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Abstract
Accurately estimating age profiles for destination-specific migration is requisite to 
understanding the determinants of population growth and projecting future change 
as migration is the primary growth determinant for most regions. In Australia, place-
to-place flows based on the age profile of migration derived from census data are 
commonly used to empirically estimate destination-specific internal migration. 
However, such flows are heterogeneous and census data is imperfect for accurately 
generating migration-age profiles. Demographers have addressed this by developing 
a range of methods for smoothing migration probabilities. These address smoothing 
on a bi-regional basis, primarily with one destination–origin pairing. We propose 
a non-parametric method for smoothing destination-specific migration probabilities 
which can be applied to multi-regional smoothing and is within the generation–dis-
tribution framework of Rogers et al. (Environ Plan A 34:341–359, 2002). We dem-
onstrate that, if total age-specific out-migration has already been estimated, smooth-
ing destination-specific migration ratios provides a solution to imperfect input data. 
Using the example of Australian interstate migration, we show how the method can 
give an accurate fit to the migration ratio profile across high-curvature ages and a 
good treatment of sample noise both when the population at risk is low, such as at 
advanced ages, and when the destination has a low conditional probability of migra-
tion. An implementation of the method is available as an Excel add-in.
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1  Introduction

In-migration to states or territories, cities, and towns in developed nations is, on the 
whole, the primary determinant for population growth and change (Bell et al. 2015). 
Accurately estimating in-migration probabilities for specific destinations is therefore 
important to understanding subnational demographic processes (Smith et al. 2013). 
Flows of migrants and changes in these between origin and destination communi-
ties are, in many cases, more important than changes induced by fertility behav-
iours (Willekens 2016). Consequently, accurately plotting age profiles of migration 
to destinations is important to understanding demographic changes and in project-
ing future migration flows between specific origins and destinations (Rogers 1975, 
1986). It is also the basis for comparative work on migration across regions and 
nations, as well as projecting how these might change over time (Bernard and Bell 
2015).

Place-to-place flows are commonly used as the empirical basis for estimating 
destination-specific internal migration in Australia. Source data are invariably from 
the 5-yearly Census of Population and Housing from which the demographer can, 
in theory, pair origins and destinations at fine-grained geographic levels to provide 
age-specific migration profiles (ABS 2016). Nevertheless, in spite of the common-
alities exhibited in the shape of migration profiles across countries and internally 
[for example, as demonstrated by Rogers and Castro (1981)], the heterogeneity of 
age-specific migration flows to specific destinations and the imperfectness of cen-
sus data in accurately depicting underlying profiles remain as ongoing concerns for 
demographers (Baffour and Raymer 2019).

For census data, one of the most significant issues is the temporal point-in-time 
capture of movements which negates moves that occurred between the temporal 
capture points. Specifically, for Australia two questions are included in the census 
to determine where the respondent lived five years ago and one year ago. These are 
compared to the current place of usual residence, also provided by respondents, and 
coded to determine whether a migration event has occurred subsequent to one or 
five years ago. Standardised geographic frameworks are applied to isolate the spatial 
specificities of the migration event and these feed into population estimates by age 
and gender (ABS 2019) as well as projection processes.

While important to demographic analysis, the point-in-time capture of migration 
is limited (to one- and 5-year intervals) and masks underlying dynamicism in the 
flows and age profiles for migration to and from specific destinations. Not least, the 
absolute number of migration events is under-captured by an unknown amount since 
an individual may undertake multiple moves within the one- or 5-year interval, aside 
from the ones captured at those points in time (Courgeau 1973). This is pertinent for 
understanding migration in Australian because, during their life course, Australians 
undertake more moves on average than residents of other developed nations1 (Bell 
et al. 2015, 2017).

1  In Bell et  al. (2015)’s league table of forty-five countries ranked by 1-year aggregate crude migra-
tion intensity Australia is the seventh highest, below Iceland, Finland, Zambia, Kenya, Denmark, and the 
USA.
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The one- and 5-year intervals for census migration data also creates problems 
for demographers seeking to compare or convert across time or areas. For example, 
absolute numbers of migration flows captured by the 1-year variable and multiplied 
by five are generally significantly larger than captured in the 5-year variable. This 
difference is due to multiple moves made by individuals during the longer period 
(Rees 1977). Demographers call this the “1-year/5-year” problem, reflective of vari-
ations between migration probabilities collected over one- and 5-year intervals and 
hindering direct comparisons between the two. To address this issue, some demog-
raphers favour migration ratios, the probability of migrating to a particular destina-
tion conditional on out-migrating from a given origin, for their relative stability in 
derivation from point-in-time intervals (Rogers et al. 2003).

