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Abstract
The problem of moving a commodity with a given initial mass distribution to a pre-specified target mass distribution so
that the total work is minimized can be traced back at least to Monge’s work from 1781. Here, we consider a version of this
problem aiming to minimize a combination of road construction and transportation cost by determining, at each point, the
local direction of transportation. This paper covers the modeling of the problem, highlights how it can be formulated as a
material distribution topology optimization problem, and shows some results.

Keywords Topology optimization · Continuous transportation · Road design · Large-scale problems

1 Introduction and background

Transportation problems have a long history in science.
Already in 1781, Monge (1781) studied the problem of
how to minimize the work required to move a commodity
with a given initial mass distribution to a pre-specified
target mass distribution. Monge’s problem formulation is
general in that it considers the computation of transport
paths, which distinguishes it from route planning problems
that are restricted to an existing network. In contrast,
flow network problems are by far the most investigated
domain of transportation theory, and have resulted in a row
of now mature tools from linear, integer, and constraint
programming. This should come as no surprise, since most
transportation is undertaken on an existing infrastructure.
From an economics perspective, it is on the other hand of
interest to target not only transportation cost, but also the
cost for road construction. Such considerations come into
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play also on a smaller scale, for instance in agriculture
or forestry, when temporary or otherwise designated roads
must be paved. For general consideration of distribution of
matter, it is natural to employ a fluid dynamics formalism.
An early attempt to do so was made by Beckmann (1952),
who minimizes transportation cost under a conservation of
matter constraint. Beckmann seems to have been unfamiliar
with the Monge–Kantorovich problem at the time, but
there is a close link between the formulations, noted by
Igbida (2013), among others. For a survey of continuous
transportation modeling (see for instance Puu 2009).

The literature on the Monge problem and its derivation is
extensive (albeit small compared to network counterparts),
but considers mainly the theoretical properties of the
problem formulations and its solutions. Much less seems
to have been written regarding solution methods applicable
for practical transportation problems. The intention of
this paper is to bridge this gap so that practically useful
algorithms can be formulated ultimately.

In a general setting, the objective is to find a
transportation map T that optimally rearranges the measure
μ+ into μ− as detailed below. Let T be the set of
all transportation maps T pushing μ+ onto μ−, that is,
μ+(T −1(B)) = μ−(B) for each Borel set B ⊂ �. Given
a cost function c that represents the unit transportation cost,
the so-called (generalized) Monge problem is then to find

inf
T ∈T

∫
�

c(x, T (x)) dμ+(x). (1)

This problem is in general ill-posed. In 1942, Kantorovich
suggested a relaxed version of the transport problem
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that always admits a solution (Kantorovitch 1958). More
precisely, the Monge–Kantorovich problem searches for a
so-called transportation plan γ ∈ M that minimizes
∫
�×�

c(x, y) dγ (x, y). (2)

Here, M is the set of all non-negative Radon measures γ

on � × � that have μ+ and μ− as marginals. That is,
γ (B × �) = μ+(B) and γ (� × B) = μ−(B) for each
Borel set B ⊂ �. In essence, for each pair of subsets
Bi ⊂ � and Bj ⊂ �, γ (Bi × Bj ) can be viewed as the
amount to be transported from Bi to Bj . During the last two
decades, there has been a renewed activity in studying these
transportation problems (Ambrosio and Pratelli 2003; Braso
and Petrahe 2014; Evans and Gangbo 1999; Igbida 2009).
Evans and Gangbo (1999) made a breakthrough, showing
existence of a transportation map provided that c is the
Euclidean distance, μ+ = f +dx, and μ− = f −dx, where
f + and f − are given functions that specify the initial and
target mass distribution and satisfy supp{f +}∩supp{f −} =
∅. However, the numerical treatment of the problem has this
far received little, if any, attention.

Here, we aim to solve numerically a continuous trans-
portation problem by using material distribution based
topology optimization. The rationale for this is that road
design is effectively a material distribution problem, and
transportation is nothing but flow of matter. The material
distribution method was originally introduced by Bendsøe
and Kikuchi (1988), who considered optimization problems
in solid mechanics. The monograph by Bendsøe and Sig-
mund (2003) gives a comprehensive presentation of material
distribution based topology optimization techniques and
highlights many applications. The review by Sigmund and
Maute (2013) gives an overview of different approaches
to topology optimization and compares their strengths and
weaknesses. The “flagship problem” for topology optimiza-
tion is to minimize the compliance of an elastic body subject
to a constraint on the amount of available material. There
are many well-established techniques to solve this prob-
lem and some of these are currently used in the design
process of advanced components in the automotive and
aeronautical industries. Today, large-scale material distri-
bution problems have many millions or even billions of
design variables (Aage et al. 2017; Schmidt and Schulz
2011; Wadbro and Berggren 2009). For other problems,
such as those with state constraints or those concerning
wave propagation, the methodologies are still maturing.
During the last decades, much work has been focused on
developing the methodologies (Le et al. 2010) and extend-
ing the ideas to other fields, such as fluid flow (Borrvall and
Petersson 2003), fluid–structure interaction (Andreasen and
Sigmund 2013; Yoon 2010), and acoustic (Dühring et al.
2008; Wadbro 2014; Wadbro and Berggren 2006) as well

