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Abstract A six-equation Baer–Nunziato model at pressure equilibrium for two ideal gases is derived from
a full non-equilibrium model by applying an asymptotic pressure expansion. Conditions on the interfacial
pressure are provided that ensure hyperbolicity of the reduced model. Closure conditions for the relaxation
terms are given that ensure consistency of the model with the second law of thermodynamics.

Keywords Two-phase flows · Hyperbolicity · Entropy · Relaxation · Closure conditions

1 Introduction

Compressible two-fluid flows where the fluid is a mixture of two components possibly at different phase have
a wide range of applications, for instance, a mixture of reacting gases or a mixture of a liquid and a gas.
In the literature, several approaches for the modeling of such flows are available. Our interest is in so-called
Baer–Nunziato-type models. These can be derived by the ensemble averaging procedure of Drew [4]. Note
that ensemble averaging differs from volume averaging, time averaging or statistical averaging. It accounts
for the uncertainty in the exact location of particular constituents at a particular time and, thus, allows the
interpretation of flow phenomena in terms of repeatability of flows. A comprehensive introduction to these
models can be found in the classical book of Drew and Passman [5].

Originally, Baer and Nunziato [1] proposed a two-fluid model for detonation waves in granular explosives.
This model is a full non-equilibrium model where each component has its own pressure, velocity and temper-
ature and is governed by its own set of fluid equations. In contrast to other two-fluid models separating the
fluids, here the fluids are assumed to coexist in each location due to an averaging procedure. The presence of
more than one component in the mixture is modeled by the concept of volume fractions αk describing the ratio
of volume of component k to the total volume in a ball in the limit when the volume of the ball tends to zero,
see [5]. It was modified and generalized by several authors. For instance, Saurel and Abgrall [18] included
relaxation terms for the pressure and the velocities of the components. By instantaneous relaxation procedures,
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equilibrium values for the pressure and the velocity can be found. Using further relaxation procedures to drive
the temperatures and the Gibbs free energies into equilibrium, the mass transfer between the two fluids can be
modeled, see Abgrall et al. [16,20] or Zein et al. [30].

According to [14,19,20]mechanical relaxation, thermal relaxation and relaxation of the chemical potentials
proceed on different time scales. Therefore, reduced models have been derived assuming zero relaxation times
for someof the non-equilibriumquantities relaxingmuch faster than the remainingquantities, see [10]. Thus, the
stiffness inherent in the non-equilibrium model is avoided that allows for a much faster numerical simulation
of the reduced model. Typically, the reduced models are classified by the number of equations in case of
two fluids in one space dimension. Usually reduced models suffer from some short-comings. For instance,
conservation of energy might be violated or the system loses its hyperbolicity. A detailed discussion of these
models is beyond the scope of this work. For this purpose, the interested reader is referred to [29] and the
references cited therein.

In [6,12], a hierarchy of two-fluid models derived from the Baer–Nunziato model [1] is investigated where
mechanical, thermal and chemical relaxation is assumed to proceed in different order. This hierarchy splits into
two branches of models distinguished by the assumption of dynamical velocity equilibrium and local velocity
equilibrium where either both fluids have the same velocity or the fluids have different velocities that coincide
for a particular state.

Since Baer–Nunziato-type models are averaged models, the resulting balance laws are underdetermined.
To compensate for the loss in information closure conditions have to be imposed additionally. Therefore,
there exists a rich literature on Baer–Nunziato-type models, see, for instance, [3,7–9,13,17] investigating
their properties, in particular, hyperbolicity and thermodynamical consistency. These properties are essential
from an analytical, numerical and physical point of view. For instance, hyperbolicity is needed in the analysis of
the Riemann problem and the construction of (approximate) Riemann solvers whereas a nonnegative entropy
production ensures consistency with the second law of thermodynamics and also might ensure well-posedness
so not yet mathematically rigorous verified. The analysis helps to identify physically admissible closure
conditions for the interfacial pressure and the interfacial velocity that occur as model parameters and cannot
be closed due to the averaging procedure.

We are particularly interested in a model where both fluids are assumed to have the same pressure, while
other quantities may be in non-equilibrium. This model may be applied whenever the pressure relaxation time
is much faster than the relaxation terms for the velocities, temperatures and chemical potentials. Such a model
of Baer–Nunziato type with highest level of detail consists of six balance equations where each fluid has its
own density and its own velocity. Further variables may be the common pressure and the volume fraction of
one of the fluids.

In the literature, it is often claimed that the so-called classical six-equation model, which denotes the
six-equation pressure-equilibrium Baer–Nunziato model, is ill-posed, see, for instance, [15,21].

The classical six-equation model is discussed in detail in the review article of Stewart and Wendroff [21].
There it is derived by some averaging procedure. This model differs from the model one obtains by taking
the asymptotic limit for the pressure relaxation procedure in the full Baer–Nunziato model as we will discuss
below. Moreover, source terms corresponding to relaxation processes for velocity, temperature and chemical
potentials are missing. In fact, this model is ill-posed. It may have complex eigenvalues if the velocities are in
non-equilibrium.

In the literature, several results can be found how to enforce hyperbolicity in the model. For instance,
Toumi and Raymond, cf. [24,25], consider a two-fluid model for mass, momentum and total enthalpy without
source terms but non-conservative product in the momentum equation with equal pressures. They claim that
by choosing a particular interfacial pressure hyperbolicity can be achieved. Unfortunately, a proof as well as
a physical explanation is missing.

In [22], Tiselj and Petelin introduce a virtual mass term that contains derivatives of the velocities to enforce
their model to be hyperbolic. However, this model is not asymptotically correct, i.e., it cannot be derived
from the full non-equilibrium model by a Chapman–Enskog-like asymptotic expansion. Moreover, also here
a physical motivation is missing.

Anothermodel is discussed byToro [23]who investigates ignition and combustion of reactive solid particles
in an expanding combustion chamber. The system also consists of six equations, two balances of mass and two
balances of momentum for both the solid and the gas. In addition, an energy balance equation for the gas is
considered while an evolution equation for the number of solid particles is used. The model exhibits relaxation
terms and is not hyperbolic as well.
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Nowadays, pressure-equilibrium Baer–Nunziato-type models seem not to be considered anymore in the
literature. Probably, it is common sense that models of this type without modifications are not hyperbolic. In
this work, we will show that providing the correct asymptotic limit from a Chapman–Enskog-like asymptotic
expansion and using an appropriate closure for the interfacial velocity and the interfacial pressure the Baer–
Nunziato model leads to a novel hyperbolic pressure-equilibrium model. To the best of our knowledge, it has
not yet been discussed in the literature. In particular, up to now this model was not derived. This is surprising
because a similar asymptotic procedure has been performed in [10] to derive asymptotically correct models at
velocity equilibrium and velocity–pressure equilibrium.

Our main objective is to verify that the pressure-equilibrium Baer–Nunziato model is not generally ill-
posed. We exemplify this by means of two ideal gases. At first glance, this might be considered a contradiction
to the underlying immiscibility assumption of Baer–Nunziato models because gases are known tomix perfectly
at equilibrium, i.e., they are miscible. We will comment on this in more detail below. Note that using general
equations of state makes the analysis much more cumbersome without any appreciable benefit. Moreover,
since we are using specific equations of state, we are able to derive explicit expressions for the relaxation terms
as well as for the constraints on the closure terms.

The paper is organized as follows. First of all, in Sect. 2 we derive the pressure-equilibrium Baer–Nunziato
model starting from a full non-equilibrium Baer–Nunziato model by investigating the limit of an asymptotic
pressure expansion. In Sect. 3, we investigate hyperbolicity of the resulting six-equation-model. In particular,
we derive constraints on the closure of the interfacial pressure ensuring hyperbolicity. Several choices for
the interfacial pressure and their influence on the hyperbolicity regime. Furthermore, in Sect. 4 we derive
constraints on the relaxation terms that ensure nonnegativity of the entropy production, i.e., the model is in
agreement with the second law of thermodynamics. We conclude with a summary of our findings in Sect. 5.

