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Abstract. In 1974, Ralph Merkle proposed the first unclassified protocol for secure
communications over insecure channels. When legitimate communicating parties are
willing to spend an amount of computational effort proportional to some parameter N,
an eavesdropper cannot break into their communication without spending a time pro-
portional to N 2 which is quadratically more than the legitimate effort. In a quantum
world, however, Merkle’s protocol is immediately broken by Grover’s algorithm, but it
is easily repaired if we are satisfied with a quantum protocol against which a quantum
adversary needs to spend a time proportional to N 3/2 in order to break it. Can we do
better? We give two new key establishment protocols in the spirit of Merkle’s. The first
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one, which requires the legitimate parties to have access to a quantum computer, resists
any quantum adversary who is not willing to make an effort at least proportional to N 573,
except with vanishing probability. Our second protocol is purely classical, yet it requires
any quantum adversary to work asymptotically harder than the legitimate parties, again
except with vanishing probability. In either case, security is proved for a typical run of
the protocols: the probabilities are taken over the random (or quantum) choices made
by the legitimate participants in order to establish their key as well as over the random
(or quantum) choices made by the adversary who is trying to be privy to it.

Keywords. Merkle puzzles, Key establishment, Post-quantum cryptography, Quan-
tum query complexity.

1. Introduction

While Ralph Merkle was delivering the 2005 International Association for Crypto-
logic Research (IACR) Distinguished Lecture at the CRYPTO annual conference in Santa
Barbara, describing his original unpublished 1974 protocol [35] for public-key estab-
lishment (much simpler and more elegant than his subsequently published, yet better
known, Merkle Puzzles [36]), one of us (Brassard) immediately realized that this pro-
tocol is totally insecure against an eavesdropper equipped with a quantum computer.
The obvious question was: Can Merkle’s idea be repaired and made secure again in our
quantum world? The defining characteristics of Merkle’s protocol are that (1) the legit-
imate parties communicate strictly through an authenticated classical channel on which
eavesdropping is unrestricted and (2) a protocol is deemed to be secure if the cryptan-
alytic effort required of the eavesdropper to learn the key established by the legitimate
parties grows super-linearly with the legitimate work.

Two of us (Brassard and Salvail [21]) partially repaired Merkle’s idea in 2008 with a
protocol in which the eavesdropper needs an amount of work in Q(N 3/ 2) to obtain the
key established by quantum legitimate parties whose amount of work is in O (N). This
was not quite as good as the work in  (N?) required by a classical eavesdropper against
Merkle’s original protocol, but significantly better than the work in O (N) sufficient for
a quantum eavesdropper against the same protocol. Two main questions were left open
in Ref. [21]:

1. Can the quadratic security possible in a classical world be restored in our quantum
world?

2. Is any provable security possible at all if the legitimate parties are purely classical,
yet the eavesdropper is endowed with a quantum computer?

At the CryPTO 2011 conference, we gave two novel key establishment protocols to
address these issues [18]. The current paper subsumes our earlier conference version and
improves on it in various ways described below. In our first CrRypTO 2011 protocol, the
legitimate parties use quantum computers and classical authenticated communication
to establish a shared key after O (N) expected queries to two random functions (which
can be modelled with a single binary random oracle). We then gave a non-trivial quan-
tum cryptanalytic attack, which enables a quantum eavesdropper to learn the key after
® (N 3/ 3) queries to the functions. Furthermore, we proved that our attack is optimal (up
to logarithmic factors) against that protocol. However, we initially focused on security
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in the worst case, so that standard techniques in the theory of quantum lower bounds
were sufficient. Unfortunately, this was of limited cryptographic relevance.

Our second CrYPTO 2011 protocol was purely classical, in the sense that the legitimate
parties need only classical computation and classical communication to establish a key
after O(N) queries to similar random functions. We then gave a quantum cryptanalytic
attack that requires ®(N 13/ 12) queries to the functions. As unlikely as it may sound, this
attack is optimal (again up to logarithmic factors) against that protocol, and therefore, it
is not possible to break it with a quantum attack that uses an amount of resource linear
in the legitimate effort. This was the first protocol ever proved secure (in the random
oracle model) in the now thriving field of post-quantum cryptography [14,37]. However,
our proof of security was also given only in the worst case, making it cryptographically
unsatisfactory.

We now improve on the CRYpTO 2011 results in two directions. First, we simplify both
protocols. Curiously, the simpler classical protocol is also more secure since Q(N 7 6)
quantum queries are required to break it, compared to O (N 13/ 12) queries for the earlier
protocol. Second, and more importantly, our proofs of security now hold for random
instances rather than for the worst-case instance. It follows that the key obtained in a
typical run of our protocols is secure, except with vanishing probability.

After a review of Merkle’s original idea [35], its meltdown against a quantum eaves-
dropper and the obvious partial quantum solution [21] in Sect. 2, we describe our new
protocols in Sects. 3 and 4, including quantum attacks against them in Sects. 3.1 and 4.1
and proofs of optimality for those attacks in Sects. 3.2 and 4.2. We then sketch an
extension of these protocols to two families of more elaborate quantum and classical
protocols in Sect. 5, but we postpone their detailed descriptions and proofs of security
to a follow-up paper whose preliminary version is in Ref. [8]. Some practical aspects
of our protocols are analysed in Sect. 6. As a technical tool needed in our proofs of
lower bounds, we prove a new composition theorem of potential independent interest in
Sect. 7. Finally, we conclude in Sect. 8 with a list of open problems in hope to improve
our protocols in a variety of ways or prove intrinsic limits to such improvements.

2. Merkle’s Original Protocol and How to Break and Partially Repair It
with Quantum Computers

The first unclassified document ever written that pioneered public-key establishment and
public-key cryptography was a class project proposal written in 1974 by Merkle when he
was a student in Lance Hoffman’s CS244 course on Computer Security at the University
of California, Berkeley [35]. Hoffman rejected the proposal and Merkle dropped the
course but “kept working on the idea” and eventually published it as one of the most
seminal cryptographic papers in the second half of the twentieth century [36]. Merkle’s
protocol in his published paper was somewhat different from his original 1974 idea, but
both share the property that they “force any enemy to expend an amount of work which
increases as the square of the work required of the two [legitimate] communicants” [36].
It took 35 years before Boaz Barak and Mohammad Mahmoody-Ghidary proved that
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this quadratic discrepancy between the legitimate and eavesdropping efforts is the best
possible in a classical world [7] for provable security in the random oracle model.

In his IACR Distinguished Lecture,! which he delivered at the CRYPTO *05 Conference
in Santa Barbara, Merkle described from memory his first solution to the problem of
secure communications over insecure channels. As a wondrous coincidence, he unsus-
pectingly opened a box of old folders a mere three weeks after his Lecture and happily
recovered his long-lost CS244 Project Proposal, together with comments handwritten
by Hoffman [35]! To quote his original typewritten words:

Method 1: Guessing. Both sites guess at keywords.
These guesses are one-way encrypted, and
transmitted to the other site. If both sites
should chance to guess at the same keyword,
this fact will be discovered when the encryp-
ted versions are compared, and this keyword
will then be used to establish a communica-
tions link.

Discussion: No, I am not joking.

In more modern terms, let f be a one-way permutation. In order to “one-way encrypt”
x, as Merkle wrote in 1974, we assume that one can compute f(x) in unit time for any
given input x but that the only way to retrieve x given f(x) is to try preimages and
compute f on them until one is found that maps to f(x). This is captured by the
random oracle model. Accordingly, throughout this paper, with the exception of Sect. 6,
efficiency is defined solely in terms of the number of queries to such oracles (there could
be more than one). In the quantum case, these queries can be made in a superposition
of inputs. We also assume throughout this paper (as did Merkle) that an authenticated
channel is available between the legitimate communicants, although this channel offers
no protection against eavesdropping.

The “keywords” guessed at by “both sites” are random points in the domain of f. They
are “one-way encrypted” by applying f to them. If there are N2 points in the domain
of f, it suffices to guess O (N) keywords at each site before it becomes overwhelmingly
likely that “both sites should chance to guess at the same keyword”, which becomes
their shared key. An eavesdropper who listens to the entire conversation has no other
way to obtain this key than to invert f on the revealed common encrypted keyword.
In accordance with the oracle model, this can only be done by trying on average half the
points in the domain of f before one is found that is mapped by f to the target value.
This will require an expected number of queries to f in Q(N?), which is quadratic in
the legitimate effort.

Shortly thereafter, Whitfield Diffie and Martin Hellman reinvented independently
Merkle’s notion of key establishment and discovered a celebrated method to achieve
this goal, making the cryptanalytic effort apparently exponentially harder than the legit-
imate effort [25]. However, no proof is known that the Diffie-Hellman protocol is secure
at all (even using elliptic curve cryptography) since it relies on the conjectured difficulty
of extracting discrete logarithms, an assumption doomed to fail whenever quantum com-

1 www.iacr.org/publications/dl/ann2005.html.
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puters become available [40]. The same can be said of the subsequent (nowadays ubiqui-
tous) RSA public-key cryptosystem [38]. In contrast, Merkle’s approach offers provable
quadratic security against any possible classical attack, under the sole assumption that
f cannot be inverted by any other means than exhaustive search.

Next, we explain why Merkle’s original proposal becomes completely insecure if
the eavesdropper is capable of quantum computation. (Merkle’s subsequently published
“puzzles” [36] are equally insecure [21].) We then sketch our 2008 solution for a pro-
tocol that is not completely broken [21]. This is achieved by granting similar quantum
computation capabilities to one of the legitimate communicating parties.

