
Mathematical Methods of Operations Research (2019) 90:255–270
https://doi.org/10.1007/s00186-019-00671-z

ORIG INAL ART ICLE

Locating a semi-obnoxious facility in the special case of
Manhattan distances

Andrea Wagner1

Received: 23 November 2017 / Published online: 17 May 2019
© The Author(s) 2019

Abstract
The aimof thiswork is to locate a semi-obnoxious facility, i.e. tominimize the distances
to a given set of customers in order to save transportation costs on the one hand and to
avoid undesirable interactions with other facilities within the region by maximizing
the distances to the corresponding facilities on the other hand. Hence, the goal is to
satisfy economic and environmental issues simultaneously. Due to the contradicting
character of these goals, we obtain a non-convex objective function. We assume that
distances can be measured by rectilinear distances and exploit the structure of this
norm to obtain a very efficient dual pair of algorithms.

Keywords Obnoxious facility location · Global optimization · Primal and dual
algorithms · Dc problems

Mathematics Subject Classification 90B85 · 90C26 · 90C46

1 Introduction

This paper deals with the problem of locating a semi-obnoxious facility such as
an industrial plant, where the goal is to minimize travel distances to customers
and suppliers and to maximize distances to nature reserves and residential areas.
First attempts to solve location problems with undesirable facilities appeared in
the 1970’s (Church and Garfinkel 1978; Dasarathy and White 1980; Goldman and
Dearing 1975). Since then, researchers have focussed on many different variants
of the problem, like different spaces (e.g. networks, discrete settings, R2 or Rn),
different distance functions (e.g. Euclidean distance, Manhatten norm, maximum
norm, polyhedral gauges), different objective functions (e.g. bi-objective models,
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256 A. Wagner

dc formulations) and many more. For surveys and summaries on location problems
with undesirable facilities the reader is referred for instance to Cappanera (1999),
Carrizosa and Plastria (1999), Eiselt and Laporte (1995), Plastria (1996), Wagner
(2015).

The case of Manhattan distances in the Euclidean space R
2 using a single-

objective model is considered for instance in Drezner and Wesolowsky (1991),
Nickel and Dudenhöffer (1997). Compared to them, this paper provides an alter-
native approach (in R

n) which allows to obtain a dual pair of algorithms and a
variant of the primal one that all mainly consist of a sorting process followed
by a very efficient procedure to evaluate the objective at all candidate coordi-
nates.

In Wagner et al. (2016) the problem is considered for the general case of mixed
gauge distances. A dual pair of algorithms to find exact solutions is developed,
based on the following discretization result: Both, the primal and the dual prob-
lem, provide grids w.r.t. attraction and w.r.t. repulsion, such that the primal grid
points w.r.t. attraction provide a finite set of candidates for optimal primal solu-
tions and the dual grid points w.r.t. repulsion provide a finite set of candidates
for optimal dual solutions. In case of mixed gauge distances, those grids may be
very complex and for determining its grid points it is suggested to apply a gen-
eralized version of Benson’s algorithm (Benson 1998; Löhne and Weißing 2015,
2016b).

In Löhne and Wagner (2017) a more general setting is considered. The goal is
to minimize the difference of two convex functions where at least one of them is
polyhedral convex, i.e. its epigraph is a polyhedral convex set. A dual pair of algo-
rithms is presented, in which the vertices of the epigraphs are determined by solving
a polyhedral projection problem, e.g. with a vlp solver (Löhne and Weißing 2016a).
The projections of these vertices onto Rn provide finite sets of candidates for optimal
solutions.

It turns out that the finite sets of candidates for optimal solutions in Löhne and
Wagner (2017) and in Wagner et al. (2016) can efficiently be found by using for
instance the implementation Bensolve (Löhne and Weißing 2015).
In case ofManhattan distances the grids have an axes-parallel structure and hence there
is no further need for special solvers for multi-objective linear programs or polyhedral
projection problems.We exploit the structure of theManhattan norm in order to obtain
more efficient variants of the algorithms presented in Löhne and Wagner (2017) and
Wagner et al. (2016).

