
https://doi.org/10.1007/s00170-020-05567-5

ORIGINAL ARTICLE

Development of a hybrid DLT cloud architecture for the automated
use of finite element simulation as a service for fine blanking

Joachim Stanke1 ·Martin Unterberg1 ·Daniel Trauth1 · Thomas Bergs1

Received: 9 January 2020 / Accepted: 2 June 2020
© The Author(s) 2020

Abstract
Networking and digitization in manufacturing enable novel methods of data-driven analysis and optimization of processes
through cross-process data availability. The creation of digital twins plays an important role in this. However, not all data
relevant for a digital twin can be measured directly in the process. Therefore, methods are needed that enable the modelling
of quantities that are difficult or impossible to measure directly in the process, such as the finite element method. In many
companies, however, neither the know-how nor the necessary IT infrastructure for finite element simulations is available.
External commissioning processes are also not suitable for achieving the goals of higher productivity and agility pursued
with the digitization and networking of manufacturing processes. In this contribution, an architecture is presented that
enables the fully automated use of finite element simulation as a service. The architecture is developed using the case
study of fine blanking. First, the requirements of the architecture to be created are determined. Important characteristics
of the architecture should be scalability as well as interfaces and means of payment suitable for machine communication.
In addition, ensuring data integrity is an important requirement when creating the digital twin. Based on the identified
requirements, an architecture is then presented that meets these requirements by using cloud computing and distributed
ledger technologies and interfaces that can directly process measurement signals from the process and communicate with
the architecture. Finally, the capability of the architecture is tested, possible applications and limitations are discussed, and
future extensions are considered.

Keywords Fine blanking · Finite element analysis · Distributed ledger technology · Simulation as a service

Abbreviations
AAS As a service
API Application programming interface
AWS Amazon Web Services
DLT Distributed ledger technology
FE Finite element
FEM Finite element method
HTTP Hypertext Transfer Protocol
IoT Internet of Things
IT Information technology
JSON JavaScript Object Notation
M2M Machine to machine
MQTT Message Queuing Telemetry Transport

� Joachim Stanke
j.stanke@wzl.rwth-aachen.de

1 Laboratory for Machine Tools and Production Engineering
WZL of RWTH Aachen University, Campus-Boulevard 30,
52074 Aachen, Germany

NIST National Institute of Standards and Technology
USB Universal Serial Bus

1 Introduction

Fine blanking is a manufacturing process for the mass
production of components from sheet material with par-
ticularly high-quality requirements. The main sales market
for fine blanked components is the automotive industry.
The current change in the automotive industry is push-
ing the fine blanking industry to access new sales mar-
kets [1]. Due to the pressure of competing manufacturing
processes in these markets, the fine blanking industry must
increase its productivity and agility in order to be more
competitive. The demand for shorter development times
combined with higher productivity represents a current chal-
lenge for the fine blanking industry [2]. The fine blanking
process is designed according to the state of the art based on
experience [3]. This approach is not suitable for mastering
current challenges in fine blanking [2]. The digital transfor-
mation currently taking place in manufacturing technology

/ Published online: 24 June 2020

The International Journal of Advanced Manufacturing Technology (2020) 108:3717–3724

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-020-05567-5&domain=pdf
mailto: j.stanke@wzl.rwth-aachen.de


has the potential to maximize the agility and productiv-
ity of fine blanking companies simultaneously for the first
time and thus to overcome the current challenges [4]. An
important component of digital transformation is the forma-
tion of digital twins. Digital twins are data-based models
that describe real objects or processes with sufficient pre-
cision [5]. With digital twins of real-world objects, the
state of the object over the entire life cycle can be tracked.
With this knowledge, data-driven modelling of cause-and-
effect relationships in fine blanking and thus novel ways of
product and process design can be enabled. Additionally,
digital twins enable greater transparency in production and
individual optimization of products along the entire value
chain [6].

