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Abstract Behavioral researchers have shown growing interest in structural equation
model trees (SEM Trees), a new recursive partitioning-based technique for detecting
population heterogeneity. In the present research, we conducted a large-scale simula-
tion to investigate the performance of latent growth curve model (LGCM)-based SEM
Trees for uncovering between-individual differences in patterns of within-individual
change. Simulation results showed that the correct estimation rates of the number of
classes are most strongly related to the agreement rate of the covariate with its true
latent profile, and the number of true classes also has a serious negative impact on
correct estimation rates of the number of classes. SEM Trees is not always sensitive
to the influence of model misspecification, and its impact differs according to a com-
plex function of the types of misspecification as well as the statistical properties of
the template model. On the whole, LGCM-based SEM Trees is a robust and stable
approach under possible model misspecifications.
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Behavioral researchers are often interested in investigating population heterogene-
ity (i.e., between-individual differences in within-individual change patterns) that
may appear in longitudinal data. The primary research purpose is to understand the
potential variety of typical development and growth trajectories. Ignoring population
heterogeneity may lead to incorrect conclusions concerning development and growth
trajectories. A large amount of research has revealed evidence of the presence of pop-
ulation heterogeneity in longitudinal trajectories. For example, Nagin and Tremblay
(1999) extracted four classes representing different patterns in changes of boys’ physi-
cal aggression scores during childhood: a “low” class comprising childrenwho display
little or no physically aggressive behavior; a “moderate declining” class that displayed
a modest level of physical aggression at age 6, but by age 10 had largely desisted; a
“high declining” class that showed serious physical aggression at age 6 but scores far
lower by age 15; and a “chronics” class comprised of children who displayed high
levels of physical aggression throughout the observation period. Another example
includes the work of Leiby et al. (2009), who detected three longitudinal patterns in
perceived pain scores reported by patients with interstitial cystitis: a “responder” class
that reported regular symptoms throughout the observation period, a “non-responder”
class that showed large scores in the first weeks but far lower scores later in the obser-
vation period, and “temporary responders” who at first reported reduced symptoms
but showed increased scores later (i.e., U-shaped profiles).

To uncover the potential population heterogeneity in longitudinal designs, various
statistical techniques have been proposed, including non-hierarchical cluster analysis
(Genolini and Falissard 2010; Usami 2014a), finite mixture models (McLachlan and
Peel 2000; Todo and Usami 2016), the latent class model (e.g., Nagin 1999; Nagin and
Land 1993; Nagin and Tremblay 1999, for a group-based semi-parametric approach),
multi-group analysis (Little et al. 2000; McArdle and Nesselroade 2014), mixed-
effects models (moderation; Preacher et al. 2016), and decision trees (Brandmaier
et al. 2013, 2014; Usami et al. 2017, for structural equation model (SEM) trees, Sela
and Simonoff 2012, for random effects (RE-EM) Trees, and Fokkema et al. (2017), for
generalized linear mixed-effects model tree). During the past decade, researchers have
shown growing interest in applying latent growth curve mixture models (LGCMMs;
Berlin et al. 2014; Leiby et al. 2009; Neelon et al. 2011; Ram and Grimm 2009), and,
more recently, in applying machine learning techniques including SEM Trees (e.g.,
Hayes et al. 2015; Martin 2015; Jacobucci et al. 2017). Both LGCMMs and SEM
Trees utilize SEM to model changes using latent variables estimated with a smaller
number of parameters.

LGCMMs combine (unstructured) finite mixture models (McLachlan and Peel
2000) and latent growth curvemodels (LGCM; Bollen and Curran 2006;Meredith and
Tisak 1984, 1990), allowing researchers to investigate heterogeneity in longitudinal
trajectories using a categorical latent variable called a class (also called a component,
cluster, group, or regime). SEM Trees also synthesizes aspects of two statistical tradi-
tions, combining decision/regression trees (Morgan and Sonquist 1963; Sonquist and
Morgan 1964) and SEM. SEM Trees explore population heterogeneity through parti-
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tioning the dataset based on the specific value of the observed covariate that results in
the largest differences in parameter estimates returned by the prescribed SEM (called
the template model or the hypothesized model; Brandmaier et al. 2013). SEM Trees
is a supervised classification model that uses observed covariates for classification,
whereas an LGCMM is an unsupervised classification model for which such observed
covariates are not required. Because of this property, SEM Trees can find covariates
and covariate interactions that predict nonlinear differences in structural parameters
among the observed variables (Brandmaier et al. 2013).

SEM Trees continues splitting the data using covariate information through
recursive partitioning, and can detect population heterogeneity that may appear in lon-
gitudinal trajectories characterized by a prespecified template model. The availability
of useful covariates to explain population heterogeneity is thus key, since without such
covariates the dataset cannot be partitioned, even if population heterogeneity exists.
SEM Trees can be effectively applied as a data-mining tool in order to detect popula-
tion heterogeneity when very large numbers of covariates are available (Brandmaier
et al. 2014). As we will explain in the next section, the SEM Tree algorithm adds
splits to a tree on the basis of likelihood-ratio tests. Note that the SEM Tree algo-
rithm’s use of maximum likelihood in the discrepancy function to grow trees differs
from the partitioning methods proposed by Sanchez (2009), which use (partial) least-
squares estimation. SEMTrees analyses can be performed using theR package semtree
(Brandmaier et al. 2013), with SEMmodels handled by either lavaan (Rosseel 2012)
or OpenMx (Boker et al. 2011). In this package, we can also use amore advanced ver-
sionofSEMTrees calledSEMforests (Brandmaier et al. 2016),which are ensembles of
SEMTrees based on resamplings of the original dataset that provide increased stability
of the estimation results. Currently, SEM forests can only be paired with OpenMx.