This paper is organized as follows: In Sect. 2 we introduce the mathematical for-
mulation of the considered optimization problem and review the main results and
algorithms presented in Löhne and Wagner (2017) and Wagner et al. (2016) which
this paper is based on. In Sect. 3 we derive a method for determining the finite set
of grid points, which are candidates for optimal solutions. Furthermore, in Sect. 4,
we derive recursive methods for calculating the primal and dual objective values with
help of the special structure given by the norm. The resulting algorithms are presented
in Sect. 5. In Sect. 6 we provide computational results and compare different solving
procedures. We close with a conclusion in Sect. 7.
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2 Problem formulation and preliminary results

In this section we provide relevant terms, properties and problem formulations. For
more detailed information the reader is referred to Löhne and Wagner (2017) and
Wagner et al. (2016).

Let x, a ∈ R
n . Then the Manhattan distance between x and a is given by

d1(x, a) = ∑n
i=1 |xi − ai | and the corresponding unit ball is given by B ={

x ∈ R
n| ∑n

i=1 |xi |
} = 1.

The optimization problem under consideration is a dc location problem (difference
of convex functions) that can be formulated as

min
x∈Rn

{g(x) − h(x)}, (P)

with functions g, h : R
n → R+ defined as

g(x) :=
M∑

m=1

wmd1(x, a
m), h(x) :=

M∑

m=1

wmd1(x, a
m),

where the parameters a1, . . . , aM ∈ R
n , M ≥ 1, denote the attracting points with

weights w1, . . . , wM > 0, and a1, . . . , aM ∈ R
n , M ≥ 1, denote the repulsive points

with weightsw1, . . . , wM > 0. Based onWagner et al. (2016) the Toland-Singer dual
problem (Singer 1979; Toland 1978) results as

min
y∈Rn

{
h∗(y) − g∗(y)

}
, (D)

where the conjugate functions

h∗(y) = min
(y1,...,yM )

⎧
⎨

⎩

M∑

m=1

〈
ym, am

〉
∣
∣
∣
∣
∣
∣
ym ∈ [−wm, wm]n, y =

M∑

m=1

ym

⎫
⎬

⎭
, (1)

g∗(y) = min
(y1,...,yM )

⎧
⎨

⎩

M∑

m=1

〈
ym, am

〉
∣
∣
∣
∣
∣
∣
ym ∈ [−wm, wm]n, y =

M∑

m=1

ym

⎫
⎬

⎭
, (2)

of g and h, respectively, are obtained with help of basic calculus rules for conjugate
functions, see e.g. Rockafellar (1997). For the dual pair of optimization problems (P)
and (D) it holds (e.g. Singer 2006):

min
x∈Rn

{g(x) − h(x)} = min
y∈Rn

{
h∗(y) − g∗(y)

}
.

A direct consequence of Theorem 4.2 in Wagner et al. (2016) is the following:

Corollary 1 (FinitenessCriterion)Afinite solution of problem (P) exists and is attained

if and only if
∑M

m=1 wm ≤∑M
m=1 wm.
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According to Wagner et al. (2016) the following relations hold: For all y ∈ dom g∗

there exists a tuple
(
y1, . . . , yM

)
∈ w1B

∗
1×. . .×wM B

∗
M , such that y = y1+. . .+yM

and
⋂

m=1,...,M

[
am + N

wm B
∗
m
(ym)

]
�= ∅. Whenever this intersection in non-empty, it

coincides with the subdifferential ∂g∗(y) and the corresponding tuple
(
y1, . . . , yM

)

directly provides the objective value g∗(y), i.e.

∂g∗ (y) =
M⋂

m=1

[
am + N

wm B
∗
m
(ym)

]
and g∗ (y) =

M∑

m=1

〈
am, ym

〉
. (3)

Moreover,

∂g(x) =
M∑

m=1

argmax
y∈wm B

∗
m

〈
x − am, y

〉
, x ∈ R

n . (4)

Note that B∗ defines the dual unit ball, which in case of Manhattan distances is
B∗ = [−1, 1]n . The extreme points of these subdifferentials in (3) and (4) define the
primal and dual grid points w.r.t. attraction. Analogously, the subdifferentials of h
and h∗, define primal and dual grids w.r.t. repulsion. These grids provide finite sets of
candidates for optimal solutions, as the following result states.

Theorem 1 (Discretization Result, (Wagner et al. 2016, Theorem 4.11)) Let I denote
the set of primal grid points w.r.t. attraction, ID the set of dual grid points w.r.t.
repulsion, and X and Y the sets of minimizers of (P) and (D), respectively. Then,
I ∩ X �= ∅ and ID ∩ Y �= ∅.