2 Derivation of the pressure-equilibrium model

To derive the pressure-equilibrium Baer–Nunziato model, we start with the full non-equilibrium model. Since
thismodel is known to beGalilean invariant, see, for instance, [13], the flux function is the same for all directions
ω when expanding the velocity vector with respect to a particular direction ω and its normal directions. For the
investigation of hyperbolicity, it is thus sufficient to consider only a quasi-one-dimensional flow, for instance,
in the x-direction. Since the evolution equations for all the d − 1 normal momentum components (with d
denoting the spatial dimension) correspond to linearly degenerated fields we may confine ourselves only to
the genuinely one-dimensional case as is typically done in the literature. Therefore, we consider the original
model introduced by Baer and Nunziato in 1986, see [1], which is given by

∂ (αkρk)

∂ t
+ ∂ (αkρkvk)

∂ x
= (−1)k+1C, (2.1a)

∂ (αkρkvk)

∂ t
+ ∂ (αkρkv

2
k + αk pk)

∂ x
= (−1)k+1

(
PI

∂ α1

∂ x
+ M

)
, (2.1b)

∂ (αkρk Ek)

∂ t
+ ∂ (αk(ρk Ek + pk)vk)

∂ x
= (−1)k

(
PIF − PIVI

∂ α1

∂ x
− E

)
, (2.1c)

∂ α1

∂ t
+ VI

∂ α1

∂ x
= C

�
+ F . (2.1d)

Here αk, ρk, vk, pk, Ek denote the volume fractions, the densities, the velocities, the pressures and the specific
total energies of the two components k = 1, 2. The volume fractions satisfy the saturation condition

α1 + α2 = 1. (2.2)

The specific total energies Ek are related to the specific internal energies ek via

Ek = ek + 1

2
v2k .

The pressures pk as well as the temperatures Tk are related to the densities and specific internal energies by
the equation of state. In the following, we will consider the ideal gas law which is given by the relations

ek = cv,kTk and pk = ρkek(γk − 1) ≡ ρkekκk . (2.3)
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The quantities cv,k and γk are material parameters, the specific heat capacity at constant volume and the
adiabatic exponent, respectively. Moreover, the interfacial velocity VI and the interfacial pressure PI are
model parameters. For more details on this, we refer to [13].

The expressions C,M,F, E describe the exchange of mass, momentum and energy between the compo-
nents. Here, C = C(μ2 − μ1) is a function of the difference of the chemical potentials μk of the components,
see [10]. Furthermore, we have

F = α1α2θ(p1 − p2), M = CVI + (ν + 1

2
C)(v2 − v1), (2.4a)

E = EC + (M − CVI)VI + H(T2 − T1) (2.4b)

with the nonnegative relaxation parameters θ, ν and H for pressure, velocity and temperature, respectively.
The quantities E and � are additional model parameters. Choosing PI = p2, VI = v1, � = ρ1 and E = E1 the
model coincides with the model given in [10].

For the derivation of the pressure-equilibrium model we perform a Chapman–Enskog-like analysis where
we proceed as follows: Based on the balance equations for total energy, we determine balance equations for
the internal energies as an intermediate step and afterward balance equations for the pressures and the pressure
difference. Using an asymptotic expansion for the pressures where the pressure relaxation parameter θ tends
to infinity, while the pressures p1 and p2 tend to the equilibrium pressure p, we find an expression for F
which has to be applied in the energy balance equations (2.1c) as well as in the transport equation (2.1d).
As a consequence, one of these three equations becomes redundant and we conclude with the six-equation
pressure-equilibrium model.

First we derive

∂

∂ t
(αkρkek) + ∂

∂ x
(αkρkekvk) + αk pk

∂

∂ x
vk

+ (−1)k
(

(VI − vk)PI
∂ α1

∂ x
− PIF

)
= E0k, (2.5)

with

E0k = (−1)k+1

(
(VI − vk)M + (T2 − T1)H + C

(
E − V 2

I + v2k

2

))
. (2.6)

From the equation of state (2.3), we then deduce

∂ pk
∂ t

+ γk pk
∂ vk

∂ x
+ vk

∂ pk
∂ x

+ (−1)k

αk

(
(pk + κk Pk)(VI − vk)

∂ α1

∂ x
− (pk + κk PI)F

)

= κk

αk
E0k + (−1)k

pk
αk

C
�

. (2.7a)

Finally, we obtain a balance equation for the pressure difference that is given by

∂

∂ t
(p1 − p2) + D1 + D2 + GF = Ep with (2.8a)

D1 =
(

γ1 p1
∂ v1

∂ x
+ v1

∂ p1
∂ x

)
−

(
γ2 p2

∂ v2

∂ x
+ v2

∂ p2
∂ x

)
, (2.8b)

D2 = 1

α1α2
(α2 (p1 + κ1PI) (v1 − VI) − α1 (p2 + κ2PI) (VI − v2))

∂ α1

∂ x
, (2.8c)

G =
(

1

α1
(p1 + κ1PI) + 1

α2
(p2 + κ2PI)

)
, (2.8d)

Ep =
(

κ1

α1
E01 − p1

α1

C
�

)
−

(
κ2

α2
E02 + p2

α2

C
�

)
. (2.8e)
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For the asymptotic expansion, we use the following notation

pk ∼ p0k + 1

θ
p1k + 1

θ2
p2k + · · · , (2.9a)

PI ∼ P0
I + 1

θ
P1
I + 1

θ2
P2
I + · · · . (2.9b)

From this, we infer

F ∼ θF0 + F1 + 1

θ
F2 + · · · (2.10a)

F0 := α1α2(p
0
1 − p02), (2.10b)

F1 := α1α2(p
1
1 − p12). (2.10c)

Inserting these expressions into Eq. (2.8a) and ordering the terms by their orders of θ leads to the following
relation for the pressure difference Δp := p1 − p2

∂ Δp0

∂ t
+ 1

θ

∂ Δp1

∂ t
+ D0

1 + 1

θ
D1
1 + D0

2 + 1

θ
D1
2 + G0F0 + G0F1 + 1

θ
G1F0

= E
0
p + 1

θ
E
1
p + O(θ−2) (2.11)

with

D0
1 =

(
γ1 p

0
1
∂ v1

∂ x
+ v1

∂ p01
∂ x

)
−

(
γ2 p

0
2
∂ v2

∂ x
+ v2

∂ p02
∂ x

)
, (2.12a)

D0
2 = 1

α1α2

((
α2(p

0
1 + κ1P

0
I

)
(v1 − VI) − α1

(
p02 + κ2P

0
I

)
(VI − v2)

) ∂ α1

∂ x
, (2.12b)

G0 =
(

1

α1

(
p01 + κ1P

0
I

) + 1

α2

(
p02 + κ2P

0
I

))
, (2.12c)

E
0
p =

(
κ1

α1
E
0
01 + p01

α1

C
�

)
−

(
κ2

α2
E
0
02 − p02

α2

C
�

)
, (2.12d)

E
0
0k = (−1)k+1 (

(VI − vk)M + (T2 − T1)H + (E − V 2
I + v2k/2)C

)
, (2.12e)

F1 = E
0
p − D0

1 − D0
2

G0 . (2.12f)

The relaxation parameter θ is assumed to be large. Thus, elimination of the leading order terms correspond-
ing to θ1 and θ0 in (2.11) provides us with conditions on the pressures p0k and F1. From the highest-order
terms, we obtain

F0 = 0. (2.13)

This implies

p01 = p02 = p and P0
I = P, (2.14)

where p and P are referred to as the equilibrium pressure and the equilibrium interfacial pressure, respectively.
Note that P = p if PI is chosen as a convex combination of p1 and p2; otherwise, also different equilibrium
states are possible.
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From the next order terms in (2.11), we then conclude

D0
1 =

(
γ1 p

∂ v1

∂ x
+ v1

∂ p

∂ x

)
−

(
γ2 p

∂ v2

∂ x
+ v2

∂ p

∂ x

)
, (2.15a)

D0
2 = 1

α1α2
(α2 (p + κ1P) (v1 − VI) − α1 (p + κ2P) (VI − v2))

∂ α1

∂ x
, (2.15b)

G0 = 1

α1α2
(p + (α2κ1 + α1κ) P) , (2.15c)

E
0
p = 1

α1α2
(α2κ1E01 − α1κ2E02) − 1

α1α2
p
C
�

, (2.15d)

E
0
0k = (−1)k+1 (

(VI − vk)M + (T2 − T1)H + (
E − V 2

I + v2k/2
) C)

