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Abstract Stylized facts about statistical properties for short horizon returns in finan-
cial markets have been identified in the literature, but a satisfactory understanding
for their manifestation is yet to be achieved. In this work, we show that a simple
asset pricing model with representative agent is able to generate time series of returns
that replicate such stylized facts if the risk aversion coefficient is allowed to change
endogenously over time in response to unexpected excess returns under evolutionary
forces. The same model, under constant risk aversion, would instead generate returns
that are essentially Gaussian.We conclude that an endogenous time-varying risk aver-
sion represents a very parsimonious way to make the model match real data on key
statistical properties, and therefore deserves careful consideration from economists
and practitioners alike.
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1 Introduction

The statistical analysis of price variations in financial markets has attracted a lot of
attention, both from practitioners and academic economists, in an attempt to find
regularities that could help us understand and possibly predict the evolution of prices
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in such markets. Such extensive analysis has led to the identification of a number of
statistical properties for financial returns that seem to hold across markets and over
time, and that can be summarized in the following set of empirical stylized facts (see,
e.g., Cont 2001 and Tseng and Li 2011): i) the distribution of returns is not Gaussian
but presents instead fat tails; ii) there is no serial correlation in returns; iii) there
is positive correlation in absolute returns, with slow decay; iv) returns show strong
volatility clustering, with large fluctuations that tend to cluster together.

Though there is agreement among researchers on such empirical observations, we
still lack a clear understanding of their causes. We suggest in this work that a common
origin could be identified in the time-varying nature of the risk aversion coefficient
for investors, and show that an otherwise standard, rational expectations asset pricing
model, once enhanced with such a feature, can generate time series for returns that
replicate very closely the main stylized facts identified in the empirical literature.

A growing body of literature has recently tried to use adaptive learning to improve
the empirical performance of asset pricing models. Examples include Branch and
Evans (2010, 2011), Adam et al. (2015), Carceles-Poveda and Giannitsarou (2008),
Bullard and Duffy (2001), Brock and Hommes (1998) and Timmermann (1993,
1996). The main success of these works has been in generating models able to show
excess volatility similar to that observed in financial markets, but they have not
focused on the same array of short-horizon stylized facts that we consider here.

An important attempt at explaining such short-run stylized facts comes instead
from models based on stochastic interactions among traders. These models are bor-
rowed and adapted from the physics literature, where they have been known for being
able to generate data that display scaling laws regularities similar to those found in
financial markets.1 While the spirit of these works is similar to the motivation of this
paper, our study would fit perhaps better in the behavioral economics literature, as we
try to remain as close as possible to a standard economics framework, while depart-
ing from it only in the way a behavioral characteristic, risk aversion, is modeled. The
advantage of this approach with respect to models based on stochastic interacting
particles is that the economic interpretation remains clearer. While stochastic models
of interacting agents seem to be able to replicate facts such as fat tails and volatility
clustering, in fact, they tend to lack microfoundations and do not explicitly provide
an economic justification for the behavior of agents.

The backbone model that we use for our analysis is a simple, standard, present
value asset pricing model with stochastic dividends, as presented, for example, by De
Long et al. (1990). Such a model, as it stands, does a poor job in matching stylized
facts about financial returns, as it implies that returns are normally distributed and
independent over time. Our main contribution is to show that a simple behavioral
modification of this model can generate returns that match key statistical properties
of historical data for financial markets. The risk aversion coefficient for investors is
usually assumed, in the standard economics and finance literature, to be a primitive
of the model, a feature that is hard wired into the brain of people when they are born
and that does not change. We believe instead that there is scope for modelling the

1An extensive survey of these models is provided in Lux (2009).



Endogenous time-varying risk aversion and asset returns 583

attitude of agents towards risk as a feature that depends on the environment in which
agents make their decisions, and that evolves with it.

For example, narrative evidence suggests that many people, who had been very
cautious up to that point with their investment decisions and mainly kept their sav-
ings in government securities or similar activities, during the stock market bubble of
the late nineties and early 2000 abandoned their safe investments and moved their
money into more risky assets. Observing high rates of returns on stock markets, those
people became more willing to take on risky activities in an attempt to join in and
share the high profits that were realized on financial markets at the time. In a sort
of herd-like behavior induced by their decreased risk aversion, previously cautious
investors entered into the stock market. When prices then started to fall and returns
decreased, those same investors became afraid of losses, their risk aversion increased
and they fled financial markets, selling their assets and fuelling a sharper decrease
in prices.

Alan Greenspan, on this point, said in a speech at the Federal Reserve Bank of
Kansas City (Greenspan, 2005; Italics added):

“Thus, this vast increase in the market value of asset claims is in part the indi-
rect result of investors accepting lower compensation for risk. [...] Any onset of
increased investor caution elevates risk premiums and, as a consequence, low-
ers asset values and promotes the liquidation of the debt that supported higher
asset prices.”