Due to the special structure of the Manhattan norm we can simplify the algorithms
in Löhne and Wagner (2017) and Wagner et al. (2016), which mainly consist of deter-
mining all grid points and verifying their optimality. Solving the original non-convex
problem (P) is reduced to a sorting process followed by a very efficient procedure to
evaluate the objective at all candidate coordinates. No special solvers as used in Löhne
and Wagner (2017) and Wagner et al. (2016) are necessary.

The following proposition can be applied to determine primal optimal solutions,
when dual optimal points are known and vice verse.

Proposition 1 (Wagner et al. 2016, Remark 3.4) Let X be the set of minimizers of
g − h and Y be the set of minimizers of h∗ − g∗. Then

X =
⋃

y∈Y
∂g∗(y), Y =

⋃

x∈X
∂h(x).

Proposition 2 (Necessary Optimality Conditions, (Horst and Thoai 1999; Tuy 1998))
Let g, h : R

n → R ∪ +∞ be proper, convex and closed functions. If x̂ ∈ dom g ∩
dom h is a global minimizer of g − h on R

n then ∂h(x) ⊆ ∂g(x). Vice verse, if
ŷ ∈ dom g∗ ∩ dom h∗ is a global minimizer of h∗ − g∗ on Rn then ∂g∗(x) ⊆ ∂h∗(x).
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3 Determination of grid points

In this section we present methods for determining the sets of primal and dual grid
points. These grid points are determined in the primal and the dual algorithm for
solving the optimization problems (P) and (D).

First of all we reorder and consolidate the coordinates of the existing facilities. For
i = 1, . . . , n we denote by Mi the number of different values of the i-th coordinates
a1i , . . . , a

M
i of all attracting facilities, sort them in ascending order and consolidate

the weights of equal coordinates, such that

α1
i : = min

{
a1i , . . . , a

M
i

}
, (5)

αm
i : = min

{
aki ∈

{
a1i , . . . , a

M
i

}∣
∣
∣ aki > αm−1

i

}
, m = 2, . . . , Mi , (6)

vmi : =
∑

{
k∈{1,...,M}∣∣ aki =αm

i

}
wk, m = 1, . . . , Mi . (7)

Analogously, we define

α1
i : = min

{
a1i , . . . , a

M
i

}
, (8)

αm
i : = min

{
aki ∈

{
a1i , . . . , a

M
i

}∣
∣
∣ aki > αm−1

i

}
, m = 2, . . . , Mi , (9)

vmi : =
∑

{
k∈{1,...,M}∣∣ aki =αm

i

}
wk, m = 1, . . . , Mi . (10)

3.1 Determining primal grid points

Primal grid points w.r.t. attraction are given by the subdifferentials of g∗, which
have a rectangular axes-parallel shape in case of Manhattan distances. To see that,
we consider the n components of the sets separately: Let (y1, . . . , yM ) be such that
⋂M

m=1

[
am + N[−wm ,wm ]n (ym)

] �= ∅. Then, by (3),

∂g∗ (y) =
M⋂

m=1

[
am + N[−wm ,wm ]n (ym)

]

=
M⋂

m=1

[
am1 + N[−wm ,wm ](ym1 )

]× . . . ×
M⋂

m=1

[
amn + N[−wm ,wm ](ymn )

]

=
M1⋂

m=1

[
αm
1 + N[−vm ,vm ](ym1 )

]× . . . ×
Mn⋂

m=1

[
αm
n + N[−vm ,vm ](ymn )

]
.
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Since for i = 1, . . . , n and m = 1, . . . , Mi it holds

αm
i + N[−vmi ,vmi ](ymi ) =

⎧
⎪⎨

⎪⎩

(−∞, αm
i ], ymi = −vmi ,

{αm
i }, ymi ∈ (−vmi , vmi ),

[αm
i ,+∞), ymi = vmi ,

(11)

we directly obtain the extreme points of the subdifferentials and hence the sets I and
I of primal grid points w.r.t. attraction and w.r.t. repulsion, respectively, as

I :=
{
α1
1, . . . , α

M1
1

}
× · · · ×

{
α1
n, . . . , α

Mn
n

}
, (12)

I :=
{
α1
1, . . . , α

M1
1

}
× · · · ×

{
α1
n, . . . , α

Mn
n

}
. (13)

3.2 Determination of dual grid points

Dual grid points w.r.t. attraction are given by the subdifferentials of g, which also have
a rectangular axes-parallel shape in case of Manhattan distances. To see that, we again
consider the n components of the sets separately. By (4) we have