, (2.15e)

F1 = E
0
p − D0

1 − D0
2

G0 . (2.15f)

The last Eq. (2.15f) has to be inserted into system (2.1). This yields seven equations. The balances of mass
and momentum are independent. One of the remaining three equations is redundant. Accordingly, there are
several possibilities to select six equations for the pressure-equilibrium Baer–Nunziato model. Of course, all
admissible choices are equivalent due to the correct asymptotic limit.
We prefer to use two energy balance equations due to the symmetry of the resulting system and the similarity
to models discussed in the literature, see, for instance, [21]:

∂ (αkρk)

∂ t
+ ∂ (αkρkvk)

∂ x
= (−1)k+1C, (2.16a)

∂ (αkρkvk)

∂ t
+ ∂ (αkρkv

2
k + αk p)

∂ x
+ (−1)k P

∂ α1

∂ x
= (−1)k+1M, (2.16b)

∂ (αkρk Ek)

∂ t
+ ∂ (αk(ρk Ek + p)vk)

∂ x
+ (−1)k P

(
VI

∂ α1

∂ x
+ D0

1 + D0
2

G0

)

= (−1)k
(
P
E
0
p

G0 − E
)

. (2.16c)

The system (2.16) needs to be closed by appropriate models for p, P and VI. The equilibrium pressure is
determined by the mixture pressure that for an ideal gas reads

p = (γ1 − 1)α1ρ1e1 + (γ2 − 1)α2ρ2e2, (2.17)

Note that in the system (2.16) the volume fraction α1 is a dependent variable because for an ideal gas it holds
p1 = p at pressure equilibrium. Then, we infer from (2.3)

α1 = p

(γ − 1)ρ1e1
(2.18)

satisfying the balance law for the volume fraction

∂ α1

∂ t
+ VI

∂ α1

∂ x
+ D0

1 + D0
2

G0 = C
�

+ E
0
p

G0 . (2.19)

Here, we employ the balances for internal energy

∂ (αkρkek)

∂ t
+ ∂ (αkρkekvk)

∂ x
+ αk p

∂ vk

∂ x
+ (−1)k P

(
(VI − vk)

∂ α1

∂ x
+ D0

1 + D0
2

G0

)

= (−1)k
(
P
E
0
p

G0 − E − v2k

2
C + vkM

)
. (2.20a)

The closure of the equilibrium interfacial pressure and the interfacial velocitywill be discussed in the subsequent
sections.
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Remark 1 (Other Baer–Nunziato-type models at pressure equilibrium)When comparing the 6-equation model
(2.16) with other well-known models at pressure equilibrium, cf. [21,24,25,28], we note that besides the
relaxation terms on the right-hand side the term (D0

1 + D0
2)/G

0 is missing in the energy equation (2.16c).
Thus, these models are not asymptotically correct derived from the non-equilibrium model (2.1), i.e., they are
not the limit of an Chapman–Enskog-like asymptotic expansion. Therefore, the system (2.16) closed by (2.17)
and (2.18) is a new model.

Remark 2 (Immiscibility and miscibility) The Baer–Nunziato model describes the multi-component flow of
immiscible fluids. Thus, at equilibrium each component fills a different portion of the accessible volume
separated by interfaces. For our analysis, we deliberately have chosen a mixture of ideal gases. This seems to
contradict the model since gases are known to mix perfectly, i.e., at equilibrium it must hold p = p1 + p2
instead of p = p1 = p2. To our opinion, this contradiction can be resolved by reinterpreting the notions of
pressures, densities and volume fractions. We recall that in the equilibrium system (2.16) it holds ek = cv,kTk
and p = ρkek(γk − 1). Introducing the notations ρ̂k := αkρk and p̂k := ρ̂kek(γk − 1) = αk p the equilibrium
system (2.16) can equivalently be rewritten as

∂ ρ̂k

∂ t
+ ∂ (ρ̂kvk)

∂ x
= (−1)k+1C, (2.21a)

∂ (ρ̂kvk)

∂ t
+ ∂ (ρ̂kv

2
k + p̂k)

∂ x
+ (−1)k P

∂ α1

∂ x
= (−1)k+1M, (2.21b)

∂ (ρ̂k Ek)

∂ t
+ ∂ (ρ̂k Ek + p̂k)vk)

∂ x
+ (−1)k P

(
VI

∂ α1

∂ x
+ D0

1 + D0
2

G0

)

= (−1)k
(
P
E
0
p

G0 − E
)

, (2.21c)

where in the equations of state for p and p̂k we use the same material parameters. For the pressure of the
mixture pmix , we have

pmix = p̂1 + p̂2 = α1 p + α2 p = p,

whereas the volume fractions αk satisfy

αk = p̂k
p̂1 + p̂2

.

Obviously, the miscible and the immiscible notation of the model are equivalent.
We prefer to use the notation of system (2.16) because this notation is more convenient for several reasons:

(i) comparability to the full model, (ii) implementation and (iii) extension to the general case of non-ideal
fluids.

3 Hyperbolicity

To investigate hyperbolicity of the six-equation model (2.16) at pressure equilibrium closed by (2.17) and
(2.19), we first rewrite the system in terms of the primitive variables volume fraction α1, equilibrium pressure
p, velocities vk and densities ρk . Let

uT = (u1, u2, u3, u4, u5, u6) = (α1ρ1, α1ρ1v1, α1ρ1E1, α2ρ2, α2ρ2v2, α2ρ2E2)

denote the conserved quantities of the system (2.16). Then, the primitive variables can be obtained as follows.

v1 = u2
u1

, v2 = u5
u4

, α1ρ1e1 = u3 − v1u2,

2
α2ρ2e2 = u6 − v2u5

2
, (3.1a)

p = (γ1 − 1)α1ρ1e1 + (γ2 − 1)α2ρ2e2, α1 = p

(γ1 − 1)ρ1e1
. (3.1b)
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From (2.1), we derive the evolution equations for the primitive variables:

∂ α1

∂ t
+ 1

G0

((
z2v2
α2

+ z1v1
α1

)
∂ α1

∂ x
+ (v1 − v2)

∂ p

∂ x
+ ρ1c

2
1
∂ v1

∂ x
− ρ2c

2
2
∂ v2

∂ x

)
= A, (3.2a)

∂ p

∂ t
+ 1

α1 α2 G0

(
z1z2 (v1 − v2)

∂ α1

∂ x
+ (α1z2v1 + α2z1v2)

∂ p

∂ x

+ α1z2ρ1c
2
1
∂ v1

∂ x
+ α2z1ρ2c

2
2
∂ v2

∂ x

)
= P, (3.2b)

∂ v1

∂ t
− P − p

α1ρ1

∂ α1

∂ x
+ τ1

∂ p

∂ x
+ v1

∂ v1

∂ x
= V1 (3.2c)

∂ v2

∂ t
+ P − p

α2ρ2

∂ α1

∂ x
+ τ2

∂ p

∂ x
+ v2

∂ v2

∂ x
= V2 (3.2d)

∂ ρ1

∂ t
+ 1

α1 α2 G0

(
ρ1z2 (v1 − v2)

∂ α1

∂ x
− ρ1α2 (v1 − v2)

∂ p

∂ x
(3.2e)

+ ρ1
(
α1ρ2c

2
2 + (P − p) κ

) ∂ v1

∂ x
+ α2ρ1c

2
1
∂ v2

∂ x

)
+ v1

∂ ρ1

∂ x
= R1,

∂ ρ2

∂ t
+ 1

α1 α2 G0

(
ρ2z1 (v1 − v2)

∂ α1

∂ x
+ ρ2α1 (v1 − v2)

∂ p

∂ x

+ α1ρ2c
2
2
∂ v1

∂ x
+ ρ2

(
α2ρ1c

2
1 + (P − p) κ

) ∂ v2

∂ x

)
+ v2

∂ ρ2

∂ x
= R2 (3.2f)

with relaxation terms

A = C
�

+ E
0
p

G0 , (3.3a)

P = 1

α1

(
κ1E

0
01 − p

�
C
)

+ 1

α2

(
κ2E

0
02 + p

�
C
)

, (3.3b)

Vk = (−1)k
1

αkρk
(vkC − M) , (3.3c)

Rk = (−1)k
ρk

αk

(
E
0
p

G0 −
(

1

ρk
− 1

�

)
C
)

. (3.3d)

Here, we use the notation

γ := α2γ1 + α1γ2, (3.4a)

κ := α2κ1 + α1κ2, (3.4b)

Δ := P − p, (3.4c)

c2k := γk p

ρk
, (3.4d)

zk := γk p + Δκk . (3.4e)

Then, we can rewrite G0 as

G0 = pγ + Δκ

α1 α2
.

