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Abstract
The reliability matrix, being an oblique projection operator, transforms correlated observations into the least squares residuals 
in Gauss–Markov models. It also allows to study model responses in individual observations to the assumed configurations 
of gross errors. The variability of the basic characteristics of the operator due to the increase in observation correlations is 
investigated by means of numerical tests and theoretical derivations. The characteristics such as diagonal elements and asym-
metry indices have not that long ago been introduced as the response-based measures of internal reliability and subjected 
to the analysis. Here, additionally, the relationship between the asymmetry indices and the angles of non-orthogonality of 
projection is derived. The measures are compared in terms of the effect of observation correlations with the commonly used 
reliability measures obtained on the basis of statistical tests for detection and identification of outliers, such as generalized 
reliability numbers and minimal detectable biases. For the purposes of the present paper, the latter are termed the testing-
based measures. The comparative analysis shows that both the types, when taken together, provide complete information 
about the behaviour of a GMM with correlated observations in the presence of a gross error in a particular observation and 
about its detectability. Hence, the conclusion is that the response-based measures can be a useful supplementation of the 
testing-based measures for the phase of network design.

Keywords  Internal reliability · Response-based measures · Testing-based measures · Oblique projection operator · Angles 
of non-orthogonality

1  Introduction

The covariance matrices for observations are a basis for 
constructing the stochastic models for satellite and ground 
positioning systems. The covariances have an effect upon 
the elements of reliability matrices. It was already found in 
Wang and Chen (1994) and Schaffrin (1997) that at some 
level of observation correlations there may appear on a main 
diagonal of a reliability matrix the negative elements as well 
as the elements greater than 1. It was also noticed that the 
diagonal elements being one-dimensional quantities do not 
fully describe the responses of a model to gross errors in the 
observations. So, the proposal of a generalized reliability 
number appeared. Further study of this problem led to the 
so-called response-based reliability measures (Prószyński 

2010) being a pair of quantities for each observation, i.e. 
a reliability number and an asymmetry index. They make 
ranking of observations with respect to internal reliability 
more correct than when using the reliability numbers alone. 
The measures will here be subject to further analyses.

Prior to formulating the objectives of the present research, 
it seems necessary to present the problems encountered 
already in the authors’ earlier research concerning the effect 
of observation correlations, i.e.

•	 confirmed by publications on applied mathematics and 
numerical methods (Davies and Higham 2000; Budden 
et  al. 2008; Numpacharoen and Atsawarungruangkit 
2012), the difficulty in generating positive definite cor-
relation matrices in a way that ensures a purely random 
character of the matrix elements throughout all the levels 
of correlation;

•	 the lack of injectivity of the function f: �s → det�s ( �s —a 
positive definite correlation matrix), where the degree of 
departure from injectivity increases with the number of 
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observations in a system. Due to the above drawback, in 
order to make a graph presenting a correlation-dependent 
quantity as a function of the correlation level expressed in 
terms of det�s , we have a dispersion band instead of getting 
an unambiguous curve.

The above problems appear also in the present paper but are 
approached in a way that raises effectiveness of a matrix gener-
ating method and minimizes the effect of the lack of injectivity. 
The approach is explained briefly in “Appendix A”.

The main objectives of the paper are the following:

•	 to formulate the properties of an oblique projection opera-
tor that are connected with the effect of observation cor-
relations;

•	 to provide a more detailed knowledge on variability of the 
response-based reliability measures with respect to the 
increase in observation correlations;

•	 to compare the behaviour of the response-based reliabil-
ity measures and of the so-called testing-based measures 
(i.e. generalized reliability numbers and MDBs) with the 
increase in observation correlations;

•	 to create a theoretical basis for operating with reliability 
matrices in designing the positioning systems.

2 � Recalling basic formulas and properties

We shall refer to the modified (i.e. standardized) form of the 
Gauss–Markov model (GMM) that exposes the correlation 
matrix �s (Prószyński 2010), the matrix being a dependent 
variable in the present analysis of correlation effect, i.e.

where x(u×1), ys(n×1), As(n×u), �s = −�s , rank �s ≤ u, �s

(n × n) (positive definite).
Let us remind that the form above is obtained by pre-

multiplying both sides of the original GMM by �−1 , where 
� = (diag �)1∕2 , and transforming the covariance matrix C 
(positive definite) accordingly.

