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Abstract This paper presents a density-based topology
optimization approach to design compact wideband coaxial-
to-waveguide transitions. The underlying optimization
problem shows a strong self penalization towards binary
solutions, which entails mesh-dependent designs that gener-
ally exhibit poor performance. To address the self penaliza-
tion issue, we develop a filtering approach that consists of
two phases. The first phase aims to relax the self penaliza-
tion by using a sequence of linear filters. The second phase
relies on nonlinear filters and aims to obtain binary solutions
and to impose minimum-size control on the final design. We
present results for optimizing compact transitions between
a 50-Ohm coaxial cable and a standard WR90 waveguide
operating in the X-band (8–12 GHz).
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1 Introduction

Modern RF and microwave systems design is continuously
shifting toward the use of printed circuit and surface mounted
technologies to facilitate mass production and achieve com-
pactness. Transitions are key components of microwave
circuits and are used to match signals between transmis-
sion lines that have different wave impedance, propagating
modes, or directions of propagation. A mismatched tran-
sition can have a significant impact on the overall system
efficiency and can lead to overheating of the device.

Rectangular waveguides are commonly used to feed horn
antennas (Balanis 2005, ch 13), as elements in phased array
antennas (Pellegrini et al. 2014), or in material charac-
terization (Chang et al. 1997). Meanwhile, for feeding or
measurements purposes, coaxial cables are typically used to
couple signals into/from waveguides. Coaxial cables sup-
port the TEM mode and possess essentially a constant
characteristic impedance, whereas rectangular waveguides
support TE or TM modes and have a frequency dependent
wave impedance (Pozar 2012).

Coaxial-to-rectangular waveguide transitions operating
over narrow frequency bands can be designed using elec-
tric probes or magnetic loops, whose configuration depends
on a few parameters that are easy to determine (Keam and
Williamson 1994; Deshpande et al. 1979; Bialkowski et al.
2000). However, wideband transitions typically include
complex, bulky 3D structures that can be complicated to
mass produce (Yi et al. 2011; Bang and Ahn 2014; Tako
et al. 2014). Simeoni et al. (2006) proposed a compact type
of coaxial-to-rectangular waveguide transitions that is suit-
able for mass production by using printed circuit board
technology. However, the use of elementary design shapes
together with the requirement on compactness make the pro-
posed transitions exhibit narrow frequency band operation.

https://doi.org/10.1007/s00158-017-1844-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-017-1844-8&domain=pdf
http://orcid.org/0000-0002-1318-7519
mailto:emad@cs.umu.se
mailto:eddiew@cs.umu.se
mailto:linush@cs.umu.se
mailto:martinb@cs.umu.se


1766 Emadeldeen Hassan et al.

Instead of relying on fixed elementary shapes when deter-
mining the layout of the printed circuit board, we will here
apply the material distribution (also called density-based)
technique of topology optimization to design compact wide-
band coaxial-to-rectangular waveguide transitions.

During the last decade, topology optimization has started
to be applied to the design of various electromagnetic com-
ponents, such as antennas (Nomura et al. 2007; Erentok
and Sigmund 2011; Zhou et al. 2010; Aage 2011; Hassan
et al. 2014b), metamaterials (Diaz and Sigmund 2010; Oto-
mori et al. 2012), and filters (Kiziltas et al. 2004; Nomura
et al. 2013; Aage and Egede Johansen 2017). As opposed
to classical topology optimization approaches applied to
elastic material, the layout optimization of conducting mate-
rials suffers from an ohmic barrier issue. This phenomenon
stems from the fact that a material with zero (a dielec-
tric) or infinite (a metal) conductivity exhibits no ohmic
losses, in contrast to materials with intermediate conductiv-
ities. When topology optimization is applied to maximize
transmission or reception, the algorithm will quickly drive
each material point to either maximum or minimum conduc-
tivity values in order to minimize the losses, if no special
action is taken. Moreover, it will be difficult for a con-
tinuous optimization algorithm to change a material point
from metal to dielectric, or vice versa, because of the bar-
rier of the intermediate conductivity values. Another way
of expressing the same issue is to say that the problem is
self-penalized toward pure dielectric–metal designs. A naive
gradient-based topology optimization implementation will
lead to a quick convergence of the algorithm to a loss-
less design, unfortunately with bad performance (Hassan
et al. 2014a). This problem can be addressed by density
filtering, a tool originally developed to regularize classi-
cal topology optimization problems (Bendsøe and Sigmund
2003). In previous works, we have devised a strategy for
self-penalized problems based on filtering together with a
continuation approach for a decreasing filter radius. We suc-
cessfully applied this approach first to the design of metallic
antennas (Hassan et al. 2014a, b, 2015a). A similar use of
filtering as a strategy to combat the self penalization is also
suggested by Aage and Egede Johansen (2017).