as electromagnetic (Aage and Johansen 2017; Andkjær and
Sigmund 2011; Erentok and Sigmund 2011; Nomura et al.
2007; Hassan et al. 2014) wave propagation. Although var-
ious kinds of systems including transportation processes
(thermal, electric, convective, etc.) have been targeted for
topology optimization in the past, the application of topol-
ogy optimization to continuous logistic transportation mod-
els is, to the best of our knowledge, novel. The contribution
closest in style to our work is that of Ryu et al. (2012), who
used topology optimization techniques to attack a path plan-
ning problem for a robot that moves in an environment with
obstacles.

2 Problem description

In this section, we present a model that accounts for the road
construction cost as well as the transport cost of a single
commodity in a steady state setting. Since, the model is new
and the modeling includes many different symbols, we start
by providing the following nomenclature list:

x Position (x = (x1, x2))
ρ Density distribution of commodity
q Rate of production/consumption of the commodity
u Transport velocity
v Transport speed (|u| = v)
� Potential
κ Conductivity
α Road design
s A function specifying the relation between α and v

F Set of feasible conductivities
A Set of feasible road designs
JT Transport cost
J ε

T ε-relaxed, differentiable version of transport cost
JR Road cost
β Tradeoff parameter.

2.1 Transportation of a product

On a microscopic level, transportation of goods is a
discrete process where point charges (representing trucks,
backhaulers etc.) move along certain paths (on roads or off-
road) between sources and destinations. On a macroscopic
level, and seen over long periods of time, it is relevant to
model transportation as a continuous process in the same
way as continuous fields are used to describe electric current
or gas flow that is in reality movement of microscopic
particles. This view on transportation enables the use
of a mathematically tractable formalism from continuum
mechanics. The model we propose is similar in spirit to
that of Beckmann (1952), who also considers flow under a
conservation of matter condition. While (Beckmann 1952)
set the theoretical foundation for continuous transportation
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modeling with the aim of minimizing transportation, our
aim is to consider also road construction cost, and to employ
topology optimization in order to find solutions for general
scenarios.

As our model problem, we consider a commodity that
is produced or consumed at the space dependent rate
q [kg m−2 s−1] and transported with velocity u [m s−1],
where |u| = v, and v : R

2 �→ R
+ is a space

dependent transportation speed. Denote by ρ [kg m−2] the
instantaneous density field of the commodity. Moreover, we
assume that the production, transport, and consumption of
the product are all confined to be inside a region � ⊂
R

2. That is, we assume that � is large enough so that
ρ|∂� ≡ 0. In the numerical experiments, � is selected
to be the unit square. Figure 1 shows an image of the
transportation scenario according to the continuous model.
By conservation of mass, we have that

∂ρ

∂t
+ ∇ · (ρu) = q in � for all times t. (3)

Here, we assume that the system is at steady state, so

∇ · (ρu) = q in �. (4)

Furthermore, since we have neither inflow nor outflow of
the product over the boundary ∂�, we also have that
∫

�

q = 0. (5)

Fig. 1 A generic transportation scenario. The level curves represent
a source density function q for some commodity. It is positive in
the upper part of the figure, but has a point sink near the bottom
right corner. The arrows show the transportation velocity field u. The
shading represents the local and instantaneous surface density ρ of the
commodity

Moreover, at steady state, we have the amount

mT =
∫

�

ρ [kg] (6)

of the product in �. This amount can be viewed as the total
amount of the product in storage, en route from producer to
consumer. Here, the total transportation (or storage) cost is
proportional to the total mass of product in transportation at
steady state. Hence, the total transportation cost is

JT = cT mT , (7)

where cT is the unit transportation cost, equivalent to the
sum of the capital cost of the commodity, and the cost
of keeping the commodity in transportation. It is assumed
that transportation can be viewed on a macroscopic level,
so that the unit transportation cost is independent of ρ.
To make the transportation as efficient as possible, we are
thus interested in finding the transportation velocity u that
minimizes JT . To find the optimal transportation velocity
u ∈ U = {

u ∈ L∞(�)2 | |u| = v a.e. in �
}

given the
transportation speed v and the production–consumption rate
q satisfying condition (5), we may solve

min
u∈U

JT (8)

subject to steady state mass conservation (4) and that
the density ρ ≥ 0 in �. As a consequence of the
conditions above, not all u ∈ U are feasible; after all,
the overall velocity field u must be directed from the
production area to the consumption area and not in the
reverse direction. Formally, the unknown in optimization (8)
is the transportation velocity u, but since the transportation
speed v is given, we are effectively solving for the local
transportation direction (u/v).