2.1. Quantum Attack and Partial Remedy

Let us now assume that function f can be computed quantum mechanically on a super-
position of inputs. In this case, Merkle’s original protocol is completely compromised
by way of Grover’s algorithm [29]. Indeed, this algorithm needs only query the function
o (JW ) = O(N) times in order to invert it on any given point of its image, making the
cryptanalytic task as easy (up to constant factors) as the legitimate key set-up process.”
To remedy the situation, Ref. [21] pioneered the idea of allowing the classically
communicating parties to use quantum computers as well (actually, one of the parties
may remain classical), and we increase the domain of f from N2 to N points. Instead
of having both sites transmit one-way encrypted guesses to the other site, one site called
Alice chooses N distinct random values xg, x1, ..., xy—1 and transmits them, one-way
encrypted by the application of f, to the other site called Bob. Let Y = {f(x;) |0 <i <
N} denote the set of encrypted keywords received by Bob, which becomes known to the
eavesdropper. Now, Bob defines a Boolean function g on the same domain as f by

1 iffx)eY
8(x) = {0 otherwise. M

Out of N3 points in the domain of f, there are exactly r = N solutions to the problem of
finding an x so that g(x) = 1. It suffices for Bob to apply the BBHT generalization [15] of
Grover’s algorithm [29], which finds such an x after O (v/N3/1) = o(m) = O(N)
queries to g and therefore to f. Bob sends back f(x) to Alice, who knows the value of x
because she was careful to keep her randomly chosen points. Therefore, O (N) queries’
to function f by Alice and Bob suffice for them to agree on key x.

The eavesdropper, on the other hand, is faced again with the need to invert f on a
specific point of its image. Even with a quantum computer, this requires a number of

2 If an unstructured search problem has ¢ solutions among M candidates, Grover’s algorithm [29], or more
precisely its so-called BBHT generalization [15], can find one of the solutions after O (W ) expected
queries to a function that recognizes solutions among candidates. However, Theorem 4 of Ref. [19] implies
that, whenever the number ¢ > 0 is known, a solution can be found with certainty after O (W ) queries to
that function in the worst case. From now on, when we mention Grover’s algorithm or BBHT, we really mean
this improvement according to Ref. [19].

3 If we cared about computational efficiency instead of only query complexity, Bob would sort the elements
of Y in increasing order after receiving them from Alice. In this way, he can quickly determine, given any y =
f(x), whether or not y € Y, which is needed to compute g. More on computational efficiency in Sect. 6.
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queries to f proportional to the square root of the number of points in its domain [11],
whichis Q(v/N3) = Q(N??). This is more effort than what is required of the legitimate
parties, yet less than quadratically so, as would have been possible in an all-classical
world. Even though we have avoided the meltdown of Merkle’s original approach, the
introduction of quantum computers available to all sides seems to be to the advantage of
the codebreakers. Can we remedy this situation? Furthermore, is any security possible
at all against a quantum computer if both legitimate parties are restricted to being purely
classical? We address these two questions in the rest of this paper.

3. Improved Quantum Key Establishment Protocol

The adjective negligible describes a function that decreases faster than the inverse of any
polynomial. Formally, a function v : N — R is negligible if for any constant k, there
exists Ny such that v(N) < N =% forall N > Nj. A weaker notion is that of vanishing
function, which means that for any integer k, there exists Ny suchthat v(N) < 1/k forall
N > Ng, or, said otherwise, v is o(1). In cryptography, we usually strive for bad things to
happen with negligible probability, such as the eavesdropper learning the key. Merkle’s
original work, however, was conceived in a way that a classical eavesdropper could not
recover the secret key, except with vanishing probability, unless she made O (N?) queries
to the oracle. Yet, a very lucky eavesdropper could recover the key with non-negligible
probability (1/N?) with a single query to the oracle! Even though Merkle’s protocol
can be modified to make the eavesdropper’s success probability negligible, rather than
merely vanishing, provided we restrict her to at most O (N?/log? N) queries [5], we
shall be satisfied in this paper if the probability that a suitably bounded adversary can
break our protocols is vanishing.

For any positive integer N, let [N] denote the set of integers from O to N — 1. For
simplicity, we shall always take N = 2¢ to be a power of 2 and implicitly equate integer
i € [N] with the £-bit binary expansion of i seen as a bit string. This makes it possible to
consider [ N] as a group under the bitwise exclusive-or operation, denoted “@ . In case
one or both of i and j are the special symbol “x” introduced later, we say thati @ j is unde-
fined, and therefore, it cannot be equal to w, regardless of what w is (not even w = x).
We describe our novel key establishment protocol assuming the existence of fwo random
oracle functions f : [N 31> [Nand?:[N3] — [N C/], where ¢ and ¢’ are constants
discussed below. These oracles can be accessed in the usual quantum manner: for any
x € [N3]and y € [N€],oracle f sends |x, y) to|x, y® f(x)), and it sends superpositions
of inputs to the corresponding superpositions of outputs; similarly for function 7.

Constant ¢ is chosen large enough so that f is one-to-one (there is no collision in
the images of f), except with vanishing probability. An elementary calculation based
on Boole’s inequality (aka the union bound) shows that choosing ¢ > 6 is sufficient.
For simplicity, we shall henceforth disregard events that occur with vanishing probability,
in particular the possibility that f not be one-to-one. Constant ¢’ is chosen large enough
to ensure that, except with vanishing probability, the function that maps unordered pairs
{a, b} of distinct elements to 7(a) @ t(b) is one-to-one. A similar calculation based
again on Boole’s inequality, using the fact that & maps uniformly distributed inputs to
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uniformly distributed outputs, shows that ¢’ > 12 is sufficient. Again, we shall henceforth
assume that this property holds.

Notice that a single binary random oracle (which “implements” a random function
from the integers to {0, 1}) could be used to define both functions f and ¢, provided
we disregard logarithmic factors in our analyses, since O (log N) queries to the binary
oracle would suffice to compute f or # on any given input. Indeed, to specify function f
using a binary oracle, one needs only N3 Ig N¢ bits from the binary oracle, where “Ig”
denotes the binary logarithm, since each query i € [N3] for f requires Ig N¢ queries
to the binary oracle to construct the integer f (i) € [N¢]. The situation is similar for
function ¢. For this reason, it is understood hereinafter that all our results are implicitly
stated “up to logarithmic factors”. Furthermore, multiple function oracles can be encoded
using a single binary oracle by prepending a fixed bit string to the beginning of each
query. For instance, queries starting with “Ox” and “1x” can be used to define f(x)
and 7 (x), respectively.

Except in Sect. 6, where we care about computing time, the only resource that we
consider in our analyses of efficiency and lower bounds is the number of queries made
to these functions or, equivalently up to logarithmic factors, to the underlying binary
random oracle.

Protocol 1. (Quantum vs. quantum)

1. Alice picks at random N distinct points xg, x1, ..., xy—1 in the domain of f
and transmits their encrypted values y; = f(x;) to Bob. Let X = {x; | 0 <
i < N} be the secret set of Alice and define Y = {y; | 0 <i < N}. Note that
Alice knows both X and Y, whereas Bob and the eavesdropper know only
Y until they make their own queries to oracle f.

2. Bob finds the preimages x and x’ of two distinct random elements in Y. For
this purpose, he applies the BBHT generalization of Grover search twice
on function g defined in Eq. (1), as reviewed in Sect. 2.1, using a small
variation the second time to make sure that x’ # x. If f(x) was transmitted
before f(x) at Step 1, Bob swaps x and x’.

3. Bob sends back w = 7(x) & #(x’) to Alice.

4. Alice queries oracle ¢ once on each element of X. No further query is
required for her to find the two elements x; and x; in X suchthat0 <i <
J<Nandt(x;) ®t(x;) =w.

5. The key shared by Alice and Bob is (x;, x;) for Alice and (x, x") for Bob,
which is indeed the same under our assumptions on functions f and .

All counted, Alice makes N classical queries to f in Step 1 and N classical queries to
t in Step 4, whereas Bob makes O (N) quantum queries to f in Step 2 and two classical
queries to ¢ in Step 3.

3.1. Quantum Attack

All the obvious (and some not so obvious) cryptanalytic attacks against this protocol,
such as direct use of Grover’s algorithm (or BBHT), or even more sophisticated attacks
based on amplitude amplification [19], require the eavesdropper to query functions f
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and 7 a total of 2(N?) times. However, a more powerful attack based on the paradigm
of quantum walks in Markov chains [39] enables the eavesdropper to recover Alice and
Bob’s key with an expected O (N 3/3 ) queries to f and O (N 2/ 3) queries to ¢. This attack
is reminiscent of Ambainis’ quantum algorithm for element distinctness [3], which can
find two elements i and j such that e(i) = e(j) with O(N 2/ 3) expected queries to any
function e whose domain contains N elements, provided such elements exist.*

Ambainis’ algorithm uses a quantum walk on the Johnson graph J (N, r). This graph
is an undirected graph in which each node contains an r-subset of [ N], meaning a subset
of cardinality r for an appropriate value of r, and there is an edge between two nodes if
and only if they differ by exactly one element. Intuitively, we may think of “walking”
from one node to an adjacent node by dropping one element and replacing it by another.
For the problem of element distinctness, the task is to find a 2-subset {i, j} of [N] such
that e(i) = e(j), provided one exists. The nodes that contain this subset are called
marked. However, for a technical reason, our cryptanalytic task requires us to walk on a
(modified) Hamming graph instead, in which the nodes contain lists rather than subsets,
so that repetitions are allowed and the order in which items are listed matters.

Magniez, Nayak, Roland and Santha have proved a general theorem, showing that
quantum search algorithms can be derived from a large class of classical Markov chains
[34]. The cost of the resulting quantum algorithm can be written as a function of S, U
and C. These are the cost of setfing up the quantum register in a state that corresponds
to the stationary distribution, updating it unitarily by walking from one node to an
adjacent node and checking whether a node is marked in order to flip its phase if it is,
respectively.

Theorem 1. ([34, Theorem 3]) Let P be a reversible ergodic Markov chain with spec-
tral gap § > 0. Then there is a quantum algorithm that finds a marked node, with high
probability, provided there is at least one, at an expected cost in the order of

S+¢LE(\/L§U+C),

where ¢ is the probability that a random node be marked.

Theorem 2. There exists a quantum eavesdropping strategy that obtains the key estab-
lished in Protocol 1 with O (N 3/ 3) expected queries to f and O (N 2/3 ) expected queries
tot.