Greenspan suggests in his speech that changes in market values depend, partly,
on changes in risk premia required by agents, which in turn depend on the attitude
of investors towards risk. In this paper we make formal this argument and show that
adding this feature to an otherwise standard model changes completely the statistical
properties of simulated asset returns, making them similar to those observed in real
markets.

Time-varying risk aversion is not new in economics. In consumption-based asset
pricing models, for example, Brandt and Wang (2003) propose a time-varying risk
aversion coefficient that responds to news about consumption growth and inflation,
while Li (2007) studies asset prices under the assumption of a countercyclical risk
aversion. We propose instead a process for risk aversion that depends on unexpected
excess returns: agents adapt their attitude towards risk on the basis of the unexpected
excess gains that they observe from risky activities.

While in standard economics risk aversion is a feature that depends solely on
the curvature of the utility function being maximized by agents, the form of which
is assumed constant over time, in behavioral economics Kahneman and Tversky
(1979)’s prospect theory argues that expected utility maximization is a poor repre-
sentation of how people make choices under risk, and suggests instead an alternative
framework where people’s attitude towards risk is situation dependent. We will con-
tinue to use here the expected utility maximization framework, but modify it to allow
for the curvature of the utility function, and therefore the risk attitude of agents, to
evolve over time endogenously. An evolutionary justification for changes in attitudes
towards risk is provided by Netzer (2009), who shows that, from an evolutionary
perspective, the utility function of agents, and therefore their risk aversion, should
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depend on the probability distribution of alternatives about which agents need to
make decisions. In our context, such alternatives are represented by returns from
risky versus risk-free activities, and agents adapt their perceptions about the distribu-
tion of such alternatives using observations about unexpected excess returns on the
stock market.

The plan of the paper is as follows: in Section 1.1 we discuss the literature related
to our work, while in Section 1.2 we discuss more in detail the statistical properties
of financial returns by looking at the S&P500 index as a representative case. Section
2 introduces the basic model, Section 2.1 discusses endogenous time-varying risk
aversion and Section 2.2 derives the equilibrium solution for the model. Section 3
presents results from simulations of the model with constant and with endogenous
time-varying risk aversion, and compares the resulting series for returns with those
from real data. Section 4 discusses the results, and Section 5 concludes.

1.1 Related literature

Two main lines of research are relevant to our work, one based on bounded rationality
and learning, and the other based on behavioral models of human decisions.

In terms of the first strain of literature, Branch and Evans (2010) show that real
time learning dynamics, in an otherwise standard consumption based asset pricing
model, calibrated to U.S. stock data, is capable of reproducing regime-switching
returns and volatilities. Branch and Evans (2011) introduce learning about risk and
returns in the De Long et al. (1990) framework and show that escape dynamics
emerge that look like stock market crashes, even though the escape route is not
from a bubble high but from the equilibrium fundamental value. Hommes and Zhu
(2014) use the concept of stochastic consistent expectations equilibrium to explain
excess volatility in a standard present value asset pricing model with stochastic
dividends similar to the one we consider here. Adam et al. (2015) show how adap-
tive learning can generate excess volatility in a consumption based asset pricing
model and present an estimated version of the model to US data that can replicate
some asset price puzzles such as stock price volatility, the persistence of the price-
dividend ratio and the predictability of long-horizon returns. All these works mainly
focus on the long-horizon properties of asset prices returns, while we will focus our
attention on trying to explain and replicate statistical properties of returns in the
short run.

As for the second strain of literature, Lux (2009) provides an extensive surveys
on behavioral asset pricing models based on interacting agents. He divides such lit-
erature into four groups, and we follow here his classification in our discussion. A
first class of models is focused on interactions between fundamentalists and chartists,
where the disaggregation of markets is limited to the distinction between two classes
of agents that form their demand according to different rules. Early contributions are
Beja and Goldman (1980), Day and Huang (1990) and Chiarella (1992). The interac-
tion between these two classes of agents is able to generate a mix of centripetal and
centrifugal forces that can lead to rich dynamics in prices. More recently, Chiarella
and He (2002, 2003) propose a model where there is heterogeneity in risk aver-
sion between fundamentalists and trend chasers, coupled with learning about future
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returns, and find that the dynamics of asset prices are affected by the relative risk
attitudes of different types of investors.

A second class of models is built on local stochastic interactions, based on the
seminal work of Kirman (1993) on herding: here the departure from traditional eco-
nomics models is more marked, with agents’ demand being determined by a local
interaction mechanism by which agents are recruited by neighbors on a particu-
lar strategy. Kirman and Teyssière (2002) show that such a feature can generate
long-term dependence in absolute and squared returns.

