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Abstract Existing diffusion models have proven less suitable for the analysis of
environmental innovations, such as hybrid vehicles, which emerge in a context
of changing social appraisal and regulatory support. In this paper, we offer an
agent-based analysis of innovation diffusion which is better suitable for those
cases. We explore future scenarios of car engine technology with support of
a simulation model. In the model, actor behavior is modeled explicitly on the
basis of actor frames and the consequent appraisal of technology options by
potential adopters and by suppliers. The model is analytically novel in that it
incorporates five feedback loops: interactive learning between suppliers and
users, scale and learning economies, endogenous taste formation among con-
sumers, and social learning (attribution of meaning). In the model, consumer
decisions influence each other and the supply of innovation by shaping R&D
and investment decisions of suppliers. The model is applied to explore future
diffusion scenarios of clean vehicles, though it starts with simulating recent
historic trends, including the quick diffusion of direct fuel injection systems
and slow diffusion of electric vehicles in the last 20 years. It is shown that
the success of hybrid electric vehicles critically depends on suppliers shifting
towards HEV development and production (resulting in greater supply of
HEV models) and on consumers valuing hybrid electric vehicles more than
environmentally improved diesel vehicles.
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1 Introduction

Many diffusion models have been developed in the last decades, based on
various assumptions as to the mechanism behind them. The best known and
most popular model is the epidemic model (pioneered by Bass 1969), where
diffusion is governed by epidemic learning. A second type of model is the
rational choice or threshold model (David 1969; Kemp 1998). In this type
of model, individual decisions are modeled. Both models are widely and
successfully applied to simple as well as to complex technologies, varying from
lead free petrol to wastewater treatment technologies. There has emerged
a third type of diffusion model that incorporates endogenous technological
change, called the evolutionary or ‘non-equilibrium’ model (in the tradition
of Nelson and Winter 1982). This type of model includes (random) events and
learning, which result in changes in the techno-economic characteristics of the
technologies. Recently, some models of this type incorporated evolution of
consumers, referred to as co-evolutionary modeling (Windrum and Birchen-
hall 2005; Windrum et al. 2009a, b).

Although existing diffusion models have shown their value in simulating
innovation at the firm level (technological innovation, learning), the market
and sector level (competition and diffusion, structural change), and the macro
level (growth, long waves and international trade), the models are as yet less
applied to consumer products in a changing social context. Popularity or social
connotation of products, especially new emerging environmental products,
may change alongside technological innovation. A chief example is the hybrid-
electric vehicle, which entered the car market around 2000. Owners see their
vehicle as ‘socially responsible’, as ‘the right vehicle for society’ (Heffner et al.
2006). Progression of such connotation will influence the further innovation
and diffusion process of the technology, affecting both the consumer and the
producer side. There are currently no models available that incorporate this
interaction of such social and technological aspects.

In this paper, we aim to extend the co-evolutionary approach to innovation
diffusion in a changing social context. To this end, we incorporate elements of
the literature of social construction of technology (SCOT; Bijker 1995) into an
evolutionary model. This results in an agent-based model to analyze the inter-
action between consumer demand and industry supply as a co-evolutionary
process. Agents’ behavior is subject to feedback mechanisms from micro-
to-micro, as well as macro-to-micro. One such mechanism is the creation
of meaning by consumers of a product based on product characteristics. By
attaching weights to various product attributes, different groups of consumers
interpret the same product differently: they attach different meaning and value
to it. The set of weights that an actor group applies in evaluating adoption and
investment is called a frame. A potential adopter’s frame includes attributes of
functionality, but also of social connotation. The attribution of meaning (espe-
cially by early adopters) influences other consumers’ decisions, something that
is well-established in marketing but has been neglected in innovation diffusion
analysis. The interplay of demand and supply through various feedback loops
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give rise to trajectories. These paths of innovation may be modeled on the basis
of the feedback loops. This will be done here for the example of car engines.

The paper offers a bridge between two literatures: innovation diffusion and
social construction of technology (SCOT; Bijker 1995), dealing with shortcom-
ings of both literatures, such as the assumption of an objective innovation in
the innovation literature and the neglect of techno-economic characteristics of
the innovation and co-evolution processes in the SCOT literature.

This paper has five sections. In Section 2, we review the diffusion modeling
literature, covering the early epidemic modeling approach of Bass, up to the
recent co-evolutionary approach. In Section 3, we describe our model concept,
offering a richer conceptualization than current diffusion models, in particular
by drawing from the literature on the social construction of technology (SCOT;
Bijker 1995). In Section 4, we describe a simulation model that formalizes the
modeling concept for the case of car engine innovation. In Section 5, the model
is applied and two model runs are discussed with a focus on the role of social
connotation. Section 6 presents scenarios for the future diffusion of cleaner
car engines, supported by the model runs. Section 7 draws conclusions and
discusses the novelties of our analysis and challenges for future research.

2 Understanding innovation diffusion: from epidemic modelling towards
a co-evolutionary approach

Much has been written about innovation diffusion. The focus is typically on
aggregate patterns. Rogers (1995) mentions five characteristics of an innova-
tion, as perceived by potential adopters, which help to explain their difference
in rate of adoption: (1) relative advantage, (2) compatibility, (3) complexity,
(4) triability, and (5) observability. He offers a typology of adopters based on
when they adopt but does not offer a dynamic model of innovation diffusion in
terms of endogenous and exogenous mechanisms.

For explaining dynamic patterns, we have three types of models. The first,
most well-known, and widely applied model is the epidemic model pioneered
by Bass (1969). It builds on the premise that what limits the speed of usage
is the lack of information available about the new technology, how to use
it and what it does. Information diffusion is governed by social contacts
and marketing. Epidemic models have been widely applied in curve-fitting
exercises (Bass 1986; Mahajan et al. 1990). Supply factors and changes in the
environment are usually neglected, or incorporated in a crude way.! Mahajan
et al. (1990) identify nine crude assumptions, three of which are:

1. Total market potential of a new product (i.e. final number of adopters)
stays constant in time.

INevertheless, starting from Metcalfe (1981), models of diffusion have been proposed incorporat-
ing the production capacity growth rate, such as, for instance, by Batten (1987), Amable (1992)
and Leoncini (2001).
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2. Diffusion of an innovation is independent of all other innovations.
3. The nature of an innovation does not change over time

Although Mahajan et al. and others (for example Lee et al. 2006) mention
studies that overcome several assumptions, the models remain one sided in
explaining the driving forces of innovation diffusion processes (still spread of
information). Other relevant feedback effects, such as progressive improve-
ment of the product (affecting adopter attitudes), remain neglected.

The second type of model is the rational choice model, or threshold model
(David 1969; Kemp 1998). In this type of model, economic micro theory is
applied based on the assumption of rational behavior: any actor is expected
to adopt an innovation the moment it becomes economical to do so. Supply
aspects such as the techno-economic characteristics of an innovation can
also be incorporated in this type of model (as is being done in Ireland and
Stoneman 1982). Learning and social and institutional aspects are typically
poorly integrated. The model is mostly applied to the diffusion of production
technologies, often using firm size as a critical variate (David 1969; Davies
1979). Bigger companies are expected to adopt earlier because of economies
of scale advantages or available capabilities. Bonus (1973) applies a threshold
analysis to the diffusion of household durables (cameras, TV sets, automo-
biles), using income as the critical stimulus (Metcalfe 1981; Amable 1992;
Batten 1987; Leoncini 2001).

There has emerged a third type of diffusion model in which technological
change is endogenized, this being the evolutionary or ‘non-equilibrium’ model
(in the tradition of Nelson and Winter 1982). Evolutionary approaches have
sought to improve rational choice models by including learning of agents, while
maintaining an economic focus (Silverberg 1991). The creation of technology
and its adoption are seen as mutually dependent—supply depends on demand,
and vice versa. Suppliers learn from users and benefit from scale economies,
which allow them to sell the improved product at a lower price. Silverberg
notes that this black spot of many diffusion studies, decoupling diffusion from
further development, dates back to Schumpeter’s linear model of progression
from invention to innovation to diffusion. He states that realistic concepts
should include feedback from diffusion of an innovation towards profitability,
relative competitiveness and market shares of the potential developers. The
same holds, we argue, for feedback from diffusion to price changes and towards
perceived utility for potential adopters.