Compared with LGCMMs, SEM Trees is a recent development that has received
much less application and consideration. However, many researchers have shown
increasing interest in both theoretical and applied domains (e.g., Hayes et al. 2015;
Hayes and McArdle 2017; Martin 2015; Miller et al. 2015; Usami et al. 2017). In
applying SEM Trees (and LGCMMs), a difficult but intriguing question is the esti-
mation of the total number of classes in the latent space that explain the population
heterogeneity. In SEM Trees, the number of classes is equal to the total number of
child nodes in the estimated tree. Although various methods of constructing decision
trees have been developed for multivariate data (e.g., the method proposed by Brodley
and Utgoff 1995, which does not assume structural equations among variables), in
SEM Trees the observed precision in detecting population heterogeneity may differ
from other methods due to differences in the number of parameters and sensitivity
to possible misspecification, which is more typical in SEM. Therefore, unfortunately
little is known about the performance of SEM Trees (and other related methods).1 On

1 The LGCM can be expressed using a linear mixed model when time-invariant residual variances are
assumed. This indicates that some of LGCM-based SEM Trees can be indirectly implemented using other
tree methods based on linear mixed model. A recent development of Fokkema et al. (2017) proposed a
generalized linear mixed-effects model tree algorithm to detect treatment-subgroup interactions. However,
in this method the observed precision in detecting population heterogeneity has not been investigated under
longitudinal design with the number of time points T ≥ 3, which is required in applying LGCM for
identification.
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this point, Usami et al. (2017) used a (bivariate) latent-change score (LCS) model as a
data generation model and investigated the conditions under which SEM Trees might
better perform at correctly identifying the true classes (nodes). They found that (1)
correct estimation rates of the number of classes were strongly related to the agree-
ment rate of the covariate with its true latent profile, (2) the influence of total sample
size were also notable, (3) influences of other manipulated factors including mixture
proportions and degree of separation (distances) of intercept factors between classes
were almost ignorable, and (4) trees were very sensitive to the influence of model
misspecification with respect to the template model (e.g., correct estimation rates of
the number of classes were zero under the influences of model misspecification in
time-variant error variances and random intercepts).

Although the investigation of Usami et al. (2017) is useful to improve our under-
standing about the performance of estimation by SEM Trees, this simulation may
unfortunately be rather limited in that only the (bivariate) LCS model was used as a
data generation model. The (bivariate) LCS model adds autoregressive and coupling
(cross-lagged) terms into LGCM, and it can be used for inferring longitudinal relation-
ship between variables (see a later section regarding this point). Despite the generality
of its model structure, the LCS model has unfortunately not been widely used so far,
and LGCM has still gained growing attention from applied researchers who aim to
model longitudinal trajectories. An additional negative aspect of the LCSmodel comes
from its high frequency of estimation problems (i.e., non-convergence problems and
improper solutions) and potentially seriously unstable estimates of autoregressive and
coupling (cross-lagged) parameters (e.g., Usami et al. 2015), and this might explain
the serious sensitivity of (bivariate) LCS model-based SEM Trees to the influence of
model misspecification. For that reason, the LCS model-based SEM Trees may not
necessarily be a reasonable choice in practice, and substantially different performance
(e.g., the frequency of estimation problems, correct estimation rates of the number
of classes, sensitivity to the influence of model misspecification) may be observed
when applying LGCM-based SEM Trees due to the difference in statistical properties
from the LCS model. Actually, in the context of finite mixture models and LGCMM,
Todo and Usami (2016) showed that correct estimation rates were largely different
according to the analysis models specified. Because model misspecification should
typically arise in wide applications of LGCM (SEM) in a strict sense (on this point,
see Bauer and Curran 2004), seeking possible (tree-based) alternatives from LCS
model-based SEM Trees must be pragmatically important for researchers who aim to
detect population heterogeneity in longitudinal trajectories based on covariates.

Furthermore, due to the computational burdenof the simulation,2 the number of time
points and true classes (nodes) were not manipulated in Usami et al. (2017). However,
only allowing for two classes, thus only one split without covariate interactions, is a
very limited case in general applications of tree analyses. Actually, previous research
that applied LGCMM or SEM Trees extracted more than two classes (e.g., see the
above examples of Jacobucci et al. 2017; Leiby et al. 2009; Nagin and Tremblay
1999), and we expect that researchers usually collect multiple covariates that can

2 Usami et al. (2017) conducted simulations in OpenMx because lavaan, which can provide faster com-
putation, was not available in the semtree package at the start of simulations.
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explain population heterogeneity in practice. Importantly, as the number of true classes
and covariates become larger, exact estimation of population heterogeneity should
become more difficult, since all covariates and corresponding criterion values must
be identified correctly, demanding larger sample sizes in total when estimating trees.
Likewise, the number of time points in the dataset can also vary in actual applications,
and such differences might relate to the stability of parameters in SEM. Therefore, the
previous investigations are limited in addressing these points, and there might be great
risk of drawing wrong conclusions about the performance of SEM Trees in general
(e.g., correct estimation rates of the number of classes on average, or sensitivity to the
influence of possible model misspecifications).

In this paper, our aim is to investigate the estimation performance of SEM Trees
to correctly identify the true classes using linear and quadratic LGCM as a template
model,manipulating the number of timepoints and classes (nodes) aswell as the degree
of separation, sample sizes, and agreement rates of the covariate with its true latent
profile.We also consider the influence ofmodelmisspecification. These includewrong
assumptions of the functional form of the development trajectories and time-invariant
error variances. In the next section, we briefly explain the (linear and quadratic) LGCM
and SEMTrees algorithm.We then present the simulation design and results, and close
with suggested directions for future investigations.

1 LGCM and SEM Trees

1.1 LGCM

Let yit be the observed variable at occasion t (1, . . . , T ) for each participant i
(1, . . . , N ), and the quadratic LGCM expresses yit as simple sum of true values as
a function of time ( fi t ) and error (eit ). The quadratic LGCM can be written using a
three-factor model as

yit = fi t + eit
= a0t Ii + a1t S1i + a2t S2i + eit
= Ii + (t − 1)S1i + (t − 1)2S2i + eit , (1)

where fi t = a0t Ii +a1t S1i +a2t S2i . a0t , a1t and a2t in the second line of the equation
are factor loadings as functions of time, prespecified as a0t = 1, a1t = (t − 1) and
a2t = (t − 1)2, respectively. Substituting these values into the equation leads to the
third line of the equation. Ii , S1i and S2i are factor scores that characterize the initial
value and amount of first-order and second-order changes of true latent trajectory
of participant i , respectively. More specifically, considering fi1 = Ii at t = 1, Ii
can be considered as the true value of participant i at t = 1. Interpretation of S1i
and S2i can be better clarified by evaluating first- and second-order derivatives of fi t
as f ′

i t = ∂ fi t/∂t = S1i + 2(t − 1)S2i and f ′′
i t = ∂2 fi t/∂t2 = 2S2i . Considering

that f ′
i1 = S1i and f ′′

i t is not a function of time (t), S1i and S2i can be more clearly
interpreted as the rate of change (or “instant” slope) at t = 1 and (half of) its constant
change per unit change of time. Thus, if S2i = 0 for all participants, there is no change
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in the rate of change of the trajectory, so this defines a linear function (Bollen and
Curran 2006).