In the initial stage of such a strategy, when the filter
radius is large, the algorithm operates on a design with large
areas of material with intermediate conductivities, and as
the filter radius is decreased, intermediate conductivity val-
ues are driven closer to the extreme values due to the self
penalization. In the end, when the filter radius vanishes,
almost all material points contain either a low or a high
conductivity material. Note that in this strategy, there is no
inherent size control of metal or etched areas, since the fil-
ter radius successively vanishes. Nevertheless, in a recent
work, we successfully used this strategy to design the layout
of metal on a printed circuit board serving as the radiating

element in a coaxial-to-waveguide transition (Hassan et al.
2017). In that study, the circuit board was positioned cen-
tered and in-line with the extension of the waveguide. This
position is electrically favorable, since the electric field for
the dominant mode has a maximum in the center of the
waveguide, and the devices we obtained indeed exhibit very
wide-band operational ranges. However, the components are
not compact due to the position of the circuit board.

A much smaller component is accomplished by posi-
tioning the circuit board parallel and close to one end of
the waveguide (see Fig. 1). This configuration is much
more challenging to design, since the device is almost short
circuited due to its closeness to the metallic back wall.
When we attempted to design such a configuration using
the continuation strategy that was successful in the in-line
configuration (Hassan et al. 2017), the algorithm’s lack of
control over feature sizes, both for the metallic and non-
metallic (etched) parts, became apparent; the final design
contained pronounced areas of scattered material and holes.
Such features can increase the ohmic losses in microwave
circuits, especially when appearing at the boundaries of the
device (Pozar 2012, §2.7), and they can also complicate
the manufacturing. It became thus necessary to improve the
algorithm to control the feature size of the metallic and the
non-metallic, etched parts. Here we present this improved
approach, which allows the design of metal and non-
metal regions with minimum-size control, and show how it
has been successfully used to design compact coaxial-to-
waveguide transitions. This scheme operates in two phases.
The first phase aims mainly to counteract the self penaliza-
tion issue by filtering the design variables using a standard
linear density filter combined with a continuation approach
over a successively reduced filter size—but only down to
a predefined finite size corresponding to the selected fea-
ture size. The second phase uses a nonlinear filtering of
the design variables, based on a sequence of parameterized
harmonic mean filters (Svanberg and Svärd 2013), which
in the limit yields binary designs, while at the same time

Fig. 1 A 50-Ohm coaxial cable is connected to the rear end of an a×b

rectangular waveguide. The design domain � is used for distributing a
conductivity to match the two sides
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maintaining the minimum feature size imposed in the first
phase.

2 Problem statement

Figure 1 shows the problem setup. A coaxial cable is con-
nected to one end of an a × b rectangular waveguide. In the
electromagnetic community, this setup is commonly called
end-launcher transition. We assume that, within the fre-
quency band of interest, the coaxial cable supports only the
TEM mode of propagation and has a constant 50 Ohm char-
acteristic impedance. Generally, rectangular waveguides
have a frequency dependent wave impedance and support
different modes of propagation (Pozar 2012). In this work,
the dominant TE10 mode of the rectangular waveguide is
considered as the mode of interest. The boundaries of the
coaxial cable and the waveguide are assumed to be per-
fect conductors. Inside the design domain �, see Fig. 1,
we aim to distribute material with conductivity σ to max-
imize the transmission of signals between the waveguide
and the coaxial cable. The domain � is backed by a thin,
low-loss dielectric substrate, occupying the volume between
� and the shorting wall of the waveguide at z = 0, to
hold the resulting conductivity distribution. The other ends
of the coaxial cable and the waveguide are assumed to be
matched. That is, the outgoing signals do not reflect back to
the analysis domain.