A third class of models tries to capture non-local interactions through field effects,
as for example in Lux (1995, 1998): the main feature here is that traders are assumed
to be influenced not by other individual agents, but by the overall mood of the market.
Such models can generate fads or herding in the market that lead to autoregressive
dependence in higher moments.

Finally, some authors have explored the importance of the topology of interac-
tions on financial markets. Bouchaud and Cont (2000), for example, build on the
percolation model popular in statistical mechanics and place traders on a lattice with
interactions among neighboring agents forming clusters: the ensuing distribution of
returns shows fat tails but higher moments are uncorrelated, thus failing to match
one key stylized fact of financial markets. Subsequent works have tried to improve
on this framework: for example, Iori (2002), using a different network structure, has
been able to generate time series that more closely match those observed in financial
markets.

Among these approaches based on stochastic interactions among agents, we
believe the mechanism at work in our framework is closer in spirit to the one used in
models with field effects, where individual decisions are affected by aggregate fea-
tures of the economy. In our case the (individual) demand for the risky asset depends
on the risk aversion coefficient, which changes endogenously in response to changes
in excess returns, an aggregate feature of the market. Despite the similar interpreta-
tion, the way we model such effects, from the aggregate to the individual level and
back, differs sharply, as in our case the link from macro to micro goes through an
explicitly identified and endogenous response of agents’ preferences to their environ-
ment. We believe that, compared to models with field effects, our approach is more
intuitive from an economic perspective.

A key feature of our model will be the time-varying nature of risk aversion. This is
not new in the literature. Brandt and Wang (2003) present a model in which the coef-
ficient of risk aversion changes in response to news about consumption growth and
inflation, and find empirical support for the hypothesis that aggregate risk aversion
varies in response to news about inflation. Li (2007), instead, assumes a countercycli-
cal risk aversion that drives a pro-cyclical risk premium in asset prices, but finds that
such a feature may not help explain important facts such as the predictability of long-
horizon stock returns or the univariate mean-reversion of stock prices. Park (2014)
proposes a model of heterogeneous risk aversion, where fundamentalists have con-
stant risk aversion while chartists’ risk aversion varies over time due to psychological
factors: the time variation in risk attitudes increases price fluctuations and generates
chaotic dynamics. Finally, Smith and Whitelaw (2009) find empirical evidence in
support of the hypothesis that risk aversion moves countercyclically.
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An important theoretical paper for our modelling choice of risk aversion is Net-
zer (2009), who proposes a model of the evolution and adaptation of hedonic utility
and provides an evolutionary explanation for risk attitudes that adapt according to
changes in the perceived distribution of possible alternatives. We will discuss this
point at length in Section 2.1.1.

In terms of evidence about short-horizon returns on financial markets, stylized
facts are presented in a number of papers in the literature, such as Cont (2001) and
Tseng and Li (2011). Both works show that the same stylized facts discussed in
Section 1.2 below hold for a large number of financial time series, including Stan-
dard & Poor’s 500 Index, NASDAQ Composite Index and Hang Seng Index, series
for individual stock prices such as IBM, Microsoft and BMW, and even series for
exchange rates.

1.2 Stylized facts

As we mentioned before, the main stylized facts identified for short-horizon returns
on financial markets are: i) the distribution of returns is not Gaussian, and presents
instead fat tails; ii) there is no correlation in returns; iii) there is positive correlation
(with slow decay) in absolute returns; iv) returns show volatility clustering, i.e., large
fluctuations tend to cluster together.

Such stylized facts hold for returns computed from many asset price series (see,
e.g., Tseng and Li, 2011). As an example, we report here statistics for the S&P500
index, for the period 02/01/1957 until 12/04/2012,2

Returns are computed as

rt = pt − pt−1

pt−1
,

where pt is the price of the asset or index at time t . It is also common practice to
normalize returns as follows

nrt = rt − μ

σ
,

where μ and σ are the mean and standard deviation of returns. Absolute returns are
then defined as

art = |rt |.
For the S&P500 index, μr = 0.000294 and σr = 0.0100 and returns and nor-

malized returns are plotted in Fig. 1. It is clearly evident the volatility clustering of
returns, with large movements that tend to cluster together at particular times.