In their application, evolutionary models have focused on firms and in-
dustries and on process innovations related to production efficiency. Win-
drum and Birchenhall (2005) however, move ahead by presenting a multi-
agent framework that explicitly models consumers and firms. In their model,
the nature and direction of technological innovation is determined by the
interaction of heterogeneous consumer preferences and heterogeneous firm
knowledge bases at the micro level. Since the two populations exercise a strong
selective force on each other, we can speak of a co-evolutionary model. The
authors investigate the possibility of technological succession by introducing a
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‘technological shock’, which is a discrete step towards offering a new feature to
the existing set of (service) characteristics. The merit of their approach is the
identification of technology as set of characteristics, which makes it a variable,
multi-faceted, mediating device between evolving consumers and firms. The
approach does not include the social meaning of a technology and imitation of
adoption.

In this paper, we aim to extend the co-evolutionary approach to innovation
diffusion in a changing social context. To this end, we incorporate elements of
the literature of social construction of technology (SCOT; Bijker 1995) into an
evolutionary model. We first address the conceptual basis of the model.

3 Conceptual basis: co-evolution of demand and supply

3.1 System concept: extending the co-evolutionary perspective
with social context

In order to make the model fit in cases where technological innovation
interacts with a changing social context, we propose to extend the neo-
Schumpeterian perspectives (Nelson and Winter, Dosi, Metcalfe, Silverberg)
with the social construction model of technology of Bijker in a co-evolutionary
approach. Whereas the first literature looks at markets and investments by
boundedly rational agents operating in a changing competitive landscape, the
second literature looks not so much at prices (clearing markets) but at the
social context in which technology is created and used. In many cases, this
context is not stable, but undergoes change due to the introduction of novelty
and the institutional and material adaptations that go with it. Both at the
supplier and at the consumer side, various forms of learning take place. These
forms of learning are interrelated, in the sense that, at the very beginning, sup-
pliers inform consumers about the innovation, but then suppliers themselves
gradually learn how to evaluate demand as the innovation diffuses. Learning
entails the availability of new skills and knowledge, new social connotations,
changing future expectations, new supplier-user relationships, and changes in
the regulatory framework. Consumers, by their different ways of interpreting,
using and talking about technologies, further contribute to their social shaping.
This is part of what some call the domestication process of products into daily
life (Lie and S@rensen 1996). Thus, both the technological hardware and the
relevant social context change in a complex process with strong evolutionary
traits.

The gradual development of a socio-technical ensemble (or regime) sets
out a technological trajectory or path of innovation. A trajectory has its own
level of momentum, a combination of velocity of technological progress and
the level of diffusion (of use). In the socio-technical landscape, we find novel
trajectories beside long established trajectories. The different trajectories
(usually) involve different actors, different technologies and business models.
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Geels (2005) worked out the key idea that radical innovations come about
through interactions between processes at three levels:

(a) niche-innovations build up internal momentum, through learning
processes, price/performance improvements, and support from powerful
groups, (b) changes at the landscape level create pressure on the regime and
(c) destabilization of the regime creates windows of opportunity for niche-
innovations. Thus, novel technologies (or niches) do not emerge in a vacuum.
For example, hybrid-electric vehicles emerge alongside established gasoline
and diesel technology. Learning on electric technology takes place alongside
progress and learning on ICE technology. In this literature, the term co-
evolution is increasingly viewed as a foundational concept. Geels elaborates
niche-regime dynamics as a multi-level process, with co-evolutionary traits.
The definition of co-evolution is, however, not consistent throughout the
literature. It tends to be used for any two or more variables that are (partly)
dependent on each other, and so becomes a new term for all interaction phe-
nomena. In this paper we follow the stricter definition of Van den Bergh et al.
(2006), who state that co-evolution denotes to processes where two variation and
selection processes, comprising two or more populations or systems, interact or
mutual interfere.

In socio-technical change, there are no actual species that co-evolve. How-
ever, demand and supply can be considered as two populations of (attributes
of) actors that co-evolve (Saviotti 2005; Windrum and Birchenhall 2005; Dijk
and Kemp 2010; Dijk and Yarime 2010; Safarzynska and Van den Bergh
2010). When we speak of demand and supply we thus mean the demand side
and supply side. On the supply side, suppliers create technological variety. Of
the possible options that emerge, some are selected through purchases in the
market to the exclusion of others. On the demand side, we have people of
different income and lifestyles, equipped with preferences, beliefs and ways of
thinking.

Market price is important, but certainly not the whole story behind supply
and demand. Markets are socially embedded (Rip and Kemp 1998), and prod-
ucts are socially constructed (Bijker 1995). Underlying supply and demand, we
find socio-economic actors, with ways of interpreting, expectations, capabili-
ties, habits, etc. We therefore consider demand as more than actual sales, as
it includes consumer attitudes towards various options. Supply is more than
actual production, and involves capabilities, business opportunities, and future
expectations towards the various options. The heterogeneity in potential
adopters creates a variety of demand. In our scheme, there is present demand
and future anticipated demand. Under influence of the latter, suppliers make
decisions (select foci) about investment in research and development. By
proposing solutions to problems, suppliers are viewed as creating technological
variety (see Fig. 1).

The process of co-evolution is thus socially enacted, though not planned
by actors. In the case of vehicle engines, the following actors are involved:
engine component manufacturers, car manufacturers, users, car repair shops,
sales persons, journalists, university researchers and teachers, banks, venture
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Fig. 1 a Co-evolution of demand and supply as a micro-macro process and b regime change as a
circular process involving two layers

capitalists, shareholders, and policy makers. It is impossible to include all
actors in a behavioral model of innovation diffusion. For the purposes of
our model, we include three types of actors: car drivers (users of engines),
car manufacturers (developers and producers of engines) and policy makers
(regulators of the sector and sponsors of research and green products). In our
scheme, regulation adapts over time, but is not co-evolving in the same sense
as demand and supply. Instead, we regard policymakers, and the regulations
they impose, as a force that shapes the co-evolution of supply and demand.

3.2 Modeling actors: frames and the appraisal of choice options

In our concept, these actor groups are characterized of having (1) a perspective
or frame, which constitutes (2) sense making and appraisal, the outcomes of
which influence decisions, and by that (3) behavioral practice. A frame is the
structure in which the innovation is described (or interpreted) by an actor. The
framing metaphor can be understood as a window or spectacles (worn by the
actor group) that filters the total amount of information in a first impression
(what it is about and what is important for them), and focuses attention on key
elements and aspects within. Thus, framing involves processes of inclusion and
exclusion as well as emphasis. In general, this is not a conscious manufacturing
process, but is due to unconscious adoption in the course of communicative
processes.

Using the example of an alternative engine, say electric propulsion, the user
may perceive this as either a green engine, or just another engine, possibly an
exciting new engine or something he finds hard to label (he may not give it
any thought). For manufacturers, the engine may be perceived as a something
that is of interest to their customers, or as a draw for new customers, for
which a market is anticipated. For producers, the profitability of an engine
(the business case) is likely to be an essential component of the frame. Policy
makers, on the other hand, may see the engine as a solution for air pollution
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problems or as something that is interesting from an employment point of view
(new jobs).