In compact form, the system of primitive variables can be written in quasi-conservative form as

∂ w

∂ t
+ J(w)

∂ w

∂ x
= S(w)
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with w := (α1, p, v1, v2, ρ1, ρ2)T and S := (A,P,V1,V2,R1,R2)
T the vector of primitive variables and

relaxation terms, respectively. The matrix J is represented by a 2 × 2-block matrix

J =
(

J4 ∗4×2
02×4 diag(v1, v2)

)
, (3.5)

where the principal part J4 can be split into two parts separating terms depending and not depending on Δ

J4 =
⎛
⎜⎝
j11 j12 j13 j14
j21 j22 j23 j24
0 j32 v1 0
0 j42 0 v2

⎞
⎟⎠ + f (Δ)

⎛
⎜⎜⎝
j̃11 j̃12 j̃13 j̃14
j̃21 j̃22 j̃23 j̃24
j̃31 0 0 0
j̃41 0 0 0

⎞
⎟⎟⎠

with

f (Δ) := Δ

Δκ + pγ
.

Introducing the convex parameters

β1 := α1γ2

γ
, β2 := α2γ1

γ
, β1 + β2 = 1, βi ∈ [0, 1], i = 1, 2, (3.6)

the matrix entries can be written as

j11 = β2v1 + β1v2, j12 = γ

pγ1γ2
β1β2(v1 − v2), j13 = γ

γ2
β1β2, j14 = − γ

γ1
β1β2,

j21 = pγ1γ2
γ

(v1 − v2) , j22 = β1v1 + β2v2, j23 = β1γ1 p, j24 = β2γ2 p,

j32 = 1

ρ1
, j42 = 1

ρ2
,

j̃11 = (α1β2 − α2β1) (v1 − v2) , j̃12 = −κ
γ

γ1γ2
β1β2 (v1 − v2) , j̃13 = −κ

γ

γ2
β1β2,

j̃14 = κ
γ

γ1
β1β2, j̃21 = (v1 − v2) (p (β2γ1κ2 + β1γ2κ1) + Δκ1κ2) ,

j̃22 = − γ

γ1γ2
β1β2 (κ1 − κ2) (v1 − v2) , j̃23 = − (κ1 − κ2) α1β2 p,

j̃24 = (κ1 − κ2) α2β1 p, j̃31 = − (Δκ̄ + pγ̄ )

α1ρ1
, j̃41 = (Δκ̄ + pγ̄ )

α2ρ2
.

Obviously, the matrix is well defined if and only if

Δ �= − pγ

κ
= −p − p

κ
or, equivalently, P �= − p

κ
. (3.7)

This is a first constraint on the choice of the interfacial pressure at pressure equilibrium.
From the 2 × 2-block matrix (3.5), we conclude for the corresponding characteristic polynomial

det(J − λI6) = (λ − v1)(λ − v2)det(J4 − λI4),

where the characteristic polynomial of J4 reads

χ(λ):= det(J4 − λI4)

= (v1 − λ)2 (v2 − λ)2

+ (v1 − λ)2 ( f (Δ)α1 − β2) c
2
2 + (v2 − λ)2 ( f (Δ)α2 − β1) c

2
1

+ (v1 − λ) (v2 − λ) f (Δ)g
(
c21 − c22

)
− (v1 − λ) (v1 − v2) f (Δ)gc22
− (v2 − λ) (v1 − v2) f (Δ)gc21
− f (Δ) c21 c

2
2,
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with

g := (γ1 − γ2) α1α2

γ
= α1β2 − α2β1 = α1 − β1 = β2 − α2

and the single-fluid sound speeds ck defined by Eq. (3.4d).
Obviously, the velocities v1 and v2 are eigenvalues of J . In the following, we investigate the roots of the

characteristic polynomial χ . For this purpose, we introduce the transformation

x :=
(

λ − v1 + v2

2

)
, δ := v1 − v2

2
(3.8)

also applied in [21]. Then, the characteristic polynomial can be written in the form

P4(x) = x4 + a2x
2 + a1x + a0 (3.9)

with coefficients

a2 := −(A − f (Δ)D + 2δ2), (3.10a)

a1 := −2δ(B − f (Δ)C), (3.10b)

a0 := δ4 − δ2(A − f (Δ)D) − f (Δ)c21c
2
2 (3.10c)

and linear combinations of the squares of the single-fluid sound speeds

A := β1c
2
1 + β2c

2
2, B := β1c

2
1 − β2c

2
2, C := β2c

2
1 − β1c

2
2, D := β1c

2
2 + β2c

2
1. (3.11)

We emphasize that the sign of the terms A and D is independent of the enumeration of the fluids, whereas the
terms B and C flip sign.

To ensure hyperbolicity of ourmodel,we have to investigate the roots of the polynomial P4. In the following,
we will derive constraints on f (Δ) and, equivalently, Δ that ensure the existence of real roots. This problem
has already been considered in the context of ideal gases for f (Δ) = 0 or, equivalently, Δ = 0, see [15,28].
We start with a characterization for polynomials of the particular type (3.9) that can be found in [26].

Proposition 1 (Real roots of P4; Viher [26]) Let be

D1 := q2

4
+ r3

27
, r := −4a0 − 1

3
a22, q := 8

3
a0a2 − a21 − 2

27
a32 . (3.12)

Then, P4 has only real roots if and only if

D1 ≤ 0 and (3.13a)

a22 − 4a0 ≥ 0 and (3.13b)

a2 ≤ 0. (3.13c)

This theorem does not distinguish between simple and multiple roots. The latter are characterized in [27].
In the following, we derive sufficient and necessary conditions on f (Δ) or, equivalently, Δ for which the

conditions (3.13) hold. First of all, we verify that

f (Δ) ≤ 0 or, equiv., − γ

κ
p ≤ Δ ≤ 0 or, equiv., − p

κ
≤ P ≤ p. (3.14)

is a necessary condition on f (Δ) to ensure the existence of real roots of the characteristic polynomial (3.9)
for all admissible physical states

D := {(α1, ρ1, ρ2, v1, v2, p): α1 ∈ [0, 1]. vk ∈ R, ρk ∈ R+, ρ ∈ R+} .

Besides condition (3.7), this is another constraint on the choice of the interfacial pressure P at pressure
equilibrium.

Theorem 1 (Necessary condition) To ensure the existence of real roots of the characteristic polynomial (3.9)
for all physical admissible states in D, the condition (3.14) is necessary.
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Proof We consider each of the conditions in (3.13) separately:
Condition (3.13a) This condition only holds if r defined by (3.12) is not positive. We now derive a constraint
on f (Δ) that ensures the correct sign of r for all physical admissible states inD. For this purpose, we consider
the term −3r as a quadratic polynomial in f ≡ f (Δ) depending on the parameter y ≡ δ2:

G( f ; y) := 12a0 + a22 = D2 f 2 − 2
(
AD − 4Dy + 6c21c

2
2

)
f + (A − 4y)2,

where we suppress the dependency on the other physical quantities α1, ρk , vk and p. We now verify for which
f this polynomial is nonnegative for all velocity differences δ2.
Since D > 0 according to (3.10), we may factorize the polynomial

G( f ; y) = D2( f − f̂−)( f − f̂+) (3.15)

with

f̂± := 1

D2

(
6c21c

2
2 + AD − 4Dy ±

√
(6c21c

2
2 + AD − 4Dy)2 − D2(A − 4y)2

)
.

Herein, the discriminant can be written as

ĝ(y) = 12c21c
2
2

(
3c21c

2
2 + AD − 4Dy

)
.

Case 1a Obviously, if

δ2 >
AD + 3c21c

2
2

4D
=: δ̂2cri t , (3.16)

the discriminant is negative and, thus, G( f ; δ2) must be positive because D2 > 0, i.e., in this case there is no
constraint on f (Δ).