We compute then the empirical probability density function (pdf) for normalized
returns and overlay it with the analytical normal pdf for comparison (Fig. 2): it is
evident that the distribution of returns deviates from normality. Non-normality is also
confirmed by the 4th moment of the distribution, kurtosis, which in the data is 24.378,
while the value for a Gaussian distribution is 3, and by the Jarque-Bera test, which
rejects at 5 % significance level the null hypothesis that the sample comes from a
normal distribution with unknown mean and variance. Note that the estimated tail

2Data are freely available at: http://research.stlouisfed.org/fred2/series/SP500?cid=32255

http://research.stlouisfed.org/fred2/series/SP500?cid=32255
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Fig. 1 Returns and normalized returns for the S&P500 index

index for returns, which represents the order of the highest finite absolute moment,
is 3.1083 , so the estimate for the fourth moment of the distribution is not reliable,
which is consistent with previous evidence on asset returns (Cont 2001). The tail
index conveys information about the tail of a distribution: the lower the index, the
fatter the tails.3

As for the correlation of returns and absolute returns over time, the serial correla-
tion of returns is usually analyzed by computing the autocorrelation function (ACF).
For the S&P500, the ACF for returns drops to zero after one period, while it stays
positive for absolute returns at long lags, being still above .1 at 100 lags (See Fig.
3).4 This is a typical finding in financial markets: returns have short-memory and
present exponentially decaying autocorrelations, while absolute (or squared) returns
display long-memory and are characterized by hyperbolic exponential decline in
autocorrelation.

We have presented in this section a brief exposition of the main stylized facts con-
cerning statistical regularities in financial returns. We now develop a simple model
that will be able to replicate closely all such facts.

3The tail index is computed using the Hill estimator (Hill 1975), based upon the upper 2.5 % tail of the
half sample. Estimates of the tail index are dependent on the sample fraction used: we choose to report
here the statistics based on the half sample after experimenting with different fractions, always getting
values between 2 and 4.
4Lux (2009) reports that, in fact, the ACF for the S&P500 absolute returns has been found to remain
positive over 2500 lags.
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Fig. 2 Empirical pds of normalized returns and normal fit

2 The model

We start with a standard, present value asset pricing model with stochastic dividends.
There are two types of assets: a risk free one, elastically supplied, with a gross rate of
return R = β−1, where β is the discount factor; and a risky asset, the price of which
is pt and pays a stochastic dividend dt . The supply of the risky asset is exogenous
and stochastic.

The dynamic equation for wealth (Wt ) is then represented by

Wt+1 = RWt + (pt+1 + dt+1 − Rpt)z
d
t

where zd
t is the demand for the risky asset.

Agents are myopic mean variance maximizers, and therefore maximize

Et

[
αtEtWt+1 − α2

t /2V art (Wt+1)
]

(1)

where Et and V art are the conditional expectation and variance of wealth based
on the subjective probability distribution of agents, and αt ∈ R is the coefficient of
absolute risk aversion.

The coefficient of risk aversion has a time t subscript, to make it explicit that we
will allow such parameter to evolve over time: the specification of its endogenous
dynamics will be given in the next section. Though risk aversion evolves over time,
at each time t agents take such a coefficient as given in their maximization problem,
only to revise it in the following period on the basis of new evidence. Moreover, by
assuming such a parameter as fixed, agents also implicitly disregard the feedback
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from time-varying risk aversion on asset price volatility, and maintain this param-
eter constant in their maximization problem. In this respect, agents in our setting
implement an anticipated utility model in the spirit of Kreps (1998). Such a model-
ing strategy has been largely adopted in the macroeconomics literature on bounded
rationality and learning (e.g., Sargent 1993, 1999 and Evans and Honkopohja 2001)
and we believe it can represent a good approach also in the present context where
behavioral parameters rather than beliefs evolve over time.

Note also that risk aversion is allowed to become negative, thus making agents
risk lovers: this will happen in our setting when there is a long series of large and
unexpected profits in the stock market, so that investors become, in effect, willing to
gamble in financial markets.5

From the above setting, it follows that the optimal demand for the risky asset is
given by

zd
t = Et (pt+1 + dt+1) − β−1pt

αtσ
2
t

, (2)

where σ 2
t is agents’ conditional variance of excess returns pt+1 + dt+1 − Rpt and is

given by
σ 2

t = Et

[
(pt+1 + dt+1) − Et (pt+1 + dt+1)

]2
. (3)

Equating demand and supply, denoted by zs
t , we obtain the pricing equation

pt = βEt (pt+1 + dt+1) − βαtσ
2
t zs

t . (4)

5Note that such a feature is not essential for our results. We tried a different specification where risk
aversion is constrained to remain positive and all the results of the paper carried through.
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The exogenous process for dividends is assumed to be given by

dt = d0 + ut , (5)

where d0 is a constant and ut is an i.i.d., zero mean, normally distributed disturbance.
We also assume that supply follows the exogenous random process

zs
t = s0 + vt , (6)

where s0 is a constant and vt is an i.i.d., zero mean, normally distributed disturbance
uncorrelated with ut .