Frames not only give meaning but also accentuate certain (functional)
attributes of the car (engine): maximum speed, power or fuel use, etc. It is
well established that goods and services hold symbolic as well as functional
value (e.g. Douglas and Isherwood 1979). The groups of users and firms are
heterogeneous: users and firms may differ in accentuating various attributes,
based on individual agent characteristics (such as preferences and technolog-
ical capabilities). The frames are unconsciously applied by firms, consumers
and policy makers when they deal with various opportunities and problems of
vehicles, and in doing so they create an attitude towards the various choice
possibilities: e.g. adoption, rejection by users, investment in R&D or product
launch by developers. For consumers, we keep track of their receptiveness for
each option. Receptiveness is an extended/enriched type of utility, including
both functionality attributes, and an attribute of social connotation (which
is further elaborated in Section 4). For suppliers, we follow their (current)
business opportunity and (future) expectations in the two technologies. These
agent attitudes are the starting point for any decision about what to do (how to
behave, which will also depend on circumstances such as the need to replace a
car, opportunity costs and so on).

3.3 Driving the dynamics: five feedback loops

While the previous process takes place on the micro (agent) level, the col-
lective effects create macro patterns, which may be captured by indicators
measuring collective outcomes. Examples of such indicators are: total sales of
the various options, prices and technological progress of various options. These
macro level indicators in turn influence the (micro level) individual agents:
it is a circular (micro-macro) process. Similarly, we can distinguish feedback
loops at the micro-level, resulting from a direct interaction between the actors
involved. Figure 3 visualizes this conception of regime change as a dynamic
process involving feedbacks across two layers.

The studies of innovation we reviewed (Dijk and Kemp 2010) have iden-
tified various feedback mechanisms during the emergence of a product market
or industry. Between the micro- and macro-level we distinguish (see Fig. 3):

e [ncreasing returns to scale: cost per unit fall as firms take advantage of
economies of scale, allowing them profitably to sell products at lower
prices, which stimulates sales and further scale economies

e [earning about the market: growing sales lead to better knowledge about
the heterogeneity of demand (who prospective buyers are, their willing to
pay for specific features, what is valued and less valued), knowledge which
may be used for R&D and new product offerings, which will give rise to
better products and more targeted marketing effort that will stimulate sales

e Social construction of meaning: products obtain a social meaning, which
will differ across groups; products may become more or less desirable
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because of this. The dynamics may stimulate sales (in the case of positive
stories and connotation) or discourage them (in the case of negative stories
and meanings)

Alongside these micro-macro processes, there are also micro-micro feedback
loops:

e [earning-by-doing: production experiences lead to improved skills and
help to discover cost-efficiencies in production, allowing manufacturers to
reduce prices and increase sales and production.

e [mitation of use: potential adopters have a tendency to imitate peers (taste
formation), and on the supply side, producers may also imitate successful
features of competitor products.

The velocity of the loops differs. Some loops are more rapid, such as falling
prices in the course of a few years, or the improvement of technological
quality of new options. Other loops are slow or discontinuously changing,
such as those involving social factors. Further, actor frames are slow or
highly discontinuous components. They are shaped by institutional structures,
both formal ones, such as governmental regulation, and informal, such as
cultural values or personal preferences. Actor frames provide stability to socio-
technical regimes. In our simulation model, the slow change loops are not
endogenous (for reasons of simplicity).

We consider the dynamic process, mediated by the feedback loops, as
constituting co-evolution of demand and supply of products. In the next
section, we make this concept ‘tailored’ for the case of car engine innovation.

4 A formal model of car engine innovation

In this section, we describe the simulation model concisely. For a more detailed
description (including equations and parameters), we refer the reader to
Appendix 1.

4.1 Model overview

The model assumes a limited number of possible innovation trajectories: one
related to internal combustion engine (ICE), and one to electric/ hybrid-
electric ((H)EV) technology. We have two populations of agents: a large group
of potential consumers (1000), and a small group of potential suppliers (10
firms). A prospective consumer considers buying a vehicle. He may adopt a
vehicle type, or postpone the decision. After adopting a vehicle type, an agent
is out of market for 15 time steps (re-purchase period). Then he is receptive
again to buying a new vehicle type. Suppliers sell vehicles, invest in R&D, and
assess their business opportunities in the two technologies.

Agents are conceptualized by three components: (1) a frame-structure, (2)
an evaluation of options, and (3) a decision (e.g. adoption by users; investing
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in R&D or launching products by developers). The two agent groups, users
and suppliers, are heterogeneous, and individual agent characteristics are
considered (such as preferences and technological capabilities).

In accordance with the conceptual framework, the model has two layers.
The micro level contains the characteristics and decisions of agents. The
macro level contains aggregate variables, such as total adoption levels, total
investment levels, prices, and social connotations, see Fig. 1.

Regulators are considered exogenous in the model, for simplicity. We
assume an exogenous regulatory system in place that requires gradual reduc-
tion of emissions. We assume that these requirements can be met with both
technologies.

4.2 User frame and supplier frame

The user frame accentuates certain attributes of the car (engine). Each at-
tribute goes with a certain ‘weight’ or emphasis. The following attributes are
taken into account, see Fig. 2:

Price (P) of the innovation or ‘cost of adoption’

Perceived functionality (PF): the direct utility a potential adopter per-
ceives, in comparison to the current situation. The utility depends on
technical characteristics of the innovation and functional needs of the
individual user

Social connotation (SC) of an innovation, as defined by cultural peers.
Environmental impact (EI) of an innovation, with regard to ecological and
social impact.

The frame consists of four weights of the four factors: wl to w4. This actor
frame is the basis for the appreciation of the innovation (i), which leads to a
certain level of ‘receptiveness’ (R) in the following way:

R,’:(Wl XPFi+W2XSC,‘+W3XEI,')—W4XPI'

Fig. 2 Typical user perceied functionality
frame-structure

social connotation

price

environmental impact
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Table 1 Two weight

. Frame group 1 (900x) Frame group 2 (100x)
sets representing two

consumer groups We?ght 1 0.75 0.4
Weight 2 0.3 0.3
Weight 3 0.1 0.5
Weight 4 0.2 0.2

In other word, psychological and cultural factors of meaning and framing
are combined with economic variables such as cost of adoption (indirect
utility) and perceived functionality (direct utility). Especially automobiles
are acknowledged to provide more than just transportation. They have a
symbolic meaning that goes beyond functionality. Receptiveness is an ex-
tended/enriched type of utility. Each potential user is characterized by an
individual level of receptiveness.

In another paper, we have analyzed consumer frames of car engines in more
detail (Dijk 2011). Our estimations here are based on that analysis (see Table 1
and also Appendix 1). We assume a large consumer group for which functional
performance is most important, and a small group for which environmental
impact is key. For both groups, we take price and social connotation as being
of equal importance.

A supplier’s frame, on the other hand, is about the business case or business
opportunity of a car engine, which is assessed by weighing up expected benefits
and expected cost of launching a new vehicle. Supplying firms differ in their
precise strength and weakness of capabilities for innovation (cf. the literature
on ‘core capabilities’), which will drive their expected cost for launching a new
product technology. Silverberg (1991) denotes the importance of production
quantity for the developing firm, in order to get beyond the break-even point.
As long as production investments in a new product-technology have no
profitable outlook, a firm will wait before launching the product.

Alongside decisions on launching new products, firms also invest in re-
search and development to enhance their technological capabilities. In our
model, their future expectations of demand in the two respective technolo-
gies (reflected in their R&D investments), are driven by (1) the number
of successful launching competitors (endogenous in the model), and (2) the
(current) level of positive social connotation of a technology (endogenous in
the model).” The two components have equal weights.

4.3 Implementing the feedback loops
The innovations evolve over time, as does the social environment (connota-

tions). As a consequence of both, agents’ attitudes towards the innovation(s)
change. Mechanisms of change describe how various factors relate to each

2We assume that the social connotation of the technologies affects the regulatory pressure for the
two technologies (e.g. purchase subsidies, tax benefits). Therefore, the social connotation is an
important driver for firm R&D investments.
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Fig.3 Five feedback-loops: increasing returns-to-scale (yellow), learning-by-doing (green), imita-
tion of use (blue), learning-from-the-market (brown), and formation of symbolic meaning (pink)

other. Five feedback-loops that have been identified in the literature are
implemented in the model. They are described below, and visualized in Fig. 3.