However, the digital transformation also poses economic
challenges for manufacturing companies and especially for
the fine blanking industry. One of the biggest challenges
is the lack of the necessary information technology (IT)
infrastructure and the required technical personnel [7]. Not
all companies have the necessary IT maturity for the digital
transformation of manufacturing [8]. Geissbauer et al.
carried out a study on the digital transformation of factories.
The authors found that 81 % of the companies surveyed
stated that finding employees with the skills required for
digital transformation is the biggest challenge in human
resource management [9]. The digital twin in fine blanking
cannot be created from directly measurable quantities
alone, since some important physical variables can only be
measured with great difficulty or are not non-destructive
testable. These variables can be determined using methods
such as the finite element method (FEM). According to the
state of the art, FEM is primarily used in the development
phase to design the process and products. Alternatively, it
is possible to use FEM with actual data measured in the
process. This way, it is possible to determine quantities for
the formation of the digital twin that are difficult to measure
in the process. If the FEM is used in this way, it is referred
to as a virtual sensor. However, FEM also requires powerful
IT hardware and skilled personnel and thus represents an
economic challenge.

One way to minimize the barriers to the usability of FEM
is to provide it as a service. As a service (AAS) is a model of
cloud computing from information technology. According
to the National Institute of Standards and Technology
(NIST), cloud computing is defined as a computing model
“for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal
management effort or service provider interaction” [10].
Cloud computing is motivated by the idea that data
processing and storage can be carried out more efficiently
by computing in large resource pools and storage systems

accessible via a network [11]. The properties of cloud
computing enable the reduction of infrastructure costs,
minimize entry barriers, and offer scalability [12]. This
efficiency results from the availability of resources in line
with demand, demand-based payment, cost efficiency, and
the low labor intensity of the model [11]. If this approach
could be transferred to manufacturing and finite element
simulation could be implemented as a service using cloud
computing, a barrier towards the digital transformation of
manufacturing technology and fine blanking technology
could be overcome.

Helo et al. used a cloud-based implementation of a virtual
supply chain for manufacturing. The authors’ work showed
that the cloud-based approach can yield transparency of
the supply chain across multiple companies, but also
that further work has to be done on the topics of data
security and that domain-specific approaches are needed
because of the complexity of processes and products
[13]. Al-Shdifat et al. showed that cloud computing can
be used to develop an efficient framework for remote
monitoring services of the health status of manufacturing
equipment. The authors concluded that more research must
be carried out to provide architectures for efficient internet
of things (IoT)–enabled monitoring services in industrial
environments [14]. Taylor et al. developed a platform for the
implementation of simulation software for manufacturing
on cloud infrastructures [15]. The work focuses on a method
for the deployment of the software itself and not on the
integration of the simulation into an architecture usable by
machines.

Literature review shows that the adaptation of cloud
computing concepts for manufacturing potentially has great
benefits. However, for the development of a finite element
(FE) simulation AAS architecture which can be used
fully automatically by a manufacturing machine, some
challenges must be overcome: An architecture is needed
which makes the FE simulation usable via a machine to
machine (M2M) communication. Additionally, a method
is needed that enables automated communication between
a fine blanking machine and an FE simulation AAS. The
architecture to be created must be able to guarantee data
integrity and the chosen approach must be scalable to be
economically relevant. It is currently unknown, how such
an architecture can be created. The aim of this contribution
is therefore the development of an architecture for the
FE simulation AAS, which enables the use of the service
in the form of M2M communication. The architecture is
developed using the case study of fine blanking.

The work is divided into the following parts. Firstly, the
requirements for the architecture to be created are defined
and the required technologies are compiled. Secondly, the
concept and implementation of the architecture are pre-
sented. Finally, the results are summarized and discussed.

3718 Int J Adv Manuf Technol (2020) 108:3717–3724



2 Requirement analysis

The concept of a FE simulation AAS must include a
monetary transaction technology to enable payment of
the service, because it is supposed that the customer
of the service and the provider of the service itself
are different economical actors. The monetary transaction
method must meet special requirements. Since the service
is to be used in the form of M2M communication, the
monetary transaction technology must be usable through an
application programming interface (API). Furthermore, the
transactions must be free of charge and must not cause any
significant delay, because the ultimate goal of digitization
is to increase agility and productivity. Since manufacturing
data is to be considered sensitive, the security of the
transaction technology must also be guaranteed. To prevent
data alterations, a method to ensure and verify data integrity
is also needed. These requirements can be met by using
distributed ledger technologies (DLT). The purpose of DLT
is the tamper-proof documentation of transactions. This is
achieved by the fact that there is no central authority in a
DLT that decides on the correctness of a transaction, instead
a network of participants keeps track of all transactions.
New transactions are only added after a consensus has been
reached between the network participants. The best-known
variant of DLT is the blockchain technology, like that used
in Bitcoin. However, blockchain technology is not suitable
for use in manufacturing since transaction costs are high
and the processing time for transactions is too long. The
blockchain technology does not offer scalability, i.e., the
speed of the transactions and the maximum possible number
of transactions cannot be increased by additional network
participants. However, the concept to be developed should
represent a scalable solution for manufacturing technology,
so transferability to the wide range of manufacturing
processes can be ensured. IOTA is an advance of blockchain
technology, which avoids the disadvantages of blockchain
[16]. By changing the linear structure of the blockchain
to a directed acyclic graph, scalability of the maximum
possible transactions per time unit is made possible [17].
Furthermore, transactions with IOTA are free of charge
and have a shorter transaction duration. IOTA has been
specifically developed for Internet of Things applications
and is therefore particularly well suited for the development
of networked manufacturing processes [16].