Studies have demonstrated further weaknesses exist in census migration data 
including in the accuracy of destination migration which is captured for infants 
born within the transition interval (Rees et al. 2000) and for older migrants (Wilson 
and Terblanche 2018; Wilson 2020). In addition, age and gender profiles in census 
migration data for more rural and remote destinations are known to be more volatile, 
partly as a result of the issues above and combined with temporal unpredictabil-
ity due to their relatively small populations (Peters et al. 2016). As a key input to 
modelling, the cumulative impacts of deviations from the underlying age profiles 
for migration are to reduce the accuracy of comparative migration metrics and their 
inputs to other forms of population modelling like projections.

In theory, some of the shortcomings in census data might be overcome through 
application of administrative datasets capturing migration. However, in Australia at 
least, while the landscape of unit record administrative data provision for such pur-
poses is improving, there are currently no nationally consistent datasets (with suffi-
cient coverage and longitudinal scope) for application to this purpose. Consequently, 
demographers continue to develop methods for generating accurate destination-spe-
cific profiles from noisy and incomplete data (Rogers et al. 2010).

A growing number of studies for modelling and smoothing migration profiles are 
evident (for example, Rogers et  al. (1978), Rogers and Castro (1981), Rogers and 
Watkins (1987), Congdon (2008), Wilson (2010), Bernard and Bell (2015), Wilson 
(2020), Dyrting (2020)). The basis for attempts to estimate smooth origin–destina-
tion-age-specific migration intensities are counts of movers by destination from an 
origin population, both of which are available by single year of age from census 
data. Modelling migration involves a multinomial process within which smooth 
intensities can be estimated using a number of methods. Willekens (2008), for 
example, utilised the maximum likelihood method which Hachen (1988) highlighted 
can be approached from either a competing-risk perspective, where out-migration is 
estimated separately for each destination, or from a generation–distribution perspec-
tive (Rogers et  al. 2002), where out-migration and migration ratios are estimated 
separately. Both approaches have been used to prepare inputs to models for project-
ing subnational populations (Campbell 1996; Nash 2020).

P-splines are a powerful tool for smoothing and have been applied to estimat-
ing mortality (Currie et al. 2004; Camarda 2012; Gonzaga and Schmertmann 2016), 
and the generation component of out-migration (Dyrting 2020). Our aim here 
is to extend the method to more accurately smooth the distribution component of 
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migration than methods currently employed. Our approach is motivated by Rog-
ers et al. (2002)’s observation that, while migration probabilities are strongly age-
dependent, migration ratios are less so. On this basis, the problem of separating sig-
nal from noise, which all smoothing methods seek to solve, should be more effective 
for ratios than for probabilities.

In the next section, we give a review of transition-style migration probabilities 
and ratios and summarise the problem of removing irregularities in the age pro-
file through smoothing. In Sects. 3 and 4 we introduce the multinomial model and 
the P-spline method applied to ratios, demonstrating its solution by iterated linear 
regressions. In Sect.  5, we apply the method to smoothing the distribution com-
ponent of interstate migration for Australia. In Sect. 6, we illustrate how it can be 
combined with a method for smoothing the generation component of out-migration 
to smooth destination-specific migration probabilities. In Sect.  7 we show how 
the method can be used to directly compare ratios for 1-year and 5-year migration 
intervals.

2 � Migration ratios

Transition type migration data, such as is collected by the Australian Census for 
Population and Housing, consists of observations

of nM
j
x movers of age x + n to destination j from an initial population Nx of age x of a 

specific origin. Raw out-migration probability nm̃ and migration ratios nc̃j are given 
by the fractions

where here and in the following all matrix operations and functions act elementwise 
and

is the vector of total movers, and d is the number of possible destinations.
Within the generation–distribution framework nm̃ is the observed probability of 

out-migrating from the origin area, and nc̃j is the observed probability of migrat-
ing to destination j conditional on out-migrating. We see from Eq. (2) that N is the 
population exposed to the risk of out-migrating and nM is the population of out-
migrants exposed to the risk of in-migrating to j. Since both of these populations are 
finite, the observed probabilities will have elements of sample noise which we seek 

(1)nM
j =

⎡⎢⎢⎣
nM

j

0

⋮

nM
j
�

⎤⎥⎥⎦
and N =

⎡⎢⎢⎣

N0

⋮

N
�

⎤⎥⎥⎦

(2)nm̃ =
nM

N
and nc̃

j =
nM

j

nM
,

(3)nM =

d∑
j=1

nM
j
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to remove using smoothing. In the following we assume that a good estimate of total 
out-migration nm has been obtained and address the problem of finding smooth vec-
tors ncj that fit the observed ratios nc̃j.