Proof. Intuitively, we apply Ambainis’ algorithm for element distinctness with two
modifications: (1) instead of looking for i # j such that e(i) = e(j), we are looking
for x and x’ such that 7 (x) @ 7(x’) = w and (2) instead of being able to get randomly
chosen values in the image of e with a single query to oracle e per value, we need to get
random elements of X by applying BBHT on the list Y and then query ¢ on them, which

4 There is no standard definition for the element distinctness problem. Ambainis uses the one above in
Ref. [3] and our Definition 1 in Ref. [2], which is also used by others in Ref. [1]. This is of no significant
importance because these two problems are easily seen to be computationally equivalent up to logarithmic
factors in the query complexity model.
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requires O (\/ N3/N ) = O(N) queries to f and one query to 7 per element. The second
modification explains why the number of queries to f, compared to O(N 2/ 3) queries
to e for element distinctness, is multiplied by O (N). Hence, we need O (N 3/ 3) queries
to function f. To determine the number of queries required to function ¢, however, we
have to delve deeper into the eavesdropping algorithm.

The composed structure of the problem prevents us from using a quantum walk on
the Johnson graph, which was at the core of Ambainis’ algorithm. Instead, we base
the eavesdropping algorithm on a quantum walk on the Hamming graph H (X, r), in
which X is Alice’s secret set and r is a number to be determined later. The nodes of
the Hamming graph are labelled by ordered r-tuples of elements of X. There is an edge
between two nodes when they differ on precisely one position. Said otherwise, the Ham-
ming distance between their labels is 1. This graph has been used by Andrew Childs
and Robin Kothari to study the quantum query complexity of minor-closed graph prop-
erties [24]. These authors have proved that the spectral gap § of this graph is Q(1/r).
The quantum search algorithm on the Hamming graph also maintains a data struc-
ture at each node consisting of the image of each element of the node label under the
random oracle ¢. In order to implement easily the update step of the quantum walk
[34], we need to modify the Hamming graph by adding self-loops on all nodes, which
does not change the spectral gap significantly [33]. Therefore, one can think of walk-
ing on the graph by replacing a randomly chosen element in the label of the current
node by a randomly chosen element of X, thus leading to a self-loop with probabil-
ity 1/N.

We are looking for a marked node, which are those that contain two elements x and x’
such that 7 (x) @7 (x’) = w, where w is the value announced by Bob in Step 3 of the pro-
tocol. We use Theorem 1 on the modified Hamming graph, leading to a quantum search
algorithm whose cost depends only on parameters S, U and C, as mentioned above.
The set-up cost S corresponds to finding r not necessarily distinct random elements
of X and then querying ¢ on them. Technically, we need to obtain r independent equal
superpositions of the elements of X by a unitary process, rather than r random elements,
which is done by applying BBHT r times up to but excluding the final measurement.
Since each use of BBHT requires O(N) queries to f and one query to 7, S consists
of O(rN) queries to f and r queries to 7. The update cost U corresponds to finding
one random element of X, which requires O (N) queries to f, again by BBHT, and one
query to t. Again, technically, the update consists of applying BBHT minus the final
measurement to obtain an equal superposition of the elements of X, and then applying
t on the result. The checking cost C requires us to decide whether there are distinct
elements x and x’ in the node such that ¢ (x) @ f(x’) = w, which can be done without
any additional queries since all the relevant values of ¢ are kept in the node. Finally, the
probability ¢ for a random node to be marked is Q(r2 /N 2). Putting it all together, the
expected cryptanalytic cost is

1 1
S+75(75U+C)
=S+0(%Wru+0)

=S+0(%U>
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ucC
o = BUC — H2XOR —— cryptanalysis
pSEARCHN Lemma 2 Thm 3

Fig. 1. Logical structure of the proof of Theorem 3 .

=0 ((rN queries to f + r queries to t) + % (N queries to f + one query to t))
=0

(rN+N2/ﬁ) queries to f and O (r + N/+/r) queriesto .

To minimize the number of queries to f, we choose r so that rN = N2//r, which is
r = N?/3_ Tt follows that a quantum eavesdropper is able to find the key with an expected
0(N5/3) queries to f and 0(N2/3) queries to ¢. (]

3.2. Lower Bound

We prove in this section that the preceding quantum attack against our quantum protocol
is optimal. This claim is formalized by the following theorem.

Theorem 3. Any quantum eavesdropping strategy that recovers the key established in
Protocol 1 requires a total of 2 (N 3/ 3) queries to functions f andt, except with vanishing
probability. The vanishing probability is over a typical run of the protocol to establish
a key, followed by the execution of an arbitrary quantum cryptanalytic algorithm to
discover that key.

Before we undertake the proof of this theorem, it is useful to summarize the
task facing the adversary. After receiving a transcript of the protocol, which con-
sists of yo, y1,..., yv—1 and w, where each y; = f(xx) for an unknown x; and
w = 1(x;) ® t(x;) is a target value for some unknown i and j, she may make queries
to functions f and 7, after which she must determine x; and x ;. Most of her queries to
f produce irrelevant random values not appearing in the transcript. Among the relevant
queries (hidden in random positions chosen by Alice), she still needs to solve the hard
problem of finding two values that sum to w after function ¢ is applied to them. Our
proof that this is difficult for the adversary after a typical run of the protocol uses two
intermediate problems: H2XOR, which is a “hidden” extension of the 2XOR problem
(see Definitions 5 and 4) and a more structured problem called BUC (Bucketed Unique
Collision, see Definition 3) for which we prove a worst-case lower bound for quan-
tum query complexity. The “x” symbol in the intermediate problems stand in for the
irrelevant values of the random functions f and 7.

More formally, the proof of this theorem consists of five steps, which are illustrated
in Fig. 1.

1. We define the unique collision problem UC, the search problem pSEARCH and
their composition BUC, which is related to the hardness of breaking our protocol;
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2. We prove the hardness of BUC in the worst case (Corollary 1 of Theorem 9). For
this purpose, we need a new composition theorem for the generalized adversary
method, whose precise statement and technical proof are postponed to Sect. 7;

3. We define problems 2XOR and H2XOR, the latter being a hidden version of the
former, which are more directly related to the hardness of breaking our protocol;

4. We prove an Q2 (N 3/ %) lower bound on the difficulty of solving H2XOR on random
instances from the hardness of BUC in the worst case (Lemma 2);

5. We reduce H2XOR to the eavesdropping problem against our protocol. More
precisely, we show that any attack on our key establishment protocol that would
have a non-vanishing probability of success could be turned into an algorithm
capable of solving H2XOR on random instances with twice the number of quantum
queries (Theorem 3).

Notation 1. For any set X, let X* denote X U {x}, where “x” is some distinguished
symbol that does not belong to X. Any element of X is called a non-x element of X*.

Definition 1. (UC, COLL and ED Problems) Consider arbitrary integers N and
M > N and a function e : [N] — [M] so that there exist exactly two distinct elements
i and j in [N] for which e(i) = e(j). Such a pair of elements is called a collision. The
unique collision problem (UC) consists in finding these elements. Two related problems,
called the rwo-to-one collision problem (COLL) and the element distinctness problem
(ED), consist in finding a collision in a two-to-one function and deciding whether or not
a given function is one-to-one, respectively.

Lemma 1. The UC problem can be solved with O (N*/®) quantum queries to function e,
which is optimal in the worst case.

Proof sketch. Andris Ambainis has given a quantum algorithm [3] capable of solving
ED with O (N?/3) quantum queries to function e; the same approach can be used to solve
UC with the same efficiency. This algorithm for ED has been proved optimal in the worst
case by Scott Aaronson and Yaoyun Shi [ 1] by reduction from their €2 (N '/3) lower bound
for COLL. A variation on this reduction establishes an Q(N?/3) lower bound on UC
in the worst case because the restriction of any two-to-one function on a random subset
of /N points of its domain has constant probability of having a single collision (see
Reduction 1.4 in Ref. [1]). Note that a lower bound on ED does not automatically yield
the same lower bound on UC because the hard instances of ED could have been those
that have either zero or multiple collisions if all we knew was the lower bound itself. [J

Note that the lower bound on ED proved in Ref. [1] required M > N2. A claim was
made by Ambainis that this restriction is not necessary to establish the lower bound [2].
However, the proof given there is incomplete as it would apply only if the lower bound
restricted to M > N2 had been obtained with the polynomial method, which is not the
case since it was obtained by a classical random reduction to COLL. The same applies
to our lower bound on UC. Although the proof for the unrestricted case can be fixed [4],
we do not need it for our purposes since we shall need to have M > N? for a different
reason anyways.
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Definition 2. (pSEARCH Problem) Let M and K be integers. Consider the set P C
(MK of strings (ap, ay, - . ., ax—1) with the promise that exactly one value is non-.
The problem pSEARCH : P — [M] of size K consists in finding this non-x value by
making queries that take i as input and return a;, 0 < i < K. Unless stated otherwise,
we shall use K = N2.

Grover’s algorithm [29] solves pPSEARCH with 0(\/? ) = O(N) queries, and the
first-ever lower bound on the power of quantum computing [11] shows that this is optimal
in the worst case.

Definition 3. (Bucketed UC Problem) By composition, we define
BUC = UC o pSEARCHY.

Intuitively, an instance of BUC is obtained by “hiding” an instance of UC in “buckets”
in which a single entry is non-x. Formally, consider an instance e : [N] — [M] of the
UC problem. An instance of BUC is given by a function b : [N] x [N?] — [M]*.
The domain of this function is composed of N buckets of size N2 each, where b(i, -)
corresponds to the ith bucket for 0 < i < N. In bucket i, all values of the function are x
except for one single x; € [N?] for which b(i, x;) = e(i).

. e(i) ifj=ux;
b, j) = {* otherwise .
It follows from the definitions of e and b that there is a single pair of distinct & and 8
in the domain of b such that b(«) = b(B) # =, which is again called a collision. How
difficult is it to find this collision given an oracle for b as only access to function e?

The query complexity of the BUC problem, as well as the above-mentioned lower
bounds on the difficulty of solving the UC and pPSEARCH problems, are stated and
proved according to the usual complexity theoretic worst-case paradigm. This is clearly
not what is needed for cryptographic applications. We shall remedy this situation shortly,
starting with H2XOR in Lemma 2.

The BUC search problem is defined as the composition of UC with pPSEARCH.
Hgyer, Lee and Spalek have proved a composition theorem for the quantum query
complexity of such composed functions [31], later improved by Lee, Mittal, Reichard,
Spalek and Szegedy [32]. Unfortunately, those theorems are not applicable in our case
because they require the inner function to be Boolean, which pPSEARCH is not.