Typically, an error term eit is assumed to be normally distributed as N (0, ψ2
t ),

and is also assumed to have no correlation with factor scores and errors of differ-
ent participants i ′ at different time points t ′ (i.e., cor(Ii , eit ) = cor(S1i , eit ) =
cor(S2i , eit ) = 0, and cor(eit , ei ′t ) = cor(eit , eit ′) = cor(eit , ei ′t ′) = 0). Let v

and � be a factor means vector and variance–covariance matrix of latent factor scores
ξi = (Ii , S1i , S2i )t , expressed as

v =
⎛
⎝

μI

μS1
μS2

⎞
⎠ , � =

⎛
⎝

φ2
I φI S1 φI S2

φ2
S1 φS1S2

sym. φ2
S2

⎞
⎠ . (2)

When we aim to specify a linear LGCM by setting S2i = 0 for all participants, this
manipulation essentially indicates assumptions of zero means and zero (co)variances
regarding the second-order slope factor (i.e., μS2 = φ2

S2 = φI S2 = φS1S2 = 0).
Let y be an observed data vector, and its elements be arranged as y =

( yt1, . . . , y
t
i , . . . , y

t
N )t , where yi = (yi1, . . . , yit , . . . , yiT )t . Then the likelihood func-

tion for y, which will be used in SEMTrees for maximum likelihood (ML) estimation,
can be expressed as

L(�| y) =
N∏
i=1

(2π)−T/2|�(�)|−1/2 exp

[
−1

2
( yi − μ(�))t�(�)−1( yi − μ(�))

]
, (3)

where μ(�) and �(�) are mean and covariance structures implied by the LGCM,
respectively, and� represents all parameters included in the LGCM. The explicit link
between μ(�), �(�), and the parameters of the quadratic LGCM is provided in the
literature (e.g., Bollen and Curran 2006, p. 92–93).

The (univariate) LCS model that assumes second-order changes (S2) can be
expressed as

yit = fi t + eit
= (β∗ fi(t−1) + a∗

1t S1i + a∗
2t S2i ) + eit

= [β∗2 fi(t−2) + (1 + β∗)a∗
1t S1i + (1 + β∗)a∗

2t S2i ] + eit

= [β∗3 fi(t−3) + (1 + β∗ + β∗2)a∗
1t S1i + (1 + β∗ + β∗2)a∗

2t S2i ] + eit
. . .

= [β∗(t−1) Ii +
t−1∑
t ′=1

β∗(t ′−1)a∗
1t S1i +

t−1∑
t ′=1

β∗(t ′−1)a∗
2t S2i ] + eit ,

= [β∗(t−1) Ii +
t−1∑
t ′=1

β∗(t ′−1)S1i +
t−1∑
t ′=1

β∗(t ′−1)(t − 1)S2i ] + eit , (4)

where β∗ = 1+ β, and β represents an autoregressive parameter. Factor loadings a∗
1t

and a∗
2t are prespecified as a

∗
1t = 1 and a∗

2t = (t−1), respectively.McArdle (2009) and
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Usami et al. (2015) noted that the LGCMmodel can be considered as a special case of
the LCSmodel. Actually, specifyingβ = 0 in Eq. (4) leads to the expression yit = Ii+
(t−1)S1i+(t−1)2S2i+eit , which is identical to Eq. (1). In the bivariate case, although
the coupling (cross-lagged) parameter is typically included in the LCS that reflects a
longitudinal relationship between variables, the nested relationship between the LCS
model and the LCGM can be derived in the same manner. With an empirical data
example, Usami et al. (2015) argued that the LCSmodel might cause a high frequency
of estimation problems (i.e., non-convergence problems and improper solutions) and
potentially seriously unstable estimates of autoregressive and coupling (cross-lagged)
parameters. A more detailed explanation of these models that uses path diagrams is
provided in Usami et al. (2015).

1.2 SEM Trees

The estimation procedure in SEM Trees can be summarized as follows (Brandmaier
et al. 2013; Usami et al. 2017):

(i) Fit an SEM (template model) to the whole dataset and calculate the likelihood
L(�| y).

(ii) Search for a covariate M and corresponding criterion value m that maximizes
the heterogeneity of the SEM parameters in a round-robin fashion. Specifically,
such M and m maximize the following likelihood L∗(�A,�B| y):

L∗(�A,�B| y) = L(�A| yA, M ≥ m) + L(�B| yB, M < m), (5)

by splitting the whole dataset into subgroups A and B. Here, L(�A| yA, M ≥ m)

is a likelihood for subgroup Awith observed longitudinal data yA, which satisfies
the condition M ≥ m, and L(�B| yB, M < m) is a likelihood for subgroup
B with observed longitudinal data yB , which satisfies the condition M < m,
respectively. �A and �B are SEM parameters corresponding to subgroups A
and B, respectively.

(iii) Investigate whether themodel fits significantly better by splitting the data. Specif-
ically, the observed difference in (log-)likelihood

χ2 = 2 log L∗(�A,�B| y) − 2 log L(�| y), (6)

is evaluated using a chi-square distribution with degrees of freedom equal to the
number added by having two models versus one under the prespecified signifi-
cance level.

(iv) Thewhole dataset is split into subgroupsA andB ifχ2 exceeds the corresponding
critical value. If not, the dataset is not split and estimation terminates. In the former
case, repeat steps (i)–(iii) for both subgroups A and B and split the data if χ2

significantly improves. Repeat this recursive partitioning calculation process and
continue splitting the data until χ2 does not show statistical improvement.

(v) To solve the problem of multiple comparisons and type-I error inflation resulting
from over-splitting the data, either a Bonferroni correction or cross-validation
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(CV) procedure can be used to remove unnecessary subgroups (child nodes) if
they exist. Then, estimation is finished and the total number of remaining child
nodes becomes an estimate of the number of classes in SEM Trees.

Due to the procedure in (ii) [i.e., Eq. (5)], the algorithm of SEM Trees is typically
computationally intensive since a new model has to be estimated for every possible
criterion value. Note that nominal data (e.g., race categories) M∗ can also be included
as covariates in SEM Trees (e.g., Brandmaier et al. 2013). In that case, data is split on
the basis of whether a participant belongs to a specific set A (e.g., Asian or American
Indian) or its complement set B (= Ā), and a likelihood similar to Eq. (5) is constructed
as L∗(�A,�B| y) = L(�A| yA, M∗ ∈ A) + L(�B| yB, M∗ ∈ B).

2 Simulation

In this simulation,we investigate the estimation performance of SEMTrees to correctly
identify the true classes using linear and quadratic LGCMs under the influence of
model misspecification of the functional form of the development trajectories and
time-invariant error variances. We also conducted several supplemental simulations
to confirm the generalizability of the main simulation and to briefly compare the
performance of LGCMMs with SEM Trees. Simulation code and result sheets are
available in the supplemental online materials.

