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Abstract
We construct long-term prediction intervals for time-aggregated future values of uni-
variate economic time series. We propose computational adjustments of the existing
methods to improve coverage probability under a small sample constraint. A pseudo-
out-of-sample evaluation shows that our methods perform at least as well as selected
alternative methods based on model-implied Bayesian approaches and bootstrapping.
Our most successful method yields prediction intervals for eight macroeconomic indi-
cators over a horizon spanning several decades.

Keywords Heavy-tailed noise · Long memory · Kernel quantile estimator ·
Stationary bootstrap · Bayes

JEL Classification C14 · C15 · C53 · C87 · E27

1 Introduction

Long-term predictions of economic time series are published yearly by the US Con-
gressional Budget Office (CBO) in its Long-term Budget and Economic Outlook.1 In
this report, the CBO predicts US federal spending and revenue growth in the coming
decades under the assumption of stable tax and spending policies. However, structural
changes occur over the long run (taking the turbulent period after theGreatModeration
as an example), and not only as a result of changes in legislation. The CBO stated in its

1 Available from https://www.cbo.gov/publication/52480.
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January 2000 Budget and Economic Outlook that the baseline projections allow for an
average recession within the next 10 years (2000–2010). Today, we know that the 2008
recession was more severe than the predicted average recession. Moreover, in its 2011
report2 the US Financial Crisis Inquiry Commission concluded that the crisis would
have been avoidable if timely preventivemeasures had been introduced.We do not link
the absence of these measures with the CBO’s projections from 18 years ago, but we
do believe that accurate long-term economic predictions can trigger right and timely
decisions. Economic predictions for several decades ahead are crucial for strategic
decisions made by trust funds, pension management and insurance companies, port-
folio management of specific derivatives (Kitsul and Wright 2013) and assets (see
Bansal et al. 2016). Several facts hamper the long-term prediction of economic time
series: small sample size because most post-WWII economic indicators are reported
on monthly/quarterly bases, (anti-) persistence3 (see Diebold and Rudebusch 1989;
Baillie 1996; Diebold and Linder 1996, who also give PIs), heteroscedasticity and
structural change (Cheng et al. 2016), the latter of which is inevitable in the long run
(Stock and Watson 2005).

Sometimes, decision makers call for predictions of boundaries [L,U ] covering the
future value of interest with a certain probability. Unlike point forecasts, prediction
intervals (PIs) can capture the uncertainty surrounding predictions. As a proxy for this
uncertainty, one can look at the widths of different PIs. Most software packages offer
PIs as part of their standard output. PIs from exponential smoothing, for instance,
are readily available without any strict assumptions, but then as the forecast horizon
grows, these PIs often become too wide to be informative (see Chatfield 1993, for
more background). By contrast, PIs implied by arma–garch models often turn out to
be too narrow because they ignore distributional, parameter and model uncertainty
(see Pastor and Stambaugh 2012). Pascual et al. (2004, 2006) therefore compute
predictive densities using bootstrapping without the usual distributional assumptions
while incorporating parameter uncertainty. Using Bayesian methods, one can account
for both model and parameter uncertainty, but the pre-assigned coverage of PIs is
attained only on average relative to the specified prior. Müller and Watson (2016)
construct bayes PIs for temporal averages of economic series’ growth rates over a
horizon of 10–75 years. Using the so-called least favorable distribution solves the
problem above with the pre-assigned coverage and makes their PIs more conservative.
Zhou et al. (2010) provide theoretically valid long-term PIs for the same type of target
asMüller andWatson (2016), i.e., the temporal aggregate of series over a long horizon.
As opposed to Müller andWatson (2016), Zhou et al. (2010) do not require any model
fitting (at least in our univariate setup) and thus provide a very simple alternative.
While both papers allow for the presence of a long-memory component in the data
generating process (DGP), Zhou et al. (2010) did not apply their methods to economic
time series nor has either of the papers compared themselves with any benchmark.
These facts pave the way for the following empirical research:

– First, since Zhou et al. (2010) evaluate their PIs using only simulated data, we find
it necessary to verify their results using real data.

2 Available from https://www.govinfo.gov/app/details/GPO-FCIC.
3 Anti-persistence can be observed as well, often as a result of (over-) differencing.
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– Second, the methods of Zhou et al. (2010), although theoretically valid, do not to
account for some characteristics of economic time series. Therefore, we propose
computational adjustments of the PIs of Zhou et al. (2010) that lead to better
predictive performance for small samples and long horizons. Our adjustments
employ a stationary bootstrap (Politis and Romano 1994) and kernel quantile
estimators (Sheather and Marron 1990).

– Third, since neither Zhou et al. (2010) norMüller andWatson (2016) compare their
PIs to any benchmark, we take over this responsibility and conduct an extensive
pseudo-out-of-sample (POOS) comparison. We augment the comparison with PIs
implied by arfima–garchmodels computed as one of the following: (i) forecasts for
time-aggregated series or (ii) time-aggregated forecasts of disaggregated series. To
compute (i) and (ii) we use both analytic formulas and bootstrap path simulations
(Pascual et al. 2006).

The main results of our paper may be summarized as follows:

– First, our simulation study reveals that the PIs of Zhou et al. (2010) fail to achieve
their nominal coverage rate under a growing horizon as a result of rapidly shrinking
width. Particularly under long-memory DGP, the coverage rate reaches only half
of the nominal level.

– Second, using the proposed computational adjustments, we achieved an improve-
ment in the coverage rate of 20pp, which may, however, still be below the nominal
level.

– Third, based on real data (S&P 500 returns and US 3-month TB interest rates),
the adjusted PIs of Zhou et al. (2010) provide a valid competitor for Müller and
Watson (2016). Particularly in case of asset returns, the PIs of Müller and Watson
(2016) provide higher coverage but less precision (larger width), while for assets’
volatility, the roles are switched. In both cases, adjusted Zhou et al. (2010) PIs
outperform the bootstrap PIs of Pascual et al. (2006).

– Fourth, with the adjusted method of Zhou et al. (2010), we construct long-term
prediction intervals for selected US macroeconomic time series including GDP
growth, total factor productivity, inflation, population, and others. These PIs pro-
vide an alternative for PIs given by Müller and Watson (2016) in Table 5 on pages
1731–1732 in the referenced paper.

Our article is organized as follows: In Sect. 2 we review the methods discussed above
with a focus on their scope and implementation.We further describe our computational
adjustments of both methods of Zhou et al. (2010) and justify them using simulations.
Section 3 summarizes the empirical comparison of all previously discussed methods.
Section 4 provides PIs for eight macro-indicators over the horizon of up to seven
decades fromnow.Section 5 contains concluding remarks. Plots and details concerning
implementation and underlying theory are available in “Appendix.”