Therefore, a more general composition theorem (Theorem 9) is needed, whose proof
we postpone to Sect. 7 because of its technicality. We derive the statement we need here
as Corollary 1 of Theorem 9, used with parameter K = N 2 (the size of the buckets), to
obtain a lower bound of ©(N>/3) on the worst-case query complexity of BUC.

The security of our key establishment protocol is based directly on neither the UC
problem nor its bucketed version BUC, but rather on the 2XOR problem, or more
precisely its “hidden” version H2XOR, both of which we now proceed to define.

Definition 4. (2XOR Problem) Consider arbitrary integers N and M, a nonzero target
w € [M]andaone-to-one function& : [N] — [M] so that there exist exactly two distinct
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elements i and j in [V] for which £(i) @ £(j) = w. Such a pair of elements is called a
w-collision. The 2XOR problem consists in finding these elements. The couple (w, &)
is called an N-M-instance of this problem. A couple (w, §) such that & is not one-to-one
or there are either no w-collisions, or more than one, will be called an invalid “instance”.

It is elementary to adapt Ambainis’ algorithm [3] for ED in order to solve the 2XOR
problem with O(N 2/ 3) quantum queries to function &, a fact that we do not actually
need. Furthermore, it follows from Aaronson and Shi’s matching lower bound [1] that
2XOR cannot be solved with fewer than Q(N?/ 3) quantum queries in the worst case.
Rather than proving this last statement (which we do not need either), we prove below the
difficulty of uniformly distributed random instances of a problem more directly relevant
to the analysis of our key establishment protocol.

Definition 5. (Hidden 2XOR Problem) Consider an N-M-instance (w, &) of the 2XOR
problem and arbitrary distinct points zg, 21, ..., Zy—1 in [N 3. Let function 4 : [N3] —
[NT* x [M]* be defined as

(i,€@G)) if x =z; forsomei € [N]
(%, *) otherwise .

hx) = { @)
The unique pair of distinct points x and y in [N>] such that 7 (h (x)) ® w2 (h(y)) = w is
called a w-collision, where “m;” denotes projection on the kth coordinate. The hidden
2XOR problem, or H2XOR for short, consists in finding this w-collision given w and
oracle access to ; the couple (w, k) is called an N-M-instance of H2XOR.

Intuitively, given any N-M-instance (w, §) of the 2XOR problem, a corresponding
instance of H2XOR consists in “hiding” the image of £ among N3 — N uninformative *
symbols in positions specified by the a priori unknown values of zg, z1, ..., Zy—1. The
inherent difficulty of solving the 2XOR problem is therefore exacerbated by the difficulty
of accessing the instance itself. The purpose of the intriguing first coordinate [N]* in
the image of & will become clear in the proof of Theorem 3.

We are now ready to prove that the H2XOR problem is difficult (in terms of query com-
plexity) not only in the worst case but also on uniformly distributed random instances.
(Note that the simpler 2XOR problem is also difficult on uniformly distributed random
instances, but this is a fact that we do not need and therefore do not prove.)

Lemma 2. Any quantum algorithm that attempts to solve the H2XOR problem with
as few as o(N 3/ 3) quantum queries in the worst case, for parameters N and M > N¢
with ¢ > 2, will succeed with vanishing probability on a uniformly distributed random
instance.

Proof. Consider an arbitrary quantum algorithm A to solve the H2XOR problem.
As usual in quantum query complexity, the algorithm is given in the form of a uniform
family of quantum circuits, one for each value of N.> Each circuit alternates between

5 For simplicity, we shall assume that the value of M is implicit given the value of N, so that we do not
need to have a different circuit for each value of N and M. For instance, we could take M = 2lclgNT , which
would be the smallest power of 2 no smaller than N¢ (note that we never said that ¢ had to be an integer).
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arbitrary oracle-independent unitary transformations and oracle queries. Let p > 0 and
¢ (N) be so that this algorithm succeeds with probability at least p on a random instance
of H2XOR after at most g (N) quantum queries. Even though .4 may only be designed
to work on valid instances of H2XOR, nothing prevents us from running it on an invalid
“instance”, in particular if no w-collisions exist in /. In that case, A will obviously fail,
but it will nevertheless do so after at most ¢ (V) queries.

Now, we proceed by a reduction of BUC to H2XOR. More specifically, we show
how to transform an arbitrary instance of BUC into a uniformly distributed instance
of H2XOR conditioned on an event whose probability is very close to 1/2, in such a way
that a solution to the H2XOR instance provides a solution to the original BUC instance.
It follows that the worst-case quantum query complexity lower bound for BUC proved
in Corollary 1 of Theorem 9 translates to essentially the same quantum query complexity
lower bound for H2XOR, but on uniformly distributed random instances.

For this purpose, consider an arbitrary instance b : [N] x [N2] — [M]* of the BUC
problem, for the same parameters N and M, for which we wish to find the unique pair
o = (a1, a2) and B = (B1, Bo) in [N] x [N?] such that b(a) = b(B) # *. In order to
randomize the instance, we choose two random permutations t and o, whose purpose is
to shuffle the hidden values and their locations, respectively. Furthermore, we choose a
random boolean function £ used to add w to each non-* value of the BUC instance with
probability 1/2. If w is added to one of the two elements in the BUC collision but not to
the other (which happens with probability 1/2), this creates a w-collision in the resulting
H2XOR instance. More formally, we choose a random permutation t : [M] — [M]
and a random bijection o : [N 31 = [N] x [N?2]. In order to transform » with bounded
probability into a random instance (w, &) of H2XOR, we also choose a random nonzero
target w € [M] and a random boolean function £ : [N] — {0, 1}. Now, define function
h:[N3] — [N]* x [M]* by

(1 (o (x)), T(b(o(x)))) if b(o'(x)) # » and L(71(0(x))) =0
h(x) = (@0 (x)), T(b(o(x))) ® w) if b(o(x)) #*and L(71(o(x))) =1
(*, %) otherwise .

Definex = o ' (a)and y = o1 (B) sothat b(o (x)) = b() = b(B) = b(o(y)) # *.
Now, say that event SPLIT occurs if £(«;) # L£(B1), which happens with probabil-
ity 1/2. In case L(a;) = 0 and L£(B81) = 1, we have h(x) = (a1, T(b(a))) and h(y) =
(B1, T(b(B)) ® w), and therefore, 72 (h(x)) ®m2(h(y)) = 1(b(@)) BT(B(B) Bw =w
since b(«) = b(p). It follows that the pair x and y is a solution to instance (w, k) of
H2XOR. The same conclusion holds if £(«;) = 1 and £(8;) = 0. If we use algorithm
A on this instance and it returns some pair (#, v) of distinct elements of [N 3], it suffices
to check whether or not b(o (1)) = b(o(v)) # *, in which case we have solved the
required instance of BUC with at most ¢(N) queries to &, which is O(g(N)) queries
to b since any quantum query on 4 can be computed via two quantum queries to b by
use of standard reversible computing techniques [10].

However, it could be that (w, &) is an invalid “instance” of H2XOR. This could happen
if SPLIT did not occur, in which case there is most likely no w-collisions in % (and if
there is one, it is spurious). Even if SPLIT occurs, which guarantees the existence of
at least one w-collision, (w, &) would be an invalid “instance” of H2XOR if and only
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if there exist r and s in [N] x [N?] such that t(b(r)) ® t(b(s)) = w, for one of
two possible reasons: if L(1(r)) = L(7r1(s)), this creates a spurious w-collision in £,
whereas otherwise the instance of the 2XOR problem hidden in function / is not one-to-
one. The probability of any such occurrence is vanishing because M > N¢ forc > 2 and
T randomizes the values in the second coordinate of the range of 4. Since it is impossible
to determine efficiently if we have produced a valid instance of H2XOR, it could happen
that we call algorithm .4 on an invalid (w, /). This has no other consequence than reduce
the success probability by a constant factor, as we analyse in the next paragraph.
Define event VALID to mean that (w, k) is a valid instance of the H2XOR prob-
lem. The reader can verify that conditioned on both SPLIT and VALID this process
generates a uniformly distributed instance of H2XOR. Furthermore, the probability of
SPLIT is exactly 1/2 and the probability that VALID fails is vanishing conditioned on
SPLIT. Putting it all together, this algorithm produces a uniformly distributed instance
of H2XOR with probability at least 1/2 — o(1), which by hypothesis is solved by A
with at most ¢(N) queries to & and correctness probability at least p. This yields an
algorithm for BUC on an arbitrary instance b, using O (¢(N)) queries to b, which is cor-
rect with non-vanishing probability at least (1/2 — o(1)) p. Since solving BUC requires
Q(N 3/ 3) quantum queries in the worst case according to Corollary 1 (with parameter
K = N?), it follows that algorithm A also requires Q(N 3/ 3) quantum queries in order
to solve H2XOR with non-vanishing probability on a uniformly distributed random
instance. ]

We are now ready to return to the main theorem of this section, which concerns the
cryptanalytic difficulty of breaking our key establishment protocol, and prove its security.

Proof of Theorem 3. Consider any eavesdropping strategy A that listens to the com-
munication between Alice and Bob and tries to determine the key by querying functions
f and ¢. In fact, there are no Alice and Bob at all! Instead, there is an instance (w, k)
of H2XOR, hiding an instance (w, &) of 2XOR according to Eq. (2), which we want to
solve by using unsuspecting A as a resource.

We start by supplying .A with a completely fake “conversation” between “Alice” and
“Bob”: for sufficiently large ¢ and ¢/, we randomly choose N points yg, y1,..., YN—1
in [N€¢] and we pretend that Alice has sent the y’s to Bob, who responded with the w
from the instance of H2XOR that we want to solve. We also choose random functions
f :[N3 = [N“land 7 : [N®] — [N¢]. Note that the selection of f and 7 may take
a lot of time, but this does not count towards the number of gueries that will be made
to function £, and our lower bound on the search problem concerns only this number
of queries. We could be tempted to choose randomly the values of f and 7 on the fly,
whenever they are needed, but this is not an option for a quantum process because the
values returned must be consistent whenever the same input is queried in different paths
of the superposition.

Now, we wait for A’s queries to f and r. When A queries f(x) or z(x) for some x €
[N3], we query A(x). There are two possibilities.

o If h(x) = (%, x), return f (x) and #(x) to A as value for f(x) and ¢ (x), respectively.
In this case, we say that x is irrelevant.
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e Otherwise, let i be such that 4(x) = (i, £(i)) and return y; and £(i) to A as value
for f(x) and t(x), respectively. Intuitively, such an f(x) corresponds to a relevant
query in the simulated protocol.