Case 1b On the other hand, if 0 ≤ δ2 ≤ δ̂2cri t , i.e., −3c21c
2
2 ≤ AD, then the roots f̂± are real and we conclude

from the factorization (3.15) that G( f ; δ2) is nonnegative if

f ≤ f̂− or f ≥ f̂+. (3.17)

By definition of f̂± and the positivity of the single-fluid sound speeds we check that

0 ≤ f̂− ≤ (A − 4δ2)D + 6c21c
2
2

D2 ≤ f̂+ ≤ 2
(A − 4δ2)D + 6c21c

2
2

D2 = f̂− + f̂+. (3.18)

Note that for 0 < δ2 = A/4 < δ̂2cri t theminimumand themaximumare attained, i.e., f̂− = 0 and f̂+ = 12c21c
2
2.

To summarize the findings of the above investigations for the different cases, we conclude that G is
nonnegative for all physical states if the condition (3.14) holds.
Condition (3.13b) For the investigation of this condition, we consider the term a22 − 4a0 as a quadratic
polynomial in f ≡ f (Δ) depending on the parameter y ≡ δ2:

F( f ; y) := a22 − 4a0 = D2 f 2 − 2
(
AD + 4Dy − 2c21c

2
2

)
f + A(A + 8y),

where we suppress the dependency on the other physical quantities α1, ρk , vk and p. We now verify for which
f this polynomial is nonnegative for all velocity differences δ2.
Since D > 0 according to (3.10), we may factorize the polynomial

F( f ; y) = D2 ( f (Δ) − f−) ( f (Δ) − f+) (3.19)

with

f± := 1

D2

(
AD + 4Dy − 2c21c

2
2 ± 2

√
(2Dy − c21c

2
2)

2 − c21c
2
2AD

)
.
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Herein, the discriminant can be factorized by

g(y) = 4D2 (y − y−) (y − y+) , y± :=
c1c2

(
c1c2 ± √

AD
)

2D
.

Since the product AD is positive due to the positivity of the single-fluid sound speeds and (3.11), the roots y±
are real numbers.

Case 1 Obviously, the discriminant g becomes negative if y− < y < y+. Since y ≡ δ2, the admissible regime
reduces to

max(0, δ2cri t,−) < δ2 < δ2cri t,+, δ2cri t,± := y±.

Thus, the polynomial F( f ; δ2) must be positive because D2 > 0, i.e., in this case there is no constraint on
f (Δ).

Case 2 On the other hand, if δ2 ≥ δ2cri t,+ or δ2 ≤ max(0, δ2cri t,−) , then the discriminant g is nonnegative and

the roots f± are real. According to the factorization (3.19) the polynomial F( f ; δ2) is nonnegative if and only
if

f ≤ f− or f ≥ f+. (3.20)

If δ2 ≥ δ2cri t,+, then we conclude from the definition of the roots f±:

0 ≤ f− ≤ A + 4δ2D − 2c21c
2
2

D2 ≤ f+ ≤ 2
A + 4δ2D − 2c21c

2
2

D2 = f− + f+.

For the other option, we first note that the interval δ2 ≤ max(0, δ2cri t,−) is non-empty if and only if AD ≤ c21c
2
2.

Since by definition (3.11) of A and D it holds AD ≥ c21c
2
2, the only choice is AD = c21c

2
2. This is possible

only for a pure fluid, i.e., α1 = 1 or α2 = 1. Then, the roots coincide, i.e., f− = f+ = −c21c
2
2/D

2. Thus, for
this case the polynomial F( f ; δ2) is nonnegative, i.e., no constraint is imposed on f (Δ).
Condition (3.13c) Obviously, this condition holds by positivity of A and D due to the positivity of the single-
fluid sound speeds. 	


To derive sufficient conditions on f (Δ) in the non-equilibrium case, the sign of D1 needs to be further
investigated. For this purpose, we first note that by rescaling of D1 we may equivalently consider the sign of
D̃1 := q̃2 − 4r̃3 with r̃ := −3r = 12a0 + a22 and q̃ := −27q = 12a32 + 27a21 − 72a0a2. To investigate the
sign of D̃1, we split this term into two parts

D̃1 = 432c21c
2
2

(
D̃s
1 + D̃t

1

)
(3.21)

with

D̃s
1 = f (Δ)

(
256r̃ s8δ

8 + 64r̃ s6δ
6 + 16r̃ s4δ

4 + 4r̃ s2δ
2 + r̃ s0

)
, (3.22a)

D̃t
1 = −β1β2( f (Δ) + 1)2δ2

(
256r̃ t8δ

6 + 64r̃ t6δ
4 + 16r̃ t4δ

2 + 4r̃ t2
)

(3.22b)

and coefficients

r̃ s8 := 1, (3.23a)

r̃ s6 := 4 (Df (Δ) − A) , (3.23b)

r̃ s4 := 8c21c
2
2 f (Δ) + 6(Df (Δ) − A)2, (3.23c)

r̃ s2 := 4(Df (Δ) − A)
(
(Df (Δ) − A)2 + 4c21c

2
2 f (Δ)

)
, (3.23d)

r̃ s0 := (
4 f (Δ)c21c

2
2 + (Df (Δ) − A)2

)2
(3.23e)
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and

r̃ t8 := 1, (3.24a)

r̃ t6 := 3 (Df (Δ) − A) , (3.24b)

r̃ t4 := 3(Df (Δ) − A)2 + 9c21c
2
2

(
4 f (Δ) − 3β1β2( f (Δ) + 1)2

)
, (3.24c)

r̃ t2 := (Df (Δ) − A)
(
(Df (Δ) − A)2 + 36c21c

2
2 f (Δ)

)
. (3.24d)

Here, we have applied the relations

C2 − D2 = B2 − A2 = −4β1β2c
2
1c

2
2, AD − CB = B2 − A2 + 2c21c

2
2

that hold by (3.11). The derivation of this particular splitting is tedious work collecting appropriate terms. It
is motivated by the observation that for local single-fluid the sign of D̃1 can be easily checked, see Remark 4.

In case of a genuine two-fluid flow, the representation (3.21) of D̃1 is too complex to explicitly determine
the roots. The best we may hope for is to find another constraint on f (Δ) that ensures the existence of real
roots of the characteristic polynomial.

Theorem 2 (Sufficient condition in case of f (Δ) �≡ 0) Let the necessary condition (3.14) hold true for all
admissible states in D. If either Δ is independent of δ or in case of Δ = Δ(δ), there exists δ such that

δ2 = 1

4

(
A − Df (Δ(δ)) + 2| f (Δ(δ))|1/2c1c2

)
, (3.25)

then the roots of the characteristic polynomial (3.9) are real for all δ ∈ R if and only if either the flow locally
degenerates to a single-fluid flow, i.e.,

β1β2 = 0 or, equivalently, α1α2 = 0, (3.26)

or

f (Δ) = −1 or, equivalently, Δ = −p or, equivalently, P = 0. (3.27)

Proof We now factorize the term D̃s
1 as follows

D̃s
1 = 256 f (Δ)

(
δ2 − y+

)2 (
δ2 − y−

)2
, y± := 1

4

(
A − Df (Δ) ± 2| f (Δ)|1/2c1c2

)
. (3.28)

Since f (Δ) ≤ 0, this term is non-positive and vanishes if and only if f (Δ) = 0 or δ2 coincides with y±, i.e.,
δ2 = y±. Note that whenever Δ depends on δ the latter requires to solve a nonlinear problem to determine δ2.
That is why we need assumption (3.25). Obviously, y+ > 0 is always real, whereas y− may become negative.
We now plug δ2 = y+ into D̃t

1 and check the sign of this term. For this purpose, we first note that

D̃t
1 = −β1β2( f (Δ) + 1)2δ2

(
4(4δ2 + Df (Δ) − A)3

+144c21c
2
2

(
(4 f (Δ) − 3β1β2( f (Δ) + 1)2)δ2 + f (Δ)(Df (Δ) − A)

))
. (3.29)

For δ2 = y+, we then obtain

D̃t
1 = β1β2( f (Δ) + 1)2y+(

256c31c
3
2| f (Δ)|3/2 + 108β1β2( f (Δ) + 1)2(A − Df (Δ) + 2| f (Δ)|1/2c1c2)

)
.