∂g(x) =
M∑

m=1

argmax
y∈[−wm ,wm ]n

〈
x − am, y

〉 =
n∑

i=1

Mi∑

m=1

argmax
ymi ∈[−vmi ,vmi ]

(xi − αm
i ) · ymi ,

where for i = 1, 2, . . . , n and m = 1, . . . , Mi it holds

argmax
ymi ∈[−vmi ,vmi

]
(xi − αm

i ) · ymi =

⎧
⎪⎨

⎪⎩

{−vmi

}
, xi < αm

i ,
[−vmi , vmi

]
, xi = αm

i ,
{

vmi

}
, xi > αm

i .

Hence, we directly obtain the extreme points of the subdifferentials of g and thus the
sets ID and ID of dual grid points w.r.t. attraction and w.r.t. repulsion, respectively,
as

ID =
{
y01, . . . , y

M1
1

}
× · · · ×

{
y0n, . . . , y

Mn
n

}
,

ID =
{
y0
1
, . . . , y

M1
1

}
× · · · ×

{
y0
n
, . . . , yMn

n

}
,

where for i = 1, . . . , n the coordinates yki can be determined recursively by

yki : =

⎧
⎪⎪⎨

⎪⎪⎩

−
Mi∑

m=1

vmi , k = 0,

yk−1
i + 2vki , k = 1, 2, . . . , Mi ,

(14)
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or explicitly by

yki : =
k∑

m=1

vmi −
Mi∑

m=k+1

vmi , k = 0, 1, . . . , Mi . (15)

Analogously, for i = 1, . . . , n, the coordinates yk
i
can be determined by

yk
i

: =

⎧
⎪⎪⎨

⎪⎪⎩

−
Mi∑

m=1

vmi , k = 0,

yk−1
i

+ 2vki , k = 1, 2, . . . , Mi ,

(16)

or

yk
i

: =
k∑

m=1

vmi −
Mi∑

m=k+1

vmi , k = 0, 1, . . . , Mi . (17)

Obviously, in case of Manhattan distances the primal problem (P) and the dual
problem (D) provide axes-parallel grid structures.

4 Determining objective values

For a more efficient implementation we derive recursive representations for determin-
ing the objective values of grid coordinates. In the primal algorithm this will substitute
the obvious explicit determination and in the dual case it will even replace to solve a
linear program for each grid candidate.

4.1 Determination of primal objective values

To check all primal grid points w.r.t. attraction for optimality we need to determine
the differences g(x) − h(x), for all x ∈ I. Instead of the function g and h we may
consider subfunctions g1, . . . , gn, h1, . . . , hn : R → R+ such that

g(x) =
n∑

i=1

gi (xi ), gi (xi ) :=
Mi∑

m=1

vm
∣
∣xi − αm

i

∣
∣ , (18)

h(x) =
n∑

i=1

hi (xi ), hi (xi ) :=
Mi∑

m=1

vm

∣
∣xi − αm

i

∣
∣ . (19)
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Since the increase of gi from a grid coordinate αk
i to αk+1

i can be determined by

gi (α
k
i ) − gi (α

k−1
i ) =

k−1∑

m=1

vm(αk
i − αk−1

i ) −
Mi∑

m=k

vm(αk
i − αk−1

i ),

we obtain by (14)

gi (α
k
i ) =

⎧
⎪⎪⎨

⎪⎪⎩

Mi∑

m=1

vm(αm
i − α1

i ), k = 1,

gi (α
k−1
i ) + yk−1

i (αk
i − αk−1

i ), k = 2, . . . , Mi ,

(20)

and analogously by (16)

hi (α
k
i ) =

⎧
⎪⎪⎨

⎪⎪⎩

Mi∑

m=1

vm(αm
i − α1

i ), k = 1,

hi (α
k−1
i ) + yk−1

i
(αk

i − αk−1
i ), k = 2, . . . , Mi .

(21)

Since a grid coordinate αm
i w.r.t. attraction does not necessarily need to be a grid

coordinate w.r.t. repulsion, we use the piecewise linearity of the subfunctions hi to
determine the values hi (αm

i ). We obtain for k = 1, . . . , Mi

hi (α
k
i ) =

⎧
⎪⎨

⎪⎩

hi (α
j
i ) + y j

i (α
k
i − α

j
i ), αk

i ∈ [α j
i , α

j+1
i ), j ∈ {1, . . . , Mi − 1

}
,

hi (α1
i ) − y0

i
(α1

i − αk
i ), αk

i < α1
i ,

hi (α
Mi
i ) + y

Mi
i (αk

i − α
Mi
i ), αk

i ≥ α
Mi
i .