2.2 Potential approach

Below, we assume that we are given the production–
consumption rate q and are interested in finding the
best transportation strategy to minimize JT . Given q that
satisfies condition (5), we still need to find a density
ρ and a velocity u to satisfy (4). Using an analogy
from electromagnetism, we restrict the set of feasible
transportation velocities by assuming that there exists a
potential � and an associated conductivity κ ≥ 0 so that

ρu = −κ∇�. (9)

Here, � can be interpreted as an economic potential that
drives the commodity flow. The flow rate ρ|u| = ρv will
then be proportional to the conductivity κ and ∇�. Through
the layout of κ , it is possible to guide the flow. The steady
state mass balance (4) can thus be written as

−∇ · (κ∇�) = q in �. (10)
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Remark 1 The formulation above is similar to the one used
by Evans and Gangbo (1999), who proved the existence
of a transportation map provided that transportation cost
between two points is equal to the Euclidean distance
between these points (essentially |u| ≡ 1 in our setting).
In particular, they proved that this map can be obtained
by building a flow by solving an ODE involving λ, ∇z,
and q, related through the Euler–Lagrange formulation of
Kantorovich’s dual problem

−∇ · (λ∇z) = q, (11)

where z is the dual variable and λ is a Lagrange multiplier
for a constraint of the type |∇z| ≤ 1.

Note that, by construction, the conductivity will at best
be determined up to a constant by state equation (10). For
any reasonable transportation map, the value of the potential
far away from the area of interest will neither affect the
transportation strategy nor the total amount of the product
in the system. To avoid the ambiguity of only having the
potential determined up to a constant, we choose to add the
boundary conditions

� = 0 on �D and ∂�/∂n = 0 on ∂� \ �D, (12)

where �D ⊂ ∂� is a small boundary portion with strictly
positive measure (|�D| > 0). �D can be interpreted as a
“shunt to ground” that annihilates the effect of numerical
deviation from condition (5). A variational form of (10),
(11), and (12) is:

Find � ∈ V such that∫
�

κ∇� · ∇ψ =
∫

�

qψ, ∀ψ ∈ H 1
0 (�), (13)

where V = {� ∈ H 1(�) | �|�D
≡ 0}. Having solved

variational problem (13), we can identify

ρ = κ

v
|∇�| and u = −v

∇�

|∇�| . (14)

The restriction of the feasible transportation velocities
provided by using potential � and conductivity κ ensures
that we have a velocity–density pair (u, ρ) that satisfies
mass conservation (4) and the condition ρ ≥ 0 in �.

The problem of determining the best conductivity
distribution given a road design can hence be written

min
κ∈F

cT

∫
�

κ

v
|∇�|, (15)

where F is the set of feasible conductivities and � solves
variational problem (13). Note that by scaling κ by a
positive factor and scaling the potential � by the inverse of
the same factor, the value of the objective function remains
unchanged. Hence, we can without loss of generality define
the set of feasible conductivities as

F0 = {
κ ∈ L∞(�) | 0 ≤ κ ≤ 1 a.e. in �

}
. (16)

Variational problem (13) may not have a unique solution for
any κ ∈ F0. A standard procedure in topology optimization
for structures, which we also will employ here, is to modify
the lower bound for the conductivities. More precisely, we
define the set of feasible conductivities as

F = {
κ ∈ L∞(�) | κ ≤ κ ≤ 1 a.e. in �

}
, (17)

where κ is a small, strictly positive number. If the
transportation speed v satisfies vmin ≤ v ≤ vmax, for some
strictly positive constants vmin and vmax, then the bilinear
form associated with variational problem (13) is coercive.

To avoid the non-differentiability of the absolute value at
0, we approximate the objective function in problem (15) by

J ε
T = cT

∫
�

κ

v

√
ε + ∇� · ∇�, (18)

where ε is a small positive parameter (ε = 10−8 for
the numerical experiments in this paper) and � solves
variational problem (13). To conclude, the optimization
problem that we solve with the aim of finding the best
transportation direction at each point in � by determining
the conductivity distribution given a road design is

min
κ∈F

J ε
T . (19)

2.3 Adding road design

The main aim of this study is to determine the best
road layout and transportation direction to minimize a
combination of transportation cost and road construction
cost. To describe the road layout, we use a so-called material
indicator function α defined so that α = 1 where a road is
present and α = 0 else. The set of admissible road layouts is

A = {
α ∈ L∞(�) | α ∈ {0, 1} a.e. in �

}
. (20)