This term vanishes if and only if f (Δ) = −1 or β1β2 = 0, i.e., the flow degenerates locally to a single-fluid
flow. Otherwise, this term is positive and we conclude for δ2 = y+

D̃1 = 432c21c
2
2

(
D̃s
1 + D̃t

1

)
= 432c21c

2
2 D̃

t
1 > 0,

and, thus, by Proposition 1 our characteristic polynomial (3.9) has complex roots and the flow model is not
hyperbolic. From this, we finally conclude that the model has only real roots for all δ, if (3.26) or (3.27) hold
true. 	
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Remark 3 (Local velocity equilibrium) For states at local velocity equilibrium, i.e., δ = 0, we immediately
conclude from (3.21), (3.22) and (3.23)

D̃1 = 432c21c
2
2 D̃

s
1 = 432c21c

2
2 f (Δ)r̃ s0 = 432c21c

2
2 f (Δ)

(
4 f (Δ)c21c

2
2 + (Df (Δ) − A)2

)2
.

Obviously, D̃1 is non-positive if and only if the condition (3.14) holds. Thus, this condition is both necessary
and sufficient to ensure the existence of real roots due to Proposition 1.

The above result can be extended to weak velocity non-equilibrium, i.e., |δ| � 1, provided that Δ �= 0 and
f (Δ) < 0 for δ = 0. If Δ is either independent of δ or depends smoothly on δ, then Δ �= 0 and f (Δ) < 0 in
a neighborhood of local velocity equilibrium. Thus, it holds D̃1 < 0 for sufficiently small |δ|.
Remark 4 (Local single-fluid flow) If the flow locally degenerates to a single-fluid flow, i.e., α1α2 = 0 or,
equivalently, β1β2 = 0, then the roots of characteristic polynomial (3.9) are real if and only if the condition
(3.14) holds for all admissible states in D. In particular, there exist one real double root and two single real
roots if

f (Δ) = 0 or f (Δ) = − 1

c2j

(
c2i + 4δ2 ∓ 4|δ|ci

)
, i, j = 1, 2, , i �= j .

This can be concluded from the simplification of (3.21)

D̃1 = 432c21c
2
2c

4
j f (Δ)

(
f (Δ) − f −

) (
f (Δ) − f +

)
, f ± := − 1

c2j
(ci ∓ 2|δ|)2

and applying Theorem 1, Proposition 1 and the characterization of multiple roots in [27].

Combining Theorems 1 and 2 we conclude with the main result.

Theorem 3 (Global hyperbolicity) Let Δ, and, equivalently, P be independent of δ. Then, the pressure-
equilibrium system (3.2) is hyperbolic for all admissible states in D if and only if the interfacial pressure at
pressure equilibrium vanishes, i.e., P = 0.

Note that there might exist P = P(δ) such that for all δ the condition is (3.25) is not satisfied and the system
(3.2) is globally hyperbolic.

We will now discuss three particular choices for Δ and, equivalently, P , and their influence on the hyper-
bolicity.

Remark 5 (Special case: Δ = 0, i.e., P = p) For this particular choice f (Δ) vanishes and, thus, the term
D̃s
1 ≡ 0 vanishes according to (3.22) and for D̃t

1 we derive from (3.22) and (3.24)

D̃t
1 = −4β1β2δ

2 (
(4δ2 − A)3 − 108β1β2c

2
1c

2
2δ

2)
= −4β1β2δ

2
(
δ2/3 − δ

2/3
0

)((
δ2/3 − δ

2/3
0 /2

)2 + 3

)

with

4δ20 = (
(β1c

2
1)

1/3 + (β2c
2
2)

1/3)3 .

Then, we conclude from (3.21) that D̃1 is positive if and only if

0 < δ2 < δ20 .

Therefore, the roots of the characteristic polynomial (3.9) are real if and only if

δ = 0 or δ2 ≥ δ20,

i.e., the pressure-equilibrium system (3.2) is hyperbolic for admissible states in D either at local velocity
equilibrium (v1 = v2) or at sufficiently strong velocity non-equilibrium (|v1 − v2| ≥ δ0. This confirms
Wendroff’s W-inequality [15,28].
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Remark 6 (Special case: Δ = ΔB , i.e., P = p+ΔB) Kumbaro et al. [11] suggested the following non-trivial
choice

ΔB = −4θMδ2, M := α1α2ρ1ρ2

α1ρ2 + α2ρ1
, θ ≥ 1. (3.30)

The parameter θ was introduced by Kumbaro et al. [11], whereas in Bestion’s original work θ = 1, cf. [2].
Obviously, the condition (3.14) that is necessary to ensure the existence of real roots due to Theorem 1 is
satisfied if it holds

0 ≤ δ2 <
1

4θ

α1ρ2 + α2ρ1

α1α2ρ1ρ2

γ

κ
p, (3.31)

i.e., for δ2 exceeding the bound on the right-hand side the characteristic polynomial (3.9) has complex roots.
On the other hand, for δ2 close to zero we may expand f (ΔB) in powers of δ2 using Taylor expansion as

f (ΔB) = −4θM

γ p
δ2 + O (

δ4
)
.

Applying this expansion in (3.22), we obtain

D̃s
1 = −4Mθ A4δ2

γ p
+ O (

δ4
)
, D̃t

1 = 4β1β2A
3δ2 + O (

δ4
)
.

Then, the term D̃1 defined by (3.21) is non-positive, if

θ ≥ β1β2γ p

MA
(3.32)

provided that δ2 is sufficiently small. The equality follows by the definitions of c2i andβi . In [11], it ismentioned
that “we find, using a perturbation method Toumi [24], that the model is hyperbolic provided that the interface
pressure coefficient θ is greater than a minimum value θ0 = 1. However, there is no guarantee that this value
will lead to a hyperbolic system for any flow.” In fact, we have verified this statement by the above observations.

Indeed, the above result can be extended to

Δ = M|δ|q + O (|δ|q+ε
)
, q ∈ (0, 2], ε > 0,

whereM may depend on the physical state except for the velocities. Performing a similar perturbation analysis,
we obtain

D̃1 = 432c21c
2
2

(
M

γ p
A4|δ|q + 4β1β2A

3δ2 + O
(
|δ|q+min(2,q)

))
.

For |δ| sufficiently small, we then conclude that D̃1 is non-positive if and only if

{
M ≤ 0, 0 < q < 2
M ≤ − 4β1β2

A γ p, q = 2
.

Obviously, for q > 2 the term D̃1 is positive.
In summary, choosing the interfacial pressure at pressure equilibrium as P = p + ΔB , the hyperbolicity

region for the pressure equilibrium system (3.2) is extended near to local velocity equilibrium in comparison
with the choice P = p in Remark 5.
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Remark 7 (Special case: Δ = −p, i.e., P = 0) Since in this case we have f (Δ) = −1, we conclude from
Theorem 2 that the characteristic polynomial (3.9) has only real roots independent of δ. In general, these roots
are all distinct. To see this, we once more consider D̃1. Here, we obtain for the coefficients (3.23)

r̃ s8 := 1,

r̃ s6 := −4 (D + A) = −4
(
c21 + c22

)
,

r̃ s4 := −8c21c
2
2 + 6(D + A)2 = −8c21c

2
2 + 6

(
c21 + c22

)2
,

r̃ s2 := −4(D + A)
(
(D + A)2 − 4c21c

2
2

) = −4
(
c21 + c22

) ((
c21 + c22

)2 − 4c21c
2
2

)
,

r̃ s0 := (−4c21c
2
2 + (D + A)2

)2 =
(
−4c21c

2
2 + (

c21 + c22
)2)2

and we may rewrite (3.21) as

D̃1 = 432c21c
2
2 D̃

s
1 = −432c21c

2
2

((
4δ2 − c21 − c22

)2 − 4c21c
2
2

)2
.

Obviously, D̃1 is non-positive and it only vanishes if the non-resonance condition holds, i.e.,

4δ2 = (c1 ± c2)
2,

where the characteristic polynomial has one double root and two single roots according to Viher, cf. [27]. Since
it is reasonable to assume that there is some symmetry in the distribution of the roots, we can determine the
roots by the factorization of polynomial (3.9)

P4(x) = (
x − x−

1

) (
x − x+

1

) (
x − x−

2

) (
x − x+

2

)

with x±
1 := δ ± c1 and x

±
2 := δ ± c2. By the transformation (3.8), the roots of the polynomial χB(λ) and, thus,

the eigenvalues of the matrix B are determined by

λ±
i = vi ± ci , i = 1, 2.