(22)

While determining all objective values by applying (18) and (19) has quadratic
computational costs, the recursive variant in (20) – (22), involving (14) and (16), has
linear costs only. The results of this subsection are applied in Algorithm 1.

4.2 Determination of dual objective values

To check all dual grid points w.r.t. repulsion for optimality we need to determine the
differences h∗(y) − g∗(y), for all y ∈ ID . In order to avoid solving linear programs
as given in (1) and (2), we derive a method for calculating g∗(y) and h∗(y) with help
of the special structure given by the norm.

Instead of the function g∗ we may consider subfunctions g∗
1 , . . . , g

∗
n which all

together add up to g∗, such that

g∗(y) = min

⎧
⎨

⎩

M∑

m=1

〈
am, ym

〉
∣
∣
∣
∣
∣
∣
ym ∈ [−wm, wm]n,

M∑

m=1

ym = y

⎫
⎬

⎭
=

n∑

i=1

g∗
i (yi ),
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where for i = 1, . . . , n the functions g∗
i : R → R are defined as

g∗
i (yi ) := min

⎧
⎨

⎩

Mi∑

m=1

αm
i y

m
i

∣
∣
∣
∣
∣
∣
ymi ∈ [−vm, vm],

Mi∑

m=1

ymi = yi

⎫
⎬

⎭
. (23)

By (3) it follows that

g∗
i

⎛

⎝yi =
Mi∑

m=1

ymi

⎞

⎠ =
Mi∑

m=1

αm
i y

m
i ⇔

Mi⋂

m=1

[
αm
i + N[−vmi ,vmi ](ymi )

]
�= ∅.

Thus, by (11), for the dual grid components yki w.r.t. attraction as defined in (14)
and (15), we obtain for i = 1, . . . , n the values

g∗
i (y

k
i ) =

⎧
⎪⎪⎨

⎪⎪⎩

−
Mi∑

m=1

αm
i vmi , k = 0,

g∗
i (y

k−1
i ) + 2αk

i v
k
i , k = 1, 2, . . . , Mi ,

(24)

or explicitly

g∗
i (y

k
i ) =

k∑

m=1

αm
i vmi −

Mi∑

m=k+1

αm
i vmi , k = 0, 1, . . . , Mi .

Analogously, for the dual grid components yk
i
w.r.t. repulsion as defined in (16) and

(17), we obtain for i = 1, . . . , n the values

h∗
i (y

k
i
) =

⎧
⎪⎪⎨

⎪⎪⎩

−
Mi∑

m=1

αm
i vmi , k = 0,

h∗
i (y

k−1
i

) + 2αk
i v

k
i , k = 1, 2, . . . , Mi ,

(25)

or explicitly

h∗
i (y

k
i
) =

k∑

m=1

αm
i vmi −

Mi∑

m=k+1

αm
i vmi , k = 0, 1, . . . , Mi .

Obviously, the functions g∗
i and h∗

i are piecewise linear.
Since a dual grid coordinate yk

i
w.r.t. repulsion does not necessarily need to be a

grid point w.r.t. attraction, we use the piecewise linearity of the subfunctions g∗
i to

determine the value g∗
i (y

k
i
). Assume that a finite solution does exist, i.e.

∑M
m=1 wm ≤

∑M
m=1 wm . Then y0i ≤ yk

i
≤ yMi

i holds for i = 1, . . . , n. In particular, there exists
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j ∈ {1, . . . , Mi
}
such that y j−1

i ≤ yk
i

≤ y j
i . Since g∗

i is linear in [y j−1
i , y j

i ] we
have

g∗
i (y

k
i
) =

⎧
⎨

⎩

g∗
i

(
y j
i

)
, yk

i
= y j

i ,

g∗
i

(
y j−1
i

)+ α
j
i

(

yk
i
− y j−1

i

)

, yk
i

∈ [y j−1
i , y j

i ).
(26)

While determining all objective values by applying (23) and the analogous program
for h∗

i (yi ) involves 2 ·Mi linear programs for i = 1, . . . , n, the recursive variant using
(24), (25) and (26) has linear costs only.