Throughout this paper, we assume that the transportation
speed v is directly determined by α; the transportation
speed is higher when transporting goods on roads than
when transporting goods off-road. That is, the transportation
speed only depends on whether the ground is covered by
roads or not; spatial properties and, for example, slopes,
their directions, and which material that covers the ground
does not influence the transportation speed. Hence, the
transportation speed is given by the composite function

v = s ◦ α, (21)

where the speed function s : [0, 1] �→ R
+. Moreover, we

assume that the road construction cost JR is linear in the
road design, that is

JR = cR

∫
�

α, (22)

where cR is the unit road cost. Henceforth, we assume that
the unit transportation cost and the unit road cost both are
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1; that is, cT = 1 [kg−1] and cR = 1 [m−2]. To study the
tradeoff between transportation cost and road construction
cost, we minimize a weighted sum of the road construction
cost and the transportation cost. That is, we formulate our
main optimization problem as

min
(κ,α)∈F×A

βJR + (1 − β)J ε
T . (23)

3 Numerical treatment

We solve variational problem (13) by the finite element
method on a structured grid consisting of M square
elements, henceforth denoted E1, E2, . . . , EM . We define
Vh ⊂ V to be the space of continuous functions being
bilinear on each element and zero on �D . Moreover, we
denote the nodal basis functions in Vh by ϕj , j =
1, 2, . . . , N , where N is the number of nodes in � that are
not located on �D . (In the numerical experiments, �D is
a small portion around the lower left corner of �, which
yields that the FE basis function corresponding to the lower
left node is not included in the space Vh.) We approximate
the potential � and the test function ψ with functions
�h ∈ Vh and ψh ∈ Vh, respectively, and approximate the
conductivity κ by a piecewise constant function κh. The
discretized version of problem (13) reads:

Find �h ∈ Vh such that∫
�

κh∇�h · ∇ψh =
∫

�

qψh, ∀ψh ∈ Vh. (24)

The discretized variational problem (24) can be written in
matrix form as

K� = f , (25)

where the components of the N × N stiffness matrix K and
the N × 1 right hand side vector f are

kij =
∫

�

κh∇ϕi · ∇ϕj and fj = −
∫

�

qϕj , (26)

respectively.
Similarly as for the conductivity, we use a piecewise

constant function αh to define the road layout in �, and
consequently we approximate the transportation speed by
a piecewise constant function vh. For future notation, we
let κ = (κ1, κ2, . . . , κM)T , α = (α1, α2, . . . , αM)T , and
v = (v1, v2, . . . , vM)T , where κm, αm, and vm are the values
of κh, αh, and vh in element Em, respectively. To evaluate

objective function (18) numerically, we use the composite
midpoint quadrature rule to obtain the approximation∫

�

κ

v

√
ε + ∇�h · ∇�h

≈ 1

M

M∑
m=1

κm

s(αm)

√
ε + ∇�h(xc

m) · ∇�h(xc
m)

=: Jh
T (κ, α), (27)

where xc
m is the midpoint (or center) of element Em and �h

solves variational problem (24) with the conductivity dis-
tribution associated with κ . Note that the discretized trans-
portation cost Jh

T is an approximation of the differentiable
transportation cost J ε

T and depends on parameter ε. Further,
since we have approximated the road design by a piecewise
constant function, the discretized road construction cost is

Jh
R(α) = 1

M

M∑
m=1

αm. (28)

In our conceptual optimization (23), the road design α

is constrained to only attain the values 0 and 1 almost
everywhere. Design optimization problems with this type
of binary constraints are often associated with various
issues. From a mathematical viewpoint, these problems are
typically ill-posed in that the problem lacks solutions within
the set of feasible designs; and from a computational point
of view the problem is a large-scale non-linear mixed integer
program and hence computationally intractable. We remark
that for real-life problems there are often requirements, such
as a minimal width of structural members of the design,
which assures that the problem has solutions within the
space of admissible designs.

Here, we choose to attack the problem by following
a standard procedure applied for material distribution
topology optimization. First, we relax the constraints on the
road network design to the continuum [0, 1]. That is, we
replace the set of feasible road network designs A by

Ah = {α ∈ R
M | 0 ≤ αi ≤ 1 for i = 1, 2, . . . , M}. (29)

Since the conductivity already was allowed to take values in
the continuum [κ, 1], we simply replace the set of feasible
conductivities F by its elementwise constant counterpart

Fh = {κ ∈ R
M | κ ≤ κi ≤ 1 for i = 1, 2, . . . , M}. (30)

This far, we have not discussed how the speed function
s is selected. In principle, the replacement of A by
Ah likely gives rise to non-binary optimal road network
designs. To promote binary designs, we will use the so-
called SIMP (Solid Isotropic Material with Penalisation)
approach (Bendsøe 1989), which is typically employed in
material distribution topology optimization for linear elastic
structures to suppress intermediate densities. Accordingly,
we define the transportation speed function as s(x) = vmin+
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(vmax − vmin)x
p, where vmin and vmax are the transportation

speeds outside and on roads, respectively, and p ≥ 1
is a so-called SIMP-penalty parameter. Hence, for m =
1, 2, . . . , M , the transportation speed in element Em is

vm = vmin + (vmax − vmin)α
p
m. (31)