3 � A multinomial model of migration

Assuming a multinomial model of migration counts (Willekens 2008) one can show 
that the log likelihood of observing ratios nc̃j when the underlying ratios are ncj is

where A ⋅ B denotes matrix multiplication and A′ is the transpose of A.
It is difficult to maximise the above form of the log likelihood function because 

there is an auxiliary condition that the migration ratios must sum to unity. To handle 
this condition, it is useful to express ncj in terms of conditional ratios naj defined by

where nsj is the product

Observed conditional ratios nãj are defined similarly. naj is the probability of migrat-
ing to j conditional on not migrating to destinations 1,… , j − 1 . Let nKj be the num-
ber of movers to destinations with index j or greater

then the log likelihood function can be rewritten as

where

and

(4)Lc = nM
�
⋅

d∑
j=1

nc̃
j log(nc

j),

(5)nc
j =

⎧⎪⎨⎪⎩

na
1, j = 1

ns
j × na

j, j = 2,… , d − 1

ns
d, j = d

(6)ns
j =

∏
1≤k<j

(1 − na
k).

(7)nK
j =

d∑
k=j

nM
k,

(8)Lc =

d−1∑
j=1

Lj,

(9)Lj = (nK
j)� ⋅ yj,
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The derivation of Eq. (8) is given in Sect. A.2. Written in this form the likelihood 
is easier to maximise as we only need to impose the condition 0 ≤ na

j ≤ 1 on the 
conditional ratios. Finally, in order to give ratios a common representation which is 
independent of the interval n we express the n-year conditional ratios naj in terms of 
implied ratios at 1-year intervals aj

where the matrix nTj is given iteratively by

Here nU is the matrix with elements

and m
k
 and nmx

 are probabilities obtained by smoothing total out-migration (Dyrt-
ing 2020). The derivation of Eq. (11) is given in Sect. A.3. Our strategy is now to 
smooth conditional ratios by maximising Lj sequentially as a function of aj only.

4 � Penalised splines

In this section we use penalised splines (P-splines) to smooth conditional ratios (Eil-
ers and Marx 1996). Since we will be smoothing them sequentially, we drop the des-
tination index j to lighten the notation. Represent implied conditional ratios in terms 
of B-splines using the functional form

Here B is a matrix of B-spline functions arranged columnwise (de Boor 2001). Con-
ditional ratios are smoothed by maximising the penalised log likelihood function

where Dk is the k-order difference matrix and 𝜆 > 0 is a penalty parameter. In prin-
ciple this equation could be solved for � using a multivariate optimisation routine, 
but because the number of B-spline nodes is potentially large we need an alternate 
solution method. Assuming the maximum of the penalised log likelihood occurs at 
a stationary point we get a system of nonlinear equations for � which can be solved 

(10)yj = nã
j log na

j + (1 − nã
j) log(1 − na

j).

(11)na
j = nT

j
⋅ aj,

(12)
nT

1 = nU,

nT
j = diag

(
1

1−na
j−1

)
⋅ nT

j−1 ⋅ diag
(
1 − aj−1

)
.

(13)nUxr =

⎧⎪⎨⎪⎩

0 r < x�∏
x≤k<r(1 − m

k
)
�
m

r
∕nmx

x ≤ r < x + n

0 r ≥ x + n

,

(14)logit(a) = B ⋅ � .

(15)L = nK
�
⋅ y −

�

2
�
�
⋅ D�

k
⋅ Dk ⋅ � ,
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by iterative linear regressions. Let 𝜃̄ be the current approximation to the B-spline 
weights. The updated value � is the solution to

where

and

The derivation of this iteration and the expression for G are given in Appendix 2.
Smoothness is controlled by the penalty parameter � . The higher the value the 

smoother the ratio a . The penalty can be specified explicitly or chosen automatically by 
minimising one of a number of measures that seek to balance the decreased fitting error 
against the increased effective number of parameters as � is made smaller. Two popular 
measures are the Akaike information criterion (Akaike 1974)

and the Bayesian information criterion (Schwarz 1978)

where

is the deviance and

is the effective dimension of � calculated using the trace of the hat matrix of the lin-
earised problem

From experiments with Australian census data we found that AIC(�) would often 
under-smooth and BIC(�) would often over-smooth. We found that a good compro-
mise was the Akaike information criterion with corrections (Hurvich and Tsai 1989)

(16)Q
(
𝜃̄
)
⋅ 𝜃 = b(𝜃̄),

(17)Q(�) = G�
⋅W (�) ⋅ G + �D�

k
⋅ Dk,

(18)b(𝜃) = G�
⋅ V ⋅

(
nã − na

)
+ G�

⋅W (𝜃) ⋅ G ⋅ 𝜃 ,

(19)W (�) = diag
(
na(1 − na) nK

)
.