2.1 Endogenous time-varying risk aversion (ETVRA)

The coefficient of absolute risk aversion, αt , is modelled as time-varying and endoge-
nous, depending on unexpected (excess) returns in the stock market: higher returns
than expected make agents more willing to take on the risk involved in investing in
the stock market. Specifically, we postulate a process of the form

αt = αt−1 − γαπt , (7)

where γα ≥ 0 and
πt = pt + dt − Et−1(pt + dt ), (8)

i.e., risk aversion decreases when excess profits in the financial market are higher
than expected.6 Parameter γα represents the sensitivity of risk aversion to unexpected
returns: with γα = 0, we have the standard case of constant risk aversion over time,
while positive values of γα mean that agents are willing to take on more risk when
they see excess returns in the stock market compared to what they expected (and vice-
versa). Such endogenous dynamics for the coefficient of risk aversion will make the
reduced form parameters in the solution for prices be time-varying.

2.1.1 An evolutionary justification to ETVRA

The postulated process for risk aversion dynamics, represented by Eq. 7, might seem
ad-hoc at first. In reality, it has a simple and intuitive justification under an evolu-
tionary framework for the derivation of the utility function of agents coupled with
learning dynamics.

From an evolutionary perspective, it can be shown (Netzer 2009) that, if individ-
ual decisions are guided by hedonic utility, i.e., if agents, given a set of alternatives,
prefer the one that promises the greatest pleasure, then a utility function can be con-
sidered as a reward system to induce agents to make optimal choices, and its slope
can be interpreted as the degree of attention devoted to the available alternatives. The
shape of the utility function therefore determines where agents put more attention in
their choices. Evolutionary forces would shape the utility function to make it respon-
sive to the decision environment and, in particular, to the distribution of alternatives
available for choice, in order to devote more attention to areas where the decision

6Note that Et−1βpt−1 = βpt−1, so these terms drop out of Eq. 8.
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is more critical. If the properties of such distribution are not known a-priori, agents
would have to learn them from the environment, and the evolution of agents’ beliefs
about such distribution would then affect the shape of their utility function, making
it time-varying in a way that is well represented by our ETVRA dynamics.

In our setting, the distribution of excess returns from the risky activity is unknown,
and agents adapt their beliefs about it over time by moving in the direction indicated
by unexpected returns. Equation 7 can, therefore, be interpreted as a simple adaptive
learning rule with constant gain, through which agents keep track of the evolution of
returns on the stock market by adjusting their beliefs in the direction suggested by
forecast errors. A shift in probability is signalled by πt , a realization of unexpected
excess returns on the stock market. Parameter γα represents a behavioral feature that
captures the degree of adjustment of agents’ perceived distribution of excess returns
to evidence about unexpected realizations. As beliefs about the distribution of returns
adapt, so does risk aversion. In particular, a decrease in the estimate of α, which
corresponds to a shift in probability mass to alternatives with larger payoffs, reduces
risk aversion.

2.2 Equilibria

In this section, we solve the model for an equilibrium under constant risk aversion,
and then introduce time-varying risk aversion dynamics. Under rational expectations
(RE) and constant risk aversion, two possible equilibria exist: a fundamental equi-
librium, where pice dynamics are affected only by the fundamental features of the
economy, and a bubble solution, which admits sunspot components. For a number of
reasons discussed below, we will focus only on the fundamental equilibrium.

2.2.1 Constant risk aversion

Under RE, with constant risk aversion (αt ≡ α), it is well known that Eqs. 4–6 admit
two possible equilibria, the fundamental solution and the bubble one.

The price equation in the fundamental equilibrium is represented by

pt = β (1 − β)−1
(
d0 − αs0σ

2
)

− βασ 2vt , (9)

while, in the bubble equilibrium, it is given by

pt = ασ 2s0 − d0 + β−1pt−1 − ασ 2vt−1 + ξt , (10)

where ξt is a martingale difference sequence that opens the door to sunspot variables
affecting prices. It is also known (see, e.g., Branch and Evans, 2011) that the fun-
damental equilibrium is adaptively learnable by agents, while the bubble one is not.
Moreover, since β < 1, the process for pt in the bubble equilibrium is not stable.

2.2.2 ETVRA

With a time-varying risk aversion, the solution to the model must be enriched to
include an equation for the evolution of risk aversion and for the variance of returns.
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We stress again here that agents in our setting, in the spirit of the anticipated utility
model of Kreps (1998), solve at each point in time their maximization problem (and
we, as modeler, find the equilibrium) as if risk aversion and the conditional variance
of dividends were constant, but then modify their attitudes towards and perception of
risk as new evidence on unexpected excess returns comes available next period.