3 Governing equations and discretization

The electric field E and the magnetic field H, inside
the waveguide and the coaxial cable, are governed by
Maxwell’s equations

∂tμH + ∇ × E = 0, (1)

∂t εE + σE − ∇ × H = 0, (2)

where μ, ε, and σ are the medium permeability, permittivity,
and conductivity, respectively. Under the assumption that
only the TEM mode is supported by the coaxial cable, the
potential difference V and the current I inside the coaxial
cable satisfy the following transport equation (Hassan et al.
2014b):

∂t (V ± ZcI ) ± c∂z(V ± ZcI ) = 0 ∀t and ∀z, (3)

V + ZcI = g(t) at z = z0. (4)

Here Zc and c are the characteristic impedance and phase
velocity inside the coaxial cable, respectively. The term
(V + ZcI ) indicates a signal traveling in the positive z-
direction and is used to impose the boundary condition at
the coaxial cable end z0, and g(t) is chosen to determine

the energy spectral density of the imposed signal. The term
(V −ZcI) represents an outgoing signal traveling in the neg-
ative z-direction. We use this term to estimate the outgoing
energy through the coaxial cable end by

Wout,coax = 1

4Zc

∫ T

0
(V − ZcI )2 dt, at z0 (5)

where T is the total simulation time.
We use the finite-difference time-domain (FDTD)

method (Taflove and Hagness 2005) to numerically solve
the governing equations (1)–(4). The computational domain
is discretized by a uniform cubical Yee grid, where the con-
ductivity is located at the edges. The incoming energy is
imposed through the waveguide by the total-field scattered-
field technique. The incoming energy can also be provided
by specifying a nonzero function g(t) in boundary condi-
tion (4). To simulate the matched ports, the waveguide is
terminated by a perfectly matched layer, and (3) together
with boundary condition (4) provide perfect absorption of
outgoing waves through the coaxial cable end. To control
the frequency spectrum of the incoming energy, we use, as
a feeding signal, a truncated time-domain sinc pulse modu-
lated to the center of the frequency band of interest (Lathi
1998). The FDTD code is implemented to run on graph-
ics processing units (GPUs) using the parallel computing
platform CUDA (https://developer.nvidia.com/what-cuda).

4 Topology optimization problem

We first consider the case when the coaxial-to-waveguide
system is fed through the waveguide by a time-domain
signal that covers the frequency band of interest. For this
problem we have, as illustrated in Fig. 1, the following
energy balance

Win,wg = Wout,coax + Wout,wg + W�, (6)

where Win,wg is the incoming energy associated with the
TE10 mode imposed in the waveguide, Wout,wg is the out-
going energy through the waveguide, and W� is ohmic
losses inside the design domain �. To obtain a good transi-
tion between the waveguide and the coaxial cable, a natural
objective is to maximize the outgoing energy through the
coaxial cable, Wout,coax, for the given incoming energy
through the waveguide, Win,wg. According to energy bal-
ance (6), the maximization of Wout,coax is equivalent to the
minimization of the sum Wout,wg + W�.

In our initial experiments for this project, and also in a pre-
vious work (Hassan et al. 2015a), we noticed that maxi-
mizing the quotient Wout,coax/Wout,wg usually results in opti-
mized designs with favorable performance compared to
solely maximizingWout,coax. (Maximizing Wout,coax/Wout,wg

effectively corresponds to maximizing the transmission term

https://developer.nvidia.com/what-cuda
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Wout,coax and minimizing the reflection term Wout,wg.) So,
to maximize the matching between the waveguide and the
coaxial cable, one possibility would be to formulate the
conceptual optimization problem

maximize log

(
Wout,coax

Wout,wg

)
(7)

subject to governing equations (1)–(4) and the boundary
conditions discussed in the previous section. The perfor-
mance of microwave devices is typically evaluated using the
scattering parameters, which are computed as the logarithm
of power ratios. Thus it is natural to use the logarithmic
function in the objective function.

As mentioned in the introduction, the waveguide sup-
ports different modes of propagation and possesses a fre-
quency dependent wave impedance. In time-domain simu-
lations, these frequency dependencies require complicated
treatments regarding the splitting of transient waves and
imposing the absorbing boundary condition for the differ-
ent modes in the rectangular waveguide (Kristensson 1993;
Akgun and Tretyakov 2015). To circumvent these compli-
cations, we use the fact that the problem under investigation
is reciprocal (Pozar 2012). That is, in problem (7), instead
of observing Wout,wg given an incoming energy through the
waveguide, we observe Wout,coax given an incoming energy
through the coaxial cable. We carry out two simulations,
one where Win,wg is nonzero and g(t) = 0, and one where
Win,wg = 0 and g(t) is nonzero. Moreover, we rewrite the
conceptual problem (7) as

maximize log

(
Wout,coax

∣∣
Win,wg

Wout,coax
∣∣
Win,coax

)
(8)

subject to the governing equations and the boundary con-
ditions discussed in the previous section. In problem (8),
Wout,coax

∣∣
Win,wg and Wout,coax

∣∣
Win,coax represent the outgo-

ing energy in the coaxial cable given the incoming energy
through the waveguide and the coaxial cable, respectively.
By this treatment, we are able to use the perfectly matched
layer inside the waveguide to simulate a matched port
that works for all modes. Moreover, because of transport
equation (3), the splitting of a transient wave inside the
coaxial cable is much simpler than inside the waveguide.
The price for this treatment, however, is that we need to
solve the governing equations twice in order to evaluate the
objective function.