2 Methods and simulations

In this section, we first briefly discuss the three selected approaches for computing of
PIs followed by theirmerits and demerits. Thenwepropose computational adjustments
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of the methods proposed by Zhou et al. (2010). Next, our simulations show that
these adjustments improve the coverage when the horizon m is large compared to
the sample size T , for example when m = T /2. In the following, assume that we
observe y1, . . . , yT and we want to provide a PI for the temporal average (yT+1 +
· · ·+ yT+m)/m. For the rest of the paper, we use the following notation (and analogous
for the process of innovations et )

ȳ = 1

T

T∑

t=1

yt , ȳ+1:m = 1

m

T+m∑

t=T+1

yt , ȳt(m) = 1

m

m∑

j=1

yt− j+1. (2.1)

2.1 Methods for computing prediction intervals of temporal averages

2.1.1 Bootstrap prediction intervals by Pascual et al. (2004, 2006)

For a specific description of their approach, let us assume a weakly stationary
arma(1,1)–garch(1,1) process of the form

yt = φyt−1 + et + θet−1, et = σtεt , εt ∼ WN , σ 2
t = ω + αe2t−1 + βσ 2

t−1.

(2.2)

In order to obtain PIs for yT+m , one typically uses the estimated MSE predictors of
yT+m and σT+m given the past observations

ŷT ,T+m = φ̂m yT + φ̂m−1θ̂ êT , (2.3)

σ̂ 2
T ,T+m = ω̂

1 − α̂ − β̂
+

(
α̂ + β̂

)m−1
(

σ̂ 2
T+1 − ω̂

1 − α̂ − β̂

)
. (2.4)

The resulting analytic (anlt) PIs have the form

[L,U ] = ŷT ,T+m + [QN (α/2), QN (1 − α/2)]
⎛

⎝
m∑

j=1

σ̂ 2
T ,T+ j Ψ̂

2
m− j

⎞

⎠
1/2

, (2.5)

where Ψ̂0 = 1 and Ψ̂ j , j = 1, . . . ,m − 1 are the estimates of coefficients from the
causal representation of yt . QN denotes normal quantile. Besides the fact that these
PIs ignore the parameter uncertainty, they would be inappropriate for heavy-tailed
processes or when the innovations distribution is asymmetric. In order to deal with
these issues, Pascual et al. (2004) introduce a re-sampling strategy using the estimated
innovations in order to simulate yt , t = T + 1, . . . , T + m, and then compute the
conditional distribution of yT+m directly, avoiding strict distributional assumptions
on the innovations. Their approach does not need a backward representation and thus
captures garch-type processes. They also show the validity of their PIs for arima
processes. However, we are not aware of any extension of these results for arfima.
Computationally, it is simple to obtain both the analytic and bootstrap PIs implied
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by arfima models, since all necessary ingredients are readily available in rugarch R-
package (seeGhalanos 2017)which efficiently implements the bootstrapPIs of Pascual
et al. (2004, 2006). While the re-sampling can also incorporate parameter uncertainty,
Pascual et al. (2006) show that for the garchmodels, coverage of PIs is similar whether
one accounts for parameter uncertainty or not. The superiority of bootstrap PIs over the
analytic PIs (2.5) prevails especially when the innovations distribution is asymmetric.

In order to obtain PIs for ȳ+1:m with arfima–garch-type models, we can either (i)
use averages of the in-sample observations ȳt(m), as defined above, or (ii) average the
forecasts of yt , over t = T + 1, . . . , T + m. In both cases, we fit arfima(p, d, q)–
garch(P, Q) models to the data with the rugarch R-package. As already mentioned,
the full re-sampling scheme takes into account the parameter uncertainty, how-
ever, for minor improvement of performance and high cost concerning computation
time. Therefore, we use a partial re-sampling scheme which accounts for the uncer-
tainty due to the unknown distribution of innovations. The fractional parameter
d ∈ [0, 0.5) is, depending on the series, either fixed to 0 (only for stock returns, see
Sect. 3) or estimated by maximum likelihood (ML). The arma orders are restricted
to p, q ∈ {1, . . . , 4} and are selected by aic. The garch orders are restricted to
(P, Q) ∈ {(0, 0), (1, 1)}. The details of our implementation follow:

Fitting arfima–garch to averaged in-sample observations (avg-series):

1. Compute the series of overlapping rolling averages ȳt(m) = m−1 ∑m
i=1 yt−i+1, for

t = m, . . . , T .
2. Fit the selected arfima–garch model to the series of ȳt(m).
3. Compute

(anlt) m-step-ahead MSE forecasts ˆ̄yT ,+1:m and ˆ̄σ 2
T ,+1:m analogously to (2.3) by

substituting the observations yt by rolling averages ȳt(m). Then, PIs are
given by (2.5).4

(boot) residuals êt , t = 1, . . . , T , and generate b = 1, . . . , B future paths
ˆ̄ybT (m),t , t = T + 1, . . . , T + m, recursively using (2.5) and the param-
eter estimates from the original sample. Obtain the PIs by inverting the
empirical distribution of ˆ̄ybT (m),T+m, b = 1, . . . , B.

Fitting arfima–garch to original series and averaging forecasts (avg-forecasts):

1. Fit the selected arfima–garch model to the series yt .
2. Compute

(anlt) ˆ̄yT ,+1:m = m−1 ∑m
i=1 ŷT ,T+i , with ŷT ,T+i the i-step-ahead analytic

forecast from (2.3). The scaling factor in PI [L,U ] = ˆ̄yT ,+1:m +
[Qt (α/2), Qt (1 − α/2)]âsT ,+1:m is derived in “Appendix C.”

(boot) residuals êt , t = 1, . . . , T and generateb = 1, . . . , B future paths ŷbT ,t , t =
T +1, . . . , T +m, recursively using (2.5) and the parameter estimates from
the original sample. Compute the temporal averages ˆ̄ybT ,+1:m , as estimators

of ȳbT ,+1:m , b = 1, . . . , B. We obtain the PIs by inverting the empirical

distribution of ˆ̄ybT ,+1:m , b = 1, . . . , B.

4 Instead of the normal quantiles, we rather utilize Student’s t where df is estimated by ML.

123



196 M. Chudý et al.

2.1.2 Robust bayes prediction intervals by Müller andWatson (2016)

With both the sample size and horizon growing proportionally, Müller and Watson
(2016) provide asymptotically valid long-term PIs under a rich class of models for
series with long memory under a unified spectral representation. In order to capture a
larger scope of long-run dynamics in economic time series beyond those described by
arfimamodels, Müller and Watson (2016) consider two additional models, namely (i)
the local-level model

yt = y1t + (bT )−1
t∑

s=1

y2s,

where {y1t } , {y2t } are mutually independent I(0) processes, (2.6)

and (ii) the local to unity ar(1) model defined by:

yt = (1 − c/T )yt−1 + y1t , where {y1t } is an I(0) process. (2.7)

The former captures varying “local means” arising, e.g., from stochastic breaks, while
the latter is useful for modeling highly persistent series. In (i) the role of the persistent
component is determined by the parameter b, while in (ii) it is driven by c. The
arfima models with fractional integration parameter d complete the triple of models
in Müller and Watson (2016) who design a unified spectral representation of their
long-run dynamics using the parametrization ϑ = (b, c, d).

A natural way of how to incorporate the uncertainty about ϑ , which is crucial for
the asymptotic predictive distribution of ȳ+1:m , is to assume a prior for ϑ . A practical
drawback of such an approach is that the pre-assigned coverage holds only on average
relative to the prior. Hence, Müller and Watson (2016) further robustify their bayes
PIs in order to attain “frequentist coverage,” i.e., coverage that holds over the whole
parameter space.