2.1 Manipulated factors

For data generation, we systematically changed the number of total participants (N =
100, 200, 400, 800, 1600, 3200), the number of time points (T = 4, 6, 8), the number
of true classes (C = 2, 4), the degree of separation (i.e., distances) between classes
at the first time-point (d = 0.5, 1.0, 1.5, 2.0, 2.5), the agreement rate of the observed
dichotomous covariate with its true latent profile (r = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0; an
index that indicates the extent of association between covariate and class differences—
see the explanation below for more details), and a functional form of true latent
trajectory in each class (linear or quadratic curve). We specified the levels of these
factors to range from small to large values so that the simulation would cover various
kinds of developmental trajectories that appear in actual longitudinal data. Addition-
ally, we manipulated the presence or absence of two kinds of model misspecification:
incorrect functional forms (e.g., a model that incorrectly assumes a linear latent tra-
jectory is fit to a dataset that actually has a quadratic functional form, or vice versa)
and time-invariant error variances (i.e., a model that assumes time-invariant error vari-
ances is incorrectly fit to a dataset that was actually generated using time-variant error
variances). We generated simulation data under an orthogonal design. Namely, there
are (6 × 3 × 2 × 5 × 6 × 2 × 2 =) 4320 distinct combinations of factors. Addition-
ally, 100 sets of simulation data were randomly generated for each condition, yielding
4320 × 100 = 432,000 datasets.

We assumed researchers have either one or two dichotomous covariate(s) in the
datasetwhenC = 2 andC = 4, respectively.Usingdichotomous covariates is advanta-
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The performance of latent growth curve model-based… 9

geous in this simulation, in that they can simplify the procedure of evaluating theperfor-
mance of estimating the number of classes whenC = 4, because the correct estimation
of the number of classes (Ĉ = 4) indicates the correct extraction of the true classifica-
tion structure (i.e., data splits into two nodes by a covariate, and each node is further
split by another covariate, resulting in four classes). Therefore, in this simulation set-
ting, incorrect estimation of the number of classes indicates underestimation of classes.

In addition, we did not manipulate the proportion of class sizes (e.g., a 50–50%
allocation of participants in two classes, or a 90–10% allocation) and proportions
were assumed to be equal among classes, because previous research (e.g., Henson
et al. 2007: Usami 2014b) that investigated the performance of LGCMMs has shown
that differences in the proportion of class sizes are not influential.

2.2 Data generation

Simulation data were generated through the following procedure using actual param-
eter estimates from child weight data of T = 5 in the National Longitudinal Survey
of Youth (Biesanz et al. 2004; cf Bollen and Curran 2006, pp. 94–96). (i) Under a
fixed number of true classes (C) and time points (T ), we set slope factor means to
μI = 39.563, μS1 = 6.988, and μS2 = 0.373. Class-invariant variance–covariance
matrix � was specified as

� =
⎛
⎝
33.913 10.238 0.126

10.749 − 0.443
sym. 0.154

⎞
⎠ .

Note that when the functional form of true latent trajectory is linear, zero factor
means and zero (co)variances are assumed (i.e., μS2 = φ2

S2 = φI S2 = φS1S2 = 0).
(Time-variant) error variances ψ2

t are specified as ψ2
1 = 2.942, ψ2

2 = 15.084, ψ2
3 =

44.858, ψ2
4 = 85.200, ψ2

5 = 73.285, ψ2
6 = 89.280, ψ2

7 = 91.947, and ψ2
8 = 89.336,

irrespective of the conditions of T (e.g., when T = 4, the first four valuesψ2
1 = 2.942,

ψ2
2 = 15.084, ψ2

3 = 44.858, ψ2
4 = 85.200 are used).3 (ii) Let d be a symbol to adjust

the expected degree of separation (i.e., the standardized mean differences) at t = 1
among classes, and set the intercept factor means as μ1

I = μI − 0.5 × d × σ1 and
μ2
I = μI +0.5×d×σ1 inC = 2, andμ1

I = μI −1.5×d×σ1,μ2
I = μI −0.5×d×σ1,

μ3
I = μI + 0.5 × d × σ1 and μ4

I = μI + 1.5 × d × σ1 in C = 4. Here, σ1 denotes
(class-invariant) population standard deviations of the variables at t = 1, which can

be calculated as σ1 =
√

φ2
I + ψ2

1 = √
33.913 + 2.942 = 6.071. Slope factor means

(μS1,μS2) are assumed to be class invariant, indicating true latent trajectories have the
same degree of separations among classes in each time point. (iii) Usingmodel param-
eters specified in the above steps, mean and variance–covariance structures (μc(�),

3 Because the number of time points (T ) of child weight data is five, in the conditions of T = 6 and T = 8,
error variances for t = 6, 7, 8 were specified as ψ2

6 = 89.280, ψ2
7 = 91.947, and ψ2

8 = 89.336 using

predicted values based on estimated quadratic regression (i.e., predicted values ψ̂2
t = β̂0 + β̂1t + β̂2t

2 for
t = 6, 7, 8 using the data of ψ2

t reported at t = 1, 2, 3, 4, 5).
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�c(�)) are calculated for each class. (iv) Under the specified number of total par-
ticipants N , generate data y with size N/C using a multivariate normal distribution
as yci ∼ MV N (μc(�),�c(�)) for each class. (v) For the analysis of SEM Trees,
generate dummy (discrete) covariates (each valued 0–1), which shows the 100× r %
expected agreement rate for a true latent profile. Thus, when r = 1 the covariate
essentially indicates a true latent profile for each participant, while r = 0.50 corre-
sponds to the chance level (i.e., the covariate shows no correlation with the true latent
profile). Thus, the larger r becomes, the more informative the covariate becomes in
explaining population heterogeneity in the data.4 When class sizes are equal, condi-
tions of r = 0.5, 0.6, 0.7, 0.8, 0.9, 1 respectively correspond to expected correlations
of 0, 0.20, 0.40, 0.60, 0.80 and 1 between true latent profiles (coded as 0 or 1 for
two classes split from each node) and the dichotomous observed covariates. Complete
datasets that include both observed variables y and covariates are then generated.