Increasing returns-to-scale and learning- by-doing The increasing returns-to-
scale mechanism consists of the following sequence: costs per unit fall as firms
take advantage of economies of scale, allowing them profitably to sell products
at lower prices, which stimulates sales and further scale economies. Costs also
fall because of learning-by-doing (workers getting better at what they do). In
our model, learning by doing is implemented through decreasing variable costs
over time. This accounts for the producers’ accumulated experience over time,
or by their cumulative output.® Increasing returns-to-scale is implemented
through price setting of firms, who divide their fixed and variable costs over
their (expected) production volume. When their production volume rises,
prices decrease.*

Learning-from-the-market Besides learning-by-doing, there is also learning-
from-the-market. Learning-from-the-market refers, on the one hand, to user
feedback helping suppliers to improve their products, and, on the other hand,
to better ways of using the innovation by the consumers (Rosenberg 1982).
Increase of use gives developers insight into customer preferences, which

3In an ideal case, the decrease of price would be linked only to specific producers (namely, those
that have launched), but this was too complex for the current model. Here, the price decrease
counts for all producers. Since firms only differ on the level of technological competences, the
company with highest technological capabilities (lowest investment cost) will set the market price.
4We assume that the market price of the innovation is the lowest price at which at least one
company can still make a profit. Fixed cost accounts for investment in R&D, product engineering
and production facilities. The variable cost counts for material and labor of one product.
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are obviously heterogeneous. This helps to direct their investments in new
product launches, serving a greater range of customers. Because of learning-
from-the-market, we are likely to see greater (perceived) product quality
and better matching product variety, both of which will increase perceived
functionality from customers. This will lead to a further increase of adoption
of the innovation.

This mechanism is implemented as follows. As a first component, capabil-
ities of (all) firms rise when the numbers of consumers rise (even if a firm
has not launched a product in that technology). Firms thus learn (directly,
i.e. without own R&D) from the use of products of rivals, which is referred
to by some as emulative learning (Windrum and Birchenhall 1998). Second,
the increasing number of launching competitors (due to rising consumer sales)
will drive up the R&D investment levels of all firms, which will increase their
technological capabilities. As a third and final component, R&D investments
will increase user perceived functionality. This is modeled simply as follows:
perceived functionality of an innovation increases with total increasing invest-
ment in an innovation. These model assumptions thus reflect the mechanism
that user feedback eventually leads to better products.

Formation of symbolic meaning of products Whereas the previous mecha-
nism identified the increase in utilitarian functionality, this subsequent mech-
anism addresses socio-cultural values that are connected to the product.

The symbolic meaning and appreciation of the product becomes (among
others) manifest in stories of market actors (Rosa and Spanjol 2005). When
making a speech on a car engine, agents use adjectives or adverbs. By telling
stories to each other, social connotation spreads and thus affects receptiveness.
Though symbolic meaning and appreciation of a product is a pluralistic phe-
nomenon, ultimately the set of adjectives and adverbs is net positive (adding
perceived value to the product), or negative. In the case of a car engine, people
may use terms such as ‘revolutionary’, ‘super’, ‘promising’, ‘high-tech’, ‘you
want to be seen in this’, or, in contrast, terms such as ‘bulky’, ‘weak’ or ‘dull’.

In our model, the social formation of meaning involves two conflicting
stories: a positive one and a negative one. Agents may become included in
one of the two respective social constructs. This is implemented by assuming
different trends for spreading the stories: after market launch, the number of
users included in the positive connotation of a product may grow steadily in
time, up to 80% of the population, while the group with negative connotation
stays small. This is an example of the dominance of the idea ‘you need to have
this’. Similarly, strong growth trends can be assumed for negative stories. Each
of the patterns can be chosen as an input to the model, to explore scenarios.
(By the way, being included in the construct of a positive story does not mean
that an agent in all cases adopts. It is one of five factors in the formation of
‘receptiveness’.)

Imitation of use For consumer products, there is a tendency of potential
adopters to imitate peers (e.g. Rogers 1995). We treat imitation as a band-
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wagon effect® within the social group (which is the group with whom they share
the same frame). In a bandwagon process, individuals do not make the final
decision to adopt or reject, but are receptive to social pressure (from others
who have already adopted) that spreads through the population (Abrahamson
and Rosenkopf 1993). The distribution of receptiveness is heterogeneous,
however, so that differences in individual benefits to the innovation result in a
higher or lower receptiveness.

A more detailed account of the model can be found in Appendix 1. More
than existing models, this model should be suitable to analyze the role of
changing social connotation of a product within the co-evolution of demand
and supply.

5 Modeling results

In this section, we present simulation results of the model described in
Section 4, using a simple numeric simulation model. We simulate the co-
evolution of supply and demand for electric engine cars and diesel engine
cars as competing products. The five feedback-loops, which underlie the co-
evolution of demand and supply, are incorporated.

The model outputs show how two innovation trajectories may co-exist in
the sector, as a result of diversity in preferences (i.e. framing) of different
consumer groups. We have calibrated the model for the first half of the model
run by mimicking what we know about the diffusion of electric and diesel
engine passenger cars from 1990 until 2010.° A detailed model analysis is
provided in Appendix 2. This analysis suggests that the model is valid for
an order-of-magnitude analysis of cause and effect relationships of social
connotation with technical and economic factors such as investments, prices,
technological progression and adoption.

We present two runs. In the first run, we assume an increasing share of
the consumer population becoming included in a positive social construct (i.e.
connotation) for (H)EVs in the longer run. At the same time, a negative
connotation of ICE technology becomes dominant.

In the second run, we assume again a positive connotation for (H)EV, but
now we assume that ICE innovations will also predominantly acquire a positive
social connotation (75%), see Table 2.

Obviously, there is much more to tell about other possible runs and lessons
or propositions we can draw from this model. Nevertheless, for the sake of

5 An alternative way of incorporating imitation would be to place agents in a spatial structure,
where they imitate neighbors.

SWe match the first half of the model and the period of 1990-2010 in the following way. Some
research suggests that the average re-purchase time of new cars is 6.3 years (Boyd 2006), and in
the model, we choose 15 steps as the re-purchase period. Therefore, 50 modeling steps represent
about 22 years.
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Table 2 Input values for the two model runs

Parameter RUN1 RUN 2

ICE new (HEV ICE new (HEV
InfP: positive connotation 0.1 0.75 0.75 0.75
InfN: negative connotation 0.75 0.1 0.1 0.1

this paper, we will only address the role of social connotation, which we can
understand better through the examination of these two runs.

For both, the first half of the run is very similar. It shows new diesel engines
being launched in the early 1990s, and electric and hybrid-electric engines in
the second half of the 1990s. Also, the new diesel systems diffuse towards 100%
at the expense of the non-direct-injected diesel engines between 2005 and 2010.
Further, the diffusion of electric vehicles stagnates after initial launches due to
the perceived superiority of diesel technology at that time. In the second half
of the model period, the model runs diverge.

In Run 1 (see Fig. 4a—f), we choose the social connotation of HEV to
become strongly positive and ICE strongly negative (Fig. 4a). We observe
that the market share of (H)EV steadily rises after step 50 (Fig. 4b). In the
other graphs, we find explanations for this. For instance, the state of (H)EV
technology is progressing at a steeper rate than ICE (Fig. 4c). It overtakes
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Fig. 4 Model output Run 1. In this run the input is: only HEV acquires a positive Social
Connotation, whereas ICE a negative
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ICE at about step 40. As a consequence, for the majority of consumers,
receptiveness for HEV overtakes receptiveness for ICE at some point in
time. Figure 4d-f give insight into the relative movement of the receptiveness
for the two technologies, where the two consumer groups can be clearly
distinguished (as the large and the small distribution of the same color).
The x-axis depicts the receptiveness level (not time) and each of the three
graphs represents a moment in time. The comparison of Fig. 4e—f suggests
that receptiveness for HEV for the large consumer group overtakes recep-
tiveness for ICE between steps 30 and 60 (i.e. about step 40). For the smaller
consumer group (of environmental consumers), this happened earlier (about
step 30).