The idea of SIMP in this context is to let intermediate values
of α contribute more to the road construction cost compared
to the relative increase that they provide in transportation
speed. When adding a penalty term to suppress intermediate
values in material distribution topology, the numerical
solutions often exhibit a strong mesh-dependence in that,
as the mesh is refined, the optimized designs exhibit finer
and finer structures. Inspired by its successful use for many
applications, starting with linear elasticity problems about
two decades ago, we will use a filtering method. More
precisely, we use a linear filter as suggested by Bruns and
Tortorelli (2001) and define the physical road design and
conductivity through

α̃ = FRα and κ̃ = FCκ, (32)

respectively, where the M × M filter matrices FR and FC

for the road design and conductivity, respectively. Element
ij of these filter matrices are given by

[fR]ij = cR
i max

{
0, 1 − |xc

i − xc
j |

τR

}
and

[fC]ij = cC
i max

{
0, 1 − |xc

i − xc
j |

τC

}
, (33)

respectively, where τR and τC are the filter radii for the road
design and conductivity, respectively, and cR and cC are
constant M ×1 normalization vectors selected to ensure that
FR1M = FC1M = 1M , where 1M is the M × 1 vector with
all ones. To conclude, the problem that we want to solve is

min
(κ,α)∈Fh×Ah

βJ h
R(FRα) + (1 − β)J h

T (FCκ, FRα). (34)

That is, the problem is to determine both α and κ to
minimize a weighted sum of road construction cost Jh

R and
transportation cost Jh

T . In the numerical experiments, the
method of moving asymptotes (MMA) (Svanberg 1987)
solves problem (34). The required gradients are computed
by using the expressions provided in the Appendix and the
chain rule to take the filtering into account.

4 Numerical experiments

We consider three test cases denoted TC1, TC2, and TC3,
respectively. These test cases are depicted in Fig. 2 and
described below. In all test cases, � is selected to be the unit
square whose lower left and upper right corner are located
at (0, 0) and (1, 1), respectively. That is � = {x ∈ R

2 | 0 ≤

Fig. 2 The three test cases. Top left image: test case 1 (TC1); top
right image: test case 2 (TC2); bottom image: test case 3 (TC3). In all
images, locations of supply are the regions marked by plus signs and
locations of demand are marked by minus signs

x1 ≤ 1, 0 ≤ x2 ≤ 1}. The boundary portion �D ⊂ ∂� on
which we stipulate that �|�D

≡ 0 is selected to be a small
portion of ∂� around (0, 0).

– In TC1, there are three separate supply positions,
located at (3/4, 1/4), (3/4, 2/4), and (3/4, 3/4) and
a single demand position located at (1/4,1/2). The
supply and demand are distributed over a radius of 1/32
centered at the positions above.

– In TC2, the demand is the same as in TC1, but
the supply is uniformly distributed over a rectangular
region whose lower left and upper right corners are
located at (1/2,1/8) and (7/8,7/8), respectively.

– In TC3, the supply is uniformly distributed over
a rectangular region whose lower left and upper
right corners are located at (3/4,1/2) and (7/8,7/8),
respectively, and the demand uniformly distributed over
a rectangular region whose lower left and upper right
corners are located at (1/8,1/8) and (1/2,1/4).

For all test cases, q, the total production and consumption
of the product, is selected so that the road construction cost
JR and the transportation cost JC are of the same order.

For both the conductivity and the road design variable,
we use the initial guess

αh = κh =
⎧⎨
⎩

1/2
if |x1 − 1/2| < 7/16
and |x2 − 1/2| < 7/16,

0 otherwise.
(35)
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Fig. 3 The optimized road design (left column) and the mass flux
(right column) for TC1 (top row), TC2 (middle row), and TC3 (bottom
row) computed on a resolution of 256×256 elements

Put simply, the initial guess for both αh and κh is 1/2 over
the whole unit square, except from a border of width 1/16,
where it is 0. The reason that we set both these variables
to 0 around the edge of the domain is that we expect that
there will be no benefit from placing neither roads nor
adding any conductivity to these parts. However, since we
do not want to influence the design between the supply and
demand positions, we let the initial road and conductivity
distributions all be equal to 1/2 in a region including these
locations and their nearest surrounding for all test cases.
For all experiments, we set the parameters controlling the
transportation speed, as given by expression (31) as: vmin =
1, vmax = 5, and p = 3. That is, the transportation speed is
five times as large on roads as outside them and it is possible
to transport goods even if no roads are placed in �. In all
experiments, we set the filter radii for the road design and
conductivity to τR = τC = 1/128.