For the service to be used in the form of M2M
communication without the involvement of personnel, the
complete numerical modelling process must be automated.
This can be achieved by implementing an FE model as a
programmed script. The finite element analysis software
Abaqus allows automated modelling in the form of scripts
in the programming language Python and is therefore well
suited to enable automated modelling [18].

Additionally, a standardized format is required for the
transmission of data between the fine blanking machine and
the FE simulation AAS. The JavaScript Object Notation
(JSON) is suitable for this, because the format is very
flexible and human readable, has a low overhead, and can
be interpreted by all common programming languages [19].
These features make it well suited for an Internet of Things
and a service-oriented architecture.

3 Architecture concept and implementation

The proposed concept can be divided into the fine
blanking machine, the FE simulation server, and the service
management. Figure 1 gives an overview of the FE service
architecture. The fine blanking process takes place in the
fine blanking machine. From the fine blanking machine, the
process parameters are transmitted to the service and the
service is paid for. The DLT IOTA is used to pay for the
service. Service management takes over the administration
of the FE simulation orders and transactions. The FE
simulations are carried out on an FE simulation server. The
results are persisted manipulation-proof with the help of
IOTA.

The commissioning of the FE service begins with the
production of the fine blanked parts. The fine blanked
parts are cut in the fine blanking machine, and the
process forces and kinematics of the tool are measured for
each manufactured component and transmitted to an edge
computer (see Fig. 2).

The measured variables are the blank holder force FBH,
the counter punch force FCP, and the punch position (see
Fig. 3). The blank holder force is measured using four
Kistler type 9021A piezoelectric force sensors installed
in the fine blanking tool. A force sensor of type 9031A
from Kistler installed in the fine blanking tool is used to
measure the counter punch force. The measured signals of
the force sensors are forwarded to a charge amplifier of
the company Kistler of the type LabAmp 5167A and are
converted there into a 0–10 V output. The kinematics of
the tool are determined with a laser position sensor from
Waycon of type LAS-T5 with a 0–10 V output built into
the tool. A National Instruments cDAQ 9178 with two NI
9215 modules is used for the analog-to-digital conversion of
the 0–10 V output signals. The cDAQ 9178 is connected to
the edge computer via a universal serial bus (USB) interface
and is read out via a programmed connector. The connector
uses a Node.js library that uses the C API from National
Instruments called NI DAQmx. The data is transferred from
the connector to a Python script for automated detection of
the fine blanking strokes after publish-subscription pattern
using message queuing telemetry transport (MQTT). The
detection of the fine blanking strokes is carried out based

3719Int J Adv Manuf Technol (2020) 108:3717–3724



Fig. 1 Architecture concept of
the FE simulation AAS

on the position measurement. The data stream is used to
check when a certain threshold value has been exceeded and
when it has fallen below it again. The data streams recorded
in the time span between these thresholds belong to a fine
blanking stroke. The size of the threshold values can be
derived from known kinematic boundary conditions.

The tool geometry (V-ring height hV1, hV2, V-ring
position aV, die chamfer height hD), the workpiece
thickness s, and the workpiece material are entered once, as
metadata via a user interface on the edge computer. If a tool
or material change occurs, the changed values are entered
again via the user interface. The metadata is aggregated with
the measured forces and tool position to form data sets that
can be used as boundary conditions for an FE simulation.
The data sets are forwarded to the FE simulation AAS via
a network interface using JSON format. Additionally, an
IOTA address is transmitted. This IOTA address is used by
the service for the result and signature transmission after
completion of the FE simulation order. Thus, the results
can be found and verified afterwards by the fine blanking
machine.

