
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≥
∫

Γ (x)
W (u(x − y),My(Jn(·, π(2)(x, y))))π(dy|x)

= Jn+1(x, π).

Since π is arbitrary, v∗
n+1(x) = Jn+1(x, σ̂ (−n−1)). As a result, Eq. (14) holds, and

σ̂ (−n) is an optimal policy in the n-step model for each n ∈ N.
Observe that (v∗

n)n∈N is an increasing sequence. Indeed, v∗
n(·) = BPn(0)(·), BP is

an increasing operator, and 0 ≤ BP(0)(·). Therefore, using the induction method we
easily conclude that v∗

n is increasing in n, and therefore, the limit in (15) must exist.
Proof of (ii). If v is a fixed point of BP in B+, then v = BPn(v), and as we have

already established in part (i) of this theorem v∗
n = BPn(0) for each n ∈ N. Since

BP is increasing and v ≥ 0, for each x ∈ X it holds vn(x) ≤ v(x). Consequently,
v∗(x) = limn→∞ v∗

n(x) ≤ v(x).
Proof of (iii). Put an arbitrary policy σ ∈ Σ . Then, by the definition of v∗ and v∗

n
we have

v∗(x) = lim
n→∞ v∗

n(x) ≥ lim
n→∞ Jn(x, σ

(n)) = J (x, σ ).

Hence, the inequality v∗(x) ≥ supσ∈Σ J (x, σ ) holds. To show the opposite inequality,
observe that

sup
σ∈Σ

J (x, σ ) ≥ Jn(x, σ̂
(−n)) = v∗

n(x) → v∗(x)( as n → ∞).

Hence, sup
σ∈Σ

J (x, σ ) ≥ v∗(x), and Eq. (16) holds.

Proof of (iv). Without loss of generality suppose that u(0) = 0. For otherwise, all
the theses are established in Corollary 1.
First, we show that v∗ is a fixed point of BP . By Assumption 5, it holds My(v

∗
n) →

My(v
∗) for each y ∈ X as n → ∞. Let y ∈ Γ (x) be arbitrary. Then, taking the limit

with n → ∞, and using equality (14), we obtain

v∗(x) ≥ W (u(x − y),My(v
∗)) for each y ∈ Γ (x),

and consequently

v∗(x) ≥ BP(v∗)(x) (19)

for each x ∈ X . To show that v∗ satisfies the opposite inequality, observe for each
x > 0 and σ ∈ Σ , it holds

J (x, σ ) ≤ sup
y∈Γ (x)

W (u(x − y),My(J (·, σ 2(x, y)))) ≤ BP(v∗)(x),
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where the second inequality follows from the definition of BP and the point (iii) of
this theorem. Hence, if we take the supremum over σ ∈ Σ , then we obtain v∗(x) ≤
BP(v∗)(x). This, together with inequality (19) implies that v∗ is a fixed point of BP .
Now, we need to show that v∗(x) = ṽ(x) for each x > 0. We shall show that
inf
x>0

v∗(x) > 0. By Lemma 2, for each x > 0 there is δ > 0 and σx ∈ Σδ such

that

J (x, σx ) = U∗(x, σx ) ≥ [U∗]X×Σ > 0.

Hence, by the point (iii) of this theorem it follows inf
x>0

v∗(x) > 0.

As a result, the function is defined as follows v∗∗(x) := v∗(x) for x > 0, and
v∗∗(0) = lim

x↓0 v∗(x) is in the interior of B+. We show that v∗∗ is a fixed point of

BP . By Assumption 5 it holds My(v
∗) = My(v

∗∗), for all y > 0. Hence, for such
y it holds

W (u(x − y),My(v
∗)) = W (u(x − y),My(v

∗∗)).

As a result,

sup
y∈]0,x]

W (u(x − y),My(v
∗)) = sup

y∈]0,x]
W (u(x − y),My(v

∗∗)).

Since M0(v
∗) = v∗(0) = 0

W (u(x),M0(v
∗)) < W (u(x), v∗∗(0)) = lim

y↓0 W (u(x − y),My(v
∗)).

Therefore, a maximum of y ∈ Γ (x) 	→ W (u(x − y),My(v
∗)) (if exists) is never

evaluated at y = 0. Hence, v∗∗ = BP(v∗) = BP(v∗∗), and v∗∗ is a fixed point of
BP . By the point (i) of Theorem 3, ṽ is a unique fixed point of BP in Bo+. Hence,
ṽ ≡ v∗∗. As a result, ṽ(x) = v∗(x) for x > 0.
Therefore, by the point (ii) of Theorem 3, it follows that v∗ is continuous on X \ {0}.