To solve optimization problem (8), we employ the mate-
rial distribution topology optimization approach. We use a
material indicator vector p = [p1, p2, · · · , pN ] to indicate
presence, pi = 1, or absence, pi = 0, of the conduc-
tive material inside the design domain �. Our preliminary
numerical experiments showed a low sensitivity of the
objective function to conductivity values outside the range

[σmin = 10−3 S/m,σmax = 105 S/m]. Thus, we map the
design vector p, also known as the density vector, to the
physical conductivity at the edges of the design grid using

σ = 10(8p−3)S/m. (9)

To allow gradient-based optimization methods to solve opti-
mization problem (8), the entries of the density vector are
allowed to take values between 0 and 1. The topology opti-
mization problem is to find p ∈ A = {x ∈ R

N | 0 ≤ xi ≤
1 ∀i} that solves problem (8). To compute the objective
function gradient, we use an adjoint-field method as detailed
by Hassan et al. (2015b). The gradient vector is computed
based on the solutions of two adjoint systems correspond-
ing to the two terms Wout,coax

∣∣
Win,wg and Wout,coax

∣∣
Win,coax in

problem formulation (8).
As mentioned in the introduction, optimization problem

(8) is self-penalized toward the lossless cases (that is, toward
σmin and σmax) due to the energy losses W� associated
with the intermediate conductivities, illustrated in Fig. 2.
In other words, when gradient-based optimization methods
are used to solve this problem, these methods quickly con-
verge to designs consisting of the two extreme values of
the design variables, since these values minimize the energy
loss. Unfortunately, the quick convergence caused by the
self penalization typically results in designs that exhibit bad
performance (Hassan et al. 2014a).

5 Filtering

Filtering procedures (Sigmund 1994; Bourdin 2001; Bruns
and Tortorelli 2001) are among the most popular strategies
to achieve mesh-independent designs in topology optimiza-
tion. Here we consider density filtering methods, where the
design variables are filtered and the filtered design vari-
ables are mapped to the coefficients that enter the governing
equation. A disadvantage of the original linear density fil-
ter is that it produces designs with relatively large areas of

Fig. 2 A typical variation of the energy loss against the values of the
design domain conductivity
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intermediate densities. During the last decade there has been
an increased interest in nonlinear filtering strategies, aimed
at reducing the amount of intermediate densities (Guest et
al. 2004, 2011; Sigmund 2007; Svanberg and Svärd 2013;
Wadbro and Hägg 2015; Hägg and Wadbro 2017). In addi-
tion to providing mesh independent solutions, filtering of
the design variables can relieve the strong self penalization
discussed in the previous section. To compute the physical
conductivity in expression (9), we replace the density vec-
tor p by the filtered density p̃ obtained by a cascade of K

fW-mean filters (Wadbro and Hägg 2015),

p̃
def= F(K) ◦ F(K−1) ◦ · · · ◦ F(1)(p), (10)

where

F(k)(p) = f −1
k (W(k) fk(p)) ∀k ∈ {1, · · · , K}, (11)

and where the matrix W(k) determines the weights, shape,
and the size of the kth filter; the functions fk(·) and their
inverses f −1

k (·) are applied elementwise. The filter size is
defined by a variable R that defines the radius of a circu-
lar neighborhood around each point. In this work, we use
equal weights in each neighborhood. The formulation of the
generalized fW-mean filter allows us to investigate different
types of filters based on the choice of the functions fk(·).
Here we employ linear as well as nonlinear filters.

5.1 Linear filter

By explicitly setting the function fk(x) = x for all k,
the cascade of fW-mean filters reduces to a linear den-
sity filter. In this case, the filtering process replaces each
design variable pi by a weighted arithmetic mean of the
design variables within a neighborhood defined by the
weight matrix W(K)W(K−1) . . .W(1). The linear filter coun-
teracts the self penalization of the optimization problem by
producing designs with intermediate values.