The service management is the link between the fine
blanking machine and the FE simulation server. A serverless
architecture was chosen as the basis for the service

Fig. 2 Fine blanking system with service architecture integration

management, as this architecture provides good scalability
and efficient resource utilization. Amazon Web Services
(AWS) was chosen as the platform for hosting the serverless
applications. The interface to the FE service is a hypertext
transfer protocol (HTTP) endpoint to which the process
data of the fine blanking process is transmitted as a JSON
file (see Fig 1). The HTTP endpoint was implemented
in JavaScript for the Node.js runtime environment as an
AWS Lambda function. The process data arriving at the
service is stored in a SQL database. The Relational Database
Service from AWS was used for this purpose. Additionally,
to process the data, a status variable is set to “unpaid” in
the SQL database to show that the FE simulation order has
been received but is still awaiting payment. An unused IOTA
transaction address for the requested FE simulation is then
loaded from the SQL database and sent to the fine blanking
machine via HTTP together with the amount of IOTA
tokens to be transferred. The edge computer of the fine
blanking machine receives this IOTA transaction address

Fig. 3 Parameters of the fine blanking process: vc: cutting speed;
FBH: blankholder force; FCP: counter punch force; s: workpiece
thickness; hV1: upper V-ring height; hV2: lower V-ring height; aV:
V-ring position; hD: die chamfer; u: blanking clearance

3720 Int J Adv Manuf Technol (2020) 108:3717–3724



and the amount to be transferred. The IOTA transaction
is then executed using the IOTA Python API and the
transmitted transaction address. The Job Scheduler of the
service management checks the IOTA network for new
transactions. Like the HTTP endpoint, this Job Scheduler
was implemented as an AWS Lambda function. If a
transaction to an open FE simulation job is found and this
transaction is validated, the status variable of the job in the
SQL database is set to “paid.”

For the FE simulation server, a validated FE model from
previous work was used. The FE simulation model was
defined as rotationally symmetric (see Fig 4). The radius
of the fine blanked part is variable and the fine blanking
process of inner and outer contours can be simulated. For
the FE simulation of fine blanking processes with cutting
lines with inconstant radii, it is possible to map the process
forces from the real geometry to a rotationally symmetrical
analogy component. The V-ring force is calculated for this
case according to:

FV analog = lanalog

lreal
· FV real (1)

with the V-ring force of the analogy component FV analog,
the V-ring length of the analogy component lanalog,
the V-ring length of the real component lreal, and
the experimentally measured V-ring force FV real. This
calculation rule is derived from the determination of the V-
ring force for fine blanking according to the state of the
art. The counter punch force is calculated using the same
method:

FCP analog = Aanalog

Areal
· FCP real (2)

Fig. 4 FE simulation of the fine blanking process. Avg. cutting speed
vc avg. = 13.32 mm/s; blankholder force FBH = 230 kN; counter punch
force FCP, 115 kN; workpiece thickness s = 6 mm; lower V-ring height
hV2, 0.8 mm; V-ring position aV, 3.0 mm; die chamfer hD, 1 mm;
blanking clearance u, 0.05 mm; workpiece radius, 11 mm; workpiece
material, 16MnCr5 (1.7131, AISI/SAE 5115); tool material, high
speed steel

with the counter punch force of the analogy component
FCP analog, the surface area of the analogy component
Aanalog, the surface area of the real component Areal, and the
counter punch force measured in the process FCP real. For
the time integration, an explicit time integration scheme has
been used, since the fine blanking process is highly dynamic
and non-linear. The tools of the fine blanking process
have been modeled as rigid bodies, and the workpiece is
modeled using an elastic-plastic material mode. To consider
the influence of the heating of the workpiece due to the
dissipation of forming energy during the cutting process on
the material properties, a temperature-dependent material
model was used and the FE simulation is temperature-
coupled. An extension to three-dimensional FE simulation
is also possible using the developed architecture, but outside
of the scope of this work.