The level of observation correlations in a model (1) will 
be measured with a global correlation index (Prószynski and 
Kwasniak 2018), defined by

It should be noted that there is a straightforward relation-
ship between �G and the already introduced (Teunissen 1994) 
ambiguity decorrelation number râ based on the correlation 
matrix, i.e.

The function f: �s → det�s (or f:�s → �G ) is not injec-
tive. This implies some ambiguity of the graphs for 

(1)�s� + �s = �s �s ∼ (�, �s)

(2)𝜌G =
√
1 − det�s 𝜌G ∈< 0, 1)

𝜌G =

√
1 − r2

â

correlation-dependent quantities with �G being a variable. 
That is why the use will also be made of constant correla-
tion matrices (Tiit and Helemae 1997; Wied 2017), i.e. the 
positive definite matrices with all off-diagonal elements 
being set to one value of correlation. They are denoted 
here as �s,a , where the function f:�s,a → �G,a is injective, 
separately for a ∈ (−

1

n−1
, 0) and a ∈ (0, 1) . We can readily 

come to this conclusion by analysing the sign of deriva-
tive [�G,a]�.

A special representation of a positive definite corre-
lation matrix (Prószyński and Kwaśniak 2018) will be 
applied in the analyses of correlation effect

where q—scale factor; q =
(
1 − �2

G

)1∕n ; �s—internal weight 
matrix; det�s = 1.

The following quantities and formulas pertaining to 
internal reliability for systems with correlated observa-
tions will be analysed:

(a)	 H—the reliability matrix, being an oblique projection 
operator (HH = H, �T ≠ �)

where (+) denotes a pseudoinverse.
The operator maps the disturbances in observations to 

increments in the least squares residuals. For uncorrelated 
observations, i.e. �s = � , formula (4) takes the form

b e i n g  a n  o r t h o g o n a l  p r o j e c t i o n  o p e r a t o r 
( ���� = ��, �

T
�
= �� ) and termed the redundancy matrix;

(b)	 hi, wi (i =1,…, n)—the response-based measures of 
internal reliability for the ith observation; hi is a reli-
ability number, wi is an asymmetry index. They are 
basic characteristics of the operator H and are defined 
as

The measures hi, wi are bound by the following 
relationships

where rH denotes rank � , being equal to Tr �.
There exists an interrelation between the asymmetry 

indices wi, i =1,…, n (see “Appendix B”).

(3)�s = q ⋅ �−1
s

(4)� = � − �s(�
T
s
�−1

s
�s)

+�T
s
�−1

s

(5)�� = � − �s(�
T
s
�s)

+�T
s

(6)hi = {�}ii; wi = {�}ii, where� = � −�T�

(7)
n∑

1

hi = r�; wi ≤ hi − h2
i
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(c)	 G(i)—a global response to gross error in the ith observa-
tion (Prószyński 2010), defined by

and bound with hi and wi by the relationship G(i) =
√
hi − wi 

(see formula (6)).

(d)	 ri (i =1,…, n)—the generalized reliability numbers, 
given by

The quantities ri and 
√
ri are non-centrality parameters 

for unit gross error, in a global model test statistic and the 
local outlier test statistics, respectively. For �s = � , we have 
ri = h�i.

Instead of the measures hi, wi, we can equivalently use 
a pair hi, ki . The parameter k is a ratio of the quasi-global 
response and a local response to a gross error in a particular 
observation (Prószyński 2010). It characterizes the relative 
strength of the local response (i.e. in that observation). The 
reliability criteria as expressed in terms of hi, ki are met in 
the region 0.5 < hi < 1 and 0 < ki < 1 , termed in the above-
mentioned reference the outlier-exposing area.

3 � Methodology of research

The effect of observation correlations upon the reliability 
matrix always depends on the design matrix used. Also, the 
relationships linking the investigated indices hi, wi and G(i) 
of the reliability matrix and the observation correlations 
contained in the matrices �s are fairly complex. These two 
reasons call for the use of the specially planned methodol-
ogy of research. So, for investigating the correlation effect 
numerical testing based on simulated networks will have 
to be the main research tool. For better determining of the 
effect itself, several networks with different levels of inter-
nal reliability will be used in the tests. Obviously, wherever 
feasible the purely theoretical derivations will be carried out 
to support the analyses of the test results.