To obtain a binary design at the end of the optimiza-
tion process, we use a continuation approach over the filter
radius. In particular, we start by a large filter size Rmax and
solve a sequence of problems with decreasing filter radii,
Rn = γ nRmax with γ < 1, until the filter radius drops
below the spatial discretization step � used in the FDTD
grid. In other words, we gradually remove the impact of the
filter. Unfortunately, this strategy produces mesh-dependent
solutions.

5.2 Non-linear filter

To pursue nonlinear filtering of the design variables, we
substitute fk(·) in expression (11) by harmonic functions
as proposed by Svanberg and Svärd (2013) for elasticity
problems. More precisely, we use functions of the form

fk = (x+α)−1 or fk = (1−x+α)−1. The parameter α > 0
is used to control the nonlinearity of fk(x). When α tends
to infinity the harmonic filters approach a linear filter. For
small values of α the harmonic filters allow for sharper tran-
sitions between regions of different materials than the linear
filter. In addition, the harmonic filter operator have bounded
derivatives as the nonlinearity parameter α tends to zero. We
refer to the study by Svanberg and Svärd (2013) for a com-
prehensive comparison between the harmonic mean filters
and other kinds of filters.

The f W -mean filters with the first (second) of the har-
monic functions above promotes the values 0 (1), provided
that the input contains 0 (1). The behavior of the two har-
monic filters, for small values of α, is in this sense similar
to the erode and dilate operators in mathematical morphol-
ogy (Haralick et al. 1987; Heijmans 1995). On a binary
design, the dilate operator dilates regions occupied with
ones. That is, this operator expands areas occupied by metal.
The effect of the erode operator is the opposite in the sense
that it erodes regions occupied with ones; that is, it dilates
regions occupied with zeros. If we cascade an erode opera-
tor followed by a dilate operator, then we get the so-called
open operator that removes regions containing ones that are
smaller than the neighborhood. Similarly, if we cascade a
dilate operator followed by an erode operator, then we get
the close operator that removes regions containing zeros that
are smaller than the neighborhood.

In the numerical experiments, whenever we use non-
linear filtering, we use an open–close filter; that is, an
open filter followed by a close filter. The harmonic open–
close filter is thus a cascade of four filters, where f1(x) =
f4(x) = (x + α)−1 and f2(x) = f3(x) = f1(1 − x).
We remark that, in general, the open-close filtering strategy
does not guarantee minimum size control on both metal and
etched regions, as Schevenels and Sigmund (2016) recently
reported. Nevertheless, our numerical experiments suggest
that the results obtained using an open–close filtering strat-
egy in many cases provide final designs that have smooth
boundaries as well as minimum size control on both the
metal and etched regions.

6 Design algorithm

Figure 3 shows a summary of the proposed optimization
algorithm. We start with a uniform distribution of the design
variables. The first loop in the design algorithm shows the
basic steps to solve a topology optimization problem. In this
loop, we filter the design variables, compute the objective
function and its gradient, check a convergence criterion, and
then, if needed, update the design variables. As convergence
criterion, we use the norm of the first-order optimality con-
dition relative to a reference value. More precisely, we start
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Fig. 3 The optimization algorithm including two continuation levels;
one over the filter radius and one over the nonlinearity of the filter

the solution of a problem, record the norm of the first-order
optimality condition after 8 iterations, continue the solution
of the subproblem until the norm of the first-order optimal-
ity condition decreases to 25% of the recorded value. To
update the design variables, we use the globally-convergent
method of moving asymptotes (GCMMA) developed by
Svanberg (2002).

The second two loops in the design algorithm update the
filter parameters. The first of these represents the continua-
tion over the filter radius. In all cases, we update the filter
radius using Rn = max{(0.75)n × (10�), Rmin}, where we
set Rmin = � when linear filters are used. For the nonlin-
ear filters, we investigate different values for Rmin. When
nonlinear filters are used, the last loop represents the con-
tinuation over the nonlinearity variable α. We update the
nonlinearity variable using αi = (0.5)i × αmax, where αmax

is a starting value of α chosen to be large enough. The algo-
rithm terminates when αi drops below αmin = 10−6. To
characterize the amount of grayness in the final design, we
use the non-discreteness measure, Mnd = 4p̃T (1 − p̃)/N ,
suggested by Sigmund (2007), where N is the number of
entries in p̃ and 1 is a vector of length N with ones at all
entries. Furthermore, in a final post-processing step, we use
1 S/m as a threshold conductivity to map values below and
above that value to σmin and σmax, respectively.