The main idea behind their approach is to extract the long-run information from
selected low-frequency projections of yt , t = 1, . . . , T . Assume that the set of predic-
tors for ȳ+1:m consists of q low-frequency cosine transformations X = (X1, . . . , Xq)

T

of yt . Then the asymptotic conditional density of ȳ+1:m is a function of the covariance
matrix of (X1, . . . , Xq , ȳ+1:m) denoted as Σ , which in turn can be expressed as a
function of properly scaled spectra S(m/T , q, ϑ). When the number of frequencies q
is kept small, the high-frequency noise is filtered out, thus providing more robustness.
For fixed ϑ = (0, 0, 0) the conditional distribution of ȳ+1:m turns out to be Student’s
t with q degrees of freedom and the PIs take the form

[L,U ] = ȳ + [Qt
q(α/2), Qt

q(1 − α/2)]
√
m + T

mq
XTX . (2.8)

These (naive) PIs implied by fixed ϑ = (0, 0, 0) can be enhanced by imposing a uni-
form prior on ϑ , giving equal weight to all combinations of parameters−0.4 ≤ d ≤ 1,
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b, c ≥ 0, and using standard Bayesian procedure to obtain posterior predictive den-
sity, which is no longer a simple t-distribution but rather a mixture of different
t-distributions. We denote the implied PIs as (bayes) PIs. Finally, the (robust) PIs
additionally guarantee the correct coverage uniformly across the parameter space Θ

and simultaneously have optimal (mean) width.We conclude by giving our implemen-
tation steps for the (bayes) PIs, leaving the additional steps necessary for computing
the (robust) PIs to our “Appendix B.”

Bayes PIs (bayes):

1. Set q small and compute the cosine transformations X = (X1, , Xq) of the target

series yt . Standardize them as Z = (Z1, · · · , , Zq)
T = X/

√
XTX .

2. For a chosen grid of parameter values ϑ = (b, c, d) satisfying −0.4 ≤ d ≤ 1;
b, c ≥ 0 compute the matrices Σ(m/T , q, ϑ) following formulas (9) and (20)
fromMüller andWatson (2016) and using, e.g., a numerical integration algorithm.
(Details are given in “Appendix” of the original paper.)

3. Choose a prior for ϑ = (b, c, d) and compute the posterior covariance matrix
Σ = (

ΣZ Z ΣZē
ΣZē Σēē

)
.

4. Obtain the covariance matrix of the residuals as ΣUU = Σēē − Σ
′
Zē(Σ

−1
Z Z )ΣZē.

5. Compute the quantiles Qtmix
q (α/2), Qtmix

q (1− α/2) of the conditional (mixture-t)
distribution of ȳ+1:m using, e.g., sequential bisection approximation. (Details are
given in “Appendix” of the original paper.)

6. The PIs are given by [L,U ] = ȳ + [Qtmix
q (α/2), Qtmix

q (1 − α/2)]
√
XTX .

2.1.3 Prediction intervals by Zhou et al. (2010)

For presentational clarity of their approach, assume

yt = μ + et , (2.9)

where et is a mean-zero stationary process and μ is the unknown deterministic mean.
The PI for yt process will be constructed via that of the êt = yt − μ̂ process by adding
the μ̂ = ȳ to both components of the intervals. It is common practice and can also
be proved to have the correct coverage using standard arguments. We first provide a
summary of the two methods proposed in Zhou et al. (2010) and then we discuss their
consistency.

CLT method (clt): If the process et shows short-range dependence and light-tailed
behavior, then in the light of a quenched CLT, Zhou et al. (2010) propose the
following PI for ē+1:m

[L,U ] = [QN (α/2), QN (1 − α/2)] σ√
m

, (2.10)

where σ is the long-run standard deviation (sd) of et . However, since σ is unknown,
it must be estimated. One popular choice is the lag window estimator
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σ̂ 2 =
kT∑

k=−kT

γ̂k =
kT∑

k=−kT

1

T

T−|k|∑

t=1

(êt − ¯̂e)(êt+k − ¯̂e). (2.11)

The PI for ȳ+1:m with nominal coverage 100(1 − α)% is given by

[L,U ] = ȳ + [QN (α/2), QN (1 − α/2)] σ̂√
m

. (2.12)

Quantile method (qtl): If we allow for heavy tails and long memory, the PI for ȳ+1:m
with nominal coverage 100(1 − α)% can be obtained by

[L,U ] = ȳ + [Q̂(α/2), Q̂(1 − α/2)], (2.13)

where Q̂(·) is the respective empirical quantile of ¯̂et(m), t = m, . . . , T .

The clt method is applicable only for processes with light-tailed behavior and short-
range dependence. Let St = ∑

1≤ j≤t e j . Under stationarity, the problem of predicting
ē+1:m = (ST+m − ST )/m after observing e1, . . . , eT can be analogically thought of
as predicting Sm/

√
m after observing . . . , e−1, e0. Let F0 be the σ -field generated

by . . . , e−1, e0. Assume E(|et |p) < ∞ for some p > 2. Wu and Woodroofe (2004)
proved that, if for some q > 5/2,

‖E(Sm |F0)‖ = O

( √
m

logq m

)
, (2.14)

then we have the a.s. convergence

Δ(P(Sm/
√
m ≤ ·|F0), N (0, σ 2)) = 0 a.s., (2.15)

where Δ denotes the Levy distance, m → ∞, and σ 2 = limm→∞ ‖Sm‖2/m is the
long-run variance. Verifying (2.14) is elementary for many well-known time series
models. We postpone the discussion on the verification of such a result for a linear
and nonlinear process for the interested reader to “Appendix D.”

The qtl method is based on the intuitive fact that for the horizon m growing to ∞ and
in the light of weak dependence,

P

(
a ≤ eT+1 + · · · eT+m

m
≤ b|e1, . . . , eT

)
≈ P

(
a ≤ eT+1 + · · · eT+m

m
≤ b

)
,

(2.16)

if m/T is not too small. Thus, it suffices to estimate the quantiles of ēT (m) = (eT+1 +
· · · + eT+m)/m using, e.g., empirical quantiles of ēt(m), t = m, . . . , T . The power of
this method lies in its applicability to heavy-tailed error process. Zhou et al. (2010)
provided a consistency result for this method for the subclass of linear processes (see
Theorem 2 in our “Appendix” section D).
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2.1.4 Practical comparison of the previously discussed methods

Pros and cons of Pascual et al. (2004, 2006) When comparing the bootstrap PIs to the
analytic PIs, the former provide the advantage of including the uncertainty due to the
unknown distribution of the residuals and unknown parameters into the uncertainty
about the target. In cases when the distribution of the residuals is asymmetric and
doubts about the proximity of the estimated model to the true DGP exist, the boot-
strap approach dominates the analytic. Furthermore, regarding the implementation,
the analytic PIs are more difficult to obtain since we deal with a nonstandard target.
By contrast, the bootstrap PIs are readily available in the R-package rugarch. Hence,
their estimation is cheap. Concerning the two ways of fitting the models to data, i.e.,
(i) using the series of rolling temporal averages or (ii) using the original series and
averaging the forecasts, there are pros and cons for each approach regarding the imple-
mentation and effective use of our relatively small sample. The literature (e.g., page
302 in Lütkepohl 2006; Marcellino 1999) does not provide any conclusion about the
superiority of (i) over (ii), or vice versa. Therefore, we include both (i) and (ii) in the
POOS comparison in Sect. 3.