Moreover, by (11), we obtain the assignment

∂g∗
i (yi ) =

Mi⋂

m=1

[αm
i + N[−vmi ,vmi ](ymi )] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−∞, α1
i ], yi = y0i ,

[αk
i , α

k+1
i ], yi = yki ,

[αMi
i ,+∞), yi = yMi

i ,{
αk+1
i

}
, yi ∈ (yki , y

k+1
i ),

(27)

which is applied in Algorithm 2 to easily deduce primal optimal solutions from dual
ones, see Proposition 1. We obtain an analogous assignment between primal and dual
elements w.r.t. repulsion.

The results of this subsection are applied in Algorithm 2.

4.3 Alternative variant

In Nickel and Dudenhöffer (1997) the authors provide an algorithm that has a similar
solving strategy as Algorithm 1: Based on the piecewise linearity of the objective
function (facilities are not distinguished between attractive and repulsive ones), their
algorithm checks each grid point for local optimality and evaluates all local minimal
points to find a globalminimumof the objective. Since not all grid points are evaluated,
an explicit determination is applied. The following serves to provide a combination
of Algorithm 1 and the algorithm in Nickel and Dudenhöffer (1997).

Let us reformulate Problem (P) as follows:

min
x∈Rn

{

f (x) :=
M∑

m=1

wm
∣
∣x − am

∣
∣

}

, (P′)

where M := M + M and

wm :=
⎧
⎨

⎩

wm , m = 1, . . . , M,

−wm , m = M + 1, . . . , M + M,
am :=

⎧
⎨

⎩

am , m = 1, . . . , M,

am , m = M + 1, . . . , M + M .

(28)
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As in (5)–(10) we reorder and consolidate the coordinates of the existing facilities.
For i = 1, . . . , nwedenote byMi the number of different values of the i-th coordinates
of all facilities a1i , . . . , a

M
i , sort them in ascending order and consolidate the weights

of equal coordinates, such that

α1
i : = min

{
a1i , . . . , a

M
i

}
, (28)

αm
i : = min

{
aki ∈

{
a1i , . . . , a

M
i

}∣
∣
∣ aki > αm−1

i

}
, m = 2, . . . , Mi , (29)

vmi : =
∑

{k∈{1,...,M}| aki =αm
i

}
wk, m = 1, . . . , Mi . (30)

The following variables correspond to the derivatives of f from the left of all grid
points, see Nickel and Dudenhöffer (1997),

yki : =

⎧
⎪⎪⎨

⎪⎪⎩

−
Mi∑

m=1

vmi , k = 0,

yk−1
i + 2vki , k = 1, 2, . . . , Mi .

(31)

Instead of checking for localminimality, and if so, evaluating explicitely, we determine
all objective values recursively as we have done in Sect. 4.1 and obtain

fi (α
k
i ) =

⎧
⎪⎪⎨

⎪⎪⎩

Mi∑

m=1

vm(αm
i − α1

i ), k = 1,

fi (α
k−1
i ) + yk−1

i (αk
i − αk−1

i ), k = 2, . . . , Mi .

(32)

The combined results of this subsection are applied in Algorithm 3.

5 Primal and dual algorithm

Based on the derived results, we can formulate the simplified algorithms for locating
a semi-desirable facility in the special case of Manhattan distances.

Assume that the finiteness criterion is satisfied, i.e.
∑M

m=1 wm ≥ ∑M
m=1 wm , see

Corollary 1. Then, the algorithms can be formulated as follows:
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Algorithm 1 (Primal Algorithm)

Data: Facility locations a1, . . . , aM ∈ R
n and a1, . . . , aM ∈ R

n and

facility weights w1, . . . , wM > 0 and w1, . . . , wM > 0.
Result: Set X of optimal solutions of (P).
(i) Sort the coordinates of the existing facilities and consolidate weights according to

equations (5)–(10). (The primal grid points w.r.t. attraction are given by (12).)
(ii) For each grid coordinate αk

i determine gi (αk
i ) − hi (αk

i ) using (14), (16), (20)–(22).
(iii) Determine the set X of optimal primal solutions

X =
{

x∗ = (x∗
1 , . . . , x

∗
n )

∣
∣
∣
∣
∣
x∗
i ∈ argmin

k=1,...,Mi

{gi (αk
i ) − hi (α

k
i )}, i = 1, . . . , n

}

.