(20)AIC(�) = dev + 2 × dim,

(21)BIC(�) = dev + dim × log(1 + �),

(22)dev(� , �) = −2 × nK
�
⋅ y

(23)dim(� , �) = tr(H)

(24)H =
(
G�

⋅W ⋅ G + �D�
k
⋅ Dk

)−1
⋅ G�

⋅W ⋅ G.

(25)AICc(�) = AIC(�) + 2
dim(dim + 1)

� − dim
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5 � Application to interstate migration: ratios

As an application of the smoothing method outlined above, we consider estimation of 
the distribution component of Australia interstate migration. This is an important step 
in the preparation of origin–destination-age-specific migration probabilities which are 
necessary inputs to a multistate lifetable analysis or population projection model (Rog-
ers 1975). Data from the 2016 Australian Census of Population and Housing were used 
to calculate raw and smoothed destination-age-specific out-migration ratios for each 
of Australia’s six states and two mainland territories for both 1-year and 5-year inter-
vals. With P-splines the knots should be spaced at intervals small enough such that an 
unpenalised ratio ( � = 0 ) will show more variation than is justified by the data (Eilers 
and Marx 1996). For most age ranges we found that a knot spacing of approximately 
three years was sufficiently small. For eastern states, out-migration to the Australian 
Capital Territory changes rapidly over the age ranges 17 to 19 (1-year ratios) and 12 
to 19 (5-year ratios) reflecting its importance as a destination for young adults enter-
ing tertiary education. Therefore, over the age interval 12 to 21 we used knots spaced 
at 1-year intervals and for the remainder of the age range 0 to 90 we used knots at 
3-year intervals. Our fits did not change substantially if a finer grid for the knots was 
used. The results presented are for quadratic B-splines because we found that linear 
B-splines would occasionally give kinks at the knot points. A linear penalty ( k = 1 ) was 
used, with � determined by minimising AICc(�) . For comparison we have included 
the results of a linear kernel regression smoothing of the raw migration ratios using a 
Gaussian kernel (Fan and Gijbels 1996) and the Rule-Of-Thumb bandwidth selector 
(Ruppert et al. 1995).

Figures 1 and 2 compare raw and smoothed 1-year migration ratios for Australia’s 
largest state, New South Wales, and its least populated mainland territory, the Northern 
Territory. The complete set of 112 origin–destination ratios for all states and territories 
is given in Figures S-1 to S-16 of Online Resource 1. Also shown is the 95% confi-
dence interval for observed ratios based on the P-spline fit. As observed by Rogers et al. 
(2002) ratios do not exhibit as strong a dependence on age as probabilities. Also, apart 
from a strong constant component there does not appear to be a repeating pattern com-
mon across destinations, and yet we do observe a definite variation with age, in particu-
lar the presence of a “student peak” for migration to the ACT from New South Wales, 
Victoria, and Queensland (see Fig. 1, S-2, and S-3). The two smoothing methods give 
similar results when both the origin population and the destination-specific ratio are 
large (see the age-specific migration ratio from New South Wales to Queensland). They 
begin to show differences when dispersion in the raw data increases, especially over 
advanced ages (see the age-specific migration ratio from the Northern Territory to 
Tasmania).

Table 1 gives summary statistics for the two smoothing methods: a goodness-of-fit 
measure given by the deviance

(26)devc = 2 × nM
�
⋅

d∑
j=1

nc̃
j log(nc̃

j∕nc
j),
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Fig. 1   New South Wales interstate out-migration ratios 2015–2016 by age in 2015 and destination, two 
smoothing methods. Grey area, 95% confidence interval for observed ratios based on P-spline fit. Source: 
Based on Australian Bureau of Statistics data
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Fig. 2   Northern Territory interstate out-migration ratios 2015–2016 by age in 2015 and destination, two 
smoothing methods. Grey area, 95% confidence interval for observed ratios based on P-spline fit. Source: 
Based on Australian Bureau of Statistics data
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and our assessment of each fit’s deficiencies, if any, focussing on two types: Over-
smoothing of the student peak and under-smoothing of the profile at ages 80 and 
over. P-spline has the lowest value of devc for 13 of the 16 state-interval combi-
nations. For the three cases where kernel regression has the lowest deviance its fit 
shows signs of under-smoothing at senior ages. P-spline performs better because it 
is able to model the increase in sample variance with decreasing population at risk 
(the total number of movers) whereas kernel regression assumes it is the same for all 
ages. Furthermore, kernel regression has over-smoothed the student peak to ACT in 
the 1-year data for New South Wales, Victoria, and Queensland (Fig. 1, S-2, and S-3 
respectively) and the 5-year data for Queensland (Figure S-11).