2.3 Data analysis procedure

When fitting SEM Trees, we used three types of models in this simulation. The first is
the linear or quadratic LGCM described by Eqs. (1)–(2) (i.e., the correctly specified
model). The second is the LGCM incorrectly assuming time-invariant error variances
(i.e., the wrong assumption thatψ2

t = ψ2). The third ismathematically the same as the
first, although the functional form is incorrectly specified (i.e., a model that assumes
a linear latent trajectory is incorrectly fit to a dataset that actually has a quadratic
functional form, or vice versa). The whole simulation procedure was performed in
the R statistical environment (R Core Team 2016), and parameter estimation was
conducted using the semtree package (Brandmaier et al. 2013) handled by lavaan
(Rosseel 2012). In semtree, we used the naive method (i.e., splitting criterion based
on the likelihood ratio test) and chose the Bonferroni correction for multiple testing
in estimating trees.5

4 When C = 2, the true latent profile of the first covariate x1 is simply specified as x1 = (1tN/2, 0
t
N/2)

t .
In contrast, when C = 4, where two covariates x1 and x2 are included in the dataset, true latent profiles in
each class are specified as

(
xt1
xt2

)t

=
(
1tN/4 1tN/4 0tN/4 0tN/4
1tN/4 0tN/4 1tN/4 0tN/4

)t

Thus, in the population x1 is the first covariate used to split the whole dataset into two nodes (one consisting
of participants from the first and second classes, and the other from the third and fourth classes) whose
distances are 2d, and x2 is the second one to split these nodes, resulting in four child nodes (classes) whose
distances between adjacent classes are d. In this simulation, we generated covariates so that both covariates
have the same agreement rate r when C = 4 (i.e., r = r1 = r2).
5 The Cross Validation (CV) method was not selected for multiple testing since it could not be applied
to lavaan objects without errors. We confirmed that when selecting the “naive” method, simulation
results were almost identical irrespective of the explicit specification of the Bonferroni method by
“semtree.control()$bonferroni” in semtree.
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2.4 Model selection procedure

In SEM Trees, the number of classes was estimated via the number of child nodes
obtained without specifying a minimum number of within-node observations when
growing the trees. The significance level was specified as 0.05. Estimation of the
number of classes was considered correct if the dataset was correctly partitioned by a
single covariate for C = 2 or by two covariates for C = 4, respectively.

2.5 Result

Table 1 shows the correct marginal estimation rates in each level of the manipulated
factors according to the functional forms of the true latent trajectories (i.e., linear
or quadratic) in the data generation model. Improper solutions were observed in 5–
8% of cases when fitting quadratic LGCM assuming correct error variances (i.e.,
time-variant error variances) in T = 4, and repetitions were added until the total
repetitions reached 100 in each condition. Irrespective of function form, the number
of time points, which was newly manipulated in the current simulation, was almost
unrelated to class-detection performance, indicating changes in this factor were not
influential to statistical power (expected chi-square difference) when splitting nodes.
However, the influences of other factors that characterize the properties of longi-
tudinal data were notable. For example, larger values of the number of true nodes
C , which is also a newly specified factor in the current simulation, have a negative
impact on correct estimation of the number of true classes, because when C = 4,
statistical power for correct estimation of classes dramatically decreases compared
with the case of C = 2. This point is critically important, since in many applica-
tions of tree analyses there is more than one split, extracting more than two classes
(e.g., Brandmaier et al. 2013; Jacobucci et al. 2017). Therefore, the previous investi-
gations might show overly optimistic results regarding the performance of SEM Trees
in general.

The agreement rate between the observed covariate and latent profile r also showed
a dominant influence on the correct estimation rates, and values of r larger than 0.8
or 0.9 can be considered a minimum requirement for correctly detecting classes in
the present context. Specifically, when the proportion of class sizes is equal (e.g., a
50–50% allocation of participants in classes), conditions of r = 0.8 and r = 0.9
correspond to expected correlations of 0.60 and 0.80 between true latent profiles and
covariates, indicating that covariates that are substantially informative for predicting
the true latent profile are required in applying SEM Trees. The total sample size
N and degree of separation d were also influential on correct estimation rates, and
d = 1.5 was roughly enough to maximize the performance of SEM Trees, given
the other factors considered here. These results are almost identical, irrespective of
the functional forms of the true latent trajectories. Note that the degree of separation
was almost unrelated to the performance of SEM Trees in Usami et al. (2017), which
used LCSmodel-based SEM Trees and manipulated differences in the intercept factor
means. This might be attributed to unstable parameter estimates and the larger risk
of improper solutions (e.g., local maxima) in the LCS model and the non-parallel
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Table 1 Correct marginal estimation rates at each level of manipulated factors according to functional
forms of true latent trajectories

Functional form of true latent trajectory

Linear Quadratic

Mean SD Mean SD

Number of time points T=4 .53 0.45 .53 0.45

T=6 .52 0.45 .52 0.45

T=8 .51 0.45 .50 0.46

Number of true nodes C=2 .64 0.42 .64 0.42

C=4 .40 0.45 .40 0.45

Agreement rate of r=0.5 .02 0.03 .01 0.03

dichotomous covariates r=0.6 .21 0.33 .21 0.33

r=0.7 .48 0.42 .49 0.42

r=0.8 .68 0.40 .68 0.40

r=0.9 .82 0.32 .82 0.32

r=1.0 .91 0.23 .91 0.23

Sample size N=100 .28 0.38 .28 0.38

N=200 .37 0.42 .38 0.42

N=400 .48 0.44 .48 0.44

N=800 .58 0.44 .58 0.44

N=1600 .67 0.43 .67 0.43

N=3200 .73 0.42 .73 0.42

Degree of separations nodes d=0.5 .32 0.39 .32 0.40

(distances among classes) d=1.0 .50 0.45 .50 0.45

d=1.5 .57 0.45 .57 0.45

d=2.0 .60 0.45 .60 0.45

d=2.5 .61 0.45 .61 0.45

Misspecification of functional form Correct .52 0.45 .52 0.45

functional form Incorrect .52 .45 .52 0.45

Misspecification of variancesrei Correct .55 0.44 .56 0.44

residual variances Incorrect .49 0.46 .48 0.46

and non-equidistant features of the true latent trajectories among the classes, resulting
from parameters that are all class-variant specified in that research.

Irrespective of the functional form of true latent trajectories, influence of misspec-
ification of the functional form was almost negligible. This can be partly attributed
to what both linear and quadratic LGCMs share in common. Namely, both linear and
quadratic LGCMs can express the monotone increasing trajectories that the simulated
longitudinal dataset indicate. Interestingly, from Table 1 misspecification of the time-
invariant error variances had larger impacts on the performance of SEMTrees, showing
on average 6 and 8% decrease rates in linear and quadratic true latent trajectories,
respectively. The misspecification exerted an influence on the estimated parameters,
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degrading model fit for each participant and ultimately causing problems when SEM
Trees attempted to partition the dataset in search of a better-fitting tree. Statistical
power in identifying classes decreased, resulting from smaller differences in parame-
ters prescribed by the template model between classes due to model misspecification.
However, Usami et al. (2017) showed much more serious impacts of model misspeci-
fication of error variances on correct estimation rates (e.g., correct estimation rates of
the number of classes were zero), and this difference can be attributed to the frequent
improper solutions and inflated standard errors of the autoregressive and cross-lagged
parameters in LCS models, as well as the non-equidistant and non-parallel properties
of the trajectories among classes in that research.