The purpose of the first coordinate in the range of & now becomes clear. Whenever
h(x) # (%, %) and f(x) is queried, the algorithm A should get one of the points yj,
Y1,.--» YN—1 supplied to A at the beginning of this simulated cryptanalytic task. The
same query /(x) made subsequently should be answered consistently: A should get the
same point. We might be tempted to choose an index on the fly and record it, but for
the same reason as before with f and 7, it is not possible to keep track of these choices
since the queries are made in superposition. Therefore, we provide the indices in the
first coordinate of /.

Suppose A happily returns the pair (x, x") such that 7(x) @ #(x’) = w, which is
what a successful eavesdropper is supposed to do. We return this pair, which is also a
solution to our instance (w, k) of H2XOR, except with the vanishing probability that
f(¥) ® f(¥") = w for some irrelevant queries ¥ and X’ that .A made to ¢.

To analyse the correctness of this reduction, we need to show that given a random
instance (w, h) of H2XOR, it produces a random instance of the cryptanalytic task that
A is purported to successfully solve. Notice that the functions f and ¢ sampled by A are
identical to random functions f and 7, except in N positions, where they are consistent
with the y; and corresponding &(i), respectively. The values y; are chosen at random;
hence, f is random. However, since (w, h) is a valid instance of H2XOR, the random
values of &£(i) hidden in 4 are all distinct; therefore, they are not fully independent.
Nevertheless, the statistical distance between the resulting distribution on ¢ and the
uniform distribution is vanishing since the probability of a collision occurring in a subset
of size N of indices of + would be vanishing under the uniform distribution.

Therefore, the environment provided by A in this simulation is the same as in the
cryptanalytic context, except with vanishing probability. Since we disregard also the
vanishing possibility that there might exist a spurious solution 7(X) @ 7(X') = w, on
which A might happen, the reduction solves the search problem concerning 4 whenever
A succeeds in finding the key. Notice finally that each (new) query made by A to either
f or ¢ translates to one query to .

It follows that any successful cryptanalytic strategy that makes o(N 3/3 ) total queries to
f and t would solve the search problem with only o(N >/3 ) queries to /1, which is impos-
sible, except with vanishing probability, according to Lemma 2. This demonstrates the
Q (N 3/ 3) lower bound on the cryptanalytic difficulty of breaking our key establishment
protocol on a typical run, again except with vanishing probability. O

4. Fully Classical Key Establishment Protocol

In this section, we revert to the original setting imagined by Merkle in the sense that
Alice and Bob are now purely classical. However, we still allow full quantum power to
the eavesdropper. Recall that Merkle’s original protocols [35,36] are completely broken
in this context [21]. Is it possible to restore some security in this highly adversarial (and
unfair!) scenario? The following purely classical key establishment protocol, which is
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inspired by our quantum protocol described in the previous section, provides a positive
answer to this conundrum.

This time, random oracle functions f and are defined on a smaller domain (N 2 instead
of N3) to compensate for the fact that classical Bob can no longer use the BBHT algorithm
[15]. Specifically, f : [N?] - [N¢]and ¢ : [N?] — [N"/], with ¢ > 4 and ¢/ > 8 for
reasons similar to those explained at the beginning of Sect. 3.

Protocol 2. (Classical vs quantum)

1. Alice picks at random N distinct points xg, x1, ..., xy_; in the domain of f
and transmits their encrypted values y; = f(x;) to Bob. Let X and Y denote
{x;i 10<i < N}and {y; | 0 <i < N}, respectively.

2. Bob finds the preimages x and x’ of two distinct random elements in Y.
To find each one of them, he chooses random values in [N2] and applies f
to them until one is found whose image is in Y. He is expected to succeed
after O(N) queries to f. If f(x’) was transmitted before f(x) at Step 1,
Bob swaps x and x’. Until now, this is almost identical to Merkle’s original
protocol, except for the fact that Bob needs to find two elements of X rather
than one.

3. Bob sends back w = r(x) & 1 (x’) to Alice.

4. Alice queries oracle ¢ once on each element of X. No further query is
required for her to find the two elements x; and x; in X suchthat0 <i <
J<Nandt(x;) ®t(x;) =w.

5. The key shared by Alice and Bob is (x;, x;) for Alice and (x, x") for Bob,
which is indeed the same.

All counted, Alice makes N queries to f in Step 1 and N queries to ¢ in Step 4,
whereas Bob makes O (N) expected queries to f in Step 2 and two queries to ¢ in Step 3.
The total expected number of classical queries to f and ¢ is therefore in O (N) for both
legitimate parties.

4.1. Quantum Attack

Theorem 4. There exists a quantum eavesdropping strategy that obtains the key estab-
lished in Protocol 2 with O (N/®) expected queries to f and O(N?/3) expected queries
tot.

Proof. A quantum eavesdropper can set up a quantum walk very similar to the one
explained in Sect. 3.1, except that now the domain is of size N2 instead of N3. The
eavesdropper can find random elements of X from her knowledge of Y with an expected

0(yN*/N) =0(/N)

queries to f per element of X. Therefore, the set-up cost S is in O (r\/N ) queries to f
and r queries to , the update cost U is in O (+/N ) queries to f and one query to #, and
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the checking cost C vanishes. Furthermore, § and ¢ are still in Q(1/r) and (r2 /N 2y,
respectively.
Putting it all together, the expected quantum cryptanalytic cost is

S+0(%U)

=0 ((r\/ﬁ queries to f +r queries to ¢)+ %(\/ﬁ queries to f4-one query to t))

=0 (r\/ﬁq— N3/2/ﬁ> queries to f and O (r + N/+/r) queriesto .

To minimize the number of queries to f, we choose r so that r/N = N3/2 YNGR
which is r = N?/3 again. It follows that a quantum eavesdropper is able to find the key
with an expected O (N7/®) queries to f and O(N?/?) queries to 7. O

4.2. Lower Bound

The proof that it is not possible for the eavesdropper to find the key with fewer than a
total of Q(N ! 6) queries to f and ¢, except with vanishing probability, follows the same
lines as the lower bound proof in Sect. 3.2. It is therefore possible for purely classical
Alice and Bob to agree on a shared key after querying f and ¢ an expected number of
times in the order of N, whereas it is not possible, even for a quantum eavesdropper, to be
privy to their secret with an effort in the same order, except with vanishing probability.

Theorem 5. Any quantum eavesdropping strategy that recovers the key established in
Protocol 2 requires a total of 2 (N7/6) queries to functions f andt, except with vanishing
probability. The vanishing probability is over a typical run of the protocol to establish
a key, followed by the execution of an arbitrary quantum cryptanalytic algorithm to
discover that key.

Proof. The proof is similar to that of Theorem 3. The only difference is that Corollary 1
is applied with parameter K = N (bucket size) rather than K = N2. The proof then
follows mutatis mutandis. (]

5. Generalized Protocols

In Sects. 3 and 4, we presented a quantum and a classical protocol for key establishment
over a classical channel. In both of them, Bob finds the preimages x and x’ for f of two
distinct elements sent by Alice, and he sends her back 7 (x) @ 7 (x”), which allows Alice
to recover both x and x’. A natural generalization of these protocols is for Bob to find k
preimages, for some constant k > 2, and send back to Alice the bitwise exclusive-or of
the values of ¢ applied to each one of them. Once Alice has recovered the k preimages
found by Bob—we must increase the range of function ¢ appropriately in order to ensure
the uniqueness of the solution, except with vanishing probability—both Alice and Bob
reorder them to reflect the order in which the images had been transmitted from Alice
to Bob at the beginning of the protocol. The resulting k-tuple is the shared secret key.
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This generalization leads to a sequence of quantum and classical protocols, denoted
QO and Cy, respectively, with O, and C, being Protocols 1 and 2 from the previous
sections. These protocols still require Alice to make exactly N classical queries each to
functions f and ¢, whereas Bob makes O (kN) expected quantum or classical queries
to f (depending on whether we are considering Qj or Cy) and exactly k classical queries
to t, which are simply O(N) and O (1) queries, respectively, because k is a constant.

Theorems 2 and 4 apply mutatis mutandis to show that quantum cryptanalytic attacks
based on quantum walks on modified Hamming graphs succeed after O(N ! K/*+1))
expected queries to f and O(N¥/*+D) expected queries to ¢ against Protocol O, and
O(N '/>+k/(k+1y expected queries to £ and O(N*/*+D) expected queries to 7 against Pro-
tocol C. For arbitrarily small &, these attacks take a total number of queries in O(N>~¢)
and O(N”/?>~¢) against the quantum and classical protocols, respectively, provided & is
sufficiently large.

The proof that these attacks are optimal against our generalized protocols is consid-
erably more elaborate for the case k > 2 than when k = 2, corresponding to Theorem 3
for O, and Theorem 5 for C,. The problem kSUM, which is a natural generalization
of 2XOR, was shown to be hard in the worst case by Belovs and gpalek [9]. However,
there is no known way to prove a quantum lower bound on the difficulty of the KSUM
problem on uniformly distributed random instances by a reduction from its difficulty
in the worst case. Therefore, completely new tools had to be developed (with different
co-authors) to prove the security of the generalized protocols, and hence conclude that
Merkle’s approach can be made essentially as secure in an all-quantum world as the
original was in an all-classical world since our generalized protocols re-establish an
arbitrarily close to quadratic security. This will be the topic of a follow-up paper whose
preliminary version is in Ref. [8].

6. Practical Aspects of Our Protocols

In Sects. 3 to 5, we only counted the number of queries as a measure of complexity. In
this section, we address the issue of whether the legitimate players have time-efficient
strategies, as well as other “practical” considerations. It is important to understand that
we do not claim that our protocols are actually practical, but only that some aspects of
them can be made more realistic. After all, Merkle’s original protocols [35,36] have
never been deployed in real life, and this is obviously not because they are broken by
Grover’s algorithm [21]! Certainly, a very serious obstacle to the deployment of Merkle’s
protocols, which we do not address here, is the large amount of communication they
may intrinsically require between the legitimate parties [30].