6 � Application to interstate migration: probabilities

Once smoothed ratios have been found, all of the destination-specific migration 
probabilities nmj are then available to us through the expression

(27)nm
j = nm × nc

j.

Table 1   Summary statistics for 
two smoothing methods applied 
to Australian interstate out-
migration ratios, 2016

Goodness-of-fit measure dev
c
 is the multinomial deviance given by 

Eq. (26). The Notes column gives the authors’ assessment of a fit’s 
deficiencies, if any: S , over-smoothing the student peak; E , under-
smoothing advanced ages. K, kernel regression; P, P-splines. Fig-
ures S-2 to S-7 and S-9 to S-16 are given in Online Resource 1

State n dev
c

Notes Fig.

K P K P

NSW 1 1131 916 S 1
VIC 1 1086 832 S S-2
QLD 1 888 878 S,E S-3
WA 1 942 877 E S-4
SA 1 1031 935 E S-5
TAS 1 1174 1061 S-6
ACT​ 1 1113 1161 E S-7
NT 1 922 851 E 2
NSW 5 760 797 E S-9
VIC 5 988 834 E S-10
QLD 5 871 820 S,E S-11
WA 5 1221 914 E S-12
SA 5 917 795 E S-13
TAS 5 884 856 E S-14
ACT​ 5 888 996 E S-15
NT 5 750 693 E S-16
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An alternate framework for smoothing is the competing-risk approach (Hachen 
1988), where age-specific probabilities are smoothed separately for each destination. 
We compare our generation–distribution approach to two competing-risk smoothing 
methods: smoothing with kernel regression (Bernard and Bell 2015) and smoothing 
with Wilson (2010)’s student model migration schedule (student MMS). Data from 
the 2016 Australian Census of Population and Housing were used to calculate raw 
and smoothed destination-age-specific out-migration probabilities for each of Aus-
tralia’s six states and two mainland territories for both 1-year and 5-year intervals. 
The generation component was smoothed using P-TOPALS (Dyrting 2020) and the 
distribution component taken from Sect. 5. For kernel regression, raw destination-
specific migration probabilities were smoothed using linear polynomials, a Gaussian 
kernel (Fan and Gijbels 1996), and the Rule-Of-Thumb bandwidth selector (Rup-
pert et al. 1995). For student MMS, destination-specific migration probabilities were 
smoothed with a three-step process: 

Step 1:	 the model was fitted to total out-migration, and the parameter values saved.
Step 2:	 for each destination the model was fitted to destination-specific migration 

probabilities, keeping the profile parameters fixed at their values from Step 1 and 
only adjusting the level parameters.

Step 3:	 for each destination all parameters were fitted starting from their Step 2 
values.

Figures  3 and  4 compare raw and smoothed 1-year migration probabilities for 
New South Wales and the Northern Territory. The complete set of 112 origin–des-
tination probabilities for all states and territories are provided in Figures S-17 to 
S-32 of Online Resource 1. These figures also show the 95% confidence interval 
for observed probabilities based on the P-spline fit. The origin–destination-spe-
cific schedules display a variety of differences in the position and prominence of 
student, labour, and retirement peaks. Because it is concentrated over a narrow 
age range, a prominent student peak will not be well fitted by kernel regression, 
which tends to over-smooth the feature (see New South Wales to ACT in Fig. 3, 
and Northern Territory to SA in Fig. 4).

Approximating out-migration to a given destination j as a Poisson pro-
cess it can be shown that the size of the sample noise in nm̃j relative to nmj is 
1∕

√
N ×n m

j . This implies that the relative size of the sample noise increases as 
the exposed population N decreases. It also shows that the relative size of sample 
noise will be larger for destinations with lower probabilities. In each of Figs. 3, 4, 
and S-17 to S-32 destinations are arranged from top to bottom in order of decreas-
ing probability. We see an increase in the amount of sample noise relative to the 
level, and when it is large both kernel regression and student MMS can give unre-
alistic profiles (see Northern Territory to Tasmania in Fig. 4).

Table 2 gives summary statistics for the three smoothing methods: two good-
ness-of-fit measures dev and devm , a shape plausibility measure P̄ , and our assess-
ment of each fit’s deficiencies, if any. The first goodness-of-fit measure is the 
multinomial deviance
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Fig. 3   New South Wales interstate out-migration probability 2015–2016 by age in 2015 and destina-
tion, three smoothing methods. Grey area, 95% confidence interval for observed probabilities based on 
P-spline fit. Source: Based on Australian Bureau of Statistics data
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tion, three smoothing methods. Grey area, 95% confidence interval for observed probabilities based on 
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for a joint fit of all destination-specific migration probabilities for a given origin. A 
good joint fit does not necessarily imply a good fit of total out-migration, the quan-
tity of importance for the origin population. For this reason, we give a second good-
ness-of-fit measure, binomial deviance for the total out-migration

Low deviances can sometimes be achieved by an unrealistic profile, and for this rea-
son we include the measure P̄ , equal to the sum of the percentage that each destina-
tion-specific schedule’s profile differs from a reference profile

(28)dev = 2 × N�
⋅

[
(1 − nm̃) log

(
1 − nm̃

1 − nm

)
+

d∑
j=1

nm̃
j log

(
nm̃

j

nm
j

)]

(29)devm = 2 × N�
⋅

[
(1 − nm̃) log

(
1 − nm̃

1 − nm

)
+ nm̃ log

(
nm̃

nm

)]
.