��
Proof of Theorem 5 For proving (17), we only need to show

lim
δ→0

||vδ
n − v∗||X = 0 for every n ∈ N. (20)

Obviously, Eq. (20) is satisfied for n = 1. Suppose it is true for some n. Let ε > 0.
Then, for sufficiently small δ > 0, we have ||uδ − u||X ≤ ε, ||vδ

n − v∗
n ||X ≤ ε.

Applying Assumption 5, Theorem 4 (iv), and Dini Theorem, we may assume

sup
y∈Γ (x)

|My(v
δ
n) − My(v

∗
n)| ≤ ε

for sufficiently small δ > 0. By the uniform continuity of W , we have (20) for n + 1.
��
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6 Final conclusions

The paper contains the proof of the existence and the uniqueness of a recursive utility
in themodel with a nonlinear aggregator and CCE.Moreover, we consider the problem
of optimization of a recursive utility by means of Bellman equations. The transition
probability satisfies assumptions known of growth models. The results which follow
from this paper extend the results known from Jaśkiewicz et al. (2014). Also, many
Thompson’s aggregators from Marinacci and Montrucchio (2010) and Becker and
Rincón-Zapatero (2016) satisfy the conditions of my paper. Moreover, this paper con-
tains an example of an aggregatorwhich satisfies its conditions, yet is not aThompson’s
aggregator. Since CCE is nonlinear, the results in this paper expand the deterministic
models as in Bich et al. (2018), Martins-da-Rocha and Vailakis (2010), Le-Van and
Vailakis (2005), and Becker and Rincón-Zapatero (2016). However, let us note that, as
opposed to Bich et al. (2018), Jaśkiewicz et al. (2014), and Le-Van andVailakis (2005),
Assumption 3 requires that the temporal utility u is bounded below by 0. The main
results from this paper contain an iterative algorithm used to calculate recursive utility.
For our results, we make extensive use of Guo–Cho–Zhu Theorem (Guo et al. 2004),
which distinguishes this paper from other papers in the literature, which used stan-
dard Banach Fixed Point Theorems (e.g., in Marinacci and Montrucchio (2010) or in
Martins-da-Rocha and Vailakis (2010)] or the extension from Matkowski (1975) (see
also Jaśkiewicz et al. 2014), as well as papers that apply Krasnoselski and Zabreiko
(1984) (see Becker and Rincón-Zapatero 2016; Bloise and Vailakis 2018).

The applications of various aggregators and CCE are possible in various theoretical
problems in financial market (see asset pricing in Talarini Jr. (2000), or sovereign debt
paradox in Martins-da-Rocha and Vailakis (2017)), Pareto optimal allocations (see
Anderson 2005) or the managing global environment (see Asheim et al. 2012).
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7 Appendix

Proof of Proposition 1 We only show that My satisfies (ii) in Assumption 1. Let v ∈
int(B+(X)), y ∈ X , and define f :]0, 1[→ R+ by

f (t) := My(tv) = φ−1(Ey(φ(tv))).
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Clearly, f (t) > 0 for each t ∈]0, 1[. Since f is differentiable, the sub-homogeneity
is equivalent to f ′(t)t

f (t) ≤ 1 for all t ∈]0, 1[.
Let A := φ(tv). Observe that

f ′(t)t
f (t)

= Ey(φ
′(φ−1(A))φ−1(A))

φ′(φ−1(Ey(A)))φ−1(Ey(A))
. (21)

We only prove (i) (i.e., φ is strictly increasing, and φ′ (φ−1(·))φ−1(·) is concave). The
proof of (ii) is similar. By Jensen inequality, we have

Ey(φ
′(φ−1(A))φ−1(A)) ≤ φ′(φ−1(Ey(A)))φ−1(Ey(A)). (22)

Since φ is strictly increasing, φ′ is strictly positive as well as φ−1. Hence, (22) together
with (21) yields f ′(t)t

f (t) ≤ 1.
��

Proof of Proposition 2 We only prove that W (v1, tv2) ≥ trW (v1, v2) for all v1 ≥ ε,
v2 ∈ [0, Ū ], t ∈ [0, 1], and some r ∈]0, 1[. Since W is Thompson, we only find r
such that

tW (v1, v2) + (1 − t)W (v1, 0) ≥ trW (v1, v2) (23)

or equivalently

(1 − t)δ ≥ tr − t where δ = sup
v1≥ε

W (v1, 0)

W (v1, Ū )
.