For the validation of the FE model 54 simulations
were carried out. The cutting speed, the blankholder force,
and the counter punch force were varied. The validation
parameter is the die roll height, as this is the parameter
which is supposed to be calculated by the FE simulation.
The results can be found in Fig. 5. A full factorial design
of experiments has been used. The different values of the
varied parameters can be found in Table 1. The experiments
are started with the lowest of the values for all parameters.
Then first, the counter punch is increased one step and
then another. After this, the blankholder force is increased
one step and then the counter punch force is increased
one step after another again. Similarly, the cutting force is
increased after the blank holder force and the counter punch
force are increased to their highest value. The procedure
is continued until all possible combinations of the values
for the counter punch force, the blankholder force, and
the cutting speed have been reached. When looking at the
results, a good qualitative agreement of the FE-simulation

Fig. 5 Validation results for the simulation. Fixed parameters:
workpiece thickness s = 6 mm; lower V-ring height hV2, 0.8 mm; V-
ring position aV, 3.0 mm; die chamfer hD, 1 mm; blanking clearance
u, 0.05 mm; workpiece radius, 11 mm; workpiece material, 16MnCr5
(1.7131, AISI/SAE 5115)

3721Int J Adv Manuf Technol (2020) 108:3717–3724



Table 1 Variable parameters of the validation. vc avg: Avg. cutting
speed; FBH: blankholder force; FCP: counter punch force

vc avg [mm/s] FBH [kN] FCP [kN]

13.32 250 100

25.94 350 300

33.11 450 500

39.45

53.19

66.45

results with the experimental results can be observed. The
average deviation of the FE simulation results and the
experiments is 0.035 mm and the average relative deviation
is 7.6 %. Considering the qualitative and quantitative results
of the validation experiments, the FE simulation results are
in good agreement with the experimental results. For further
information on the FE model, refer to [20]

The process parameters received by the FE simulation
server are initially available in the SQL database of the
service management. A controller script written in PHP runs
on the FE simulation server and searches the SQL database
for new FE simulation jobs with the status “paid” (see
Fig. 6). If a new FE simulation job is found, the Job.php is
called with the process parameters. The simulation orders
are processed according to the first-in-first-out principle.
The FE model is defined using an Abaqus Python script
and thus can be generated automatically. The Job.php
script replaces the variables in this model script with the
transmitted process parameters of the FE simulation order.
A command-line interface command is then used by the
Job.php script to execute the model script to generate
the FE model in Abaqus and create a working directory
for the FE simulation. The FE model is then available
in the working directory as an input file. The Job.php
script then uses the command-line interface of Abaqus to
start the FE simulation. After the FE simulation has been
started, the status of the FE simulation job in the SQL
database is updated to “in progress.” The Job.php script
checks the status of the simulation at regular intervals by

Fig. 6 Design of the FE simulation server

examining the .log file in the working directory of the
FE-Simulation. The .log file is created by Abaqus and
updated with status information during a FE simulation.
The successful completion of a simulation is indicated in
the .log file by the status “Completed.” If this status is
found in the .log file, the status of the FE simulation
job in the SQL database is also set to Completed. If an
error occurs during FE simulation, the status of the FE
simulation job is set to “Error.” The Job.php script checks
in the SQL database whether FE simulations have been
completed. If successful FE simulations are found, another
Abaqus Python script is started to perform post processing.
This post processing script automatically evaluates the FE
simulation and generates results from it. These results
include important key numbers of the fine blanking process
as well as distributions of physical quantities such as stress,
deformation and temperature. The die roll height (see Fig. 4)
was chosen as the key number for the fine blanking process
because it is a highly relevant quality measurement for fine
blanking and important for subsequent processes while it
is difficult to be measured directly in the process. The die
roll height is a scalar value and stored in the SQL database.
The distributions of stress, deformation, and temperature
are multidimensional values and therefore stored as image
files in an S3 object storage with a reference to the storage
location being stored in the SQL database. This allows all
results to be retrieved from the SQL database. Additionally,
a signature of the results is created using the SHA256 hash
function. With the signature and the calculated die roll
height, an IOTA transaction with the 0 tokens is created and
executed. This way, the data is stored in the IOTA DLT. As
the transaction address, the address transmitted by the fine
blanking machine during the order creation is used. This
means that the results can be retrieved and verified by the
customer via this IOTA transaction.