7 Results and discussion

We design a transition between a 50 Ohm coaxial cable
and a standard WR90 rectangular waveguide. The frequency
band 8–12 GHz is considered as the band of interest. The
radii of the inner probe and the outer shield of the coax-
ial cable are 1.27 mm and 4.45 mm, respectively, and the
waveguide dimensions are 22.86mm×10.16mm. The coax-
ial cable is connected, to the shorting wall at the waveguide
end, at a point shifted 2.54 mm in the negative x-direction
from the center (see Fig. 1). We use a spatial discretiza-
tion step � = 0.127 mm in the FDTD method and a time
discretization 0.95 of the Courant step. The design domain
�, see Fig. 1, located at z = 1.27 mm, is discretized into
180 × 80 cells, resulting in 28,540 design variables associ-
ated with the interior edges of the grid. The volume between
z = 0 and z = 1.27 mm is filled by a low-loss RT/Duroid
5880 LZ substrate (εr = 1.96 and tan δ = 0.002 at 10 GHz)
to hold the design. For all design problems in this work, we
start with a uniform initial distribution of the design vari-
ables, pi = 0.6, which corresponds to conductivity values
near the peak in Fig. 2. This choice reduces the risk of bias-
ing the design towards any of the two lossless cases (that is,
the good dielectric and the good conductor).

7.1 Linear filter

In this section, we present the results for designing the tran-
sition using a linear filter combined with a continuation
approach. First, we set the functions fk(x) = x in expres-
sion (11), and use a cascade of four linear filters (that is,
K = 4 in expression (10)). The reason to use the four cas-
caded linear filters is to obtain a filtering effect, especially
in the beginning of the optimization, comparable to the one
used in the next section, for the nonlinear filter. Although
each filter matrix W(k) uses constant weights over a circu-
lar neighborhood of radius R, the cascade of the fW-mean
filters acts as a linear filter with weighting matrix W4 (filter
size 4R) (Hägg and Wadbro 2017).

Figure 4 shows the progress of the objective function
together with some snapshots showing the development
of the filtered design. We include in the same figure the
change in the level of non-discreteness of the filtered design.
The objective function increases monotonically with dis-
tinct jumps at the beginning of each subproblem, when the
filter radius decreases. At the beginning of the optimization,
the design contains large amounts of intermediate values
(Mnd = 44%), and the boundaries are blurred, which is
expected because of the large filter size. At the end of the
optimization process, the design has crisp boundaries and
Mnd has decreased to 1.6%.

Figure 5a shows the final conductivity distribution
obtained by the optimization algorithm after 111 iterations.
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Fig. 4 The iteration history of the objective function and the non-
discreteness level together with some samples of the filtered design.
Black color indicates a good conductor and white color indicate a good
dielectric

We note that the final design contains small metallic parts
as well as small holes inside the metallic block. These small
features typically appear in the design when the filter radius
is reduced to small values, which indicates that the solu-
tion to the optimization problem is mesh dependent. (As
we use finer grids, smaller features will likely appear in
the final design.) Based on numerical investigations, these
small metallic parts and holes have a minor impact on the
performance of the transition. This conclusion can also be
inferred from the development of the objective function
in Fig. 4; there is little variation in the objective function
near the end, where the small features start to appear. In
practice, however, these small features may complicate the
manufacturing process and raise the ohmic losses inside
the transition, as mentioned in the introduction. Figure 5b
shows the amplitudes of the reflection coefficient |S11| and
the coupling coefficient |S21| of the transition. The perfor-
mance of the transition is computed by our FDTD code and

cross-verified with the commercial CST Microwave Stu-
dio package (https://www.cst.com/). Overall, there is a good
match between the two simulations; the slight frequency
shift can be accounted for by the differences in geometry
description between the two methods. The optimized tran-
sition has a reflection coefficient, |S11|, below −8 dB and
coupling coefficient, |S21|, above −1 dB over the frequency
band 8.5–12 GHz, which essentially covers the frequency
band of interest marked by the vertically dashed lines in the
plot. The simulation results of the transition show that there
is a resonance around 11.5 GHz, which also appears, unfor-
tunately, in many of the subsequent optimization results. We
emphasize that the formulation of the objective function as
the integral of the outgoing energy in time-domain makes
it difficult to target a specific single frequency. We believe
that this resonance is promoted by some geometrical fea-
tures in the problem setup and leave this issue for future
investigations.

We note that the final designs may be asymmetric with
respect to the symmetry plane y = a/2 (see Fig. 1).
Although the problem setup is symmetric, an optimal design
need not be symmetric. In fact, imposing symmetry would
restrict the design space, which potentially leads to designs
with poorer performance. Here, the asymmetry stems from
the use of finite precision arithmetic; although the initial
design conductivity is symmetric, the numerically computed
fields will generally not be perfectly symmetric. Given
asymmetric design conductivities, the optimization algo-
rithm may drive the design back to the symmetric case or
away from it depending on the design sensitivities.