Let us consider a correlation-dependent quantity x given 
as f(�s,�s ), where �s , �s define the model (1). The cor-
relation effect will be contained in a graph characterizing, 
for a given �s , the variability of x due to the increase in 
observation correlations. Assuming the use of the global 
correlation index �G , the function x = f(�s,�s ) will have a 
form x = f (�G|�s) , as expressed in a notation borrowed from 
conditional distributions. Since �s can be obtained with dif-
ferent values of observational standard deviations, we shall 

(8)G(i) =

√
{�T�}ii

(9)ri = {�T�−1
s
�}ii

reduce the task to a single case of unit standard deviations 
( �1 = �2 = ⋯ = �n = 1 ) where �s = � , and hence, we can 
use the notation x = f (�G|�) . The effect of the increase in 
observation correlations will be determined on the basis of 
the values of x computed for different design matrices using 
specially created auxiliary indices.

Due to numerical problems with generating matrices of 
greater sizes (n ≥ 5), we decided to use also the simplest 
possible representation of correlation matrix �s , i.e. the 
already mentioned constant correlation matrix, denoted as 
�s,a . Although it yields specific matrix configurations, it rep-
resents injective function (see Sect. 2) and is readily created.

4 � Auxiliary indices and their properties 
supporting analyses

For analysis of the effect of observation correlations on a 
reliability matrix H, contained in the graphs x = f (�G|�) 
(see Sect. 3), the following auxiliary indices will be created 
(with n being the number of observations in a network), i.e.

(a)	 dh, dh�—the indices of mutual differentiation of hi val-
ues and h�i values

They are defined in analogy to sample variance, i.e. as

Δdh , [hmax , hmin]—difference of indices as given above 
and the interval of hi values.

Due to r� being constant for a particular network,1
n

∑
n h

2
i
 

determines the shape of the graph dh = f (�G|�).

(b)	 w̄ , [wmax , wmin]—average asymmetry index and the 
interval of wi values.

Applying (6), we can write

and hence

Applying inequality (7), we may also get

(10)

dh =
1

n

n∑

1

(hi − h̄)2 =
1

n

n∑

1

h2
i
−

2

n2
r�

n∑

1

hi +
1

n2
r2
�
=

1

n

n∑

1

h2
i
−

1

n2
r2
�

(11)dh� =
1

n

n∑

1

(h�i − h̄�)
2 =

1

n

n∑

1

h2
�i
−

1

n2
r2
�

(12)wi = hi − {�T�}ii

(13)w̄ =
1

n
r� −

1

n

n∑

1

{�T�}ii

(14)sup(w̄) =
1

n
r� −

1

n

n∑

1

h2
i
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(c) r̄ , dr—average value of ri and the index of mutual dif-
ferentiation of ri values.

As in the case of the index dh we define dr by

(d) ḡ,dg—average value of G2
(i)

 (see formula (8)) denoted as 
gi, and the index of mutual differentiation of gi values.

Similarly to the case (c), we define dg by

In all the above formulas, i = 1,…, n, n being the number 
of observations in a network.

5 � Non‑orthogonality versus asymmetry 
of projection H

To operate with one common term when referring to projec-
tion H and to the matrix H itself, we shall use in the former 
case the term nullspace instead of a more appropriate term 
the kernel.

The angles between spaces and their different definitions 
have been widely investigated in the mathematical literature 
(e.g. Golub and Van Loan 1989). A specific concept of mini-
mal angle between complementary subspaces was introduced 
in (Ipsen and Meyer 1995). In the present paper, using basic 
definition of the angle between a pair of vectors, we start 
from standard methods of computing the angles between the 
range and the nullspace of projection operator H (see formula 
(4)) and on this basis derive a relationship between the angles 
of non-orthogonality and the asymmetry indices w.

Let U and V denote the range and the nullspace of projec-
tion H. Since H is an oblique projection, the subspaces U 
and V are not orthogonal. To determine the angles between 
U and V, we first find the vectors � ∈ U such that Hu = u 
and � ∈ V such that Hv = 0. The vectors u and v can be 
expressed in terms of �s,�s (case 1) or can be determined 
directly on the basis of SVD (Singular Value Decomposi-
tion) of the matrix H (case 2). Both cases are presented 
below, i.e.