4 Results

To evaluate the created architecture, tests are carried out
to determine the time required for the service usage and
then strengths, weaknesses, and possible optimizations of
the created service are discussed. The process is divided
into three parts to test the time required to order the service.
These parts are the parameter definition, the HTTP request,
and the IOTA transaction. The parameter definition includes
the process of generating a new unused IOTA address for the
result transfer and creating the JSON object from the IOTA
address and the process parameters for the FE simulation
job. The part of the HTTP request includes the time from the
fine blanking machine’s request to the FE simulation AAS
to the service’s response with the transaction conditions.
The last part of the IOTA transaction includes the time

3722 Int J Adv Manuf Technol (2020) 108:3717–3724



Table 2 Benchmark results of the developed architecture

Experiment 1 2 3 4 5 6 7 8 Average

Parameter definition 0.654 s 0.713 s 0.622 s 0.655 s 0.743 s 0.640 s 0.667 s 0.631 s 0.666 s

HTTP request 0.718 s 1.056 s 1.045 s 1.046 s 1.055 s 1.055 s 0.637 s 0.638 s 0.906 s

IOTA transaction 1.828 s 1.944 s 1.876 s 1.916 s 1.823 s 2.087 s 1.728 s 1.763 s 1.871 s
∑

3.200 s 3.713 s 3.543 s 3.617 s 3.621 s 3.782 s 3.029 s 3.032 s 3.442 s

required by the IOTA Python API to send a transaction. The
duration of the FE simulation is not considered here as it is
independent of the architecture created. EU-Central-1 was
chosen as the region in AWS, since it is the closest to the
location of the fine blanking machine. The fine blanking
machine is located in Aachen. The IOTA node used for
connecting to the IOTA network was also hosted by AWS.
For the test of the architecture, 8 jobs were submitted to the
created architecture and the required duration was measured
in each case. The results are shown in Table 2. The last row
indicates the average over the 8 experiments. The results
do not depend on the exact transmitted parameters, but on
the byte size of the transmitted data packet. The data packet
size for the experiments performed was 99.3 kB. The size
of the data packets is mostly independent of the transmitted
parameters. The geometric parameters from the experiments
can be found in Fig. 4.

The results show that the parameter definition takes about
0.7 s on average. It should be noted that most of the time
needed is used for the generation of the IOTA address. One
possibility to significantly reduce the duration at this point is
to generate the IOTA addresses in batches and in an eternal
method. The HTTP request takes on average approx. 0.9 s.
This duration is mostly caused by the time the connection
to the AWS server takes to start the lambda function. The
actual work performed by the lambda function takes a
relatively short time. The execution of the IOTA transaction
takes about 1.9 s on average. The duration is completely
used by the IOTA Python API. In total, the execution of an
order on the Edge Computer of the fine blanking machine
takes about 3.5 s and in no case more than 4 s.

5 Discussion and outlook

According to the state of the art in fine blanking, up to 2
strokes per second can be carried out on a modern servo
mechanical fine blanking machine. This means that an
FE simulation cannot be ordered for every fine blanking
stroke with the proposed concept. However, this can be
remedied by parallelization. With an average order duration
of less than 4 s and a maximum of 2 strokes per second, a
parallelization of 8 simultaneously running threads with the

current method would be sufficient to send an order for each
stroke.

One factor not considered is the duration of the
FE simulation. A rotationally symmetrical fine blanking
model was used as the FE model in order to require
minimum simulation time. Nevertheless, the FE simulation
requires approx. 1–3 h. An FE simulation of 100% of all
components is therefore only possible with considerable use
of resources. However, since the digital twin is used to track
products along the entire value chain and life cycle, FEM
can still play an important role for the digital twin. Fine
blanked components pass through a number of stations until
they are installed in a car, for example. There can be several
hours or even days between these stations. The data of the
digital twin can therefore be used at the following stations,
even if a FE simulation takes several hours.

Based on the results of the developed architecture, there
are two possibilities for how the FE simulation AAS can be
used in production. Firstly, for the generation of the digital
twin of a fine blanking component with FE simulation data,
only FE simulations have to be submitted if one of the
process parameters has changed significantly, as otherwise
the result would be the same and therefore results from
previous calculations can be reused. A second possibility
is to use the data from the FE simulation together with the
experimental process data to build faster real-time models
using machine learning. The developed architecture can
easily be extended with such an additional service by
implementing a machine learning server at the place of the
FE simulation server and implementing an additional HTTP
endpoint that complements the existing API. The potential
of this approach will be further explored in future studies.