In any real implementation of our protocols, the random oracles would have to be
replaced by quantum-resistant one-way functions, whose existence has not been estab-
lished (and would require at the very least a proof that NP ¢ BPQ). Furthermore, even if
we had such functions, the proofs of security for our protocols would not automatically
carry through because of composability issues [22]. On the other hand, one might have
objected to the notion of making queries in superposition to an oracle, whereas there are
no issues about quantum computing a function on a superposition of inputs when it is
specified by a quantum circuit. In any case, we shall assume in this section that functions
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f and ¢ from our protocols can be computed in constant time. If this is not the case,
the time required by all parties includes the number of queries multiplied by the time it
takes to compute these functions. An unfair case, which we do not consider here, may
occur if these functions can be computed more efficiently on a quantum computer and
if only the eavesdropper is endowed with one.

We now turn to the computational resources needed to implement our protocols.
The first consideration is the time complexity of the legitimate players, be they classical
or quantum. The second concerns the quantum protocols, where we address the issue
of accessing quantum storage in superposition. All the key establishment protocols that
we have presented share the following structure.

e Alice picks N points at random and sends the set Y of their images under function
f to Bob.

e Bob searches for a set of preimages of a given size using either a classical or a
quantum strategy, and sends it back to Alice, encoded.

e Alice recovers Bob’s set, which becomes the key under a canonical ordering.

In the first step, Alice is only querying the oracle (or computing function f) and no
post-processing is required. This can be done in O (N) time.

For the second step, we showed that Bob needs only O(N) expected queries per
preimage, whether he is participating in the classical or quantum protocol. However, he
may require an additional log N factor in terms of time because each query (whether
or not in superposition) is followed by a binary search to check for membership in Y,
as already mentioned in footnote 3 of Sect. 2.1. Thus, even though Bob needs only
O (N) queries, this translates into O (N log N) time. In the case of classical protocols,
Bob can use universal hashing [23] to build a table for ¥ in O(N) expected time, and
then use it in constant expected time per search, so that his total expected time remains
in O (N). However, there is no obvious way to extend the use of universal hashing to the
quantum protocols because all possible queries would be launched on the hash table in
superposition, so that we would need good hashing performance in the worst case rather
than in the expected sense. It turns out that a slight variation on our quantum protocols
can guarantee a worst-case linear-time effort for Bob, as we now explain after a brief
detour concerning a seldom recognized practical issue involving quantum memories.

Our quantum protocols require Bob to use a quantum memory to run the BBHT
algorithm in his search for random elements of Alice’s set X. Consider for instance the
specific description of Step 2 in Protocol 1. It involves O (N) Grover iterations. Each
iteration involves a single call to g, as defined in Eq. (1), which itself involves one query
to f (in a superposition of inputs), followed by a test of membership in Y of the output
of f. This test requires the use of a memory of size N to hold Y, which must be accessible
in a quantum superposition of its addresses (called a QRAM [27]) because f is queried
in a superposition of all possible inputs (with non-uniform amplitudes in general) during
each Grover iteration inside the BBHT algorithm. The use of such quantum memories
has been a mostly unchallenged standard practice in quantum algorithmics at least since
the 1997 paper of Ref. [20], but Daniel Bernstein objected as early as 2009 [13]. In the
legitimate protocols presented here (but not in their cryptanalytic attacks), it suffices to
have a memory that has to be loaded once with classical values (the elements of set Y),
but that never needs to be updated once the quantum part of Bob’s process—BBHT—
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has been launched: this is in fact a QROM, which could be easier to implement than
a QRAM. Nevertheless, Dominique Unruh pointed out that it may be unfair to count
such quantum memory accesses at unit or even logarithmic cost in the memory size
[41]. Be it as it may, quantum memories would likely be one of the most technologically
challenging aspects to deploying our protocols, and therefore, it would be preferable if
their need could be avoided [6].

We can modify our quantum protocols to remove any need for quantum memories,
yet without compromising their security. We only sketch here the modifications that are
needed for Protocol 1; the corresponding modifications for the generalized protocols
outlined in Sect. 5 are identical, mutatis mutandis. Instead of having two functions
f :[N3] > [N“land ¢ : [N3] = [N¢], we need 2N functions f; : [N?] — [N¢]
and #; : [N?] - [N“/], for 0 < i < N. The first step of the protocol is the same,
except that Alice defines each y; as f;(x;). In the second step, Bob chooses two indices
i < j at random in [N]. He uses the standard Grover algorithm (there is no need for
BBHT anymore) to find preimages x = x; and x’ = x; of y; and y; under f; and f;,
respectively. This requires O (W ) = O(N) Grover iterations without any need for a
quantum memory nor for an additional logarithmic factor in the time analysis. The rest
of the protocol is unchanged, except of course that Bob computes w as f; (x) ®1; (x") and
that Alice queries f; on each of her x,. Note that this modified protocol is more similar
to Merkle’s published “puzzles” [36], whereas the protocols we had described thus far
are closer in spirit to Merkle’s original unpublished idea [35].

The proof of security of the modified protocol is almost identical to the proof given
in Sect. 3.2. The main difference is that we need to replace the H2XOR problem of
Definition 5 by a new problem called B2XOR (for Bucketed 2XOR), which is to 2XOR
what BUC is to UC. Formally,

B2XOR = 2XOR o pSEARCH" .

Problems B2XOR and H2XOR are easily seen to be of equivalent query complexity, and
the proof of Lemma 2 can be adapted to prove directly that B2XOR requires € (N3/3)
queries on a uniformly distributed random instance from the worst-case lower bound
on BUC given by Corollary 1. Furthermore, a uniformly distributed random instance of
B2XOR can be solved with access to an adversary capable of breaking a typical instance
of the modified key establishment protocol, following the lines of the proof of Theorem 3,
which establishes the security of the modified protocol. We leave details to the reader.
Note that the optimal attack against Protocol 1, given in the proof of Theorem 2, once
adapted against the modified protocol, would still require the eavesdropper to make
use of a quantum memory in order to perform quantum walks. Actually, the quantum
walk paradigm [39] requires a quantum memory whose content is changed dynamically
during the execution of the algorithm, which would be significantly more challenging
from a technological point of view. However, following the usual paranoia in quantum
cryptography, we are willing to grant the adversary unlimited technology, provided the
laws of quantum theory are not violated.

Let us now turn our attention to the final process by which Alice recovers the key from
the information she had kept and the information she has received from Bob. Let us first
consider Protocols 1 and 2, although the modified Protocol 1 described above can be
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handled in exactly the same way. Recall that Alice needs only N queries to function ¢
since it suffices for her to obtain once each value of #(x;) and store them in a classical
memory for future use. However, it may seem at first that she will need 2 (N 2) time to
try a significant proportion of all the possible pairs among the N stored values of 7 (x;)
before hitting upon two elements that exclusive-or to the value w received from Bob.
This would obviously be intolerable. We now show that Alice can find the key time
efficiently in these protocols.

Theorem 6. Given w, Alice can use a classical algorithm to find two elements x and
x"in X such that t (x) ®t(x") = w in worst-case O (N log N) time or in expected O(N)
time.

Proof. By querying ¢ once on each element of X, Alice forms Z = {t(x) w | x € X}
and she sorts it in O (N log N) time. Now, it suffices for her to try each value of 7 (x’),
x" € X, until one is found that belongs to Z. By definition of Z, there will be an x € X
so that 7 (x") = £(x) @ w, which implies that 7 (x) @ ¢ (x") = w as required. Each of the
(at most) N search operations is carried out in O (log N) time by virtue of using binary
search, for a total of O(N log N) time in the worst case. Alternatively, Alice can use
universal hashing [23] to build a table for Z in O (N) expected time, and then search it
in expected constant time per element of the form 7(x"), x’ € X, for a total of O(N)
expected time. O

If we consider now the generalized protocols of Sect. 5, no classical algorithms are
known that could handle Alice’s last step efficiently whenever k > 2. However, a quantum
Alice can do better, as shown in the following theorem, making Q3 time-efficient as
well.

Theorem 7. Using a quantum strategy, Alice can find the elements x, x' and x" in X
such that t (x) ® t (x") @ t(x”") = w in time O (N log N).

Proof. By querying ¢ once on each element of X, Alice forms Z = {t(x) Qw | x € X}
and she sorts it in O (N log N) time. Then, she uses Grover’s search algorithm to find a
pair (x’, x"”) € X x X such that r(x") ® ¢ (x”) € Z. It takes O(W) = O(N) Grover
iterations to find this pair and each iteration takes O (log N) time by virtue of binary
search in Z. Now, Alice can easily find the x € X such that t(x") ® 1(x") = t(x) ® w,
which solves the problem since it follows that 7 (x) @ ¢ (x") @ 1 (x”") = w, as desired. []

Unfortunately, the quantum algorithm in the proof of Theorem 7 requires the use of
a quantum memory to hold Z. We do not know how to solve this problem otherwise.
Table 1 summarizes the time separations that we get between the legitimate parties and the
eavesdropper, although the adversary’s lower bound for Q3 requires a proof postponed
to our follow-up paper whose preliminary version is in Ref. [8]. Recall that C; and Q2
are Protocols 2 and 1, respectively. In each case, it is assumed that the adversary is
capable of unrestricted quantum computation, including the use of a dynamic quantum
memory, and that the legitimate parties agree on a shared key in O (N)—or at worst
O (N log N)—expected time. Only the last line in the table requires the use of a (static)
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Table 1. Lower bounds on the time needed by quantum eavesdropping against various classical and quantum
protocols when the legitimate parties establish a key in O (N log N) expected time .

Alice Bob Protocol Adbversary’s lower bound
Classical Classical Cy Q (N7/6)
Classical Quantum 0> Q(NS/3)
Quantum Quantum 03 Q(N 7/ 4)

quantum memory on the part of one of the legitimate parties, provided the improvements
suggested in this section are implemented.

7. A Composition Theorem for Quantum Query Complexity

To prove the hardness of breaking our protocols, we need to establish the worst-case
hardness of a “hidden” extension BUC of the UC problem, whose quantum query com-
plexity is known (see Lemma 1). We use the generalized adversary method, which we
recall briefly below. This method is known to compose well (subject to some restric-
tions), and it is optimal, meaning that (up to a factor of 2) the optimal quantum query
complexity is equal to the optimal adversary bound, for any function [31,32], a fact that
we will use to our advantage to establish our result.