In Run 2 (see Fig. 5a—f), we choose social connotation of both (H)EV and
ICE to become predominantly positive (Fig. 5a). Here we find the market
share of (H)EV remaining marginal in the longer run (Fig. 5b). The state of
ICE technology remains superior to (H)EV (Fig. 5c¢). Consumer receptiveness
of ICE remain higher than for ICE, even for the green market niche (see
Fig. 5d-f).

In both runs, we find similar price trends. We find the price decreasing
because of rising firm capabilities and (after launch also) economies-of-scale.
However, we also find that the price rises again when more suppliers launch
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Fig. 5 Model output Run 2. In this run the input is: both HEV and ICE acquire a positive Social
Connotation
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vehicles on the market at a time that the market niche is not growing in terms
of consumers.

At first glance, this is strange (prices usually decrease during wider diffusion,
especially when competition rises), but a closer look suggests that it is caused
by a jump in the perceived quality of the product, due to a series of launch
investments of firms. In other words, it is not the same product of which the
price rises, but is a new generation of the technology. In practice, we also found
new generations of DI injection diesels engines (or plug-in hybrids for that
matter), which have initially higher prices (together with their higher perceived
functionality). Although we can understand why the price trend in the model
may jump (at a moment of much investment and technological progression),
this is somewhat problematic and needs reconsideration in future applications
of the model. Still, for the analysis of the role of social connotation, this
discontinuity in the price trend does not seem to be significant. (For example
the figure of the market shares shows just a slight unevenness on the moment
the price jumps).

Another issue is the relative importance of various learning mechanisms. In
the current model, firms learn in various ways (through R&D, from market
sales (use), from each other), but the output graphs show that their technolog-
ical capabilities mostly grow from R&D investments, whereas learning from
user levels is a minor effect. (That is the reason why, in run 2, the Technological
Progress graphs remain parallel, despite the wider use of ICE.) In general,
the relative strength of learning mechanisms and other feedback effects is
significant for the model results, whereas practical information to support the
choices is hardly available, and therefore it is fairly hard to check whether these
are reasonable assumptions.

Lessons learned We draw a few lessons on the role of social connotation in
the innovation dynamics from these model runs:

e [Initially, the role of social connotation for new technologies is rather weak,
since the connotation is poorly defined (right after launch). They only
slightly impact R&D portfolios, and, at the demand side, few consumers
adhere to a connotation.

e  When more consumers adhere to some social connotation of the new
products, a positive connotative will mean an increase in receptiveness
for the respective consumer groups (even though, for consumers, social
connotation remains less important than perceived functionality).

e More significantly, a rise in positive social connotation will trigger more
R&D investments in the new technology and, after some time, trigger
more product launches. (For a negative social connotation, this is the
reverse effect.)

At long last, when technological capabilities for the new technology have
grown to similar levels as those of the established technology, the social
connotation provides the competitive edge, and when the adoption level
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surpasses that of the established technology, it will drive even more techno-
logical refinements.

6 Scenarios for electric engine cars and diesel cars

In this section, we present plausible but simplified descriptions of two possible
socio-technological trajectories. They are narrative scenarios, based on expert
knowledge, combined with the insights from the quantitative model simula-
tions. We develop two scenarios, based on the two alternative assumptions
on the uncertain formation of social connotation in the future. Before pre-
senting the scenario, we concisely describe the developments between 1990
and 2010.

6.1 Recent history

Two innovation trajectories can be distinguished for the case of cleaner vehi-
cles after 1990: the conventional diesel and the gasoline internal combustion
engine (ICE) trajectory and a trajectory of electric propulsion (EP).” Two
important innovations in ICE are Direct (fuel) Injection (DI) systems and
variable valve-timing (VVT). In the EP trajectory, we find innovations such as
improved batteries (i.e. lithium-ion batteries), regenerative braking and plug-
in technology. In the last fifteen years, DI systems diffusion has been rapid.
Diffusion in electric vehicle innovations, on the other hand, has been slow.
The only success so far is the hybrid-electric Prius car, which has sold 3 million
units worldwide since 1997. (See Table 3 for a comparison on sales units in the
Netherlands).

Behind these diffusion patterns is a complex phenomenon. The fast
diffusion of DI systems and slow diffusion of electric vehicle technologies can
be described and explained with the help of the two-layered, co-evolutionary
model. Electric propulsion requires new capabilities at the supply side and
positive appraisal from consumers. We observe that, while electric vehicles
improved, consumers still chose an improved ICE vehicle. This slowed down
both the development and diffusion of electric vehicle technology. Up until
today, electric vehicles have suffered from two unfavorable characteristics: low
autonomy (kilometers per battery charge) and high battery costs. Alongside
these techno-economic mechanisms (which have been studied relatively well),
a social mechanism played a role. Concerns about the climate enhanced
awareness of impact of technologies. Social meaning and the image of new
engine types is, however, not an ‘instant delivery’ phenomenon, but unfolds
over time and with level of use. As a consequence, suppliers were initially
reluctant to invest (much) in alternative models and capabilities, until they
observed changes in actual market launches of competitors, and also in the

7We discard developments in hydrogen technology here.
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Table 3 Yearly sales of diesel BEV HEV DI diesel Old diesel
cars, battery electric vehicles

and hybrid electric vehicles in 1995 0 8500 76500
the Netherlands 1995-2006 1996 60 0 28800 61200
1997 10 0 33250 61750
1998 15 0 48000 52000
1999 13 0 66000 54000
2000 12 0 86400 33600
2001 0 50 93600 26400
2002 0 63 93500 16500
Sources: own calculations 2003 25 17 92650 16350
based on Avere (2008), 2004 7 1062 102000 18000
Bovag (2008), Beise and 2005 0 2800 104550 18450
Rennings (2005) 2006 0 2800 116450 20550

effects of positive connotation of EP on tax incentives (etc.) for EP. Only then
did more firms give priority to building up EP capabilities. Up to this day, sales
levels of EP have been modest.

On this perspective, the future trajectories will be the outcome of the co-
evolutionary process: suppliers creating capabilities in electric vehicles and
ICE in parallel, affected by socio-regulatory pressures, offering both electric
vehicles and new ICEs; consumers assessing HEVs on their fuel economy
(higher for non-highway drives), prices (higher), image as a car (green, trendy),
engine capacity (sufficient, not spectacular), range (similar), engine noise
(absent), and, in the future, the possibility of renting batteries and changing
them during a long trip. With help of the model runs, we can give more
structure to this analysis, and explore various diffusion scenarios.

6.2 Two scenarios

Scenario 1: Social popularity triggers functionality boost In scenario 1, we
assume an increasing share of the consumer population adhere to a positive
social connotation for (H)EVs, up to 75% in the longer run, whereas a majority
become negative about ICEs.

1-5 years—This scenario foresees only a small growth in the adoption of
(H)EV in the next 5 years, limited to a group of green consumers. Other
than the latter, consumers are hardly interested in buying (H)EV, since they
perceive price/performance levels of (H)EV as inferior. Nevertheless, average
receptiveness of consumers for (H)EV is increasing, and coming closer to
those of ICEs. This rise is both driven by increasing perceived functional-
ity, and increasing positive social connotation of (H)EV owing to growing
concerns about global warming and higher prices for fuel. These stimulate
praise for fuel efficient vehicles, which benefits electric engines, which are
more efficient to drive. Moreover, electric vehicles benefit from cultural icons
(such as Hollywood stars) buying them, giving electric propulsion a positive
image (something we are observing at the moment). The positive social
connotation provides support for regulatory measures (most notably national
tax exemption schemes) that favor battery and hybrid-electric vehicles. These
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stimulations affect firms’ R&D portfolios, which now devote more resources
to EP than to ICE.