As a first experiment, we solve optimization (34) for
parameter β = 0.5 for all test cases and using a resolution

of 256×256 elements. Figure 3 shows the resulting road
network design α̃p (left column) as well as the mass flux
ρu (arrows in the right column) for TC1 (top row), TC2
(middle row), and TC3 (bottom row). In all figures showing
the road network design and the mass flux in this section, the
outline of the computational region is illustrated by a thin
line, and the supply and demand positions for the different
cases are shown by plus and minus signs, respectively.
The optimized road design for TC1 (top row, left image
in Fig. 3) is rather intuitive, with essentially three straight
lines from the supply positions to the demand position. The
optimized road design for TC2 (middle row, left image in
Fig. 3) is similar to a binary tree structure with the root
located at the single demand position and branch points
located between the demand and the supply region. The
optimized road design for TC3 (bottom row, left image
in Fig. 3) consists of two disjoint parts: the upper main
part has a main transportation streak connected to multiple
smaller roads that branch further toward the supply as well
as the demand region; the lower part is a smaller road
that primarily appears to serve the parts of the supply and
demand region that are located closest to each other. We
remark that an intuitively better design could be obtained
by replacing the smaller lower road by a straight one. The
obtained design is however a local optimum. Further tests
suggest that such non-straight roads are less pronounced at
higher resolutions.

Figure 4 shows the evolution of the optimization for TC2
with parameter β = 0.5 during the first 30 iterations using
a resolution of 256×256 elements. The solid line shows the
evolution of the objective function (J h

R + Jh
T )/2, the dotted

line shows the evolution of the road construction cost J h
R ,

and the dash-dotted line shows the evolution of the transport
cost Jh

T . The value axis uses a logarithmic scale, so the
horizontal dashed lines correspond to the values 0.1, 0.2,
. . . , 1.4 and the lines for 0.1 are thicker than the others. All
values are normalized with respect to the initial objective
function value. The images in Fig. 4 show the road network
design α̃p as well as the mass flux ρu at iterations 1, 5, 10,
15, and 30. In the images for iterations 5, 10, 15, and 30, the
road design is on the left and the mass flux is on the right;
while, for iteration 1: the road design is on top and the mass
flux is at the bottom. The final road network design and
mass flux, illustrated in the middle column of Fig. 3 were
obtained after 988 iterations and has an objective function
value of 0.1926 times the initial objective function value.
The objective function value after 30 iterations was 0.2528
times the initial objective function value. After the first 30
iterations, the main features of the road design and mass flux
are in place and the optimization progresses slowly in terms
of improvement of the objective function: already after 145
iterations, the objective function value is less than 0.2 times
the initial objective function value.
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Fig. 4 Snapshots of the road design and mass flux at iterations 1, 5,
10, 15, and 30 together with the evolution of the transport cost Jh

T , the
road construction cost Jh

R and the total objective function during the
first 30 iterations of the optimization that produced the results in the
middle row of Fig. 3

To study the tradeoff between road construction cost
and the transportation cost, we solve problem (34) for all
three test cases for sequence values of parameter β on two
resolutions: 256 × 256 elements and 1024 × 1024 elements
discretizing �. In this tradeoff study, we solve L = 101
problems and let the parameter values we consider for β be
linearly placed between 0 and 1. More precisely, we solve
optimization (34) for all

β ∈ UL = {0, 1/(L − 1), . . . , 1}. (36)

Figure 5 shows the relative road construction cost and
transportation cost for the optimized designs from these
experiments. Here, the relative road construction cost and
transportations cost for a particular test case and resolution
are computed as

Relative Jh
R(β) = J h

R(α̃∗(β))

max
η∈UL

J h
R(α̃∗(η))

and

Relative Jh
T (β) = J h

T (κ̃∗(β), α̃∗(β))

max
η∈UL

J h
T (κ̃∗(η), α̃∗(η))

, (37)

respectively, where α̃∗(η) = FRα∗(η) and κ̃∗(η) =
FCκ∗(η), in which κ∗(η) and α∗(η) solves optimization
(23) with β = η. The spacing between the points

Fig. 5 Tradeoff between road construction cost and transportation cost
for TC1 (top row), TC2 (middle row), and TC3 (bottom row) on two
resolutions 256×256 elements (left column) and 1024×1024 elements
(right column)

representing different tradeoffs in Fig. 5 is not uniform
with respect to β. To obtain evenly distributed tradeoff
points (more precisely, points on the so-called Pareto set),
the method proposed by Das and Dennis (1998) may be
used. Tracking the Pareto set is a matter deserving careful
treatment for an industrial code to minimize the need for
user intervention. The focus of the present paper is on
the fundamental of the transportation problem, and the
authors consider the kinks of the presented Pareto sets
to be sufficiently well resolved, albeit using a perhaps
unnecessarily high number of points.

Selected optimized road designs and mass fluxes, two
for each test case, obtained during this tradeoff study on
a resolution of 1024×1024 elements are shown in Figs.
6, 7, and 8. The corresponding tradeoff values for road
construction cost and transportation cost are marked in
Fig. 5.