Pros and cons of Müller and Watson (2016) Their methods represent the state of the
art, being robust against stylized peculiarities of economic time series. Their Bayesian
approach accounts for both model and parameter uncertainty, but the focus is only
on those parameters ruling the persistence, which is in contrast to the previously dis-
cussed bootstrap approach where the focus is on the short-term dynamics. To date,
no package implementation has been available, which makes the approach less attrac-
tive to practitioners. Moreover, the PIs depend on several forecaster-made choices,
such as the number of frequencies q to keep, the grid of values for parameters, the
choice of prior. Even with these inputs fixed, the computation takes longer due to
multiple advanced numerical approximations required for the (bayes) PIs and further
optimization to attain the “frequentist coverage.” PIs for fixed parameters q = 12 and
0.075 ≤ m/T ≤ 1.5 used in their paper (and also in the current paper) are available
faster thanks to some pre-computed inputs available from the replication files.5

Pros and cons of Zhou et al. (2010) Their methods provide a simple alternative to the
previously discussed ones. As to their scope of applicability, the clt method does not
require any specific rate of how fast the horizon can grow compared to the sample size.
However, the predictive performance heavily depends on the estimator of the long-
term volatility σ . Furthermore, for some processes with heavy-tailed innovations or
long-range dependence, the notion of the long-run variance σ 2 does not exist, and
thus this method is not applicable. The attractive feature of the qtl PIs is the simplicity
and more general applicability than the clt. Their computation requires almost no
optimization (at least in our univariate case) and is straightforward. Pascual et al.
(2004, 2006) and Müller and Watson (2016) assume that the DGP of yt is (possibly
long-memory and heteroscedastic version of) an arma process. Zhou et al. (2010) do
not a priori assume any parametrization for the dynamics of yt , but argue that both qtl
and clt PIs are valid for arma processes, whereas only the former should be used for

5 The replication files for these methods are available in MATLAB from M. Watson’s homepage.
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processes with a long memory. The simulations of Zhou et al. (2010) confirm their
claims. However, as we demonstrate next, the qtl PIs under-perform when T is small
and m/T ≈ 1/2. Therefore, we propose some computational adjustment and provide
a simulation-based justification of their superiority over the original clt and qtl.

2.2 Zhou et al. (2010) under small sample: adjustment and simulations

2.2.1 Computational adjustments

The simulation setup in Zhou et al. (2010), page 1440, assumes T = 6000 and horizon
m = 168. By contrast, in an economic forecasting setup, one typically has only a few
hundred of observations, while our horizon m stays approximately the same. Here
we show how one can easily modify the computation of clt and qtl PIs in order to
enhance their performance. In particular, for qtl, we use a stationary bootstrap (Politis
and Romano 1994) with optimal window width as proposed by Politis and White
(2004) and Patton et al. (2009) to obtain a set of replicated series. Next, kernel quantile
estimators (see Silverman 1986; Sheather andMarron 1990) are used instead of sample
quantiles. In order to improve the cltmethod,we employ a different estimator (cf. 2.18)
of σ than (2.11) and account for the estimation uncertainty. These three modifications
are then shown to improve the empirical coverage using simulations.

Stationary bootstrap The procedure starts with the decomposition of the original sam-
ple into blocks by choosing the starting point i and the length of block Li from a
uniform and geometric distribution, respectively, that are independent of the data. For
every starting point and length, we re-sample from the blocks of the original series. The
resulting blocks are then concatenated. As proposed by Politis and Romano (1994) in
their seminal paper, this way of re-sampling retains the weak stationarity and is less
sensitive to the choice of block size than moving block bootstrap (Künsch 1989). It
also retains the dependence structure asymptotically since every block contains con-
secutive elements of the original series. The two re-sampling schemes differ in the
way how they deal with the end-effects. Under mixing conditions, the consistency of
stationary bootstrap for the centered and normalized mean process has been studied
in the literature. Gonçalves and de Jong (2003) show that under some mild moment
conditions, for some suitable cT → 0,

sup
x

|P∗(
√
T (ȳ∗ − ȳ) ≤ x) − P(

√
T (ȳ − μ) ≤ x)| = oP(cT ) (2.17)

holds where ȳ∗ and P
∗ refer to the re-sampled mean and the probability measure

induced by the bootstrap. We conjecture that, along the same line of proof shown by
Zhou et al. (2010), it is easy to show consistency results for the bootstrapped versions
of the rolling averages of m consecutive realizations. This is immediate for linear
processes. For nonlinear processes, one can use the functional dependence measure
introduced byWu (2005) and obtain analogous results. To keep our focus on empirical
evaluations, we leave the proof of the consistency for our future work. Interested
readers can also look at the arguments by Sun and Lahiri (2006) for moving block
bootstrap and the corresponding changes as suggested in Lahiri (2013) to get an idea
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how to show quantile consistency result. For time series forecasting and quantile
regression, the stationary bootstrap has been used by White (2000) and Han et al.
(2016) among others.

Kernel quantile estimation The efficiency of kernel quantile estimators over the usual
sample quantiles has been proved in Falk (1984) and was extended to several variants
by Sheather andMarron (1990). As proposed in the latter, the improvement inMSE is a
constant order of

∫
uK (u)K−1(u)du for the used symmetric kernel K . The theorems

mentioned in Sect. 2 are easily extendable to these kernel quantile estimators. We
conjecture that one can use the Bahadur-type representations for the kernel quantile
estimators as shown in Falk (1985) and obtain similar results of consistency for at least
linear processes. We used the popular Epanechnikov kernel K (x) = 0.75(1 − x2)+
for our computations because of its efficiency in terms of mean integrated square error.

Estimation of σand degrees of freedom As mentioned above, Zhou et al. (2010) used
clt as in (2.12) with normal quantiles. Formany applications in economics and finance,
the normal distribution fails to describe the possibly heavy-tailed behavior. Therefore,
we propose to substitute the normal with the Student t-distribution, given the fact
that σ has to be estimated. Accounting for the estimation uncertainty indeed gives a
Student t-distribution of ē+1:m in the limit. The question remains: How many degrees
of freedom (df ) we should use. Rather than some arbitrary choices such as 5, as used
by default in many software packages, or ML-estimated df which would be very noisy
given the small sample, we link them to the estimator of σ . This would not be trivial
for the lag window estimator (2.11). Instead, we use the subsampling block estimator
(see eq. 2, page 142 in Dehling et al. 2013)

σ̃ =
√

πl/2

T

κ∑

i=1

∣∣∣∣∣∣

il∑

t=(i−1)l+1

êt

∣∣∣∣∣∣
, (2.18)

with the block length l and number of blocks κ = T /l�. Then the adjusted clt
p = 100(1 − α)% PI for ȳ+1:m is given by

[L,U ] = ȳ + [Qt
κ−1(α/2), Qt

κ−1(1 − α/2)] σ̃√
m

, (2.19)

where Qt
κ−1(·) denotes a quantile of Student’s t distribution with κ −1 degrees of free-

dom. Note that, since we used non-overlapping blocks, under short-range dependence,
these blocks behave almost independently and thus σ̃ 2 with proper normalization con-
stant behaves similarly to a χ2 distribution with κ − 1 degrees of freedom. Below, we
give the implementation steps for the adjusted qtl (kernel-boot):

1. Replicate series et , B times obtaining ebt , t = 1, . . . , T , b = 1, . . . , B.
2. Compute (ēbt(m)) = m−1 ∑m

i=1 e
b
t−i+1, t = m, . . . T from every replicated series.