Case 1  From Hu = u, or equivalently, from (I − H)u = 0 
where u belongs to the nullspace of complementary projec-
tion I − H, we get the relationship

and hence

(15)dr =
1

n

n∑

1

(ri − r̄)2

(16)dg =
1

n

n∑

1

(gi − ḡ)2

�s(�
T
s
�−1

s
�s)

+�T
s
�−1

s
⋅ � = �

or, equivalently

where { ⋅ }∙i denotes the ith column of the matrix in 
parentheses.

Applying the special representation of �s , i.e. �s = q ⋅ �−1
s

 
(see formula (3)) and omitting the proportionality factor q, 
we get Eqs. (17), (18) as expressed in terms of the internal 
weight matrix �s

From Hv = 0, or equivalently from (I − H)v = v where v 
belongs to the range of complementary projection I − H, we 
get the relationship

Since (Rao and Mitra 1971)

we obtain finally

The dimensions of the subspaces are dimU = n − (u − d) 
and dimV = u − d, what yields dimU + dimV = n.

The analogous analysis carried out for projection �� as in 
formula (5) results in

i.e. as expected, the range and the nullspace are orthogonal 
subspaces.

Case 2  On applying SVD to the matrix H, we get 
H = UΣVT, and in more detail

where �r, �n−r are the orthonormal bases of the range space 
and the nullspace, respectively, �r is a diagonal matrix of 
singular values, dimU = r, dimV = n − r, r is a rank of the 
matrix H, i.e. r = n − u + d. From the requirement that 
��r = �r , we get �r = �∗�

−1
r

.

The angles between the range and the nullspace of the 
projection H, denoted by �j,k , can be determined directly 
from the bases �r, �n−r , according to the formula

(17)�⊥{�−1
s
�s}∙i → � = {�−1

s
�s}

⊥

∙i
i = 1,… , n

(18)� = [�−1
s
{�s}∙i]

⊥ i = 1,… , n

(19)� = {�s�s}
⊥

∙i
� = [�s{�s}∙i]

⊥ i = 1,… , n

�s(�
T
s
�−1

s
�s)

+�T
s
�−1

s
⋅ � = �

�s(�
T
s
�−1

s
�s)

+�T
s
�−1

s
�s = �s

(20)� = {�s}∙i i = 1,… , n

�� = {�s}
⊥

∙i
�� = {�s}∙i i = 1,… , n

(21)

� =
[
�r �∗

][ �r �

� �

][
�∗ �n−r

]T
or � = �r�r�

T
∗

[
cos�j,k

]
r×(n−r)

= �T
r
�n−r
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Using the column vectors �⊥ = {�s�s}∙i and � = {�s}∙i as 
in (19) and (20), we can find the angles of non-orthogonality 
� , defined as � = �∕2 − � . The angles � obtained on the 
basis of these vectors will obviously not be consistent (both 
in number and value) with those that result from �j,k , i.e. 
�j,k = π∕2 − �j,k.

To find the relationship between the angles of non-
orthogonality � and the asymmetry indices w, we must also 
consider the space spanned by the rows of H. So, on the 
basis of (21) we get

Since, according to (21) �T
∗
�n−r = � , the range of �T is 

orthogonal to the nullspace of H. Hence, the angles between 
the column vectors of H, i.e. {�}∙i , and the row vectors of 
H, i.e. {�}i∙ , will be the angles of non-orthogonality of pro-
jection H

Mutual orientation of the vectors {�s}∙i , [�s{�s}∙i]
⊥ and 

{�}i∙,{�}∙i together with indication of the angles � and β is 
presented schematically in Fig. 1. The angles are deliberately 
not indexed to show only their definitional relationship, i.e. 
� = �∕2 − �.

On the basis of formulas (6) and (22), we get the relation-
ship between the asymmetry indices wi and the angles of 
non-orthogonality �i

As could be expected the increase in observation correla-
tions exerts a distorting effect on the range of projection H. 
This can be explained by the character of variability of the 
ratio (condition number) k∗ = �∗

max

�∗
min

 for the matrix �s with the 
decrease in det �s.