We briefly review the adversary method. Suppose we want to determine the quantum
query complexity of a problem F. First, we assign weights to pairs of inputs in order
to bring out how hard it is (in terms of number of queries) to distinguish these inputs
from one another. The adversary lower bound is the worst ratio of the spectral norm of
this matrix, which measures the overall progress necessary in order for the algorithm to
be correct, to the spectral norms of associated matrices, which measure the maximum
amount of progress that can be achieved by making a single query. For this purpose, we
introduce the matrices D, defined as follows:

0 ifx,=y
Dylx, y] = ¢
gty 1 otherwise.

Definition 6. Fix a function F : § — 7. A symmetric matrix ' : § x § — R is an
adversary matrix for F provided I'[x, y] = 0 whenever F(x) = F(y). The adversary
bound of F using I is

r
ADV*(F; T') = min L
g [|T" e Dyl|
where e denotes entrywise (or Hadamard) product, and ||A|| denotes the spectral norm
of A (which is equal to its largest eigenvalue). The adversary bound ADVE(F) is the
maximum, over all adversary matrices I" for F, of ADVi(F; ).
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Theorem 8. ([31,32]) For any function F, Q(F) < ADVE(F) < 2Q(F), where Q(F)
is the worst-case quantum query complexity of F.

Since BUC is defined as the composition of UC and pSEARCH, we would like to
apply a composition theorem for the generalized adversary method, which would say that
if a function H = F o GY, then ADV*(H) > ADV*(F) ADVE(G). Unfortunately, the
composition theorems already known in the literature [31,32] require the inner function
to be Boolean, which is not the case here for pPSEARCH. Since counter-examples can
be found [32], we cannot hope to prove a fully general composition theorem in which the
inner function would be an arbitrary function. Nevertheless, we prove here a composition
theorem with pPSEARCH as the inner function.

Theorem 9. Forany F : AN — B, let pSEARCH : P — A with P C (A*)X be as
in Definition 2, and define H = F o pPSEARCH" . Then

ADVEH) > 2 ADV*(F) ADV* (pSEARCH) .
T

The inner function can be slightly more general than pPSEARCH. For example, it
could be that the element we search for is hidden in several places. The proof also goes
through if the instances of PSEARCH operate over distinct domains (A})%/. We leave
for further research the extent to which our theorem can be generalized and proceed to
prove it as stated.

Before we present the proof, we derive a corollary that is useful for our purpose, which
applies for BUC = UC o pSEARCHY.

Corollary 1. Q(BUC) = Q(N?/3K1/?).

Proof of Corollary 1. From Lemma I together with Theorem 8, we have ADVE(UC) =
Q(N?/3). Furthermore, ADVE(pSEARCH) > K!/2 by Eq. (10) below. Theorem 9
implies that ADV*(BUC) = Q(N%3KY/2). Finally, by Theorem 8, Q(BUC) =
Q(N2B K2y as well. O

Proof of Theorem 9. We prove the theorem using only a few properties of pPSEARCH,
which we describe below. In order to discriminate between the N instances of
pSEARCH, and to simplify notation, we write the inner functions as Gy, ..., Gy :
P — Awith P € (AH)X,|A| = M and |P| = MK. We use the fact that G; is K-
to-1 for all i. Without loss of generality, we assume that inputs are sorted according
to the output value. We use two crucial properties of pPSEARCH. These follow from
the definition of an adversary matrix (Definition 6) as well as symmetry properties of
pSEARCH.

1. An MK x MK optimal adversary matrix I'; for G; can be written in block form
with M x M blocks of size K x K indexed by pairs of outputs in which all
off-diagonal blocks are identical. Written in this form, all M diagonal blocks are
necessarily zero since it is an adversary matrix.
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0 S S, ALA, A,
Fz _ Sz 0 Sz Dq _ A.q A; Aq
Si Si 0 AVIRAVE Al

Fig. 2. The matrices I'; and D, are decomposed into blocks Fl.(xi 30 and Dc(lxi’y i ), respectively. Each block
labelled X;, §; contains inputs x; (resp. y;) that map to the same output value, that is, G;(x;) = X;
(resp. G; (yi) = ¥i) -

2. The M K x M K matrices D, withinputs sorted in the same way, are also composed
of identical off-diagonal blocks A, and A; on-diagonal blocks. Notice that this
strongly depends on G;, since the inputs are sorted by output value.

For any function F, consider H = Fo (G, ..., Gy). Denote by Iy and 1 the M x M
identity matrix and all-one matrix, respectively. We show that for all adversary matri-
ces I'; for G; of the form I'; = (1y — Iyy) ® S;, where S; is a K x K symmetric
matrix,

ADV*(H) > ADV*(F) min ADV*(G;; I)). 3)
IS

To prove this, we define an adversary matrix 'y for H and compute its spectrum. It
suffices to compute the largest eigenvalues of I'y and I'y @ Dy to give our lower bound
on ADVE(H).

Let us introduce some notation that we will use throughout the proof. Inputs to H

are written x, y € PM. Each x € PV breaks into x = (x1,...,xy). The result
of applying the inner functions to x = (x,...,xy) is written X = (X1,...,Xy) =
(Gi(x1), ..., Gy (xy)). Each x; € P, seen as an element of (A*)X, also breaks down

into its components, which we write x; = ((x;)1, ..., (x;)x), where each component
(x;); is an element of A*.

The structure on I'; allows us to consider it as M x M blocks, each of size K x K, as
follows. Rows and columns of T';, indexed by inputs of the form x; = (ay,...,ax) € P,
are sorted according to the value X; = G; (x;). The submatrix Fi(x"’y" ) is the restriction
of I'; to the rows and columns such that G;(x;) = X; and G;(y;) = y;. When I['; =
(Lpr — In) ® S, the diagonal blocks are the all-zero matrix and the others are equal to
the matrix §;. See Fig. 2.

We define 'y on blocks labelled by (%,7) € AY x AN. The submatrix I‘}(_f Y s
the restriction of I'y to the rows and columns indexed by x = (x1,...,xy), y =
V1s...,YN) € PV such that (Gl(xl), ey GN()CN)) = X and (Gl(yl), ceey GN(yN))
=y:

N
rs = rel#, j1- (@Ff“"’”’) : (4)
i=1
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Here, 'k is an adversary matrix for F and instead of I';, we have used the modified
adversary matrices

T, =T + ISillmk

which add || ;|| to the diagonal, to prevent zeroing out the block of H when X; equals y;
on one of its components. The fundamental property of I'y is that its norm is the product
of the norms of the matrices I'r and ;.

Claim 1. For the matrix T'y defined as above, || = [TE|l - ]_[fv:1 [1Si 1l

We defer the proof of this claim and first see how it implies Eq. (3). Claim 1 gives us the
norm of 'y, and it remains to compute maxy ||’y ® Dy|| (Definition 6). Let us turn to
the matrix I'y ® Dy to see that it shares the structure of I'y so we can also apply Claim 1
to compute its norm. Recall that the domain of H is PN where P C (A*)K . Anindex ¢
into an input x to H decomposes into p € [N], an index within x, and the index g € [K]
within x,, seen as a vector in (AnHK,

Claim2. [Ty e D¢l =Tk e Dpll - ISy @ Agll - [T, ISl
Proof of Claim 2. Restricting to the block labelled by x and y, Ref. [31] shows that
(Th o DYEY = (T e DYIEF1- T, 0 D & QT ]. 9
i#p

Here we use the second property of pPSEARCH: for each g, there exist matrices A,
and A/q such that when restricted to blocks, Dy = (Iy —In) ® Ag + Iy A/q. Therefore,
I, @ D, has the same block structure as I, and by Claim 1, we get the expression for
ITH @ D¢|| given in Claim 2. (I

Equation (3) follows from Claims 1 and 2.

r N s
ADVi(H, FH) — min ” F” l_[l—l || 1”
ra 0% o Dyl 1Sy o Agll - Tlizy 151
ITEl ISpll - TTiep 1Sl
= min
ra 0% o Dyl 1Sy o Mgl Tliz, 151
ITFIl ISyl

= min
pd [TF o Dyl 1S, @ Agl

- < ICel 1S, )
> min min .
p \ITre Dyl 4 [, e Al
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Using [|T;[| = (M — 1|S;|| and [|T; @ D, || = (M — 1)[|S; @ A, |, it follows that

[ISpll

e (6)
1Sp @ Agll

ADVi(Gp; I')) = min
q

and therefore,

ADV*(H: Ty) > ADV*(F) - min ADV* (Gy: Ty) .

Proof of Claim 1. We first prove |yl < ITE|l - []; IS |I. The proof proceeds in four
steps.

1. We define a set of vectors {Jy.¢} in cEMm”,

2. We prove that they are eigenvectors of 'y and give the corresponding eigenvalues.
3. We show that we have defined all eigenvectors and eigenvalues of I'y.
4. We upper bound the eigenvalues in absolute value.

Similarly to the way we built up I'y from I'r and the I';, we construct eigenvectors
for I'y using the eigenvectors for I'r and the S; as building blocks. We need some more
notation before starting the proof. The spectrum of S; is {(J;,j, A;,j)} with eigenvalues
[Ai1] = -+ = |Ai k| For X;, y;i € A, we use the following notation:

JEAN _ g 05 #E T
e IS;|I  otherwise.

Xi i

=%, 5i)
i,j Iﬂi

As we can see from the following eigenvalue equation, A
associated with the vector §; ;:

is the eigenvalue of

TE g A j8ij if x; # yi
l " [1SilI8;,;  otherwise

- xj‘jﬁyl‘ 5ij . 7)

Given a vector of indices ¢ = (cy,...,cn), ¢; € [K], we build up our eigenvectors
for 'y by picking the c;th eigenvector for the ith inner function (see Step 1). For
c=(,...,cnN), the MY x MV matrix A, is defined by blocks

N
A%, 31 =Telx. 31- [ [ 17
i=1

and we write its spectrum

{(a, pa,c)}
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Step 1: We are ready to define the eigenvectors dy . of I'y. We define the vectors 8y ¢
on the block 632 of coordinates x € P" such that (G (x1), ..., Gy (xyn)) = ¥:

8§ = al¥ <® 8 c,) : (8)

Notice that because of the structure of the I';, it suffices for our purposes to build up
the eigenvectors of I'y from the eigenvectors of the underlying S;, which considerably
simplifies the proof.