3. Estimate the α/2th and (1 − α/2)th quantiles Q̂(α/2) and Q̂(1 − α/2) using the
Epanechnikov kernel density estimator from ēbT (m), b = 1, . . . , B.

4. The PI for ȳ+1:m is [L,U ] = ȳ + [Q̂(α/2), Q̂(1 − α/2)].
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Similarly, the implementation of the adjusted clt method (clt-tdist):

1. Estimate the long-run standard deviation from et , t = 1, . . . , T , using the sub-
sampling estimator (2.18) with block length as proposed by Carlstein (1986).

2. The PI is given by [L,U ] = ȳ + [Qt
κ−1(α/2), Qt

κ−1(1 − α/2)]σ̃ /
√
m.

2.2.2 Simulations

An extensive out-of-sample forecasting evaluation based on independent samples is
possible only with artificial data. Our simulation setup is designed to assess the per-
formance of the original methods of Zhou et al. (2010) as described in Sect. 2.1.3
and the computational modifications described in 2.2.1. The simulation results pro-
vide evidence for the usefulness of these modifications in an artificial setup based on
possibly long-memory arma-like processes. This setup would provide an advantage
for approaches described in 2.1.1 and 2.1.2, should we challenge them. We leave this
task for the next section and real data.

We adopt the following four scenarios for the et process from Zhou et al. (2010):

(i) et = 0.6et−1 + σεt , for i.i.d mixture-normal εt ∼ 0.5N (0, 1) + 0.5N (0, 1.25),
(ii) et = σ

∑∞
j=0( j + 1)−0.8εt− j , with noise as in (i),

(iii) et = 0.6et−1 + σεt , for stable εt with heavy tail index 1.5 and scale 1,
(iv) et = σ

∑∞
j=0( j + 1)−0.8εt− j , with noise as in (iii),

which correspond to (i) light tail and short memory, (ii) light tail and long memory,
(iii) heavy tail and short memory, and (iv) heavy tail and long memory DGPs. For each
scenario, we generate pseudo-data of length T +m, using the first T observations for
estimation and the last m for evaluation. The experiment is repeated Ntrials = 10 000
times for each scenario.

The choice of parameters6 T = 260,m = 20, 30, 40, 60, 90, 130 and σ = 1.31
mimics our setup for the real-data experiment in the next section. Following Müller
and Watson (2016), we run our simulation for the nominal coverage probabilities
p = 1 − α = 90% (see Table 1A), resp. = 67% (see Table 1B), and compute the
empirical coverage probability

p̂ = 1

Ntrials

Ntrials∑

i=1

I
([L,U ]i � ēi,+1:m

)
, (2.20)

where I for the i th trial is 1 when the future mean for the i th trial ēi,+1:m is covered
by the [L,U ]i and 0 otherwise. Furthermore, we report the relative median width

ŵ = median
( |U − L|1 , . . . , |U − L|Ntrials

)
/
(
Q̂(1 − α/2) − Q̂(α/2)

)
, (2.21)

where Q̂(·) denotes the corresponding quantile of the empirical distribution of ē+1:m ,
estimated from ēi,+1:m, i = 1, . . . , Ntrials.

We focus on the evaluation under the longest horizon m = 130.

6 The value of σ was obtained from an ar(1) model fitted to the full data set of S&P 500 returns.
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Scenario (i) When m = 130 the original qtl covers the future realizations in only
around 48% of cases, while the nominal coverage is 90%. Employing the kernel
quantile adjustment on qtl increases this number by 4 percent points (pp), and when
combined with the adjustment based on bootstrapping it yields an additional 26pp
on top. Intuitively, using Student’s t quantiles (instead of normal) leads to a higher
coverage probability for the clt. As expected, the two methods perform similarly well
in this particular scenario.

Scenario (ii)Longmemory of theDGPhas a strongly negative impact on bothmethods.
The combined kernel-bootstrap adjustment increases the coverage of qtl by 20pp,
which is, however, still very low. The same holds for the performance of clt under
t-quantile adjustment.

Scenario (iii) Heavy-tailed noise has also a negative impact on the original clt (cov-
erage probability falls by 13pp compared to the light-tailed case), whereas qtl, as
expected, is more robust (falls by 4–6pp). The kernel-bootstrap adjustment increases
coverage probability by 27pp for the qtl, whereas the clt- tdist yields only negligible
improvement compared to the original clt.

Scenario (iv)The combined effect of (ii) and (iii) cuts the coverage probabilities further
down—below 45%. The proposed adjustments increase the coverage probabilities by
up to 10pp.

Overall, for the short and medium horizons, i.e., m = 20, . . . , 60, we corroborate
the conclusion fromZhou et al. (2010) that the (original) clt loses against the (original)
qtl. However, both original methods exhibit rapid decay in their coverage probabilities
as the forecasting horizon grows. For instance, in the scenario (iv) the gap between
horizon m = 20 and m = 130 for the qtl is 47pp. Concerning the width of the
PIs, we can see that both adjusted and original methods underestimate the dispersion
and the gap between the width of PIs and the width of the empirical inter-quantile
range increaseswith the horizon.However, our computational adjustments improve the
original methods consistently over all scenarios. The improvement is most remarkable
for the combined adjustment (kernel-boot).

3 Forecast comparison with long financial time series

This section summarizes a real-data POOS forecasting comparison for:

(zxw) adjusted PIs by Zhou et al. (2010),
(mw) robust bayes PIs by Müller and Watson (2016),
(prr) bootstrap PIs by Pascual et al. (2004, 2006) augmented by their analytical

counterpart.

Data and setup for POOS exercise The data on univariate time series yt are sampled at
equidistant times t = 1, . . . , T . We forecast the average of m future values ȳ+1:m =
m−1 ∑m

t=1 yT+t . We design our POOS comparison using the following three time
series (plots of the series are given in “Appendix A”),

(spret) S&P 500 value weighted daily returns including dividends available from Jan-
uary 2, 1926, till December 31, 2014, with a total of 23, 535 observations,
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(spret2) squared daily returns, with the same period and
(tb3m) nominal interest rates for 3-month US Treasury Bills available from April 1,

1954, till August 13, 2015, with a total of 15,396 observations.

The sample size for post-WWII quarterly macroeconomic time series is 4 × 68 =
272 observations. We mimic the macroeconomic forecasting setup in that we use a
rolling sample estimation with sample size T = 260 days (i.e., 1 year of daily data),
and forecasting horizonm = 20, 30, 40, 60, 90 and 130 days. The rolling samples are
overlapping in the last (resp. first) T − m observations, so that, e.g., for m = 130,
the consecutive samples share half the observations. Hence, for the returns time series
and for m = 130 (resp. m = 20), we get Ntrials = 178 (resp. 1163) non-overlapping
in-or-out POOS trials. All models are selected and parameters estimated anew at each
forecast origin.