�T = �∗�r�
T
r

(22)

cos�i =
⟨{�}i∙⋅{�}∙i⟩
�{�}i∙� ⋅ �{�}∙i� =

hi√
{��T}ii⋅

√
{�T�}ii⋅

i = 1,… , n

(23)

cos�i =
wi + {�T�}ii�

{��T}ii ⋅
√
{�T�}ii

i = 1,… , n

wi =

�
{��T}ii ⋅

�
{�T�}iicos�i − {�T�}ii i = 1,… , n

On the basis of spectral decomposition of �s , i.e. 
�s = WΛWT, and the definition (3), i.e. �s = q�−1

s
 , we get 

�s = �(q�−1)�T and �∗
i
= q�−1

i
 (i = 1, …, n). We can check 

that Πn
1
�∗
i
= det�s = 1.

Furthermore, we get �∗
max

= q�−1
min

 , �∗
min

= q�−1
max

 , and 
finally, k∗ = �∗

max

�∗
min

=
�max

�min

= k.
With the decrease in det �s (and thus, with the increase 

in �G ), the ratio k, and hence k∗ , increases. With Πn
1
�i → 0 , 

both these ratios tend to infinity. This shows that the increase 
in observation correlations distorts more and more the 
angles between the vectors of the range of the operator H.

6 � Results of numerical tests and their 
discussion

6.1 � Test networks

We have adopted the test networks used in our earlier study 
devoted to the effect of observation correlations. The lev-
elling networks V1, V2 and a horizontal network H, each 
treated as free network, are shown in Fig. 2.

Their brief characteristics contain the following features:

•	 the range of internal reliability indices for �s = � [in 
brackets];

•	 number of observations n and redundancy f.

The X and Y coordinates for a horizontal network are pro-
vided in Table 1.

6.2 � Results of the tests

Figures 3, 4, 5, 6, 7 and 8 show graphs x = f (�G|�) built 
for quantities x such as:1

n

∑
n h

2
i
 , Δdh , (hmin, hmax) , w̄ , 

(wmin,wmax) , r̄ , dr , ḡ , dg . The graphs based on generated 
�s configurations are marked with the symbol �s , whereas 
those obtained using constant correlation matrices are 
marked with the symbol �s,a . To minimize the effect of the 
lack of injectivity of the function f : �s → det�s , the former 
graphs, except for the minimal and maximal quantities, are 
the curves joining the mean values of x obtained for the 
generated �s configurations. The asymptotic sections of the 
�s,a graphs do not appear within the drawings since they start 
at the values of �G very close to 1.

The graphs represent a greater number of graphs that have 
been carried out in the research. Their reduction, aimed at 
saving space of the present paper, was possible thanks to the 
previously derived theoretical relationships linking some of 
the above quantities (Sect. 4).

Fig. 1   Mutual orientation of the vectors forming the angles α and β
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6.3 � Discussion of the results

The graphs in Figs. 3, 4, 5, 6, 7 and 8, supported by rigor-
ous relationships (10)–(16), allow to formulate the following 
conclusions concerning the effect of increase in observation 
correlations:

•	 as shown in Fig.  3 the values of 1

n

∑
n h

2
i
 and 

Δdh = dh − dhI (interrelated by (10) and (11)) are increas-

V1 [0.38, 0.50] n = 5, f = 2 V2 [0.53, 0.60] n = 9, f = 5 H [0.40, 0.82] n = 28, f = 18

1

4

2

3
(1)

(2)

(3)
(4)

(5)

1

2

(1)

(2) (3)

(4)

(5)

(6) (7) (8)

(9) 3 4

5 1
2

3

4

(1) (15)(2)

(16)

(3)

(17)

(4)

(18)

(5)

(19)

(6)

(20)

(7)
(21)

(8)

(22)

(9)

(23)

(10)

(24)

(11)

(25)

(12)

(26)

(13)

(27)

(14)

(28) 5

6

GPS

GPS

GPS

Fig. 2   Test networks

Table 1   Point coordinates for a 
horizontal network

Point no. X[m] Y[m]

1 150 650
2 200 100
3 400 400
4 800 700
5 350 950
6 950 350

Fig. 3   Graphs x = f (�
G
|�) 

for x = 1

n

∑
n h

2

i
 and x = Δdh 

(larger scale is used)

Fig. 4   Graphs x = f (�
G
|�) for 

x = h
min

 and x = h
max
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Fig. 5   Graphs x = f (�
G
|�) for 

x = w̄

Fig. 6   Graphs x = f (�
G
|�) for 

x = w
min

 and x = w
max

Fig. 7   Graphs x = f (�
G
|�) for 

x = r̄ and x = ḡ

Fig. 8   Graphs x = f (�
G
|�) for 

x = dr and x = dg
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ing. Their increase is considerably smaller for �s,a 
graphs. The differentiation of hi values due to observa-
tion correlations rises clearly for �G > 0.6;