Algorithm 2 (Dual Algorithm)

Data: Facility locations a1, . . . , aM ∈ R
n and a1, . . . , aM ∈ R

n and

facility weights w1, . . . , wM > 0 and w1, . . . , wM > 0.
Result: Sets X and Y of optimal solutions of (P) and (D), respectively.
(i) Sort the coordinates of the existing facilities and consolidate weights according to

equations (5)–(10).
(ii) Determine the dual grid coordinates using (14) and (16).
(iii) For each grid coordinate yk

i
determine h∗

i (y
k
i
) − g∗

i (y
k
i
) using (24)–(26).

(iv) Find the set Y containing optimal dual solutions

Y =
{

y∗ = (y∗
1
, . . . , y∗

n
)

∣
∣
∣
∣
∣
y∗
i

∈ argmin
k=0,...,Mi

{h∗
i (y

k
i
) − g∗

i (y
k
i
)}, i = 1, . . . , n

}

.

(v) Apply (27) and Proposition 1 to determine the corresponding set X =⋃y∗∈Y ∂g∗(y∗) of
primal optimal points.

Remark 1 In the primal algorithm,we need to evaluate all grid coordinates w.r.t. attrac-
tion. Depending on the input data, we do not necessarily need to determine all grid
coordinates w.r.t. repulsion. In fact, due to (22), we need only the coordinates

α1
i , α

2
i , . . . , min

k=1,...,Mi

{
αk
i | αk

i > α
Mi
i

}
.

Thus, instead of pre-calculating all dual grid coordinates, we only determine those,
that are really necessary and include this into Step (ii). Analogously, in the dual
algorithm, we only need to determine the primal grid points w.r.t. attraction

y1i , y
2
i , . . . , min

k=0,...,Mi

{
yki | yki > y

Mi
i

}
.

and include this into Step (iii).

Remark 2 Whether or not the complete interval between two adjacent optimal grid
coordinates αk

i and αk+1
i belongs to the set of optimal points can be decided by
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applying Proposition 2 and the piecewise linearity of the functions g and h. Due
to this result, the interval is optimal, whenever there exists q ∈ {1, . . . , Mi

}
such

that [αk
i , αk+1

i ] ⊆ [αq
i , α

q+1
i ]. This property may also be used for implementing the

algorithms in order to reduce the number of grid coordinates to be checked.

Algorithm 3 (Variant of the Primal Algorithm)

Data: Facility locations a1, . . . , aM ∈ R
n and

facility weights w1, . . . , wM ∈ R.
Result: Set X of optimal solutions of (P′).
(i) Sort the coordinates of the existing facilities and consolidate weights according to

equations (28)–(30).
(ii) For each grid coordinate αk

i determine fi (αk
i ) using (31) and (32).

(iii) Determine the set X of optimal primal solutions

X =
{

x∗ = (x∗
1 , . . . , x

∗
n )

∣
∣
∣
∣
∣
x∗
i ∈ argmin

k=1,...,Mi

{ fi (αk
i )}, i = 1, . . . , n

}

.

6 Computational results

We solve several randomly generated instances of Problem (P) with up to 2.000.000
facilities, where different ratios of the numbers M and M of attracting and repulsive
facilities, respectively, are considered. Tables 1, 2 and 3 state the computational results
of Algorithms 1, 2 and 3, respectively. We furthermore compare our results with the
algorithm presented in Nickel and Dudenhöffer (1997), see Tables 4 and 5. All tables
are based on the same generated input data. The locations of all facilities are sampled
from the continuous uniform distribution over the interval (−0.5, 0.5). The number of
digits is limited to �lg(M + M)� to make repeating entries possible but not dominant.
Theweights of all facilities are uniformly generated values over the interval (0, 1). The
generated weights w1, . . . , wM are scaled such that the sum over all weights equals
1.0.

All algorithms were implemented in MATLAB R2017a. All examples were run on
a computer with Intel® Core™ i5–6300U CPU with 2.40GHz.