For the fundamental equilibrium, the evolution of the system is therefore repre-
sented by

pt = β (1 − β)−1
(
d0 − αt s0σ

2
t

)
− βαtσ

2
t vt (11)

αt+1 = αt − γαπt , (12)

πt = −βαtσ
2
t vt + ut (13)

σ 2
t =

1 ±
√
1 − 4α2

t β
2σ 2

v σ 2
u

2α2
t β

2σ 2
v

(14)

where Eq. 13 for unexpected excess returns comes from computing (8) in the funda-
mental equilibrium. Expression (14) for the conditional variance of excess returns is
obtained from Eq. 3 by substituting in the equations for prices and dividends.

By substituting into expression (12) for αt+1 those for πt and σ 2
t , it is possible to

see that the dynamics for the risk aversion coefficient are represented by a non linear
difference equation that depends on parameters β and γα and on the variances and
realizations of the two processes ut and vt :

αt+1 = αt − γα

⎡
⎢⎣ut − βαt

1 ±
√
1 − 4α2

t β
2σ 2

v σ 2
u

2α2
t β

2σ 2
v

vt

⎤
⎥⎦ .

Simulations will be done with the (-) root, as this is the one that Branch and Evans
(2011) show to be stable under learning. It is also the one that ensures that simulated
prices follow a smooth process without unrealistic and sudden large jumps.

In the bubble equilibrium, instead, the evolution of the system under ETVRA is
described by

pt =
(
αt−1σ

2
t−1s0 − d0

)
+ β−1pt−1 − αt−1σ

2
t−1vt−1 + ξt ,

αt+1 = αt − γαπt ,

πt = ut

σ 2
t = σ 2

u + σ 2
ξ .

It is easy to see that, in this case, αt simply follows a random walk process

αt+1 = αt − γαut .

In a bubble equilibrium, therefore, asset prices diverge, unexpected excess returns
from the risky activity are white noise and the ETVRA follows a random walk: for
all these reasons, we do not focus on such equilibrium in this work. In a funda-
mental equilibrium, instead, asset prices follow a stationary process, but unexpected
excess returns depend on risk aversion of agents and the dynamics for the ETVRA
coefficient are highly nonlinear. These features, we will show, impact significantly
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on the implied nature of returns from the risky asset, and are able to generate
dynamics that in many dimensions closely resemble those observed in real financial
markets.

3 Simulations and statistical analysis

In order to compare the statistical properties of observed returns on financial markets
with those that come from our model, we simulate price dynamics in the fundamen-
tal RE equilibrium, first with constant risk aversion and then with ETVRA. From
such series, we compute returns and analyze their properties in comparison with the
stylized facts reported in Section 1.2.

The baseline calibration for the model is as follows: β = .95, s0 = 1 , d0 = 5 ,
σ 2

v = .5, σ 2
u = .9. These parameter values are taken from Branch and Evans (2011),

apart from d0 which we have set to a higher value in order to avoid prices hitting the
zero lower bound.7 We also set the initial value for risk aversion, α0, equal to 0.75,
which is the value used by Branch and Evans (2011) for their constant risk aversion.
Sensitivity analysis results regarding these parameters are reported in Section 3.3.
The key new parameter γα is instead calibrated to 0.025: extensive investigations
have shown that the higher is γα , the further away from normality is the distribution
of returns. We will discuss further this point later on when reporting results from
simulations.

3.1 Asset returns with constant risk aversion

Under constant risk aversion, it is clear from Eq. 9 that returns follow a normal dis-
tribution. For comparison with subsequent statistics under ETVRA, we simulate our
model with constant risk aversion and compute returns from the resulting time series
for asset prices. Mean and standard deviation of simulated returns, μ̃t and σ̃t , are,
respectively, 0.000119 and 0.0156, in line with those found in real data.

Normality of simulated returns is confirmed by the Jarque-Bera test, which can
not reject at 5 % significance level the null hypothesis that the sample comes from
a normal distribution with unknown mean and variance, and by the estimated kurto-
sis, which is 3.0049. Moreover, computing the ACFs for simulated returns and their
absolute value we find that, in both series, the autocorrelation function drops to zero
quickly, in contrast to what real returns show.

All the above evidence on simulated returns under constant risk aversion clearly
indicates that the model with constant risk aversion is not able to replicate the
key stylized facts that have been consistently observed in series for returns on real
financial markets.

7Branch and Evans (2011) avoid such a problem by modelling supply slightly differently from us and
allowing it to become endogenous when prices sharply decline: this is meant to capture the drying up
of asset float in financial markets that perform poorly. We chose not to use such a mechanism here, but
simulations showed that it would not affect our results.
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3.2 Asset returns with ETVRA

We simulate now the model with endogenous time-varying risk aversion and compute
returns from the resulting time series for asset prices. Mean and standard deviation
of simulated returns, μ̃t and σ̃t , are, respectively, 0.000090 and 0.0110, in line with
those found in real data.