•	 in compliance with the increase in Δdh (as in Fig. 3), we 
observe in Fig. 4 an increase in the width of the interval 
(hmin, hmax) . This effect is much smaller for �s,a graphs;

•	 for the network V1 of small redundancy (f = 2) hmin 
comes down to 0 at �G = 0.8 and assumes negative values 
for �G > 0.8, while for V2 with f = 5 hmin reaches 0 only at 
�G = 0.95). For the network H with f = 18, the increase in 
the width of the interval (hmin, hmax) as computed for �s,a 
configurations is smaller than for networks with f = 2 and 
f = 5. We may then conclude that the higher the network 
redundancy, the smaller is its reaction to the increase in 
observation correlations;

•	 the values of w̄ are decreasing (Fig. 5) and the width of 
the interval (wmin,wmax) is increasing (Fig. 6). The lower 
limit moves towards high negative values. The results 
are consistent with formulas (12), (13) and the growth 
of 1

n

∑
n h

2
i
 (Fig. 3) and ḡ (Fig. 7);

•	 as shown in Fig. 7 the increase in r̄ is of similar character 
as that in ḡ . However, for higher values of �G and espe-
cially for �G approaching 1 the increase in r̄ is greater 
than that in ḡ . This can be due to the influence of the 
scale factor q (see formula (3)) being in r̄ a magnifying 
factor q−1 , while ḡ is independent of q. The differentia-
tion of the ri values increases faster than that of gi values 
(Fig. 8), which can be explained by the similar reason 
with that in this case a magnifying factor in dr is q−2.

We can see that despite the lack of injectivity of the func-
tion f : �s → det�s , the graphs x = f (�G|�) are consistent 
between themselves and also with the graphs obtained on the 
basis of �s,a configurations. So, there are reasonable grounds 
to consider that they yield a general but correct description 
of the effects of increase in observation correlations upon 
the measures of internal reliability. Such a description is for 
use in designing networks with correlated observations, the 
networks with low redundancies in particular.

7 � Analysis of suitability of response‑based 
measures as compared to testing‑based 
measures

It should be noted first of all that the response-based meas-
ures hi,wi are applicable only for a priori analyses of net-
works, while the testing-based measures ri and MDBs,i can 
be used both for a priori analyses ( ri, MDBs,i ) and for outlier 
detection ( ri ) and identification ( 

√
ri).

Here are the features of the response-based measures 
important when comparing with the testing-based measures:

•	 the pairs ( hi,wi ) are the unambiguous measures of 
internal reliability of networks with correlated obser-
vations, as they are based on two basic characteristics 
of the oblique projection operator H, i.e. the elements 
on a main diagonal ( hi ) and asymmetry indices ( wi ) 
linked with the angles of non-orthogonality;

•	 hi is a direct response of a model in the ith observation 
to a single gross error residing in this observation. The 
ri and MDBs,i measures characterize the sensitivity of a 
global model test to a single gross error residing in the 
ith observation. You can see the difference between the 
two types of measures particularly clearly in the case 
when f = 1 (at any level of observation correlations), 
where the hi values are mutually differentiated but the 
MDBs,i ones are all identical. It is obviously an extreme 
and purely theoretical example, since such networks 
should be avoided in practice;

•	 the criteria for ( hi,wi ) are clearly interpretable since 
they are formulated in terms of reactions to a gross 
error (i.e. magnitude and sign of the error compensa-
tion and relative strength of the response);

•	 the values of hi are mutually related and, as shown in 
the present paper, so are the values of wi . Both types 
are interrelated by the inequality. Unlike ri , they do not 
depend on the scale factor q;

•	 with the increase in observation correlations the dif-
ferentiation of hi values increases and the average 
value of wi decreases. It means a gradual worsening of 
the model responses in individual observations. The 
smaller the redundancy f of the model, the worsening 
becomes greater. In the extreme case, i.e. when f = 1, 
at larger values of �G (0.7 and more) the measures h for 
some observations may reach negative values as well as 
values greater than 1. The responses in such observa-
tions do not properly compensate the effect of a gross 
error in terms of both magnitude and sign. There may 
as well be the responses that are too small (compared 
to other responses), for the error to be detected and 
identified;