Step 2: We claim that the §y . are eigenvectors of I'y with corresponding eigenvalues
Ha.c- We want to calculate I'yd, .. We do this block by block. Fix X € AN Using the
eigenvalue equation (7), we get

N N
®F§x[»)’1) ®5i,c, l—[ )Lxl ;é}, ® 8[_@. 9)
i=1 i=1 =1

Then, by Egs. (4) and (8),

(MHda, )™ = Z (FF %31 ®r<x‘ y’ ) (am : ®8,-,c,.>

= ZFF %, §lel5]- ]‘[W” ) 8i.c; (by Eq. 9)
i
= Z ASal31- Q)b
i

= Ha,c alx]- ®8i,ci
i

= Ua,c Sa,c

Step 3: We prove that the vectors §q . sSpan C&M " There are KN matrices Ac, and
each one has MV eigenvectors a. Therefore, {8a.c} 1s a collection of (KM Y vectors.
We now prove that they are orthogonal. Notice that

(Bacr Bar,cr) = D (652.65.)

X

N
= Z (a[)z]a’[ﬂ : H(&-,c,-, 5,-,4))
N

0-TTe

i=1
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If 8q.c # 84, it must be the case that either ¢ # ¢’ or & # &’. Assume ¢ # ¢’. Then
for some i, 8;,¢; # 9; - and since these vectors form an orthonormal basis of CX, we get

(8i,c;» 8i.r) = 0.Now if ¢ = ¢/, then @ # o’. Again, these vectors form an orthonormal

basis of CM" and we get (a, a') = 0.

Step 4: We prove by induction that the eigenvalues pq, . of I'y are such that |y | <
ICENl - TT; I1Sil for all @ and ¢. Fori € [N + 1] and ¢ € [K1V, we define a family of

matrices AE’) recursively as follows:
1. AY — g,
i~ = i—Dr~ < X; 7 Yi
2. AV 51 = AVTVR 51 A0

By definition, AEN) = A.. We prove by induction that for each i,
i
AL < el - [T 0851
j=I

Since fiq,c is an eigenvalue of A, this implies |ua,c| < |Acll < ITel - TT; 1S 1I-

Since AEO) = I'F, the base case is trivial. Assume that for some i, ||A£i71)|| <
ITE] - ]_[."i_:l1 [|S;l. By rearranging the rows and columns of Ag_l) as before, we can
consider that it is formed of M? blocks with the following structure: the block labelled
(u,v) € A x A contains the entries Agiil)[i, y] such that x; = u and y; = v. Now,
to form A, the diagonal blocks of AY ™", labelled (u, u), are multiplied by ||S; || and
the others are multiplied by the same factor A; ,, which is at most ||S; ||. We claim that
under this operation, the norm of the matrix increases at most by a factor [|.5; ||.

Define B = ﬁAg) — Aff*l). This block diagonal matrix contains the diagonal

blocks of Ag_l) multiplied by 7; = ﬁ |IS; ]| — 1, while the other blocks are set to 0.

In other words, B is a direct sum of operators acting on disjoint subspaces E1, ..., Ey.
It follows that

1. any eigenvalue of B is associated with an eigenvector whose support is in E; for
some ¢, and 4
2. for any vector v whose support is in E; for some ¢, || Bv| < ||r,'Aglfl)v||.

This implies | B|| < 7||AY™||. Finally, writing A" = |4,..|(AY™" + B), we have

TADN < |hi e ITAS DY+ 1B1)
< i [(1 4 |z 1ASTD .

Since A; ; is an eigenvalue of S;, it is the case that r; > 0,50 1 + |7;| = ﬁHSi Il
I,Ci
Finally,

TAD] < 1Si1 - 1A%V
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The induction hypothesis allows us to conclude the proof of Step 4, which completes
one direction in the proof of Claim 1.

We now prove the other direction: ||[I'y|| = ||T'F|| - ]_[ [|S;]l. Takingc = (1, ..., 1), we
have |CH|l > ||Acll. By definition, A.[*, ¥] = Ce[x, 1- []; IISi ||, which 1rnmedlately
implies that [Tyl > |ITEll - [; IIS:]l. This completes the proof of Claim 1. O

To complete the proof of Theorem 9, we choose S; = 1k and take I'; = (1 —
Iy) ® 1k for the adversary matrix of G; = pSEARCH, for each i. We verify that D,
has the necessary block structure. Indeed, for each output pair a, b of pPSEARCH, if
a # b then the block is all zero except in the row and column indexed by ¢, where it
is 1, since the gth row corresponds to the input where a is hidden in position ¢ and the
qth column is the input where b is hidden in position g. Further, if ¢ = b then the block
in D, is 1 in column g and row g except in position (¢, g) where it is zero. By direct
computation, ||S;|| = K and ||S; @ Ay|| = +/ K — 1. Using Definition 6 and Eq. (6)
(with G; = pSEARCH), it follows that

ADV*(pSEARCH) > ADV*(pSEARCH:; I';) = min [lS:
q ||IS; e Agll
K .Uk o
= — > .
VK —1
By Theorem 8,
ADV*(pSEARCH)/2 < Q(PSEARCH) < \/E, (1

where Q denotes the quantum query complexity. Equations (10) and (11) imply that
2
ADV*(pSEARCH; I';) > = ADV*(pSEARCH).
T

Theorem 9 now follows from Eq. (3). O

8. Conclusion and Open Questions

We live in a quantum world. Is this to the advantage of cryptographers or cryptanalysts
[17]? The advantage to cryptographers is well established if they make use of quantum
channels since quantum key distribution offers unconditional security [12], provided it
is implemented faithfully [26]. However, the opposite seems to hold whenever cryp-
tographers are limited to communicating over classical channels. Indeed, most of the
cryptography currently deployed in attempts to protect information over the Internet fails
completely in a quantum world [16]. The thriving field of post-quantum cryptography
[14] aims at restoring at least some security for classical cryptography against a quantum
adversary, and the race is on to find practical ways to do this [37]. In this paper, we gave
a formal proof that this goal is achievable indeed, at least relative to a random oracle. For
this, we showed how to restore some of the provable security of Merkle’s seminal key
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establishment protocol [35,36] in a quantum world, although we have not been capable
of restoring the full quadratic advantage it enjoyed in an all-classical world. Not surpris-
ingly, our protocol is more secure if the cryptographers are also endowed with quantum
computing capabilities, but some security remains even if they are not. Along the way,
we proved a composition theorem of potential independent interest in Sect. 7. We leave
for further research the extent to which Theorem 9 can be generalized beyond the case
of pPSEARCH as the inner function.

We leave several other questions open for further research. Merkle’s original protocol
did not offer negligible probability of success against an adversary who would only be
willing to invest an effort proportional to that used to establish the key. Indeed, after the
cryptographers have invested an effort in the order of some security parameter N, a lucky
eavesdropper could find the “secret” key with the same effort, albeit with probability 1 /N
(or even faster with a yet smaller probability). This is why we have deemed a protocol
secure throughout this paper provided its probability of being broken by a resource-
limited adversary is vanishing rather than negligible, as explained at the onset of Sect. 3.
However, Merkle’s original protocol can be modified to make the eavesdropper’s success
probability negligible, rather than merely vanishing, provided we restrict her to at most
O(N?/1og? N) queries [5]. It would be interesting to see whether a similar approach can
make our protocols provably quantum resistant if we required them to ensure secrecy
except with negligible probability.

Our lower bounds prove that it is not possible for an eavesdropper to learn the key
established by the protocol, except with vanishing probability, without querying the
oracles significantly more than the legitimate parties. However, some partial information
about the key leaks even without querying the oracles at all, and therefore, we do not
achieve anything comparable to semantic security [28]. For instance, in Protocol 1,
whenever the legitimate parties establish some key k = (x, x”), the eavesdropper learns
the value of 7 (x) @1 (x”) since this is the revealed value of w. The question is whether or
not the eavesdropper could learn any useful partial information about the key, whatever
this could mean. Would there be any advantage in distilling x @ x as final key in
Protocol 1 (or some other function of x and x’), rather than (x, x")? Alternatively, could
the protocol be modified to probably deprive a resource-limited eavesdropper from any
partial information?

We gave cryptanalytic attacks against our protocols that match the lower bounds on
how difficult they are to attack successfully. However, those attacks proceed by a quantum
walk in a modified Hamming graph, which requires the availability of a hypothetical
QRAM [6,13,27]. In sharp contrast, our legitimate protocols (except those mentioned in
Sect. 5) do not require such technological prowess provided they are modified according
to Sect. 6. As an open question, can our protocols be attacked as efficiently without
any need for QRAMSs? Similarly, even if modified according to Sect. 6, protocol Q3
described in Sect. 5 seems to require at least availability of a QROM if it is to be
time-efficient according to the proof of Theorem 7. Even though this may be easier to
achieve than a QRAM, it would still represent a formidable technological challenge.
Can protocol Q3 be implemented efficiently without any need for quantum memories?
Even more interestingly, can generalized protocols Cy for k > 2 and Qy for k > 3 be
made time-efficient with or without need for fancy quantum memories?
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Our protocols are defined in the random oracle model, which is why we are actually
able to give formal proofs of security. As mentioned in Sect. 6, our random oracles would
have to be replaced by quantum-resistant one-way functions (assuming they exist) before
they can be deployed in real life. Unfortunately, our proofs of security would not carry
automatically even if we had provable quantum-resistant one-way functions because
of composability issues [22]. It would be much more interesting if we could prove
the existence of quantum-secure classical key establishment protocols based only on
the assumption that quantum-resistant one-way functions exist. This could be attempted
either in proving composability properties of our protocols or in designing new protocols
altogether.

The most important open question is to determine whether or not it is possible to restore
Merkle’s quadratic security in an all-quantum world, or perhaps even blast through
that barrier since the proof of optimality for Merkle’s protocol [7] only applies in the
classical setting. Possibly a more practical consideration would be to determine the limit
of provable security for a classical protocol based on random oracles against a quantum
adversary. Partial answers to the questions raised in this paragraph are provided in our
follow-up paper whose preliminary version is in Ref. [8], but those answers are severely
limited if we take time efficiency into consideration.
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