Note that these eigenvalues are the same as in case of the full non-equilibrium Baer–Nunziato model, cf.
[13]. In the non-resonance case, we have four distinct real roots and, thus, there exists a basis of eigenvectors.
Hence, the model is hyperbolic and we can explicitly determine left and right eigenvectors as well as Riemann
invariants and check whether the corresponding fields are genuinely nonlinear or linearly degenerated.

Finally, we would like to point out that for this particular choice ofΔ, i.e., P = 0, the pressure-equilibrium
Baer–Nunziato model (2.16) is conservative, i.e., all non-conservative products vanish. Therefore, this choice
seems to be optimal. However, there are problems when verifying that the entropy production is nonnegative,
see Sect. 4.

Remark 8 (Baer–Nunziato model at full non-equilibrium) Although the above investigation has been per-
formed for the Baer–Nunziato model at pressure equilibrium, the results have a direct consequence for the full
non-equilibrium model. Typically, the models are closed by interfacial pressure PI and interfacial velocity VI
where PI does not tend to zero when approaching pressure equilibrium. For instance, Baer and Nunziato [1]
use

PI = p1, VI = v2. (3.33)

In [18], Saurel and Abgrall suggest

PI = α1 p1 + α2 p2, VI = α1ρ1v1 + α2ρ2v2

α1ρ1 + α2ρ2
. (3.34)

Furthermore, in [20] Saurel et al. apply

PI = (Z1 p2 + Z2 p1 + sign(∂xα1)(v2 − v1)Z1Z2) /(Z1 + Z2), Zk := ρkck, (3.35a)

VI = (Z1v1 + Z2v2 + sign(∂xα1)(p2 − p1)) /(Z1 + Z2). (3.35b)
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Another approach chooses a convex combination of the velocities for the interfacial velocity and then a unique
interfacial pressure is derived such that the entropy production resulting from the interfacial pressure and
velocity vanishes, cf. [7,9,13]

VI = β1v1 + β2v2, β1, β2 ∈ [0, 1], β1 + β2 = 1, (3.36a)

PI = β1T1 p2 + β2T2 p1
β1T1 + β2T2

. (3.36b)

4 Second law of thermodynamics

From a physical point of view, amodel is admissible if it is in agreement with the principles of thermodynamics.
For this purpose, we briefly summarize the entropy law for the non-equilibrium model and discuss the entropy
production terms providing us with admissibility criteria for the interfacial pressure and the interfacial velocity
aswell as the relaxation terms.Applying the pressure asymptotic to the entropy law,we then derive admissibility
criteria for the pressure-equilibrium model.

4.1 Non-equilibrium model

In order to investigate thermodynamical properties of the non-equilibrium model (2.1), we assume that the
entropy sk = sk(τk, ek) of each component satisfies

Tkdsk = dek + pkdτk = dek − pk
ρ2
k

dρk (4.1)

with partial derivatives

∂sk
∂τk

(τk, ek) = pk
Tk

> 0,
∂sk
∂ek

(τk, ek) = 1

Tk
> 0. (4.2)

Furthermore, to ensure thermodynamic stability we assume that the Hessian of sk is negative-definite, i.e.,

∂2sk
∂2τk

(τk, ek) ≤ 0,
∂2sk
∂2ek

(τk, ek) ≤ 0,

∂2sk
∂2τk

(τk, ek)
∂2sk
∂2ek

(τk, ek) ≥
(

∂2ek
∂τk∂ek

(τk, ek)

)2

. (4.3)

Bymeans of the evolution equations for themasses (2.1a), the volume fractions (2.1d), (2.2) and the internal
energies (2.5), we obtain the evolution equations for the volume specific entropies

∂t (αkρksk) + ∂ (αkρkskvk)

∂ x
= Πk + Sk (4.4)

with the entropy production due to the interfacial pressure and the interfacial velocity as well as the relaxation
process

Sk := (−1)k+1 1

Tk

((
E − V 2

I + v2k

2
− μk + pk

�

)
C

+ (VI − vk)M + (T2 − T1)H + (pk − PI)F)

= 1

Tk

(
E0k + (−1)k+1

((
pk
�

− μk

)
C + (pk − PI)F

))
(4.5a)

Πk := (−1)k+1 1

Tk
(pk − PI) (vk − VI)

∂ α1

∂ x
(4.5b)
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with the chemical potentials

μk := ek + τk pk − Tksk .

Introducing the entropy of the components of the mixture

ρs := α1ρ1s1 + α2ρ2s2 (4.6)

we finally obtain the entropy law of the mixture

∂t (ρs) + ∂ (α1ρ1s1v1 + α2ρ2s2v2)

∂ x
= Π1 + Π2 + S1 + S2. (4.7)

4.2 Pressure-equilibrium model

To derive the entropy equation at pressure equilibrium, we apply the pressure expansion (2.9) in (4.4). Since
the entropies sk and the temperatures Tk depend on the specific volume τk and the internal energy ek , we
perform a change of variables according to (2.3)

sk(τk, ek) = sk(τk, pkτk/κk) =: sk(τk, pk), (4.8a)

Tk(τk, ek) = Tk(τk, pkτk/κk) =: T k(τk, pk). (4.8b)

Then, by the asymptotic expansion (2.9) we conclude in the limit θ → ∞ with

∂t (αkρks
0
k) + ∂ (αkρks0kvk)

∂ x
= Π

0
k + S0

k, (4.9)

where the production terms (4.5) corresponding to the interfacial pressure and the interfacial velocity as well
as the relaxation process tend to

S0
k := 1

T
0
k

(
E
0
0k + (−1)k+1 1

T
0
k

((
p

�
− μ0

k

)
C + (p − P)F1

))

= (−1)k+1 1

T
0
k

((
E − V 2

I + v2k

2
− μ0

k + p

�

)
C + (VI − vk)M

+
(
T
0
2 − T

0
1

)
H + (p − P)F1

)
, (4.10a)

Π
0
k := (−1)k+1 1

T
0
k

(p − P) (vk − VI)
∂ α1

∂ x
. (4.10b)

Here, E0
0k is determined by (2.12e). In particular, we note that due to the asymptotic expansions (2.9) and

(2.10)

(pk − PI)F = (
(p0k − P0

I ) + O(θ−1)
) (

θF0 + F1 + O(θ−1)
) = (p − P0

I )F1 + O(θ−1),

because it holds F0 = 0 in the limit θ → ∞. For the mixture, we then obtain

∂ (ρs0)

∂ t
+ ∂

(
α1ρ1s01v1 + α2ρ2s02v2

)
∂ x

= Π
0
1 + Π

0
2 + S0

1 + S0
2 =: S0. (4.11)

To investigate the sign of the entropy production S0 we first split the term E0
p into the contributions of the

mechanical, thermal and chemical relaxation processes, i.e.,

E0
p := E0

p,MM + E0
p,HH + E0

p,C C with (4.12a)

E0
p,M := 1

α1α2
(α2κ1 (VI − v1) + α1κ2 (VI − v2)) , (4.12b)

E0
p,H := 1

α1α2
κ

(
T
0
2 − T

0
1

)
, (4.12c)

E0
p,C := 1

α1α2

(
κ

(
E − V 2

I

) − p

�
+ 1

2

(
α2κ1v

2
1 + α1κ2v

2
2

))
. (4.12d)
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Then, we can split the entropy production term similarly

S0 := S0D + S0MM + S0HH + S0C C with (4.13a)

S0D := p − P

T
0
1T

0
2

((
T
0
2v1 − T

0
1v2

) ∂ α1

∂ x
+

(
T
0
1 − T

0
2

)(
VI

∂ α1

∂ x
+ D0

1 + D0
2

G0

))
, (4.13b)

S0M := 1

T
0
1T

0
2

(
T
0
1v2 − T

0
2v1 +

(
T
0
2 − T

0
1

) (
VI + (p − P)

E0
p,M
G0

))
, (4.13c)

S0H := 1

T
0
1T

0
2

(
T
0
2 − T

0
1

)2 (
1 + κ (p − P)

α1α2G0

)
, (4.13d)

S0C := 1

T
0
1T

0
2

((
T
0
2 − T

0
1

) (
E − V 2

I + p

�
+ (p − P)

E0
p,C
G0

)
+

T
0
2

(
1

2
v21 − μ0

1

)
− T

0
1

(
1

2
v22 − μ0

2

))
. (4.13e)

Here, it is important to note that the term S0D only depends on spatial derivatives of the volume fraction, the
velocities and the pressure but is independent of the relaxation processes.