5-10 years—After 5 years, rising average receptiveness of (H)EVs has
not led to massive adoption yet, because it was still inferior to that of ICE.
Soon after 2015, however, ongoing investments in electric engine technologies
bring perceived price/functionality levels at the same level as (H)EV. New
generations of (H)EVs include Li-ion batteries and Direct Drive in wheel
technology. A variety of models with electric engines appears on the market,
some minimizing fuel use (plug-in hybrids), others boosting performance.
Renting schemes for batteries emerge, making refueling of electric vehicles
possible in a few minutes. Continued policy support of (H)EVs brings prices
equal to diesels.

Near 2020, the sector passes a bifurcation point, after which adoption of
(H)EVs increases steadily. A second consumer group, those for whom price is
the most prominent attribute, increasingly chooses electric propulsion. Around
2025, their sales have increased to 25-35%.

Scenario 2: ICE strikes back In scenario 2 we assume that the social connota-
tion of both (H)EV and ICE becomes more predominantly positive.

1-5 years—Scenario 2 foresees a small growth in the adoption of (H)EV in
the next 5 years, similar to scenario 1, limited to a group of green consumers,
and those who benefit from support schemes for EP. Average receptiveness of
consumers for (H)EV is growing, due to some refinements in EP technology.
However, at the same time, diesels are increasingly equipped with particle
filters and, within five years, also increasingly with NOx filters. Firms are
successful in presenting these diesels as clean, proven technology, at a relative
low price. Because of this, national and EU policymakers start treating filtered
diesels as environmentally equivalent to hybrids (partly as defensive support
for the European automotive industry).

5-10 years—Without special support from tax authorities, hybrid engines
stay somewhat more expensive than diesels, in equivalent vehicles. European
automotive firms expect higher profitability from diesel in comparison to
hybrids, and focus R&D on the first. Increased availability of (2nd generation)
biodiesel is anticipated. Receptiveness of hybrids stays lower than diesels for a
large majority of consumers. In this scenario, the growth of (H)EV stagnates
and tends to fall. By 2020, hybrids have stayed a niche market only, smaller
than five percent.

7 Discussion and conclusion

In this paper, we explored future scenarios of car engine technology with the
support of a simulation model. In addition to previous evolutionary models,
this model is instrumental to analyze technological innovation in a changing
social context.
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We suggested and offered an explanation as to the way in which an agent-
based analysis of innovation diffusion might be formalized, which offers a
micro-underpinning of macro patterns, which incorporates feedback loops
from macro to micro. The formal model is analytically novel by taking explicit
account of actor frames. By attaching weights to various product attributes,
different groups of consumers interpret the same product differently: they
attach different meaning and value to it. A frame includes attributes of
functionality, but also of social connotation. Mediated by various feedback
loops, demand and supply co-evolve. Attention is given to the (changing)
techno-economic characteristics of the innovation (as an important supply
feature), competition between various product offerings, and processes of taste
formation (as an important demand feature). With the model as a supporting
tool, it becomes possible to explore various possible futures, depending on what
mechanism plays a salient role, and the strength thereof.

We presented two scenarios, based on two assumptions regarding the
progress of social connotation. For that matter, we do not suggest that for-
mation of social connotation is the most essential mechanism. Performing our
history-friendly simulation analysis, we found that it is a factor of importance,
though. Trends in social connotation impact the innovation process in the
following way:

e [Initially, the role of social connotation for new technologies is rather weak,
since the connotation is poorly defined (right after launch). They only
slightly impact R&D portfolios, and, at the demand side, few consumers
adhere to a connotation yet.

e When more consumers adhere to some social connotation of the new
products, a positive connotative will mean an increase in receptiveness
for the respective consumer groups (even though, for consumers, social
connotation remains less important than perceived functionality).

e More significantly, a rise in positive social connotation will trigger more
R&D investments in the new technology and, after some time, also more
product launches. (For a negative social connotation, this has the reverse
effect.)

e At long last, when technological capabilities for the new technology
have grown to similar levels as the established technology, the social
connotation provides the competitive edge, and adoption levels surpass
those of technology with inferior social connotation, driving even more
technological refinements.

In this paper, the model has been applied empirically to the case of clean
vehicles, where we examine the diffusion of improved internal combustion
engine vehicles and the diffusion of (hybrid) electric vehicles, as part of an
integrated analysis in which the diffusion of one vehicle is at the expense
of the diffusion of the other. The model can be applied in principle to any
diffusion process, both retrospectively and prospectively. The model cannot
be used for prediction (because diffusion is not a deterministic process and
because we lack data on certain variables), but can be used for exploration
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on the basis of proxy data. Especially micro level data (time series of agents’
attitudes and frames for evaluation) is rather difficult to obtain. It is also hard
to determine the relative strength of the various feedback loops. These should
probably be assessed outside the modeling analysis. Perhaps expert opinion
can be used for this. Implementing the model with expert opinion in an open
fashion allows for the creation of models closer to real world observations. The
strength of such a modeling approach is that it combines the structure and sci-
entific underpinnings of analytical modeling with the richness of participatory
methods so as to address real complex issues of societal change in a consistent
and meaningful way. We recommend this as a topic for future research.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

Appendix 1: Model description

The model we used in this paper consists of 1000 consumers, 10 firms and three
technologies, and a few exogenous factors. We aim to simulate developments
after (approximately) 1990, so we initialize for the 1990 situation.

Agent rules

Consumers /users The principal characteristic of a consumer is receptiveness
R for technology i:

Riz(wl*PFi+W2*SCi—W3*EIi)—W4*Pi

with the variables being Perceived functionality (PF), Social connotation (SC),
Environmental impact (EI), and Price (P) of an innovation, and four frame
weights of the four factors: w1l to w4. There are two sets of weights representing
two consumer groups (see Table 4). PF and P are endogenous; SC and EI are
exogenous in the model.

Consumers:

— Initially own a car with an ICE

— Update their receptiveness for each technology [i] in every time step

— Start to consider re-adoption after they have owned a vehicle for at least
15 time steps (i.e. readoption time = 15)

Table 4 Two weight

. Frame group 1 (900x)  Frame group 2 (100x)
sets representing two

consumer groups We}ght 1 0.75 0.4
Weight 2 0.3 0.3
Weight 3 0.1 0.5
Weight 4 0.2 0.2
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— Consider re-adoption of a vehicle with either an old ICE (i.e. the version
at the start of the model), or a refined ICE, or a (hybrid-) electric version

— Select the technology at both the micro level (relative receptiveness level
for the three technologies), and the macro level peer pressures (within
their consumer group or frame).

This works as follows. A macrolevel (logistic) spread function determines the
number of agents (i.e. a threshold) that adopt the technology in that time step
(resembling the social imitation pressure for it). The agents at the micro level
are ranked for each technology on the basis of their receptiveness for it. When
an agent is ranked above the threshold of the time step, it adopts the product.
When an agent is above the threshold for more than one product, he adopts
the one for which he has the highest receptiveness.

The total group of 1000 consumers consists of two sub-groups with two
distinct consumer frames. One group consists of 900 consumers and one of
100 consumers and their respective frame-structure is as follows:

In another paper, we have analyzed consumer frames of car engines in detail
(Dijk 2011). Our estimations are based on that analysis. In the analysis, we found
that frames change in the course of market development. Nevertheless, in this
version of model, for brevity and simplicity, we assume that frames are static,
and we have chosen an average of the frames we found for 2000 and 2005. Also,
we have simplified the number of consumer group from three to two groups.

Consumers are initialized with a certain level of initial perceived function-
ality of the two technologies. We set their perceived functionality of (hybrid-)
electric vehicles slightly lower than ICE by 1990, applying normal distributions
over the group of consumers (with first the standard deviation, then the
average):

perceivedFunctionality [ICE] = normal (1, 3);
perceivedFunctionality[Electric] =normal (1,-1);

Firms /developers The key characteristics of firms are Technological Ca-
pabilities (TC) for a technology, and perceived Business Opportunity (BO).
Technological capabilities for a technology are initially uniformly distributed
over the firms:

techCap[i] =uniform discr(min TC,maxTC);

with minTC a parameter indicating the lowest capability level of a firm of the
group, and maxTC as the highest in the group. (See values below in ‘parameter
values’.)