Figure 6 shows results from TC1 obtained with parameter
β = 0.18 (bottom row) and β = 0.68 (top row).
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Fig. 6 The optimized road design (left column) and the mass flux
(right column) for TC1 with β = 0.18 (bottom row) and β = 0.68 (top
row) computed on a resolution of 1024×1024 elements

For large values of β (β ≥ 0.87 for this experiment)
in problem (34), the road construction cost dominates
completely and no roads are placed inside �. Similarly
for β = 0 (road construction cost does not affect the
objective), essentially the full domain � is filled with roads.
For small to intermediate values of β (0 < β ≤ 0.58 for
this experiment), we obtain road designs with three main
roads from the supply positions to the demand position, the
width of these roads is larger for relatively small values
of β, as illustrated in the top row of Fig. 6; the road’s
width decreases as β increases until it is comparable with
the filter size τR (cf. the top row in Fig. 3; the results
on both resolutions share the same main characteristics).
Finally, as β becomes larger, the road construction cost gets
increasingly costly compared to the transportation cost and
the optimized road design no longer connects the supply
and demand, so an increasing share of the transportation
needs to be carried out off-road. This is illustrated by the
optimized road design obtained for β = 0.68, the bottom
left image in Fig. 6, where the high-speed road material only
covers a small area close to the demand location.

Figure 7 shows results from TC2 obtained with parameter
β = 0.16 (bottom row) and β = 0.54 (top row).
Just as for TC1, when β is large (β ≥ 0.87 for this
experiment) in problem (34), the road construction cost
dominates completely and no roads are placed inside �,
and when β = 0 essentially the full domain � is filled
with roads. For very small values of β the road design
covers the convex envelope of the supply and demand

Fig. 7 The optimized road design (left column) and the mass flux
(right column) for TC2 with β = 0.16 (bottom row) and β = 0.54 (top
row) computed on a resolution of 1024×1024 elements

regions, but as β increases, roads start to form. The bottom
row shows the road design and mass flux for β = 0.16.
In this case, the road design reminds of a root structure
with wide roots near the demand positions that branches
out to more and finer roots close and over the supply
region. As β increases further, the overall root structure
remains. However, the individual roots become thinner and
the distance between subsequent branch points increases.
This procedure continues until the road tree only has few
main roots or roads from the demand region to the edge of
the supply region. For this test case, this occurs at about
β = 0.54, corresponding to the results in the top row of
Fig. 7. Increasing β further results in that the roads become
shorter from the end closest to the supply region.

Figure 8 shows results from TC3 obtained with parameter
β = 0.24 (bottom row) and β = 0.73 (top row). Just
as for TC1 and TC2, when β is large (β ≥ 0.74 for this
experiment) in problem (34), the road construction cost
dominates completely and no roads are placed inside �,
and when β = 0 essentially the full domain � is filled
with roads. Moreover, just as for TC2, for very small values
of β the road design covers the convex envelope of the
supply and demand regions but as β increases, roads start
to form. For this experiment, the road design for small to
intermediate values of parameter β (0.16 ≤ β ≤ 0.23 for
this experiment), the road design does not fully cover the
convex envelope of the supply and demand regions, and
smaller roads start to form near the remote edges of these
regions. For intermediate values of β (0.24 ≤ β ≤ 0.73 for
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Fig. 8 The optimized road design (left column) and the mass flux
(right column) for TC3 with β = 0.24 (bottom row) and β = 0.73 (top
row) computed on a resolution of 1024×1024 elements

this experiment), the road design consists of one connected
component that branches out to come close to all parts of
the supply and demand regions. As β increases, the width of
the individual roads, as well as the number of road segments
in each branch, decreases. The bottom and top row in Fig. 8
show the road design and mass flux for β = 0.24 and
β = 0.73. In contrast to the two other test cases, the road
design connects the supply and demand regions up until the
point when β becomes large enough not to motivate the
construction of any roads. This is likely due to the fact that
in this case both supply and demand are distributed, so that
there is no location where one can place a small piece of
road that would decrease the transportation cost for most
of the goods; for the optimized road designs at high road
cost TC1 and TC2 all goods was moved through a small
region just in front of the demand region. Perhaps one could
find a particular range of values of parameter β so that
the optimized road design only consists of a small part of
the region between supply and demand, but the numerical
experiments presented in this section suggest that if such a
parameter region exist it would be very narrow.

5 Discussion

This paper models and solves continuous transportation
problems as material distribution topology optimization
problems. The end goal is to find the optimal placement
of roads (material) in a region as well as the local

transportation direction for a commodity. Here, the road
layout determines the local transport speed (we have a high
transport speed on the roads and a lower transport speed
off the roads). In contrast to typical material distribution
topology optimization approaches, the original method,
proposed in this paper, uses two design fields that represent
the road design and the local transportation direction,
respectively.