The simulation results in Sect. 2.2.2 have shown that zxw PIs have decent coverage
for short-memory et ∼ I (0), but lose the coverage rapidly if the process has long
memory. As a remedy, we apply an appropriate transformation before we use re-
sampling and perform the reversed transformation immediately before the estimation
of the kernel quantiles (see “Appendix B”). The re-sampling scheme also benefits
from the prior transformation, since the stationary bootstrap is suitable for weakly
dependent series. For zxw, we assume spret∼ I (0), spret2∼ I (d) with d = 0.5 (see
Andersen et al. 2003) and tb3m∼ I (1), and we replace et by respective differences
det = (1 − L)det (with L as lag operator). Concerning the bootstrap/analytic PIs for
arfima(p,d,q)–garch(P,Q), we report only the best empirical coverage probability p̂
and corresponding relative width ŵ among two choices of (P, Q) ∈ {(0, 0), (1, 1)}.
POOS results Similarly as in Sect. 2.2.2, we evaluate the coverage probability (2.20)
and relative median width (2.21), for nominal coverage probabilities 90% (see Table
2A) and 67% (see Table 2B). Overall, the results show tight competition between
mw and zxw. Better coverage probability is generally compensated by a larger width,
hence less precision. Only for tb3m, zxw performs better in both aspects. The prr PIs
show mixed performance, and it is difficult to draw any general conclusion whether
one should prefer averaging of series (series) or averaging the forecasts (4cast) and
whether to use analytic formulas (anlt) rather than bootstrapping (boot) to obtain PIs.
We keep our focus on the coverage yield for the longer horizons.

spret Based on the simulation results for short-memory and heavy-tailed series, we
expect that both methods of zxw should give decent coverage probability close to the
nominal level. The real-data performance is better than suggested using artificial data,
with an average drop of 9 resp. 12pp for kernel-boot resp. clt-tdist below the nominal
level. On the other hand,mw exceed the nominal coverage even with the naivemethod.
The difference in coverage probability between robust and kernel-boot reaches 15pp.
The zxw provide advantage regarding the width, as the robust has twice the width of
kernel-boot for m = 130. The prr gives decent coverage only for short horizon. For
medium and long horizons, both the coverage and the width of prr exhibit a rapid
decay. Averaging series dominates over averaging forecasts by 10pp. To our surprise,
the bootstrap PIs do not outperform the analytic PIs. Regarding the width, the mw
are by 40pp more conservative than the empirical inter-quantile range of the out-of-
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sample mean-returns, whereas zxw resp. prr are 23–30pp resp. 31–43pp below the
inter-quantile range width.

spret2 Realized volatility is known for the persistence and heavy tails. The mw give
slightly lower coverage probabilities than zxw compensated by a relatively smaller
width, thus better precision. With the growing horizon all prr methods suffer a drop
in coverage, at least 40pp below the nominal level, accompanied by the largest reduc-
tion of width among all methods. The bootstrap PIs dominate over analytic, and the
competition between 4cast and series is tight. Concerning the relative width, when
compared to the previous case of returns, all methods provide very narrow PIs. We
believe that the seemingly shrinking width of PIs is caused by a larger dispersion of
the entire spret2 [entering the denominator of (2.21)] compared to the dispersion of
each local average [the nominator in (2.21)]. Note that for spret2 the denominator in
(2.21) does not provide adequate scale and the discrepancy will become even worse
for more persistent tb3m.

tb3m Interest rates exhibit strong persistence, and for enhanced performance of zxw,
we again apply differencing, but with d = 1. Note that the naive PIs have coverage
probabilities as low as 25%. The coverage probabilities of all methods are lower than
for the last two series, but zxw performs better thanmw for all horizons. Moreover, zxw
gives better results in terms of width. The coverage probability for prr falls far below
the nominal level as the horizon grows. Here, series dominates 4cast, and bootstrap
PIs are inferior to the analytic PIs, even though with only half the nominal coverage.

Except spret, clt-tdist gives slightly higher coverage probabilities than kernel-boot
corresponding to smaller precision. Eventually, we prefer the kernel-boot method and
use it in the following section for computing PIs for eight economic time series and
S&P 500 returns.

4 Prediction intervals for economic series’ growth rates and S&P 500
returns

Müller and Watson (2016), in Table 5 on pages 1731–1732, gave their long-run PIs
for eight quarterly post-WWII US economic time series and quarterly returns. Since
our kernel-boot method performed well in the last real-data POOS comparison, we
employ this method in order to obtain alternative PIs for these series. We report these
PIs in Tables 3 and 4. Müller and Watson (2016) compare their PIs to those published
by CBO. They conclude that some similarities between their PIs for series such as
GDP are due to a combination of (i) CBO’s ignorance for parameter uncertainty and
(ii) CBO’s ignorance of possible anti-persistence of GDP during Great Moderation.
Since the effects of (i) and (ii) on the PIs width are the opposite, they eventually seem
to cancel out.

The eight economic time series are real per capita GDP, real per capita consumption
expenditures, total factor productivity, labor productivity, population, inflation (PCE7),
inflation (CPI8) and Japanese inflation (CPI)—all transformed into log-differences.

7 Personal consumption expenditure deflator.
8 Consumer price index.
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Table 4 Prediction intervals for long-run averages of annual growth rates and annual S&P 500 returns

Horizon (years) 10 25 50 75

67% GDP/Pop [−1.43, 5.61] [−1.59, 5.68] [−1.85, 5.65] [−1.72, 5.36]

Cons/Pop [−1.07, 4.27] [−1.15, 4.41] [−0.96, 4.33] [−1.08, 4.26]

Population [0.33, 0.99] [0.08, 1.11] [−0.21, 1.16] [−0.54, 1.15]

CPI infl. [−2.72, 6.02] [−2.80, 6.21] [−3.19, 6.69] [−5.27, 9.46]

Returns [0.38, 13.61] [3.74, 10.68] [3.60, 9.67] [4.44, 8.29]

90% GDP/Pop [−5.00, 8.44] [−4.30, 8.47] [−4.92, 8.24] [−4.49, 7.96]

Cons/Pop [−3.12, 6.21] [−3.03, 6.22] [−2.80, 6.03] [−2.90, 6.27]

Population [0.13, 1.23] [−0.24, 1.51] [−0.63, 1.74] [−1.13, 1.81]

CPI infl. [−6.02, 12.65] [−9.00, 12.13] [−8.13, 12.87] [−11.26, 16.13]

Returns [−3.64, 17.50] [0.45, 12.62] [1.61, 11.77] [2.82, 9.49]

The macroeconomic time series are real per capita GDP, real per capita consumption expenditures, pop-
ulation, CPI inflation and Japanese inflation—all transformed into log-differences. This table provides
alternative prediction intervals to those reported in Table 5 of Müller and Watson (2016)

(Plots are given in “Appendix A.”) The data are available from 1Q-1947 till 4Q-2014,
and we forecast them over next m = 10, 25 and 50 years. For a subset of these series,
we report results based on longer (yearly) sample starting in 1Q-1920, and we add the
horizon m = 75 years for these yearly series.

For per capita real GDP, per capita consumption and productivity, we use differ-
encing with d = 0.5 for the kernel-boot PIs. Thus, these intervals are wider than in
Müller and Watson (2016), especially those for GDP. This case is similar to the case
of realized volatility in the previous section. Wide PIs are often considered as a failure
of the forecasting method or model. On the other hand, they can also reflect the higher
uncertainty about the series future. The width of PIs for GDP is not surprising given
that similar as CBO, we do not account for the possible anti-persistence during the
Great Moderation. With the longer yearly sample, our PIs get even wider, as a result
of higher volatility in the early twentieth century. Interestingly, the growth in Labor
production seems to be higher in general than reported by Müller and Watson (2016).