To further improve the performance of the transition, we
use an additional design layer inside the waveguide at the
plane z = 2.54 mm to distribute the conductivity. The new
design domain consists of two layers, one layer at z = 1.27
mm and the second layer at z = 2.54 mm, with a low-loss
RT/Duroid 5880 LZ substrate filling the volume between

Fig. 5 a The final conductivity
distribution over the design
domain when a linear filter
combined with a continuation
over the filter radius is used. b
The scattering parameters of the
transition
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Fig. 6 Results of optimizing the two-layer design using the linear filtering approach. a First layer conductivity distribution, z = 1.27 mm. b
Second layer conductivity distribution, z = 2.54 mm. c The scattering parameters of the transition

z = 0 mm and z = 2.54 mm. The new design problem has
57,080 design variables and is solved using the same set-
tings as the one-layer design case. Figure 6a and b show the
final design obtained after 92 iterations. We note the appear-
ance of small metallic parts in the second layer at z = 2.54
mm. These small features, as mentioned for the one-layer
design, appear when the filter size diminishes, since the
solution of the optimization problem becomes mesh depen-
dent. The non-discreteness level of the final design is Mnd =
0.3%. Figure 6c shows the improvement in the performance
of the two-layer design compared to Fig. 5b. The |S11| curve
has values below −12.5 dB over the frequency band 8.4–12
GHz with a corresponding |S21| above −0.5 dB, excluding
the resonance around 11 GHz.

To conclude, the approach used in this section has the
drawback that small features can appear in the final designs,
as shown in Figs. 5a and 6b. These features appear as a
consequence of reducing the filter radius during the con-
tinuation approach. These small features can increase the
ohmic losses (Pozar 2012, §2.7) and cause manufacturing
problems.

7.2 Nonlinear filters

In this section, we present the results when using the pro-
posed two-phase filtering approach. We use a cascade of
four fW-mean filters to implement the open–close filter dis-
cussed in Section 5. In a one dimensional test problem,
we noticed only small differences between filtered designs
obtained by using values of α > 8 in the harmonic open–
close (fW-mean) filter and the case when a linear filter is
used (that is, when fk(x) = x for all k). Therefore, in the

first phase of the filtering process, Phase I, we fix the nonlin-
earity variable α to αmax = 8, and we follow a continuation
approach over the filter radius, as in the case of the linear
filter. That is, we solve a sequence of problems, for which
the the filter radius is updated using Rn = (0.75)n × (10�).
Here, the filter radius is updated until the radius reaches a
specified value Rmin ∈ {3�, 5�, 7�}. In the second phase
of the filtering process, Phase II, we fix the filter radius to
Rmin and start a continuation approach over the nonlinear-
ity variable α aiming for binary solutions. In Phase II, we
update the nonlinearity variable using αi = (0.5)i ×(8), and
the algorithm stops when αi drops below 10−6. We remark
that if the required final filter size Rmin is large, then Phase
I only has a minor influence, since the harmonic open–close
(fW-mean) filter performs similar to a linear filter in the
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Fig. 7 The objective function and non-discreteness level of the physi-
cal design, when we use the two-phase filtering approach to design the
one-layer transition
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Fig. 8 a The final conductivity
distribution over the one-layer
design domain, when we use the
two-phase filtering approach
with Rmin = 3�. b The
scattering parameters of the
transition
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beginning of Phase II. However, in our numerical experi-
ments, we noticed that generally the use of the two-phase
filtering approach allows the algorithm to converge to bet-
ter solutions in terms of the objective function. In particular,
Phase I is essential to obtain good results when a small Rmin

is used.
Figure 7 shows the progress of the objective function and

the non-discreteness level of the filtered design for the one-
layer design case using the two-phase filtering approach,
when Rmin = 3� is used. The optimization algorithm con-
verged to the final solution after 330 iterations (100%), of
which 49 iterations (15%) are used in Phase I and 281 iter-
ations (85%) are used in Phase II. By the end of Phase I,

the objective function increased to 88% of the maximum
value and the level of non-discreteness decreased to 15%
(from an initial value of 44%). In Phase II, the change in
the objective function is relatively smaller than that in Phase
I, nevertheless, it is essential to carefully update the non-
linearity variable α to avoid numerical instabilities in the
continuation approach. The design algorithm converged to
a final design with Mnd = 1.0%.