Table 2   Summary statistics for three smoothing methods applied to Australian interstate out-migration 
probabilities, 2016

Goodness-of-fit measure dev is the multinomial deviance for all destination-specific migration probabili-
ties given by Eq.  (28). Goodness-of-fit measure dev

m
 is the binomial deviance for total out-migration 

probability given by Eq.  (29). Quantity P̄ is given by Eq.  (30) and equals the sum of the percentage 
that each destination-specific schedule’s profile differs from a reference profile. The Notes columns 
give the authors’ assessment of a fit’s deficiencies, if any: S , over-smoothing the student peak; E , 
under-smoothing advanced ages; X , implausible shape. K, kernel regression; M, student MMS; P, 
P-TOPALS (generation)+P-splines (distribution). Figures  S-18 to S-23 and S-25 to S-32 are given in 
Online Resource 1

State n dev dev
m P̄ Notes Fig.

K M P K M P K M P K M P

NSW 1 1611 898 861 856 98 93 17 18 15 S 3
VIC 1 927 933 878 255 107 109 12 14 11 S S-18
QLD 1 931 931 835 296 122 98 16 16 14 S S-19
WA 1 952 1026 929 280 161 141 21 20 18 S,E S-20
SA 1 1031 1143 1,049 239 164 114 16 15 12 S,E S-21
TAS 1 1166 1165 1158 207 130 97 23 25 21 S,X S-22
ACT​ 1 1146 1339 1239 272 166 164 29 17 11 S,X S-23
NT 1 955 982 998 212 154 147 44 45 29 S,X X 4
NSW 5 665 901 649 230 194 86 22 23 22 S-25
VIC 5 723 1039 840 147 207 127 17 18 17 S-26
QLD 5 689 1051 744 177 242 111 17 16 16 E S-27
WA 5 686 852 825 119 125 121 25 25 23 S-28
SA 5 768 1008 892 132 157 97 16 17 15 E S-29
TAS 5 739 1146 962 115 155 127 25 21 21 X S-30
ACT​ 5 770 1081 1035 153 198 140 28 29 17 X S-31
NT 5 731 913 848 154 171 155 39 32 32 S-32
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where nmref is a reference schedule and |v| is the absolute value of vector v. For 
reference schedule we used the P-TOPALS smoothed interstate probabilities from 
Dyrting (2020). When we assessed each fit’s deficiencies, we focused on whether it 
over-smoothed the student peak (S), under-smoothed advanced ages (E), or had an 
implausible shape (X).

Table  2 shows that, for all origins and intervals, our generation–distribution 
approach gives realistic profiles, with the lowest or equal lowest value for P̄ . For 
1-year probabilities it has the lowest value for devm for seven of the eight states, 
and the lowest value for dev for five of the eight states, with the kernel regression 
(SA, ACT, and NT out-migration) or student MMS (NT out-migration) achieving a 
lower value with an unrealistic profile. For 5-year probabilities the three methods are 
more evenly matched. Our approach has the lowest value of devm for five of the eight 
states, but kernel regression has the lowest value for dev for seven of the eight states. 
Our approach always has a lower value for dev compared to student MMS but has 
the lowest value for only one state (NSW).

7 � Application to the 1‑year/5‑year problem

We previously described the 1-year/5-year census migration problem, which is hall-
marked by differences in aggregate migration flows, and therefore derived probabili-
ties, when comparing across time and space. Five-year probabilities are less than 
five times 1-year probabilities, the difference being due to multiple moves over the 
longer interval (Rees 1977). Unlike probabilities, migration ratios appear to be more 
stable across different intervals (Rogers et al. 2003) and the method developed here 
is useful for comparing them because they share a common representation in terms 
of implied 1-year migration ratios (see Sect. A.1).