Firms consider launching new ICE versions and electric versions by assess-
ing the business opportunity of the technology.

Business Opportunity (for developer d): BO =B — C

with B as the benefits (that the developer expects after the investment):

benefit[1i] = techES % techPrice;

with techES the expected sales and techPrice as the price.
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The cost for the developer C; is composed of two parts: fixed cost (resem-
bling investments in R&D, engineering and production facilities and launch
marketing), and variable cost (from material and labor):

cost[i]=techFR—techCap[i]4+launchInvest + (techES % techVC);

with techVC as the variable cost, techFr as the capabilities of the most
advanced firm, and launchInvest is the investments in production facilities and
launch marketing.

Firms launch a product as soon as (expected) returns on investments are
higher than 10%.

BO[i] = ((benefit[i] — cost[i])/(techFR — techCap[i]
4+ launchInvest)); if (BO[i] > targetROI)
launch[i] = true;

with targetROI as the return on investments.
Firms learn:

1. from R&D. The amount they invest in R&D in a technology is driven by
(a) the number of launching competitors (LD), (b) the (current) level of
positive social connotation of a technology (SC), which also reflects the
socio-regulatory expectation of a technology. The two components have
equal weights:

InvestmentRD[i] = maxRD * (techLD + techSC) /2;

with maxRD as the maximum available R&D budget for a firm in the
time step

2. Learning-by-doing: after launch, the variable cost of a technology decrease
in time, 1% in each time step.

3. Learning-from-the-market:

a. Learning-from-Use (LFU): firm capabilities increase with the level use
through a logistic function (Mukoyama 2006): learnFromUse[i] =
techA xmaxLFU *x (1 — techa), with total marketshare of technology A
as techA and max LFU as a maximum value.

b. Emulative learning: firms reduce their lag in technological capabilities
(w.r.t. most advanced firm) through learning from competitors in the
market: by 5% from each launching firm:

emulativeLearn[i] = techFR — techCapl[i]
—((techFR — techCap[i])

¥pow(0 .95, nr LaunchDev));
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with techFr as the capabilities of the most advanced firm, and nr_LaunchDev
as the number of firms that have launched a market vehicles of that technology
in the market.

So, firms capabilities for technology [i] increase through:

techCapli] = + (investmentRD[i] + learnByUse[i]
+ emulativeLearn[i])

Before and after market launch, each company computes a (virtual) price at
which it would still make a profit:
After launch:

pricel[i] = (launchInvest/techEI) + pm* techVc;
Or before launch:
price[i] = (techFR — techCap[i] + launchInvest)/techEI
+ pm * techVC;
with techEI as the of expected interest for the technology [i] and techVC as
the variable cost of the technology, and pm as the profit margin.

Macro level rules

Price Price develops endogenously: Market price p of the innovation (at
launch) is set by the developer d which can, at the relatively lowest price, still
make a profit. In other words, it is the lowest price of these virtual firm prices:

Price = MIN (pricey)
This means that the company with highest technological capabilities TC will

set the market price.

Aggregate technological progress The firm with highest technological capabil-
ities is regarded as the technological front.

This front moves because of R&D investments of the firm in every time
step, and also through learning from the market. Other firms catch up through
emulative learning.

TechProgression (in a time step)
= investmentRD[i] 4+ learnByUse[i]
+ emulativeLearn[i])

The perceived functionality (PF) of all consumers increases with in-
creasing technological progress of the technology. This is plausible since
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engineers and businessmen at firms try to overcome user-problems as they
continue to develop an innovation, from what is already there. So, in one
time step:

PF = PF (in previous step) 4+ TechProgression;

Launching developers The number of firms that have launched a mar-
ket vehicle of that technology in the market is counted every time
step (nr_LaunchDev). (For the micro decision to launch or not, see
above.)

Aggregate demand and sales The distributions of (consumer) receptiveness
for each of the technologies are tracked. In each time step and for each
technology the consumers are ranked on the basis of their receptiveness. A
macro level (logistic) spread function determines the number of agents (i.e. a
threshold) who adopt the technology in that time step (resembling the social
imitation pressure for it):

newAdopters[i]=(l—adoptionLevel[i])*adoptionLevel[i]*xinfA;
adoptionlLevelli]+=newAdopters|i];

with infA being the level of infectiousness for adoption.

As we described above in the consumer paragraph, actual adoption will
only happen if a consumer has owned a previous vehicle for at least 15 time
steps, and derived from a combination of the (micro level) receptiveness for
the various technologies and the strength of the imitation bandwagon for the
technologies.

Expected sales are derived from both the distribution of consumer recep-
tiveness, and the number of other firms expected in the market. A consumer
is considered as interested in (i.e. as a potential buyer of) the product when its
perceived utility (that is, receptiveness without the price term) is higher than a
certain threshold:

If (wy * PF; +wy % SC; — w3 * EI;) > AdoptionExp
expInterest + +;

By combining the size of the potential market, and the current firms which
have launched in this market, the space for a new launching firm is computed
and, correspondingly, a number of interested firms (i.e. expected competition).
We assume that the market is equally shared between the launching firms.
Firms calculate expected sales for each product technology (which they use for
computing their business potential) based on the expected consumer interest
and expected competition.

expSales = expInterest/(launchDev + 1);
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Learning-by-doing After launch, the variable cost of a technology decreases
in time (or production levels) by a progress ratio:

varCost* = learnByDo;

Social construction of connotation This mechanism is considered exogenous.
It is such a socially shaped phenomenon that it does not make sense to
link it to techno-economic variables (e.g. investments levels or prices). In
the model, it progresses with time. The start of the process for a technology
is, however, endogenous, that is, it only starts when sales (and thus use) of
the technology are >0. Therefore, at the start of the model run, the initial
value for new version of ICE and for electric propulsion is 0, whereas, for
the contemporary version of ICE, it is 1. This means that social connota-
tion is adding value to the product for the consumers who adhere to this
connotation.

The formation of social meaning for the new technologies is modelled as
follows. Individual consumers become inclined to either the positive con-
notaion (+1) or the negative connotation (—1) through an epidemic spread
function:

newPositivists = (1 —positivists —negativists)
spositivists x infPp;
newNegativists = (1 —positivists —negativists)

snegativists x infR;

with infP and infR being the level of infectiousness for the two processes. These
are the two variables with which the two scenarios are developed. (See Table 5,
a reprint of Table 2.)

The connotations spread uniformly over the user population. We as-
sume that the social connotation of the technologies affects the regulatory
pressure for the two technologies (e.g. purchase subsidies, tax benefits).
Therefore, the social connotation is an important driver for the firm R&D
investments.

Table 5 Input values for RUN 1 RUN 2

the two model runs ICE new (H)EV ICE new (H)EV
InfP 0.1 0.75 0.75 0.75
InfN 0.75 0.1 0.1 0.1
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Parameters
Symbol Decsription Value Remarks
envImpact Environmental [ICE new]=4; This is an exogenous
impact of [Electric]=1; parameter. We assume
the technologies  [ICE old]= 4; that the actual
emissions of electric
vehicle are four times
lower that ICE.
Obviously, this depends
to a high degree on
the way electricilty
is generated.
(Initial) Technological For ICE new: We assume capabilities
minTC capabilities fora minTC=6;and for contemporary
& maxTC technology are maxTC = 14; ICE technology being
initially uniformly For electric: greatest, followed by
distributed over =~ minTC = 0; calpabilities for
the firms, these and maxTC = 6; refined ICE, wheras
the boundary For ICE old: capabilities for (H)EV
values minTC = 15; and  are initially lowest.
maxTC = 20;

(Initial) Initial perceived
PF Functionality of
the technologies,
which is a normal
distribution over

Normal (1, 3)
(so standard
deviation 1
and average 3)

the group of (H)EV:
consumers Normal (1, —1)
max LFU Maximum 12
Learning-
from-Use
PM Profit margin 2.5

applied on to
the variable cost
in the price
computation.