We first show in Fig. 4 the time series of prices and risk aversion coefficient under
time-varying risk aversion for a representative run of simulated data. It is possible to
see that ETVRA introduces persistence in prices, which with constant risk aversion
would simply be white noise around the fundamental equilibrium price - see Eq. 9.

We then plot returns from the same representative run of simulated data in Fig. 5,
together with their normalized counterpart. It is evident now that ETVRA generates
volatility clustering in returns.

In Fig. 6, we compute the empirical pdf for the simulated normalized returns and
overlay it with the analytical normal pdf for comparison: it seems evident that the
distribution of returns under ETVRA differs significantly from a Gaussian and shows
instead characteristics similar to those observed for returns in real financial mar-
kets. This impression is confirmed by the Jarque-Bera test, which this time rejects
at 5 % significance level the null hypothesis that the sample comes from a normal
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Fig. 4 Evolution of prices and risk aversion under ETVRA. Parameter values and initial conditions as
follows: β = .95, s0 = 1, d0 = 5, σ 2

v = .5, σ 2
u = .9, α0 = 0.75
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Fig. 5 Returns and normalized returns for the simulated series with ETVRA. Parameter values and initial
conditions as follows: β = .95, s0 = 1, d0 = 5, σ 2

v = .5, σ 2
u = .9, α0 = 0.75

distribution with unknown mean and variance. Also, in terms of kurtosis, we find a
value of 21.48, in line with the one estimated for S&P500 returns and much higher
than the one, close to 3, obtained under constant risk aversion and consistent with
a Gaussian distribution. Note, though, that the estimated tail index is 2.88, so the
estimated fourth moment of the distribution is not reliable.

We note here that estimated kurtosis for the distribution of simulated returns is
sensitive to the value of γα: higher values of γα imply higher kurtosis, as the distri-
bution of returns drifts further away from normality.8 As risk aversion becomes more
sensitive to unexpected excess returns from the risky asset, the feedback effect from
returns to asset demand and therefore prices is strengthened, making the distribution
of returns more heavy tailed. Figure 7 plots the ACFs for simulated returns under
ETVRA and for their absolute value: we can see that, while there is no serial cor-
relation in returns, absolute returns show positive correlation with slow decay, very
similar to that observed in S&P500 returns. All the above evidence on simulated
returns with ETVRA shows that simply introducing an endogenous risk aversion
coefficient that responds to unexpected excess returns from the risky activity in an

8The case with constant risk aversion corresponds to γα = 0, and we have seen in Section 3.1 that it
implies normality of returns and a kurtosis close to 3.
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Fig. 6 Empirical pds of simulated normalized returns and normal fit

otherwise standard asset pricing model fundamentally changes the statistical proper-
ties of simulated returns, and makes them strikingly resemble those observed in real
financial markets.

3.3 Robustness check

In order to investigate the sensitivity of our results to the specific values assumed
for the parameters in the model, we run now extensive simulations under different
parameterization: reported statistics are computed as averages over 100 simulations,
each of 10,000 time periods.

The first thing to notice is that results for the baseline parameterization reported
in the previous section are confirmed when averaged across 100 simulations: mean
returns are effectively zero, with a variance around .01 and kurtosis close to the value
found in empirical data.

In terms of the effect of different parameter values on the properties of simulated
returns, a few comments are necessary. First, in terms of the variances of the stochas-
tic terms in the model, the variance of dividends (σ 2

u ) needs to be high enough to
generate kurtosis and tail indexes in line with those observed in the data: low values
of σ 2

u in fact generate thinner tails. The variance of risky asset supply (σ 2
v ) also needs

to be sufficiently high but not too high: in this case, though, low values of σ 2
v generate

the opposite problem, i.e., fatter tails (but note that the product of the two variances
must be such that σ 2

t remains real). The different impact of the two variances can be
understood by looking at Eq. 14 for the conditional variance of dividends. While σ 2

u

enters at the numerator with a multiplicative effect on the time varying risk aversion,
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Fig. 7 ACFs for returns and absolute returns for the simulated series with ETVRA

the main effect of σ 2
v comes from the term it the denominator (again with a multi-

plicative effect on αt ): while higher values for the first thus enhance the impact of
unexpected returns (see also Eq. 13) on risk aversion and thus demand, higher values
for the second dampen the effect.

Second, in terms of the constants in the model, s0 (average supply) is fairly irrele-
vant, while d0 (average dividends) needs to remain high enough (roughly above 2) to
avoid negative prices and ensuing unrealistic statistics.