•	 since the MDB only describes the sensitivity of a global 
model test to the presence of a single gross error in the 
observations, it should be supplemented with minimal 
identifiable error MIB (Teunissen 2017; Zaminpardaz 
and Teunissen 2018; Imparato et al. 2018) or the identi-
fiability index ID (Prószyński 2015), to be aware of the 
magnitudes of the type III errors. Therefore, for the pur-
poses of a priori analyses, MDBs cannot be considered as 
autonomous measures. The hi,wi measures are only to a 
certain extent burdened with this disadvantage, since the 
pairs ( hi,wi ) falling into the outlier-exposing area, except 
the pairs falling outside, show satisfactory values of ID 
indices. The conclusion can be that the direct response 
(hi,wi) in a particular observation contains also some 
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information as to the level of detectability and identifi-
ability of a gross error in that observation.

8 � Concluding remarks

Basic characteristics of the reliability matrix, which is an 
oblique projection operator, describe the responses of a net-
work (or more generally—an observation system) to a single 
gross error and are sensitive to the increase in observation 
correlations. This justifies their use as so-called response-
based measures of internal reliability ( hi,wi ). The measures 
can be a supplementation of the testing-based measures 
ri, MDBs,i for a priori analyses of networks carried out at 
the stage of their design. Although both types of measures 
show compliance in responding to the increase in observa-
tion correlations, they have specific features of their own. 
So, while taken together they can provide more complete 
information about the behaviour of networks in the pres-
ence of gross errors and about the chances for their detection 
and identification. For the systems with small redundancy, 
as may occur in engineering surveys, the response-based 
measures seem to be specially useful.

The graphs x = f (�G|�) based on generated �s configura-
tions are limited to small network sizes ( n ≤ 5 ) and despite 
the applied minimizing procedure are affected by the lack 
of injectivity of the function f : �s → �G . The graphs for 
networks of greater sizes and less affected by this drawback 
could be obtained by means of more powerful computers 
and more advanced software than those commonly avail-
able used in the present research. Having in mind the need 
to improve the design methods of systems with correlated 
observations, it seems purposeful to undertake such studies.

For further studies of correlation effect on the internal 
reliability of networks, it seems useful to take into account 
other relevant contributions as for instance those in Wang 
and Knight (2012) and Yang et al. (2013).
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Appendix A

Generating Cs configurations and constructing 
graphs x = f(�

G
|�) , in brief

For generating �s configurations, a modified version of 
the algorithm “accept/reject” (Budden et al. 2008; Robert 
and Casella 1999; Numpacharoen and Atsawarungruangkit 
2012) is used. The modification made for the purpose of this 
research is as follows:

•	 the number within the interval (0, 1> that is to serve as a 
scaling multiplier is drawn from the uniform distribution,

•	 every non-diagonal element of the matrix �s <0, 1) 
drawn from the uniform distribution is multiplied by the 
above scaling factor,

•	 the so-obtained �s configuration is checked whether it 
meets all the conditions of positive definiteness and is 
either accepted or rejected.

The construction of graphs x = f (�G|�) proceeded as 
follows:

•	 generating 30,000–50,000 �s configurations;
•	 determining the quantities x for all the generated �s con-

figurations;
•	 ordering the obtained values of the quantities x according 

to increasing �G values;
•	 creating intervals of the width of 0.05 for �G values;
•	 computing the mean values or finding the extreme values 

for the quantities x for each interval;
•	 creation of graphs relating to the middle points of the 

intervals.

Appendix B

Proof for interrelation between the asymmetry 
indices w

Let �r(n × r) be one of the possible non-orthogonal bases 
for the range of projection H and �(r)(r × r) and �(r)(r × r) 
be the submatrices in H and W (as in Eq. 6), respectively, 
corresponding to the chosen base.

On the basis of Eq. (6), we can write

where �(r) contains on its diagonal r-basic asymmetry 
indices.

Any column vector that does not belong to the above 
base, denoted as {�}∙j , j = r + 1, …, n − r, can be expressed 
in the form

(24)�(r) = �(r) −�T
r
�r

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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where the vector of coordinates �j(r × 1) is obtained from 
the relationship

Using Eqs. (6) and (25), we get

and substituting (24)

The relationship (27) ends the proof.
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