ICE (old and new): Initially ICE old and

new are the same. The
average of perceived
functionality of (H)EV
around is much lower
than ICE, therefore
minus 1 compared to 3.

Parameter that

inidcates the strenght
of increasing
capabilities from
increasing use.

We calibrated this

in comparison to
learning from R&D
investments.
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Symbol Decsription Value Remarks
learnByDo Parameter that 0.99 Ratios for
indicated the industrial production
price decraese are typically 80%
in each time step (see Dutton and
Thomas 1984;
Ford model T
was 87%)
This means: first,
if the first
1000 units cost
100 dollars, the
next 100 cost 80
dollars. We apply,
however, the progress
ratio in time (not
in production
quantity). We found
that 99% in each
time step delivers
a similar effect.
EL Emulative 5% We assume
learning from that firms reduce
each launching their lag in
firm technological
capabilities (w.r.t.
most advanced firm)
through learning
from competitors
in the market,
by 5% from each
launching firm
launchInvest Investments 0.3 We calibrate
relating to this relative to
the market launch R&D investments
of a technology,
such as production
facilities and
launch marketing
ROI Return on 0.1 This means that expected

Invetsments

returns should be 10%
higher than investments
before a firm starts
launching.
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Symbol Decsription Value Remarks
maxRD the maximum 2 We calibrate this on
available R&D the progression of
budget for a firm the technology.
in the time step
varCost Variable cost of 2 (initially, We choose the
the technology and will not same value for
become smaller all technologies,
than 1) to keep this effect
out of the analysis.
infaA Infectiousness 0.8 This is the strengh
level of adoption of imitation among

consumers (in their
groups). We calibrate
this for the spread
of direct injected
diesel engines.
Re-adoption Average 15 (time steps)  This is a fairly
period Ownership period random choice,
after which other
parameters are
calibrated.
AdoptionExp A threshold 2.5
value for a
consumer being
counted as
‘interested’ in the
technology

Appendix 2: Model analysis
Model calibration

We calibrate the model by mimicking the actual data of diffusion of new
engines after 1990 in the first half of the model (broadly up to step 50). We
match the first half of the model and the period of 1990-2010 in the following
way. Some research suggests that the average re-purchase time of new cars is
6.3 years (Boyd 2006) and, in the model, we choose 15 steps as the re-purchase
period. Therefore, 50 modeling steps represent about 22 years. Since we take
the start of the model as the 1990s, we have calibrated the model (through the
initialization of relative firm capabilities and initial perceived functionality of
consumers) in order to launch new diesel engines from the beginning of the
1990s onwards (that is, after about four or five time steps), and electric and
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100 Share of diesel motors

with direct injection (%) ji5in
90 Germany
80 1
70
60 0.5
50 0
40 BiE

= -—
o 0 50
20 o= old ICE o= rew ICE
10 == (H)EV
0 T v

1991 1992 1593 1994 1995 1996 1997 1998 1399 2000 2001

Fig. 6 a Diffusion levels of Direct Injection systems (Source: Beise and Rennings 2005). After
2001 diffusion levels have continued to rise and, on average, we estimate that by 2008-2010 all
diesels have direct injection systems. b Model output of Run 1 and 2. The red line resembles
diffusion of DI Diesel

hybrid-electric versions from the mid-1990s onwards (i.e. after about 10 or 12
time steps).

Further, we calibrated the model so that diffusion of new diesel engines
replaces all old diesel engines at about 2010 (corresponding approximately to
step 40 to 45), mainly by tuning the parameter of the logistic imitation function
(InfA). This way we mimic the actual data of diffusion of new diesel engines on
the world market and of (hybrid-) electric vehicles, which will have gradually
grown to a market share of about 3.5 % worldwide by 2010 (see Fig. 6).

Sensitivity analysis

In Section 5, we discussed the results of the model, where we focused on the
role of social connotation for the development of market shares, by comparing
two runs. Here we assess how other parameters may have a similar effect on
market shares. We vary a few key parameters with 4+/— 25 to 50% and observe

1.5 1.5
1 1-
0.5 - 0.5 1
01 01
-0.5 : 0.5 .
0 50 100 0 50 100

Fig.7 Market shares in the calibrated model in run 1 and 2
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the impact on the output values, i.e. on the market share trends. As a starting
point, we take scenario run 1 (see Fig. 7 left).

Consumer frame weights

Here we vary with the weight of Perceived Functionality in the frame of the
900 members of consumer group 1.

So, if functionality becomes significantly less important for the largest
group of consumers (those who value functionality most), the market share
of (H)EVs will start to rise much earlier and more strongly (Fig. 8, left). This
makes sense, since inferior appreciation for the functionality of (H)EVs is an
important reason it takes so much time to diffuse: it takes time for firms to
build up their capabilities. Alternatively, an even higher weight of perceived
functionality does not have much effect (see Fig. 8, right).

Readoption period

Here we vary with the readoption period from 15 time steps to 10 and 20.

We find that when consumers more quickly buy a new vehicle (readoption =
10, Fig. 9 left), the slope of diffusion of the innovation increases. However, it
does not so much affect the relative investment levels of firms, and therefore
(H)EV still overtakes ICE in terms of perceived functionality by around time
step 50. Subsequently, the diffusion slope of (H)EV is steeper as well.

When consumers are slower in replacing their vehicle, we find the opposite
effect. All in all, the model is fairly sensitive for variations in readoption time,
which is reasonable regarding the actual market developments.

W (PF) = 0.5 (instead of 0.75) T W (PF) = 1.0 (instead of 0.75)
1.5 .
1 1
0.5 4 0.5
0 0
|:||5 T 'U.S T
0 50 100 0 S0 100
es old ICE e new ICE «s old ICE sa new ICE
s (HIEY ++ (HIEV

Fig. 8 Market shares in the case of deviating values for weight of PF
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1.5 1.5
1 = 11
0.5 1 0.5 4
0 - 1]
0.5 T 0.5 T
0 S0 100 o 50 100
++ old ICE oa new ICE «+ old ICE e new ICE
s (HIEY = (HIEY

Fig. 9 Market shares in the case of deviating values for readoption time

Maximum R&D per step

Here we vary with the maximum R&D budget available at each firm from 2 to
3and 1.

When the maximum R&D budget is 3 instead of 2, the market share of
(H)EV rises slightly more in the second phase of the run (see Fig. 10 left).
Total investments in (H)EV accumulate faster, and perceived functionality
overtakes that of ICE at a slightly earlier moment, which makes the sensitivity
reasonable. Alternatively, when the RD budget is 1, we find precisely the
opposite (Fig. 10, right). The progression of (H)EV is still on its way to
overtake ICE, but the slope is lower here, and therefore it takes more time
to pass ICE (and, therefore, adoption of (H)EV only starts growing after 100
time steps, outside the plot).

maxRD= 3 (not 2) maxRD= 1 (not 2)
1.5 1.5
14 11
0.5 A 0.5 1
0 0
0.5 T 0.5 T
0 50 100 0 S0 100
== old ICE == ngw ICE ++ old ICE s new ICE
s (HIEY »s (HIEV

Fig. 10 Market shares in the case of deviating values for maxRD
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Conclusions

This model analysis shows that the model is fairly sensitive for many more
parameters than just social connotation. This is not surprising, since indeed
many factors play a role in innovation dynamics, as our conceptual model has
proposed. The formation of social connotation is, however, one of the most
uncertain, intangible factors in this process; much more than, for instance,
the average re-adoption time or the maximum R&D level. Therefore, it was
reasonable to base the two model runs and the respective scenarios on this
variable of social connotation.

Allin all, we find that the model gives a sufficient ‘order-of-magnitude’ indi-
cation of cause-and-effect relationships of social connotation with investments,
prices, technological progression and adoption. There is much more to tell
about other possible runs and lessons or propositions we can draw from this
model. We recommend other interesting applications of this model, such as
the role of changing consumer frames, as a topic for future research.
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