Figures 5 and 6 show 1-year and 5-year implied migration ratios from New South 
Wales and the Northern Territory respectively using data from the 2016 Census. The 
complete set of 56 origin–destination ratios for all states and territories is given in 
Figures S-33 to S-40 of Online Resource 1. We see that the 5-year migration ratios 
implied by 5-year data have the same level as ratios from 1-year data and similar 
age profiles. This suggests that a crude method for converting 5-year probabilities 
to 1-year probabilities would be to focus on converting the generation component, 
keeping the distribution component fixed at its implied 1-year values.

8 � Discussion and conclusion

This paper has extended the P-spline method to the problem of smoothing the migra-
tion ratio component of a generation–distribution representation of origin–desti-
nation-age-specific migration probabilities. Existing methods address this problem 

(30)P̄ =

d∑
j=1

100

(
1 −

nm
�
ref

⋅ nm
j

|nmref||nmj|

)
,
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Fig. 5   New South Wales interstate out-migration ratios 2016, two intervals. Source: Based on Australian 
Bureau of Statistics data
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through smoothing of bi-regional flows, primarily in-migration or out-migration 
with one destination–origin pairing (usually a State with the rest of the country). 
The contribution of our method is to provide a multi-regional approach to smooth-
ing destination-migration profiles. The method has been implemented as an Excel 
add-in which is included in Online Resource 2. The potential downstream benefits 
from this method include the preparation of more accurate inputs for origin–desti-
nation-specific population projection models, and the construction of multi-regional 
life tables.

Using the example of Australian interstate migration, we have shown how 
P-splines can give an accurate fit to the migration ratio profile across high-curvature 
ages and a good treatment of sample noise both when the population at risk is low, 
such as advanced ages, and when the destination has a low conditional probability 
of migration. When combined with the use of P-TOPALS for smoothing the genera-
tion component we find that the P-spline method produced smooth origin–destina-
tion profiles that were both realistic and accurate, performing better than both kernel 
regression and student MMS for 1-year probabilities, but for 5-year probabilities the 
results for the three methods were more evenly matched. We used the method to 
directly compare 1-year migration ratios and implied 1-year ratios from 5-year data 
and found that they have the same level and similar age-specific shapes.

The framework we have adopted here, the generation–distribution decomposition 
of migration flows, is the same as used by Rogers et al. (2002), although our focus 
and tools are different. One difference is that we use single year of age data and 
smooth with P-splines while they used 5-year age groupings and smoothed using 
a log-linear model. The second difference is that we assume a complete set of data 
while they were interested in the problems posed by incomplete data, in particu-
lar the problem of repairing incomplete data by imposing age and spatial struc-
tures from an external source. The extent that the distribution component differs for 
1-year and 5-year intervals is currently an open question. Liaw (1984) conjectured 
that most of the difference between one- and 5-year migration probabilities is due 
to the generation component, while Rogerson (1990) argues that the distribution 
component is also affected by the interval width. Rogers et  al. (2003) concluded 
that the assumption of constant distribution component needed to be relaxed and 
some type of variation introduced through exogenous covariates. Our contribution to 
this debate has been to provide a representation of the distributional component in 
terms of implied 1-year ratios which enables 1-year and 5-year ratios to be directly 
compared.

Migration between the eight Australian states and territories is a good test case 
for our method because it spans two orders of magnitude of migration flow sizes 
from an average of 398.5 persons per single year of age of movers from New South 
Wales to Queensland over interval 2015–2016 to an average of 3.5 persons per sin-
gle year of age from the Northern Territory to Tasmania over the same period. How 
would our method adapt to smaller spatial scales?, or more precisely, as the spatial 
scale is decreased is the method robust as the flow size decreases and manageable 
as the number of possible destinations increases? As the flow size nK decreases the 
penalty term in Eq. (15) will become more important. For the case of a linear pen-
alty ( k = 1 ) the B-spline weight will tend to a constant
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where � is a vector of ones. Because B-splines form a partition of unity ( B ⋅ � = 1 ) 
the conditional ratio a will, in this limit, tend to a value independent of age. The 
method therefore adaptively converges to the OPCS model described by Wilson 
and Bell (2004), where migrants are distributed to destinations in a fixed proportion 
regardless of age. Another aspect of applying the smoothing method at smaller spa-
tial scales is the increase in the dimension of the multi-regional migration matrix, 
which scales as the square of the number of regions. The burden on the user of esti-
mating, in one stage, the entire base period matrix has been cited as one of the chal-
lenges to practical implementation of a multi-regional population projection model 
(Wilson and Bell 2004). One of the strengths of our method is that it allows a multi-
stage approach to estimating the matrix: for each origin estimate the out-migration 
rate, and sequentially for each destination, estimate the conditional migration ratio.