Figure 8a shows the final design for the case Rmin = 3�,
with the small circle included above the figure indicating
the filter size. We note that, except for the staircasing inher-
ited intrinsically in the FDTD discretiziation, the use of the
open–close filter removed both the metallic (black color)

Fig. 9 a The final conductivity
distribution over the one-layer
design domain, when we use the
two-phase filtering approach
with Rmin = 5�. b The
scattering parameters of the
transition
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Fig. 10 a The final
conductivity distribution over
the one-layer design domain,
when we use the two-phase
filtering approach with
Rmin = 7�. b The scattering
parameters of the transition
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and the dielectric (white color) features smaller than the fil-
ter size. The performance of the transition, given in Fig.
8b, is essentially the same as the one obtained by the linear
filter.

To illustrate the effect of the parameter Rmin, we present
two additional designs obtained by the design algorithm for
Rmin = 5� and Rmin = 7�, in Figs. 9 and 10, which were
obtained after 336 and 296 iterations with a final Mnd =
0.7% and Mnd = 1.5%, respectively.

To obtain a quantitative measure of the size control in the
final designs, we estimate their minimum sizes by seeking
the largest R so that for any edge e in the design there exists
a circle Ce with radius R that contains e and is inscribed

in the design. We estimate the minimum size of the metal-
lic parts as well as the dielectric protrusions in the final
designs. The estimated minimum sizes for the metallic parts
of the designs in Figs. 8a, 9a, and 10a are 3�, 6�, and 7�,
respectively. The corresponding dielectric protrusions have
estimated minimum sizes 3�, 5�, and 7�, respectively.
Therefore, we may conclude that the use of the open–close
filter imposes minimum size control over the metallic parts
as well as the dielectric protrusions, with minor impact on
the performance compared to the results obtained with the
linear filter.

Similar to the linear filter case, we use the proposed
nonlinear filtering to investigate the design of a two-layer
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Fig. 11 Results of optimizing the two-layer design by using the two-phase filtering approach with Rmin = 3�. a First layer conductivity
distribution, z = 1.27 mm. b Second layer conductivity distribution, z = 2.54 mm. c The scattering parameters of the transition
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Fig. 12 Results of optimizing the two-layer design by using the two-phase filtering approach with Rmin = 5�. a First layer conductivity
distribution, z = 1.27 mm. b Second layer conductivity distribution, z = 2.54 mm. c The scattering parameters of the transition

transition. Figures 11, 12, and 13 show the optimization
results obtained by the algorithm when we use Rmin =
3�, Rmin = 5�, and Rmin = 7�, respectively. These
results were obtained by the design algorithm after 334,
350, and 316 iterations with final Mnd of 0.3%, 0.3%,
and 0.9%, respectively. The effect of the filter radius Rmin

is more prominent on the second layer of the designs in
Figs. 11b, 12b, and 13b, where we see that the small features
in the final design have a size comparable to the corre-
sponding value of Rmin. The estimated minimum size of the
first layer’s metallic parts are 6�, 11�, and 8� for the

designs in Figs. 11a, 12a, and 13a, respectively, while
the metallic parts in the second layer (Figs. 11b, 12b,
and 13b) have estimated minimum sizes 3�, 5�, and 7�,
respectively. The dielectric protrusions in both layers in
Figs. 11, 12, and 13 have estimated minimum size 3�, 5�,
and 7�, respectively. That is, in all cases and for both the
metallic and dielctric parts the estimated minimum sizes are
greater than or equal to the employed filter radii. Overall,
the use of the open–close filter imposed minimum size con-
trol over the features of the designs with minor impact on
design performance.
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Fig. 13 Results of optimizing the two-layer design by using the two-phase filtering approach with Rmin = 7�. a First layer conductivity
distribution, z = 1.27 mm. b Second layer conductivity distribution, z = 2.54 mm. c The scattering parameters of the transition
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8 Conclusion

The filtering of the design variables is essential to counter-
act the self penalization of the optimization problem and to
avoid designs with poor performance. The simplest use of
filtering, that is, a linear filter combined with a continuation
approach over the filter radius, makes it possible to combat
the self penalization issue; however, undesirable small fea-
tures sometimes appear in the final design. To control the
size of the small features in the design, we propose a two-
phase filtering approach, based on a cascade of fW-mean fil-
ters. The numerical experiments, cross-verified with a com-
mercial solver, indicate that the proposed filtering approach
makes it possible to impose minimum size control with
minor impact on the performance of the designs.
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