Consumption, population and inflation are well known as quite persistent. There-
fore, we would expect that similarly as in case of interest rates, kernel-boot could give
better coverage and possibly narrower PIs than robust. The uncertainty is similarly
large according to both our kernel-boot and robust, but the location is generally shifted
downward, especially for inflation, where the shift is about −2pp compared to Müller
and Watson (2016).

Finally, for the quarterly returns, we might expect kernel-boot to give less con-
servative thus narrow estimates, and we see this happening with discrepancy growing
with the forecasting horizons. It is clear that robust is very conservative in uncertainty
about positive returns, where the difference from kernel-boot reached 11pp. Employ-
ing the longer yearly time series makes the difference fall to 3pp. On the other hand,
3pp is a lot from an investors perspective.
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5 Discussion

We have constructed prediction intervals for univariate economic time series. Our
forecasting comparison shows that even the simple methods of Zhou et al. (2010)
provide a valid alternative for sophisticated prediction intervals designed specifically
for the economic framework by Müller and Watson (2016). However, based on our
simulation results, we emphasize that both the methods and the series need to be
suitably adjusted, especially under the small sample constraint, which, on the other
hand, is quite common in practice. Based on the comparison results, we eventually
provided alternative long-run prediction intervals for eight US economic indicators.

Forecasting average growth of economic series over the coming decades is a very
ambitious task, and naturally, there are doubts about its usefulness in practice. The
test of Breitung and Knüppel (2018), whether a forecast is informative, is based on the
prediction error variance. They conclude that economic forecasts beyond a horizon
of several quarters become uninformative. At first sight, such a claim seems to be an
argument against following the research of Müller and Watson (2016) and Zhou et al.
(2010). However, there are some differences in the assumptions and targets which
have to be carefully analyzed before we make such statements. The assumption of a
long-memory component is crucial, and it is hard to verify and distinguish it from a
possible structural break. In our paper, we did not tackle the issue of whether long-term
predictions are informative or not. We instead probed into the existing methods and
provided new empirical comparison results.

Throughout this paper, we focused on PIs estimated from historical data on the
predicted series. A multivariate or high-dimensional extension would, of course, be
attractive. It is widely recognized that big data contain additional forecasting power.
Unfortunately, in the economic literature, the boomof forecastingwithmanypredictors
(e.g., Stock and Watson 2012; Elliott et al. 2013; Kim and Swanson 2014) is mainly
focused on short horizons and point-forecasting (for an exception see Bai and Ng
2006). This is not a coincidence. Many economic time series exhibit persistence (of
varying degrees), and this is their essential property in the long run. These long-term
effects, combined over many series, are difficult to understand, partially due to their
dependence on unknown nuisance parameters (see Elliott et al. 2015). The role of
cointegration in long-run forecasting is investigated by Christoffersen and Diebold
(1998).

We do not use some methods such as quantile (auto-) regression (Koenker 2005)
in the current study, and the out-of-sample forecasting comparison could be enhanced
by statistical tests (see Clements and Taylor 2003; Gneiting and Raftery 2007, for
example).

An extension (including the theory) of Zhou et al. (2010) into a high-dimensional
regression framework using the LASSO estimator is currently being developed. Even
more challenging is a case of multivariate target series and subsequent construction of
simultaneous prediction intervals which can have interesting implications for market
trading strategies.
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Appendix A: Figures of time series used in Sects. 3 and 4

See Figs. 1, 2 and 3

1940 1960 1980 2000

−2
0

0
10 A

1940 1960 1980 2000

0
20

0
40

0 B

1960 1970 1980 1990 2000 2010

0
5

10
15 C

Fig. 1 Daily time series: a S&P500 valueweighted daily returns incl. dividend,b squared returns, c nominal
interest rates for 3-month US Treasury Bills
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Fig. 2 Annual time series—growth rates: a real per capita GDP, b real per capita consumption expenditures,
c inflation (CPI), d population
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Fig. 3 Quarterly time series—growth rates: a real per capita GDP, b real per capita consumption expen-
ditures, c total factor productivity, d labor productivity, e population, f prices (PCE), g inflation (CPI), h
Japanese inflation

Appendix B: Additional steps for implementation of zxw andmw

All macro-series in Sect. 4 are transformed to log-differences. This does not preclude
long-memory dynamics or even a unit root. Note that if yt is I (1) and has deterministic
trend component rather than a constant level, the location of the PI would have to be
shifted to m+1

2 Δy instead of ȳ.

kernel-boot:

1. Compute the mean adjusted series et = yt − ȳ, t = 1, . . . , T .
2. Fix d = 0.5 or d = 1 and compute the difference series det = (1 − L)d , t =

2, . . . , T , where L denotes lag operator.
3. Replicate det , t = 2, . . . , T B times getting debt , t = 2, . . . , T , b = 1, . . . , B.
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4. Compute the series of overlapping rolling means d̄e
b
t(m) = m−1 ∑m

i=1 de
b
t−i+1,

t = m, . . . T from every replicated series.
5. Estimate quantiles Q̂(α/2) and Q̂(1 − α/2) from ēbT (m), b = 1, . . . , B with T =

260 obtained as ēbT (m) = m−1 ∑m
i=1(1 − L)−ddebT−i+1.

6. The PI is given by [L,U ] = ȳ + [Qt
κ−1(α/2), Qt

κ−1(1 − α/2)]σ/
√
m.

clt-tdist:

1. Compute the mean adjusted series et = yt − ȳ, t = 1, . . . , T .
2. Fix d = 0.5 or d = 1 and compute the difference series det = (1 − L)d , t =

2, . . . , T , where L denotes lag operator.
3. Estimate the long-run standard deviation σ̃ of det , t = 2, . . . , T .
4. Compute the long-run standard deviation of et : for d = 1, σe(σ̃ ) = σ̃

√
(m + 1)/2

and for9 d = 0.5, σe(σ̃ ) = σ̃m−1
√∑m

i=1(
∑m−i

j=0 (−1) j
(−0.5

j

)
)2.

5. The PI is given by ȳ + [Qt
κ−1(α/2), Qt

κ−1(1 − α/2)]σe.
robust after steps 1–4.

5.1 Compute weights for specific choice of q and m/T and the prior from step 3.
5.2 Numerically approximate s. c. least favorable distribution (LFD) of θ for specific

choice of q and m/T (see “Appendix” of Müller and Watson (2016)).
5.3 Using the weights and the LFD solve the minimization problem (14) on page 1721

in Müller and Watson (2016) to get quantiles which give uniform coverage and
minimize the expected PIs width.

6. The same as in bayes with the robust quantiles.

Appendix C: Derivation of an error standard deviation for time-
aggregated forecast

The formula for computing prediction error sd is âsT ,+1:m =
1
m

√∑m
i=1(σ̂T ,T+i

∑m−i
j=0 Ψ̂ j )2, where Ψ̂0 = 1 and Ψ̂ j , j = 2, . . . ,m are the esti-

mates of coefficients from the causal representation of yt . The σ̂T ,T+i is the garch
forecast for innovations deviation. For simplicity, we show the derivation for the case
of constant innovation variance.