An important thing to note, also, is that all these parameterizations imply distri-
butions of returns that pass the JB Test for non-normality (i.e., the null of normality
is rejected at 5 % significance level). Estimated tail indexes are also in general
between two and five, consistent with evidence on asset returns.9 ACFs of absolute
returns also remain positive and significant at long lags, and tend to be higher with
parameterizations that generate fatter tails.

We have already discussed the effect of γα , but it is worth stressing here the point
once again. This parameter represents the degree of adjustment of risk aversion to
unexpected excess returns. When equal to zero, we have the standard model with
constant risk aversion and simulated results are as reported in Section 3.1; as γα

increases, the endogenous character of risk aversion is strengthened and the tails of
the return distribution gets fatter, which is reflected in a higher kurtosis and smaller
tail index. Interpreting Eq. 7 as a simple adaptive learning rule, this means that γα

represents a constant gain coefficient in the learning algorithm. Milani (2011), in
a model of business cycles where agents need to learn about inflation, output and

9Again, the main exception being for d0 = 1, which, as noted before, generates unrealistic statistics.
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interest rates, has estimated a gain coefficient of about 0.02.10 A similar value was
estimated also in Milani (2007). Though in these works the learning algorithm is
more complex than the one we use here, as it is basically a recursive least squares
algorithm with constant gain, similar values for the gain in our setting seem to
generate returns with characteristics that best resemble those found in real data.

4 Discussion

Comparing simulations of returns with a constant and a time varying risk aversion,
the differences in the statistical properties of the generated time series are remarkable.
With a constant risk aversion, returns are essentially normally distributed, and fail to
show any of the properties identified as stylized facts for returns on financial markets.
In contrast, with ETVRA, the generated returns match surprisingly well the statistical
properties of actual returns.

Our simulations thus suggest that ETVRA could be an important factor in under-
standing financial markets. An endogenous risk aversion coefficient that responds to
excess returns introduces a reinforcement effect from market returns to asset demand
and prices, and can, therefore, generate fat tail distributions for returns. We have also
shown that as such a reinforcement effect is strengthened (i.e., as γα is increased) and
the impact of excess returns on asset demand increased, the tails of the distribution
get fatter.

In light of the literature discussed in the Introduction, we believe the mechanism at
work in our setting could be considered a sort of field effect, in the sense that it intro-
duces a feedback loop from the aggregate to individual decisions. In models with field
effects, individual behavior is affected by some aggregate feature of the economy,
giving rise to herds: in a similar way here, unexpected excess returns, by decreas-
ing risk aversion, impact individual demand and result in a herd-like behavior: when
asset prices rise more than expected, demand increases and, as a consequence, prices
are increased even further, reinforcing the feedback effect and generating heavy tails
in the distribution of returns.

Such a feedback effect from unexpected returns to demand can explain the corre-
lation in absolute returns paired with an absence of correlation in returns. Absolute
returns are, in fact, a measure of volatility, so the fact that they are correlated while
returns are not means that there is predictability in the volatility of returns but not
in returns themselves. The endogenous time-varying risk aversion in our model does
not affect expected returns (which are still zero), but generates volatility clustering
as periods of high volatility (low risk aversion) and of low volatility (high risk aver-
sion) alternate. Low risk aversion generates higher volatility because it amplifies the
impact of prices on demand, as can be seen in Eq. 2. This mechanism is thus able
to generate fat tails in the distribution of returns and correlation in their volatility by
endogenizing the demand through a link to the unexpected component of returns.

10More precisely, he estimated a value of 0.0196, with a 95 % credible interval between 0.015 and 0.025.
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From a technical point of view, time-variation of risk aversion transforms the base-
line additive stochastic framework into a doubly stochastic, multiplicative process
that is able to generate fat tailed distributions. 11

5 Conclusions

We have proposed in this paper a possible unifying explanation for many stylized
facts about returns on financial markets that had so far eluded a common understand-
ing. Our suggestion is that features such as volatility clustering, non-normality of
distribution and heavy tails, absence of correlation in returns but positive correlation
(with slow decay) in their absolute value, can all emerge in an otherwise standard,
present value model of asset prices with stochastic dividends if an endogenous time-
varying risk aversion is introduced. Simulations of the model with a coefficient of
risk aversion that is allowed to change endogenously in response to unexpected
excess returns in the risky activity produced returns that are surprisingly close, in all
these dimensions, to real data, while simulated returns from the same model under
constant risk aversion display normality of distribution, absence of volatility cluster-
ing and lack of correlation both in returns and in their absolute value. We conclude
that endogenous time-varying risk aversion represents a very parsimonious way to
explain key stylized facts in financial markets and deserves careful consideration
from economists and practitioners alike.
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