Assumption-setting, the processes of projecting the future trajectories of migra-
tion rates which are then used in population projections, while different from the 
estimation of current levels (which our method seeks to solve) is frequently con-
nected to it (assumptions often being expressed as additive or multiplicative changes 
to the jump-off level) and presents similar challenges to the practitioner (e.g. how 
to manage dimensionality for small spatial scales). The framework we use enables 
users to handle the setting of assumptions by dividing them into two types (genera-
tion and distributional) which can be projected separately. Thus, for example, dyna-
mism of out-flows can be modelled by making the total out-migration rate time-
dependent, and dynamism of the distribution of flows can be modelled by making 
the migration ratios time-dependent.

The main strength of the P-spline method is its combination of flexibility in fitting 
the variety of age-specific profiles for migration ratios and ability to account for age-
dependent sample noise. Another advantage is that it allows the practitioner to either 
use an automatic smoother such as the AICc condition or dial the level of smoothing 
manually for any origin–destination pair. A current limitation of the method is that it 
assumes data in the form of single years of age. Often census data on internal migra-
tion are published by age groups, commonly 5-year, and even when data are avail-
able by single year of age it is sometimes necessary to group it to mitigate the effects 
of age-heaping (Feeney 1979) or confidentialisation (Thompson et  al. 2013). One 
area for further work, therefore, is to extend the P-spline approach to the distribu-
tion part when data is grouped. Another path for further investigation is to adapt the 
method for experimentally projecting the distribution component or more generally 
updating the distributional component conditional on partial information, possibly 
drawing on methods from Plane (1981).

Appendix 1: Implied and conditional ratios

In this section we derive expressions for ratios and conditional ratios in terms of 
implied 1-year variables. The first step is to re-express the relationship between out-
migration nmx

 and implied 1-year probabilities m
x

(31)� = �
0
�,
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in the form

Equation (33) is obviously true for n = 1 . Assume it is true for some n. By Eq. (32)

Substituting expression (32) into the first term of the right-hand side of the above 
equation and expression  (33) into the second term gives Eq.  (33) for n + 1 . The 
general result follows by induction. Equation (33) expresses the probability of out-
migration from age x to x + n as the product of remaining for x to r (the term in 
parentheses) and then out-migrating from r to r + 1.

Implied ratios

By analogy we define implied ratios

through the expression for nm
j
x,

It follows from Eq. (27) that

where nU is the matrix with elements given by Eq. (13).

Conditional ratios

The observed ratio nãj of migrating to j conditional on not migrating to destinations 
1,… , j − 1 is

By definition nã1 = nc̃
1 and nãd = 1 . Equation (38) can be rearranged to give

(32)nmx
= 1 −

∏
x≤k<x+n

(1 − m
k
),

(33)nmx
=

∑
x≤r<x+n

( ∏
x≤k<r

(1 − m
k
)

)
m

r
.

(34)n+1mx
= (1 − nmx

)m
x+n

+ nmx
.

(35)cj =

⎡⎢⎢⎣

c
j

0

⋮

c
j
�

⎤⎥⎥⎦
,

(36)nm
j
x
=

∑
x≤r<x+n

( ∏
x≤k<r

(1 − m
k
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r
.

(37)nc
j = nU ⋅ cj

(38)nã
j ∶=

nM
j

nK
j
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j

∑d

k=j n
c̃k
.
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where

The last expression in Eq. (40) follows from the recurrence

Substituting Eqs. (39) and (5) into the log likelihood function (4) we get Eq. (8).

Implied conditional ratios

Implied 1-year conditional ratios aj are related to implied ratios cj by Eq. (5) with 
n = 1 , namely

where

Substituting Eqs. (5) and (42) into Eq. (37) and rearranging we get Eq. (11) where

The matrix nTj is efficiently calculated using the recurrence (12).

Appendix 2: Maximising the penalised likelihood function

The maximum of the function given by Eq. (15) satisfies equation

Taking the derivative we get the system of equations

where

and

(39)nc̃
j = ns̃

j × nã
j,

(40)ns̃
j ∶=

d∑
k=j

nc̃
k =

∏
1≤k<j

(1 − nã
k).

(41)ns̃
j = ns̃

j−1 − nc̃
j−1 = (1 − nã

j−1)ns̃
j−1.

(42)cj = sj × aj

(43)sj =
∏
1≤k<j

(1 − ak).

(44)nT
j = diag

(
1

ns
j

)
⋅ nU ⋅ diag

(
sj
)
.

(45)
�L

��
= 0.

(46)G�
⋅ V ⋅

(
nã − na

)
− 𝜆D�

k
⋅ Dk ⋅ 𝜃 = 0

(47)V ∶= diag
(
nK

)
.
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Taking derivative of both sides of Eq. (11) and using the expression

which follows from Eq. (14) we get the following expression for G

To solve Eq. (46) I use the approximations

which when substituted into Eq. (46) gives the linear iteration Eq. (16).
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