Table 1 Computational results
(running time in seconds) using
the primal Algorithm 1, n = 2

M M

100 1000 10,000 100,000 1,000,000

100 0.038 0.018 0.113 0.787 7.836

1000 0.025 0.025 0.115 0.784 7.748

10,000 0.091 0.096 0.170 0.862 7.824

100,000 0.772 0.786 0.843 1.517 8.557

1,000,000 7.774 8.075 7.924 8.627 15.325
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Table 2 Computational results (running time in seconds) using the dual Algorithm 2, n = 2

M M

100 1000 10,000 100,000 1,000,000

100 0.109 0.066 0.299 2.118 21.419

1000 0.033 0.058 0.240 2.169 21.387

10,000 0.140 0.158 0.350 2.363 22.535

100,000 1.209 1.229 1.435 3.371 22.726

1,000,000 12.034 12.134 12.273 14.422 33.867

Table 3 Computational results
(running time in seconds) using
Algorithm 3, n = 2

M M

100 1000 10,000 100,000 1,000,000

100 0.017 0.015 0.092 0.782 7.273

1000 0.015 0.022 0.087 0.693 6.598

10,000 0.064 0.093 0.116 0.642 6.486

100,000 0.694 0.680 0.680 1.289 8.328

1,000,000 5.814 5.885 5.818 7.094 13.470

The computational effort of the Algorithms 1, 2, 3 and the algorithm in Nickel
and Dudenhöffer (1997) consists of two main parts: first, sorting coordinates and con-
solidating weights, and second, determining objective values. The derived recursive
structure for evaluating all objectives in Algorithms 1, 2 and 3 induces linear compu-
tational costs O(M). Depending on the input data each of the three algorithms might
perform slightly better than the other two. For instance, generating data as described
above provides a small advantage of Algorithm 3.

Conversely, the algorithm in Nickel and Dudenhöffer (1997) applies an explicit
determination of the objective values at all local minima. Thus, the computational
performance of this algorithm also depends on the number of local minima. The
resulting running times and the corresponding amounts of local minimal points are
illustrated in Tables 4 and 5.

Although the asymptotical computational complexity of the entire algorithms is
driven by the O(M logM) sorting part, the computational experiments show that the
second part of evaluating all candidates (either all grid coordinates in Algorithms 1, 2
and 3 or all local minima as in Nickel and Dudenhöffer (1997)) can become a crucial
part of the running time.

The algorithms in Löhne and Wagner (2017) and Wagner et al. (2016) find all grid
points, whose number is up to M

n
or Mn in the primal and the dual case, respectively.

Compared to this, the Algorithms 1 and 2 determine all appearing grid coordinates
whose number is at mostM ·n orM ·n, respectively. Thus, the number of candidates to
be checked for optimality is much smaller. Additionally, for each candidate the deter-
mination of the objective value has less computational effort due to the used method
(recursive determination vs. explicit determination or linear programs). Furthermore,
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Table 4 Computational results (running time in seconds) using the algorithm in Nickel and Dudenhöffer
(1997), n = 2

M M

100 1000 10,000 100,000 1,000,000

100 0.009 0.066 0.238 2.850 25.720

1000 0.042 0.134 1.186 13.092 78.199

10,000 0.452 0.949 4.415 16.077 376.124

100,000 5.778 13.185 28.969 139.800 1230.201

1,000,000 34.860 91.168 635.097 740.419 2737.920

Table 5 Pairs [z1, z2] of amounts of local minimal points for both directions i = 1, 2 detected in the
randomly generated data sets

M M

100 1000 10,000 100,000 1,000,000

100 [8, 8] [14, 17] [4, 7] [4, 12] [2, 12]

1000 [11, 8] [31, 9] [36, 30] [61, 19] [23, 24]

10,000 [15, 12] [13, 40] [84, 62] [41, 51] [104, 129]

100,000 [19, 16] [37, 44] [97, 68] [211, 254] [186, 484]

1,000,000 [6, 14] [15, 38] [115, 272] [115, 305] [619, 280]

the effort to find the candidate set by solving projection problems as described in
Löhne and Wagner (2017) and Wagner et al. (2016) increases significantly when the
dimension n increases. Compared to this, the separation of the problem into n sub-
problems is much more efficient, such that the computational effort increases linearly
with the dimension n.

7 Conclusion

It turns out that exploiting the special structure of Manhattan distances instead of
applying methods for mixed gauge distances, as in Wagner et al. (2016), or even more
general dc structures, as in Löhne and Wagner (2017), leads to an improvement of
the computational effort in the sense that the given non-convex optimization problem
(P) can be solved by using a primal or a dual algorithm, both of which consist of
a sorting process followed by a very efficient procedure to evaluate the objective
at all candidate coordinates. No special solvers for polyhedral projection problems,
vector linear programs, linear or convex problems are needed. Such a significant
simplification of the solving procedures makes it worth to handle this special case of
Manhattan distances separately.
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