Given a road design, the suggested potential approach
yields problem (19)—a problem that is related to the
minimum heat compliance problem, which is a standard
test problem for material distribution topology optimization.
Both problems are governed by Poisson’s equation, but
with different source terms and boundary conditions.
However, there are two major differences. The first is that
the objective in our setting is to minimize a weighted
L1-norm of the gradient of the solution field of the
governing equation (13), while the aim in the minimum heat
compliance problem is to minimize a weighted L2-norm of
the temperature field. The second difference is that in the
minimum heat compliance problem, one sets out to place
two materials with conductivities κ and 1 so the original
problem is to determine for each point which material type
it should contain; here, on the contrary, the conductivities
may attain any value in the continuous range from κ to 1.
(Recall that for the transportation problem, the road design
is determined by α—which at each point holds the value 1
or 0 to signify whether the point is occupied by a road or not,
respectively—controls the transportation speed, while the
conductivities determine the local transportation direction.)
The focus on this paper is to simultaneously find the best
road design and local transport direction to minimize a total
cost including the transport cost and the road construction
cost.

By using the strategy proposed in this paper, we have
successfully optimized road designs for a few test cases,
in which the supply and demand positions are concentrated
around given points as well as distributed over given
regions. By solving problem (34) for a sequence of values
for parameter β, we obtain a sequence of road network
designs corresponding to different tradeoffs between the
road construction cost and the transportation cost. These
solutions and the corresponding relative road construction
and transportation cost may provide guidance when making
decisions regarding if and where to construct roads to
increase transportation efficiency.

An interesting tradeoff problem occurring in many
practical situations is when, given a supply and demand
function q as well as an existing road network covering
the region �R ⊂ �, one faces the decision if new roads
should be constructed and if so where. To solve this problem
within the current framework, the only change that needs
to be done is to modify the road construction cost, so that



Continuous transportation as a material distribution... 1481

the integral in definition (22) is taken over � \ �R instead
of over � and modify the set of admissible road designs to
ensure that α ≡ 1 in �R .

To take for example the presence of regions of water
(lakes and rivers) covering an area �W ⊂ � into account
one can either modify the set of feasible road designs to
ensure that no roads are placed in �W that is, α|�W

≡ 0
or modify the road construction cost so that the unit road
cost cR becomes spatially dependent and thus the road
construction cost becomes

JR =
∫

�\(�W ∪�R)

cRα. (38)

Other terrain features, such as slopes and different soil
compositions that may affect the suitability and cost of
road construction as well as the transportation speed
either on- or off-road can be taken into account by using
road construction cost (38) and also making the unit
transportation cost cT spatially dependent, so that the total
transportation cost becomes

JT =
∫

�

cT ρ. (39)

and also to modify the transportation speed so that is does
not only depend on the speed function s but also on the
spatial properties. One possible such definition would be to
let the off-road transportation speed vmin depend on spatial
properties, but keeping the on-road transportation speed
vmax. Such a change can easily be accomplished, as the road
design to transportation speed mapping would still remain a
point-wise operation in this case.
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Appendix: Sensitivity analysis

To evaluate the sensitivities of J h
T (κ, α) with respect to

changes in κ , we let G(m) be the 2 × N matrix such that

G(m)� = ∇�h(x
c
m). We set C(m) = (

G(m)
)T

G(m) and
rewrite expression (27) as

Jh
T (κ, α) = 1

M

M∑
m=1

κm

s(αm)

√
ε + �T C(m)�. (40)

Fix κ and let δκ be an arbitrary conductivity variation.
Differentiating state (41) with respect to δκ yields

δK� + Kδ� = 0, (41)

where δK and δ� are the first variation of K and �,
respectively. Differentiating transportation cost (40) with
respect to δκ yields

δJ h
T = 1

M

M∑
m=1

δκm

s(αm)

√
ε + �T C(m)�

+
(

1

M

M∑
m=1

κm

s(αm)

C(m)�√
ε + �T C(m)�

)T

︸ ︷︷ ︸
=:gT

δ� (42)

where δκm is the mth entry in δκ . Next we define z to be
the solution to the adjoint equation Kz = g. By multiplying
expression (41) by zT from the left and rearranging the
terms, we find that zT δK� = −gT δφ and thus expression
(42) can be written as

δJ h
T = 1

M

M∑
m=1

δκm

s(αm)

√
ε + �T C(m)� − zT δK�. (43)

Hence, the partial derivative of Jh
T (κ, α) with respect to

κm is

∂J h
R

∂κm

= 1

Ms(αm)

√
ε + �T C(m)� − zT K(m)�, (44)

where K(m) is the stiffness matrix with respect to element
Em.

The partial derivative of Jh
T (κ, α) with respect to αm, for

m = 1, 2, . . . , M , is

∂J h
T

∂αm

= −κms′(αm)

Ms(αm)2

√
ε + �T C(m)�, (45)

where s′ denotes the derivative of speed function s. Finally,
the gradient of Jh

R(α) with respect to α is the vector with all
entries equal to 1/M .
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