In the following investigations, we will now neglect relaxation due to chemical reactions, i.e., C = 0. This
case becomes significant for frozen flows. Then, the entropy production reduces to

S0 = S0D + S0MM + S0HH

= 1

T
0
1T

0
2

((
T
0
2v1 − T

0
1v2 + VI

(
T
0
1 − T

0
2

))(
(p − P)

∂ α1

∂ x
− M

)

−
(
T
0
1 − T

0
2

)
(P − p)

D0
1 + D0

2 − E0
p,MM

G0

+
(
T
0
2 − T

0
1

)2 (
1 + κ (p − P)

α1α2G0

)
H

)
. (4.14)

To enforce nonnegativity of the entropy production, we have to impose constraints on the mechanical and
thermal relaxation termsM andH as well as the interfacial velocity VI. For this purpose, we draw the following
conclusions from (4.14).

1. In case of local thermal equilibrium, i.e., T
0
1 = T

0
2 = T , the entropy production reduces to

S0 = 1

T
(v1 − v2)

(
(P − p)

∂ α1

∂ x
− M

)
.

Obviously, in this case the interfacial velocity does not enter. The sign of the entropy production can be
controlled by the term

(v2 − v1)M
using a sufficiently large velocity relaxation parameter ν, see (2.4a).

2. Also in case of thermal non-equilibrium the sign of term S0D can be controlled by a sufficiently large velocity
relaxation parameter ν, if the interfacial velocity VI is chosen as a convex combination of the single fluid
velocities v1 and v2, i.e., VI = β1 v1 + β2 v2, β1 + β2 = 1, β1, β2 ∈ [0, 1]. Then, we have(

T
0
2v1 − T

0
1v2 + VI

(
T
0
1 − T

0
2

))
= (β1 T

0
1 + β2 T

0
2) (v1 − v2).

3. To ensure at least hyperbolicity in the neighborhood of local velocity equilibrium the pressure difference
Δ = P − p must be non-positive. Since κ and G0 are positive, the entropy production due to thermal
relaxation S0HH is nonnegative due toH ≥ 0, see (2.4b). This implies that for sufficiently large temperature
relaxation parameter H the third term S0HH dominates the second term S0MM.
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The above observations are summarized in the following

Theorem 4 (Entropy production) Let the interfacial velocity VI be a convex combination of the single-fluid
velocities v1 and v2. The flow is assumed to be chemically frozen, i.e., C = 0. Then, the entropy production is
nonnegative if the velocity relaxation parameter ν and the temperature relaxation parameterH are sufficiently
large.

This theorem applies to both a small pressure difference Δ = P − p choosing for instance the interfacial
pressure P = p or P = p+ΔB near to local velocity equilibrium according to Remark 5 and 6 , respectively,
and strong pressure difference when choosing P = 0, see Remark 7.

Remark 9 (Interfacial pressure) From the above observations, we conclude that at pressure equilibrium the
entropy production is always nonnegative if the flow is at local velocity and local temperature equilibrium.
Otherwise the local flow must locally tend to velocity and temperature equilibrium. The faster the local
relaxation must be, the larger the pressure difference Δ = P − p.

Remark 10 (Interfacial velocity) It is worthwhile mentioning that the second law of thermodynamics does not
provide a closure for the interfacial velocity. In the literature, the choice of a convex combination is frequently
used.

In the literature, several closures for the interfacial pressure and the interfacial velocity have been discussed
in the context of the full non-equilibrium Baer–Nunziato model. In the following, we check for some of these
closures whether they are also admissible at pressure equilibrium.

Remark 11 (Baer–Nunziato model at full non-equilibrium) In [7,9,13], a convex combination of the velocities
for the interfacial velocity is considered and then a unique interfacial pressure is derived such that the entropy
production due to Π1 + Π2 vanishes, see Equation (3.36). At pressure equilibrium p1 = p2 = p, these
equations are determined by

VI = β1v1 + β2v2, β1, β2 ∈ [0, 1], β1 + β2 = 1,

PI = β1 p2 + β2T2 p1
β1T1 + β2T2

= p.

Then, the entropy production terms read

S0D = 0, S0M = β1T
0
1 + β2T

0
2

T
0
1T

0
2

(v2 − v1), S0H =
(
T
0
1 − T

0
2

)2
T
0
1T

0
2

.

From this, we conclude for the mechanical relaxation process thatM must have the same sign as the velocity
difference v1 − v2 and the thermal relaxation processH must be nonnegative. This is the case, see (2.4a) and
(2.4b). Note that the closure proposed by Baer and Nunziato [1], see Eq. (3.33), fits into this class of closures
when choosing β1 = 0 and β2 = 1.

The closure of Saurel and Abgrall [18], see Equation (3.34), at pressure equilibrium reads

PI = p, VI = α1ρ1v1 + α2ρ2v2

α1ρ1 + α2ρ2
(4.15)

results in similar entropy production terms

S0D = 0, S0M = v2 − v1

T
0
1T

0
2

α1ρ1T
0
1 + α2ρ2T

0
2

α1ρ1 + α2ρ2
, S0H =

(
T
0
1 − T

0
2

)2
T
0
1T

0
2

.

The conclusion for the mechanical and thermal relaxation process is the same as before.
Furthermore, in [20] Saurel et al. introduce a closure, see Eq. (3.35), that at pressure equilibrium reads

PI = p + sign(∂xα1)(v2 − v1)Z
0
1Z

0
2

Z
0
1 + Z

0
2

, VI = Z
0
1v1 + Z

0
2v2

Z
0
1 + Z

0
2

, Z
0
k := ρkc

0
k .
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For this closure, we derive

S0D = Z
0
1Z

0
2

T
0
1T

0
2

Z
0
1T

0
1 + Z

0
2T

0
2

(Z
0
1 + Z

0
2)

2

∣∣∣∣∂ α1

∂ x

∣∣∣∣ (v2 − v1)
2

+ Z
0
1Z

0
2

T
0
1T

0
2

T
0
1 − T

0
2

Z
0
1 + Z

0
2

(v1 − v2)
D0
1 + D0

2

G0 sign

(
∂ α1

∂ x

)
.

While the first term is nonnegative, we cannot control the sign of the second term except at local velocity
equilibrium.We emphasize that the second term arises due the asymptotic derivation of the pressure equilibrium
model. It is not present in the full non-equilibrium model for which the closure was originally derived. Thus,
we conclude that not all closures derived at non-equilibrium are admissible for the equilibrium model.

5 Conclusion

We have derived a six-equation model at pressure equilibrium where we confine ourselves to two ideal gases.
For this purpose, we have incorporated an asymptotic expansion for the single-fluid pressures and the interfacial
pressure into the full non-equilibrium model. Considering the asymptotic limit yields the reduced model. In
contrast to well-known six-equation models, an additional term occurs verifying that these models are not
asymptotically correct.

Furthermore, we do not insist that the interfacial pressure tends to the equilibrium pressure when the
single-fluid pressures are approaching equilibrium. Numerous available closures for the interfacial pressure
satisfy this modeling assumption although there is no physical evidence for this assumption. Here, we derive
constraints on the equilibrium interfacial pressure that ensure hyperbolicity of the pressure-equilibriummodel.

Finally, we have presented constraints on the closures for the interfacial velocity as well as the mechanical
and thermal relaxation terms in case of a chemically frozen flow.

So far, we considered only the case of two ideal gases as is common practice in the literature on pressure-
equilibriummodels. Currently, we are extending the investigations to non-ideal fluids. Preliminary results show
that choosing the equilibrium interfacial pressure smaller than the equilibrium pressure ensures hyperbolicity
at least in a local neighborhood of local velocity equilibrium.
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