To facilitate a simple quantitative interpretation of howmuch each factor explained
performance, we set the estimation results (i.e., rates of correct class identification) as
a dependent variable and performed ANOVA, according to the functional form of true
latent trajectory (linear or quadratic). A summary of the results is provided in Table 2.
Note that the results for second-order to sixth-order interactions are omitted to save
space. This table clearly shows the relatively dominant influence of the agreement
rate between the observed covariate and latent profile r (SS = 447.1, MS = 89.41,
and η2 = 0.508), followed by the sample sizes N (SS = 111.0, MS = 22.19,
and η2 = 0.126) and the number of true classes C (SS = 64.6, MS = 64.64, and
η2 = 0.073). As we have seen in Table 1, the influence of C is dominant and it shows
the second largest mean squares. However, influences of the two kinds of model
misspecification are relatively small, and the number of time points T also showed
small influence. These results indicate that in detecting population heterogeneity in
the latent trajectories identified by SEM Trees, it is essential to collect covariates that
are informative to predict true classification structures (i.e., larger agreement rates)
and to collect sufficiently large sample sizes. Additionally, SEM Trees was not always
sensitive to the influence of model misspecification, and its impacts were different
according to a complex function of the type of misspecification and the statistical
properties of the template model (stability of parameters and frequency of estimation
problems in general).

In addition to the main effects, several first-order interactions relevant to agreement
rates r (i.e., r ×C, r × N , r × d) are also notable. Regarding this point, Fig. 1 shows
shifts in the correct marginal estimation rates at each level of the agreement rates under
different true numbers of classes (C), sample sizes (N ) and degrees of separations
(d). From this figure, to achieve 0.80 or more correct estimation rates in the current
simulation design, covariates that satisfy r = 0.8 or more are required when C = 2,
whereas required r becomesmore severe as r = 0.95whenC = 4, again indicating the
difficulty of precise estimation of trees when C becomes larger. Likewise, to achieve
very high correct estimation rates of 0.80 or more, at least r = 0.9 is required if the
sample size is small (N = 200, N = 400). However, required r becomes smaller as
r = 0.8 and r = 0.7 if N becomes greater as N = 800 and N = 1600, respectively.
When useful covariates are not gathered and r is small as r = 0.6, achieving 0.80 or
more average correct estimation rates seems to be very difficult, even in extreme cases
as simpler classification structures (i.e., C = 2), large sample size (e.g., N = 3200),
and large degrees of separation (i.e., d = 2.5).
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Table 2 ANOVA table according to the functional forms of true latent trajectories

df Functional form of true latent trajectory

Linear Quadratic

SS MS η2 SS MS η2

T (number of time points) 2 0.4 0.21 < 0.001 0.6 0.31 0.001

C (number of true classes) 1 64.6 64.64 0.073 64.7 64.75 0.074

r (agreement rate) 5 447.1 89.41 0.508 446.3 89.27 0.507

N (sample sizes) 5 111.0 22.19 0.126 109.4 21.87 0.124

d (degree of separation) 4 49.3 12.34 0.056 49.4 12.36 0.056

Misfunc
(misspecifications of
functional forms)

1 0.1 0.05 < 0.001 < 0.1 < 0.01 < 0.001

Misresi (misspecifications
of residual variances)

1 5.1 5.06 0.006 5.6 5.56 0.006

T × C 2 < 0.1 < 0.01 < 0.001 < 0.1 0.01 < 0.001

T × r 10 0.1 0.01 < 0.001 0.2 0.02 < 0.001

C × r 5 24.5 4.89 0.028 24.9 4.98 0.028

T × N 10 0.1 0.01 < 0.001 0.1 0.01 < 0.001

C × N 5 3.1 0.62 0.004 3.0 0.59 0.003

r × N 25 46.1 1.84 0.052 45.3 1.81 0.052

T × d 8 < 0.1 < 0.01 < 0.001 < 0.1 < 0.01 < 0.001

C × d 4 0.4 0.09 < 0.001 0.3 0.07 < 0.001

r × d 20 11.9 0.59 0.014 12.3 0.62 0.014

N × d 20 4.8 0.24 0.005 4.4 0.22 0.005

T × Misfunc 2 < 0.1 0.01 < 0.001 0.1 0.07 < 0.001

C × Misfunc 1 < 0.1 < 0.01 < 0.001 < 0.1 0.01 < 0.001

r × Misfunc 5 < 0.1 0.01 < 0.001 < 0.1 < 0.01 < 0.001

N × Misfunc 5 < 0.1 < 0.01 < 0.001 < 0.1 0.01 < 0.001

d × Misfunc 4 < 0.1 < 0.01 < 0.001 < 0.1 < 0.01 < 0.001

T × Misresi 2 0.4 0.21 < 0.001 0.6 0.30 0.001

C × Misresi 1 < 0.1 0.03 < 0.001 < 0.1 0.03 < 0.001

r × Misresi 5 0.9 0.17 0.001 0.9 0.18 0.001

N × Misresi 5 0.6 0.12 0.001 0.7 0.14 0.001

d × Misresi 4 0.4 0.10 < 0.001 0.7 0.17 0.001

Mis f unc × Misresi 1 0.1 0.11 < 0.001 0.2 0.18 < 0.001

other interactions
(second-order to
six-order)

108.4 0.123 109.5 0.125

Residuals 200 0.2 < 0.01 < 0.001 0.2 < 0.01 < 0.001

df: Degree of freedom, SS: sum of squares, MS: mean squares, η2: effect sizes of factors
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2.6 Supplemental simulations

Further simulations are conducted under C = 1 (i.e., no population heterogeneity
in true latent trajectory) with single dichotomous covariate and all other conditions
being equal to investigate how frequently SEM Trees might overestimate the number
of classes.6 As a result, average correct estimation rateswere 97%, and in all conditions
SEM Trees could correctly estimate the number of classes in more than 95% of cases
(see Table 1 in the supplemental online materials for details). Although this result
indicates a low risk of SEM Trees overestimating the number of classes, the correct
estimation rates in C = 1 should be decreased if the number of covariates increases
due to an inflated type-1 error. On this point, if K covariates are mutually independent,
from this result the rates can be conventionally estimated by 0.97K . Thus, when the
numbers of covariates are K = 5 and K = 10, the rates decrease to 86 and 74%
on average, respectively, under the same procedure (i.e., Bonferroni correction). Note
that in C = 1, misspecification of residual variances positively influences correct
estimation rates, because in this case statistical power decreases for splitting the nodes.