Assume that yt has causal representation:

yt = εt + Ψ1εt−1 + · · · ,

where εt ∼ (0, σ 2) is the innovation process with constant second moment. Standing
at time T the i th-step-ahead prediction error can be expressed as

peT ,i = εt+i + Ψ1εt+i−1 + · · · + Ψi−1εT+1.

9 See http://mathworld.wolfram.com/BinomialSeries.html.
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The average prediction error over horizons i = 1, . . . ,m is therefore given by

p̄eT ,+1:m = 1

m

m∑

i=1

1∑

j=i

Ψi− jεT+ j ,

with Ψ0 = 1. Now, this can be rewritten as

p̄eT ,+1:m = 1

m

⎛

⎜⎜⎜⎜⎜⎝
εT+1

m−1∑

j=0

Ψ j

︸ ︷︷ ︸
cm−1

+εT+2

m−2∑

j=0

Ψ j

︸ ︷︷ ︸
cm−2

+ · · · + εT+m−1

1∑

j=0

Ψ j

︸ ︷︷ ︸
c1

+εT+m

⎞

⎟⎟⎟⎟⎟⎠
,

where c0 = Ψ0 = 1. Since innovations are uncorrelated, we can compute the variance
of average prediction error over the horizons i = 1, . . . ,m as

var( p̄eT ,+1:m) =
( σ

m

)2 m∑

i=1

c2m−i .

Appendix D: Discussion on CLT and QTLmethods

For the interested reader here we provide some discussion on the justification of the
two originalmethods fromZhou et al. (2010) and howone can verify them in linear and
possibly nonlinear processes. First, we discuss a result for the CLT method. Assume
the process et admits the following linear form

et =
∞∑

j=0

a jεt− j , (5.1)

where εt are mean-zero, independent and identically distributed (i.i.d.) random vari-
ables with finite second moment. For this structural form, we can evaluate (2.14). We
assume a particular decay rate of ai and state the following theorem.

Theorem 1 Assume the process et admits representation (5.1) where ai satisfies

ai = O(i−χ (log i)−A), χ > 1, A > 0, (5.2)

where larger χ and A mean fast decay rate of dependence. Further assume, A > 5/2
if 1 < χ < 3/2. Then the sufficient condition (2.14) implies that convergence (2.15)
to the asymptotic normal distribution holds.
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Proof

‖E(Sm |F0)‖2 = ‖(a1 + · · · + am)ε0 + (a2 + · · · + am)ε−1 + · · · ‖2 =
m∑

i=1

b2i ,

(5.3)

where bi = ai + · · ·+ am . Note that
∑m

i=1 b
2
i assumes the following value depending

on χ > 3/2 or not. Thus, (2.14) holds since by elementary calculations,

m∑

i=1

b2i =
{
O(m3−2χ (logm)−2A), for 3 − 2χ > 0

O(1) for 3 − 2χ ≤ 0.
(5.4)

��
Note that Theorem 1 concerns only linear processes. This class covers a large class

of time series processes already. However, we do not necessarily require linearity of
the error process (et ). One can equivalently use the functional dependence measure
introduced in Wu (2005) to state an equivalent result for stationary possibly nonlinear
error processes of the form

et = G(εt , εt−1, . . .),

where εi are i.i.d. random variables. For this process assuming p ≥ 2 moments one
can define the functional dependence measure

δ j,p = ‖e j − G(ε j , . . . , ε
∗
0 , . . .)‖p,

where ε∗
(·) is an i.i.d. copy of ε(·) process. For the specific case of et assuming a linear

form as specified in (5.1), we have δ j,p = a j . This lays down a straightforward way
in how our results for the linear process can be easily extended to nonlinear processes.

Next, for the sake of completeness, we borrow a result from Zhou et al. (2010) that
discusses the quantile consistency for the QTL method. Recall that we will exhibit as
promised that this method allows for the situation where the i.i.d. innovations εt in the
decomposition (5.1) can have both light tails, i.e., E(|εt |2) < ∞, and heavy tails, i.e.,
α < 2 where α = supr>0{r : E(|εt |r ) < ∞}.

We will impose the following conditions on the coefficients for short- or long-range
dependence and also assume boundedness of the density of εt in the following sense:

(SRD) :
∞∑

j=0

|a j | < ∞,

(DEN) : sup
x∈R

fε(x) + | f ′
ε(x)| < ∞,

(LRD) : a j = O(( j + 1)−γ l( j)), 1/α < γ

< 1, l(·) is slowly varying function (s. v. f.), (5.5)
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where s. v. f. is a function g(x) such that limx→∞ g(t x)/g(x) = 1 for any t . The
condition (SRD) is a classic short-range-dependent condition (see Box et al. 2015,
for more discussion). (LRD) refers to the long memory of the time series, and it is
satisfied by a large class of models such as arfima. (DEN) is also a mild condition
since by inversion theorem, all symmetric stable distributions fall under this condition.
We borrow the following result from Zhou et al. (2010) for linear process. It is worth
noting that one can extend this to nonlinear processes as well by defining the coupling-
based dependence on predictive density of et as done in Zhang and Wu (2015), but
we postpone that discussion for a future paper.

Quantile consistency results for the quantile method For a fixed 0 < q < 1, let
Q̂(q) and Q̃(q) denote the qth sample quantile and actual quantile of (m ēt(m)/Hm);
t = m, . . . , T where, using (5.5),

Hm =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
m, if (SRD) holds and E(ε2j ) < ∞,

inf
{
x : P(|εi | > x) ≤ 1

m

}
if (SRD) holds and E(ε2j ) = ∞,

m3/2−γ l(m) if (LRD) holds and E(ε2j ) < ∞,

inf{x : P(|εi | > x)m1−γ l(m) if (LRD) holds and E(ε2j ) = ∞.

(5.6)

We have the following different rates of convergence of quantiles based on the nature
of tail or dependence:

Theorem 2 (Zhou et al. (2010) Th 1:4)[Quantile consistency result]

– Light-tailed (SRD) Suppose (DEN) and (SRD) hold andE(ε2j ) < ∞. Ifm3/T → 0,
then for any fixed 0 < q < 1,

|Q̂(q) − Q̃(q)| = OP(m/
√
T ). (5.7)

– Light-tailed (LRD) Suppose (LRD) and (DEN) hold with γ and l(·) in (5.5). If
m5/2−γ T 1/2−γ l2(T ) → 0, then for any fixed 0 < q < 1,

|Q̂(q) − Q̃(q)| = OP(mT 1/2−γ |l(T )|). (5.8)

– Heavy-tailed (SRD) Suppose (DEN) and (SRD) hold and E(|ε j |α) < ∞ for some
1 < α < 2. If m = O(T k) for some k < (α − 1)/(α + 1), then for any fixed
0 < q < 1,

|Q̂(q) − Q̃(q)| = OP(mT ν) for all ν > 1/α − 1. (5.9)

– Heavy-tailed (LRD) Suppose (LRD) holds with γ and l(·) in (5.5). If m = O(T k)

for some k < (αγ − 1)/(2α + 1 − αγ ), then for any fixed 0 < q < 1,

|Q̂(q) − Q̃(q)| = OP(mT ν) for all ν > 1/α − γ. (5.10)
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