Hence, Eq. (23) is satisfied for

r > sup
t∈]0,1[

ln(δ + t(1 − δ))

ln(t)
.

Since the right-hand side above is less than 1, the proof is complete. ��
Proof of Lemma 1 Let U ∈ U+ and δ ≥ 0.

Proof of (i). We show that T δ
W (U ) ∈ U+. For each n > 1, let hn ∈ Hn and xn ∈ X .

First, we show that T δ
W (U )(xn, σ n(hn)) is jointly measurable in (hn, xn). AsU ∈ U+,

it follows (hn+1, x ′) ∈ Hn+1×X → U (x ′, σ n+1(hn+1)) is jointlymeasurable. Hence,
by Assumption 1, ζ(hn+1, y′) := My′(U (·, σ n+1(hn+1)) is jointly measurable in
Hn+1 × X . Observe further

T δ
W (U )(xn, σ

n(hn)) =
∫

Γ (xn)
W (uδ(xn − yn), ζ(hn+1, y

′))σn(dyn|hn, xn).

Hence, T δ
W (U )(xn, σ n(hn)) must be jointly measurable on Hn × X . Therefore, T δ

W
mapsU+ into itself. To show that T δ

W maps int(U+) into itself, observe that by (7) and
Assumption 3 it holds TW (U )(x, σ ) ≥ W (0, [U ]X×Σ) > 0.
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Proof of (ii). The proof is easy by Assumptions 3 and the definition of CCE.
Proof of (iii). By (ii), it holds T δ

W (U )(x, σ ) ≥ W (δ, [U ]X×Σ) > 0. In particular,
if U = 0, then T δ

W (0)(x, σ ) ≥ W (δ, 0) > 0.
Proof of (iv). From part (i) of this theorem, it follows that all Jn are well defined.

Frompart (ii) of this theorem, Jn increases inn. Indeed, J1 ≥ 0, and suppose Jk+1 ≥ Jk
for some integer k. Then, Jk+2 = TW (Jk+1) ≥ TW (Jk) = Jk+1. Consequently, Jn
increases in n and hence converges pointwise to J . We show that J is no greater than
any other fixed point of TW . Let U be any fixed point of TW . Observe that U ≥ 0,
and suppose U ≥ Jk . Then, by (ii) and the induction hypothesis, U = TW (U ) ≥
TW (Jk) = Jk+1, and consequently, passing to the limit, we get that U is greater than
J . ��
Proof of Lemma 2 Step 1. First suppose x < K (ω). Then, by Assumption 4,
q(x, ω) > x > q(0, ω) = 0. By Darboux Theorem, there is y∗(x) ∈]0, x[ such
that q(y∗(x), ω) = x . Define σ1(x1) = y∗(x1), and for each τ > 1 and history
h := (xn, yn)n∈N ∈ H , στ (·|hτ , xτ ) ≡ y∗(x1). We show that such σ is feasible. We
show more:

Pσ
x

(
h = (xn, yn)n∈N : inf

n∈N xn ≥ x1

)
= 1. (24)

Since x1 = x < K (ω), by Assumption 4, we have

x2 = q(y∗(x1), ω1) ≥ q(y∗(x1), ω) = x1 = x .

Suppose xk ≥ x1 Pσ
x − a.s. Then, repeating the reasoning above xk+1 ≥ x1 as desired.

Therefore, (24) holds, and such σ is feasible. Hence, inf
n∈N u(xn − y∗(x)) > 0 Pσ

x -a.s.

Hence, Σx,δ �= ∅ with δ = u(x − y∗(x)) > 0.
Step 2.Now, assume that x ≥ K (ω). Put any x0 ∈]0, K (ω)[. Then, define σ1(x1) =

y∗(x0), and for τ > 1, στ (·|hτ−1, xτ ) ≡ y∗(x0). As in Step 1, we show that such σ is
feasible, and σ ∈ Σx,δ with δ = u(x0 − y∗(x0)). ��
Proof of Corollary 1 By Theorem 2 (iii), it follows that for each (x, σ ) ∈ X × Σ it
holds J (x, σ ) = U∗(x, σ ). Hence, the sets of J- and U-optimal policies and values
must coincide. By Theorem 3 (iii), the set of J-optimal (and U-optimal) policies is
nonempty, and Eq. (13) holds. ��
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