We also assumed the presence of between-class differences in slope, and performed
a similar simulation, limited to conditions of r = 0.5, 0.7, 0.9, N = 100, 400, 1600
and d = 0.5, 1.5, 2.5.7 Correct marginal estimation rates are shown in Tables 2 and
3 of the supplemental online materials for the condition of intermediate and large
between-class differences in slope means, respectively. Comparing the condition of
no between-class differences in slope means (Table 4 of the supplemental online
materials, which was created by removing the results of conditions r = 0.6, 0.8, 1.0,
N = 200, 800, 3200, and d = 1.0, 2.0 in the main simulation ), Tables 2 and 3 of the
supplemental onlinematerials show slightly higher correct estimation rates on average,
but also show similar tendencies. Because it is natural to assume nonzero between-
class differences in slope means (i.e., true latent trajectories in classes are not exactly
parallel), correct estimation rates in Fig. 1 might indicate conservative values of rates,
and rates might actually take larger values. A similar tendency for results between
zero and nonzero between-class differences in slope could also be confirmed for the
case of C = 1 (Tables 1, 5, and 6 in the supplemental online materials).

In the main simulation, parameter estimates reported in Biesanz et al. (2004) were
used to generate data. To confirm the generalizability of the results, we specified
different factormeans (i.e.,μI ,μS1 andμS2) and (class-invariant)variance–covariance

6 It is obvious that underestimation of the number of classes never occurswhenC = 1,while overestimation
never occurs when C = 2 or C = 4 in the main simulation. Although there cannot be covariates that would
split a parent node in the population when C = 1, we manipulated the agreement rate of dichotomous
covariates r in this supplemental simulation. In this case, r can be interpreted as merely a proportion of
dichotomous covariate that takes one.
7 We set two conditions of between-class differences in slope. Specifically, the slopemean for each classwas
specified using a randomvariable from a normal distribution N (6.988, 0.252×6.9882) or N (6.988, 0.502×
6.9882) in each repetition. These conditions are equivalent to set the expected coefficients of variation (or
relative standard deviation; the ratio of standard deviation of the specified slope mean (= 0.25 × 6.988 or
0.50×6.988) to the original slope mean (= 6.988) in each class) as 0.25 or 0.50 when randomly generating
the slope means of classes in each repetition. We call these two conditions the intermediate and large
between-class differences in slope in Tables 2 and 3 of the supplemental online materials, respectively.
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Fig. 1 Shifts in correct marginal estimation rates at each level of agreement rates under different true
numbers of classes, sample sizes, and degrees of separation. a True number of classes (true trajectory is
linear). b Sample sizes (true trajectory is linear). c Degree of separation (true trajectory is linear). d True
number of classes (true trajectory is quadratic). e Sample sizes (true trajectory is quadratic). f Degree of
separation (true trajectory is quadratic)

matrix �, and performed a similar supplemental simulation. Details of the specified
parameter values are provided on the first page of the supplemental online materials.
Although results showed slightly higher correct estimation rates on average, similar
tendencies (e.g., a dominant influence of r , followed by N andC on correct estimation
rates, and smaller but nonzero impact of misspecification of the time-invariant error
variances) were observed, indicating high generalizability of the present simulation
results (see Tables 7 and 8 and Fig. 1 of the supplemental online materials for details).

We also compared the correct estimation rates between SEM Trees and LGCMMs,
limited to conditions of N = 100, 400, 1600 and d = 0.5, 1.5, 2.5, using the hlme
function from lcmm package to implement LGCMMs.8 We generated simulation data

8 Because hlme is originally a function for linear mixed models (rather than growth curve models), it
implicitly assumes time-invariant error variances. This supplemental simulation thus assumes time-invariant
error variances in the population, and the harmonic mean of (time-variant) residual variances (= 20.294) is
used for the parameter value. As a result, in this supplemental simulation we do not consider the presence
of model misspecifications in error variances. In addition, the agreement rate of dichotomous covariates r
was not manipulated, because LGCMMs do not require covariates to extract classes.
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by a similar procedure to the main simulation, and the Bayesian information criterion
(BIC) was used to estimate the number of classes for LGCMMs.9 For comparative
purposes with SEM Trees, in C = 1 or C = 2 we compared values of BIC from
LGCMMs that assume one or two classes to estimate the number of classes, while in
C = 4we compared LGCMMs that assume one, two, three or four classes. The correct
marginal estimation rates for LGCMMs are shown in Table 9 of the supplemental
online materials. From this table, LGCMMs showed much lower correct estimation
rates, and large rates (e.g.more than 0.80)were observed only in the specific conditions
of C = 2, N = 1600, and d = 2.5. Although levels of the manipulated factors are
somewhat different from the simulation conducted inUsami et al. (2017), their research
also showed similar levels of correct estimation rates in LGCMMs. The difference
between SEM Trees and LGCMMs can be attributed to the relatively larger values
of r specified for SEM Trees in the present simulation. Therefore, as expected from
Table 1 andFig. 1, ifwe can collect covariateswhose agreement rates are larger than 0.7
(when class sizes are equal, this corresponds to expected correlations of .40 between
true latent profiles—coded as 0 or 1 for two classes split from each node—and the
observed covariates) in many cases SEM Trees can uncover population heterogeneity
more precisely than can LGCMMs. However, due to the smaller power for uncovering
population heterogeneity in LGCMMs, whenC = 1, LGCMM could almost perfectly
estimate the number of classes (Table 10 in the supplemental online materials).

3 Discussion

We performed a large-scale simulation study investigating the performance of SEM
Trees in identifying classes, newly manipulating the number of time points and classes
(nodes) using linear and quadratic LGCMs as template models. We also considered
the influences of model misspecification regarding functional forms of latent growth
curves and error variances. The results can be summarized as follows:

(1) In SEMTrees, correct estimation rates of the number of classes aremost strongly
related to the agreement rate of the covariate with its true latent profile, which is
consistent with the former research of Usami et al. (2017).

(2) The number of true classesC , which is newly specified in the current simulation,
has a serious negative impact on correct estimation of the number of classes. This point
is exacerbated in the case of C > 4, which are likely in actual applications. Therefore,
previous investigationsmight showoverly optimistic results regarding the performance
of SEM Trees in general.

(3) Influences of the total sample size and degree of separation (distances) among
classes are also notable in correct estimation rates, whereas the number of time points
had almost no relation to the average rates.