Acknowledgements The authors would like to thank the German
Research Foundation DFG for the kind support within the Cluster of
Excellence “Internet of Production” (Project ID: 390621612).

Funding Information Open Access funding provided by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in

3723Int J Adv Manuf Technol (2020) 108:3717–3724



this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

References

1. Zheng Q, Zhuang X, Zhao Z (2019) Production engineering.
13(10), pp 61

2. Bauernhansl T, Hompel M, Vogel-heuser B (2014) Industrie
4.0 in Produktion Automatisierung und Logistik: Anwendung ·
Technologien · Migration (Springer Fachmedien Wiesbaden)

3. Djavanroodi F, Pirgholi A, Derakhshani S (2010) Materials and
manufacturing processes. 25, pp 864. https://doi.org/10.1080/
10426910903367444

4. Kagermann H, Lukas WD, Wahlster W (2011) VDI nachrichten.
13(1)

5. Kuhn T (2017) Informatik-Spektrum. 40(5), pp 440. https://doi.
org/10.1007/s00287-017-1061-2

6. Schuh G, Walendzik P, Luckert M, Birkmeier M, Weber A, Blum
M (2016) ZWF Zeitschrift fü,r wirtschaftlichen Fabrikbetrieb.
111(11), pp 745

7. (2015). Was kann industrie 4.0? und können sie das auch?
potenziale für die deutsche industrie. Tech. rep., IBM Deutschland
GmbH

8. Ghobakhloo M (2018) Manufacturing technology management.
29(6), pp 910

9. Geissbauer R, Schrauf S, Berttram P, Cheraghi F (2017) Digital
factories 2020: shaping the future of manufacturing (Pricewater-
houseCoopers GmbH Wirtschaftspruefungsgesellschaft)

10. Mell P, Grance T, et al. (2011) The NIST definition of cloud
computing (Computer Security Division, Information Technology
Laboratory, National Institute of Standards and Technology

11. Marinescu DC (2017) Cloud computing: theory and practice
(Morgan Kaufmann)

12. Terrazas G, Ferry N, Ratchev S (2019) Computer industry.
109(204). https://doi.org/10.1016/j.compind.2019.03.005

13. Helo P, Shamsuzzoha A, Sandhu M (2016) International Con-
ference on Industrial Engineering and Operations Management,
Detroit, USA. pp 150-155

14. Al-Shdifat A, Emmanouilidis C (2018) Procedia manufacturing.
16, pp 31

15. Taylor S, Kiss T, Terstyanszky G, Kacsuk P, Fantini N (2014)
Simulation series. 46, pp 89

16. Florea BC (2018) 2018 7th Mediterranean Conference on
Embedded Computing (MECO). pp. 1–4. https://doi.org/10.1109
/MECO.2018.8406041

17. Popov S (2016) The tangle. Tech rep
18. Gamble K, Pilling M, Wilson A (1995) Composite structures, 32,

pp 265. https://doi.org/10.1016/0263-8223(95)00033-X
19. Wehner P, Piberger C, Gohringer D (2014). pp. 1–4. https://doi.

org/10.1109/ReCoSoC.2014.6861361
20. Stanke J, Trauth D, Feuerhack A, Klocke F (2017) Journal of

Physics Conferrence Series. 896, pp 012096. https://doi.org/10.
1088/1742-6596/896/1/012096

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

3724 Int J Adv Manuf Technol (2020) 108:3717–3724

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1080/10426910903367444
https://doi.org/10.1080/10426910903367444
https://doi.org/10.1007/s00287-017-1061-2
https://doi.org/10.1007/s00287-017-1061-2
https://doi.org/10.1016/j.compind.2019.03.005
https://doi.org/10.1109/MECO.2018.8406041
https://doi.org/10.1109/MECO.2018.8406041
https://doi.org/10.1016/0263-8223(95)00033-X
https://doi.org/10.1109/ReCoSoC.2014.6861361
https://doi.org/10.1109/ReCoSoC.2014.6861361
https://doi.org/10.1088/1742-6596/896/1/012096
https://doi.org/10.1088/1742-6596/896/1/012096

	Development of a hybrid DLT cloud architecture for the automated use of finite element simulation as a service for fine blanking 
	Abstract
	Abbreviations
	Introduction
	Requirement analysis
	Architecture concept and implementation
	Results
	Discussion and outlook
	References