(4) SEM Trees was sensitive to the influence of model misspecification with (time-
invariant) error variances, but its impact was relatively small and the misspecification

9 Regardless of which model selection procedure (e.g., the Akaike information criterion (AIC), sample-
size-adjusted BIC) was used, Usami et al. (2017) found similar levels of correct estimation rates in their
simulations. Thus, we did not use other model selection procedures here.
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of the true functional form of the latent trajectory was not influential. Thus, SEMTrees
was not always sensitive to the influence of model misspecification, and its impact is
different according to a complex function of the type of misspecification as well as the
statistical properties of the template model (stability of parameters and frequency of
estimation problems in general). Simulation results provide important insights about
the utility of (bivariate) LGCM-based SEM Trees over (bivariate) LCS-based SEM
Trees, namely that the former is amuchmore robust and stable approach under possible
model misspecifications in growing trees.

(5) To achieve average correct estimation rates of 0.80 or more in the current
simulation design, covariates that satisfy r = 0.8 or more are required when C = 2,
whereas the required r increases to 0.95 when C = 4. Likewise, r = 0.9 is a minimal
requirement if the sample size is as small as N = 200 or N = 400. However, the
required r becomes as small as r = 0.8 and r = 0.7 if N becomes greater as N = 800
and N = 1600, respectively. When useful covariates are not gathered and r is as small
as r = 0.6, achieving 0.80 or more average correct estimation rates seems to be very
difficult, even in extreme cases such as simpler classification structures (i.e., C = 2),
large sample size (e.g., N = 3200), and large degree of separation (i.e., d = 2.5).

(6) From the supplemental simulation, the above conclusions are almost unchanged
even when between-class differences in slope are present. Rather, in such cases correct
estimation rates increase on average.

(7) If we can collect covariates whose agreement rates are larger than r = 0.7,
in many cases SEM Trees can uncover population heterogeneity more precisely than
LGCMMs.

The present simulation study has clarified the performance of SEM Trees, showing
the dominant influences of agreement rates of the covariates as well as the sample size,
and the true number of classes in detecting population heterogeneity in latent trajec-
tories using an LGCM as the template model. SEM Trees detect classes according to
covariates, so gathering useful covariates which can effectively explain the individual
differences of growth parameters (e.g., intercepts and slopes) is essential in applying
(LGCM-based) SEM Trees. To find such covariates, applying conditional LGCMs
(where growth factors are regressed on covariates; e.g., Bollen and Curran 2006) must
be a simple and useful strategy. If researchers expect that identifying or gathering
such useful covariates will be difficult, it may be more efficient to apply unsupervised
methods such as LGCMMs (which do not require covariates to extract classes). Com-
paring estimation results with those of SEM Trees must also be helpful to understand
population heterogeneity from a different perspective. However, it should be noted
that behavioral researchers have learned that estimation results, including the number
of classes in LGCMMs, may be vulnerable to the influence of model misspecifica-
tion. This indicates that robustness against model misspecification might be greatly
different from SEM Trees, thus requiring additional future research that compare the
performance of SEM Trees with LGCMMs under various kinds of model misspec-
ification. In such future investigations, manipulation of the number of classes (with
larger numbers than the current simulation), the stability of true latent trajectory (size
of error variances), and methods for multiple testing (CV) should also be considered.

Given that in most cases, researchers may have uncertainty as to whether their
covariates are informative, and may have more covariates than were tested in this
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simulation, there is a risk of detecting an erroneous classification structure due to an
inflated type-I error. SEM Trees would manifest itself as splitting on covariates with
no relation to the true latent profile, resulting in overfitting to the data. Especially with
smaller sample sizes and larger numbers of covariates, researchers should be cautious
in interpreting the resultant tree structure. As indicated by the present simulation, this
point should be more critical when the true classification structure is complex (i.e., a
large number of true classes). In that respect, although the computation burden is still
heavy, using SEM Forests (Brandmaier et al. 2016) could be a useful alternative to
address this problem, and more research is needed into the propensity for SEM Trees
and SEM Forests to over-fit. From a technical aspect, additional future investigations
should also include the development of more computationally efficient algorithms. On
this point, The maximum likelihood-based method described in Merkle and Zeileis
(2013) is potentially useful when it is extended for recursive partitioning, as this can
greatly reduce computational burden in selecting split points (not requiring a new
model to be estimated for each split point).

One potential extension of application of SEM Trees is to use a cross-lagged model
as a template model for investigating population heterogeneity about reciprocal (or
causal) effects between variables. Inferring reciprocal effects or causality between
variables is a central aim in longitudinal research. However, while various longi-
tudinal cross-lagged models have been proposed in various contexts with different
backgrounds (e.g., Hamaker et al. 2015), similarities and differences of these models
have been unclear, making it difficult for researchers to select a model that fits with
the goal of their research. Using various cross-lagged models as template models and
investigating the analysis results of SEM Trees under possible misspecification of the
cross-lagged models chosen should provide an important finding that contributes to
applied research.

We have to note that the importance of the issue of precisely estimating the number
of classes might be largely different according to analytic purposes. Referring to the
discussions in Bauer and Curran (2003) and Nagin and Tremblay (2005), the primary
purposes of applyingSEMTrees canbe classified into two aspects:whether researchers
aim to identify qualitatively distinct classes of individuals in the population of study, or
if they just aim to approximate complexmultivariate distributions with a small number
of simpler component distributions. These two purposes of the model are theoretically
quite distinct, but they are difficult to distinguish analytically (Bauer andCurran 2003).
In the former case, estimating the true number of classes is a primary issue, and they
may also need to identify “true” covariates that can explain qualitatively different
classes. However, identifying such covariates is not necessarily important, because
other covariates can identify true classification structures. In the latter case, estimating
the true number of classes and identifying useful covariates might be trivial, because
researchers typically aim to increase prediction accuracy. As a result, the extracted
classes cannot usually be interpreted as true classification structures in the population.
Although we primarily focused on the issue of estimating the number of classes in this
simulation, future research should focus on situations where the primary purpose is
prediction, not just correctly estimating the number of classes under various conditions
that consider possible model misspecification. This should provide useful insights for
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researchers whose primary analytic purpose is prediction rather than estimating the
number of classes.

The literature on longitudinal data design and analysis has been rapidly growing.
SEM Trees and SEM Forests are powerful methods for relating informative covariates
to a host of structural equation models, and allow researchers the ability to identify
covariates that are important for understanding population heterogeneity. The results
of our simulation study highlight conditions in which SEM Trees performs well, and
conditions that result in lower rates of identifying the true group structure. Given that
SEM Trees is a relatively new method, much more research is needed to evaluate the
method. However, this should not detract from the use of the method. Instead, results
should be interpreted with caution, both keeping the exploratory nature of the method
in mind, as well as the uncertainty regarding how various conditions affect SEM Trees
performance, especially when researchers are interested in estimating the true number
of classes. We look forward to both more applied and simulation work moving into
the future.
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