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Abstract. Linear cryptanalysis introduced by Matsui is a statistical attack which ex-
ploits a binary linear relation between plaintext, ciphertext and key, either inAlgorithm 1
for recovering one bit of information of the secret key of a block cipher, or in Algo-
rithm 2 for ranking candidate values for a part of the key. The statistical model is based
on the expected and observed bias of a single binary value. Multiple linear approxima-
tions have been used with the goal to make the linear attack more efficient. More bits of
information of the key can potentially be recovered possibly using less data. But then
also more elaborated statistical models are needed to capture the joint behaviour of sev-
eral not necessarily independent binary variables. Also more options are available for
generalising the statistics of a single variable to several variables. The multidimensional
extension of linear cryptanalysis to be introduced in this paper considers using multiple
linear approximations that form a linear subspace. Different extensions of Algorithm 1
and Algorithm 2 will be presented and studied. The methods will be based on known
statistical tools such as goodness-of-fit test and log-likelihood ratio. The efficiency of
the different methods will be measured and compared in theory and experiments us-
ing the concept of advantage introduced by Selçuk. The block cipher Serpent with a
reduced number of rounds will be used as test bed. The multidimensional linear crypt-
analysis will also be compared with previous methods that use biasedness of multiple
linear approximations. It will be shown in the simulations that the multidimensional
method is potentially more powerful. Its main theoretical advantage is that the statis-
tical model can be given without the assumption about statistical independence of the
linear approximations.
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1. Introduction

1.1. General

The purpose of this paper is to examine how the efficiency of key recovery attacks
using linear cryptanalysis can be improved by extending the attack to multiple dimen-
sions. One-dimensional linear cryptanalysis was introduced by Matsui [27] in 1993.
The method is based on one binary linear relation involving some bits of the plaintext,
ciphertext and the secret key of a block cipher. The linear relation holds for a fraction of
plaintexts and therefore is called a linear approximation of the cipher. If the fraction of
plaintexts that satisfy the relation deviates significantly from one half, the approximation
has a large bias. In this case, the approximation is called strong, and it can be used for
recovering information about the key, provided that the attacker has enough data, i.e.
plaintext–ciphertext pairs.
Matsui presented two algorithms, Algorithm 1 (Alg. 1) and Algorithm 2 (Alg. 2) for

iterated block ciphers. While Alg. 1 extracts one bit of information about the secret key,
Alg. 2 can be used in finding several bits of the last round key of the cipher. The candidate
values for the part of the last round key to be recovered are ranked according to a test
statistic and the right value is expected to have the highest rank. Using the recovered
part of the last round key, it is then possible to extract one more bit of information about
the secret key using Alg. 1.

1.2. Related Work

In practice, it is often possible to find several strong linear approximations. Hence, the
obvious enhancement to linear cryptanalysis is to use multiple linear approximations
simultaneously. Matsui considered using two approximations already in [26]. Junod and
Vaudenay analysed this approach in [22]. In an attempt to reduce the data complexities of
Matsui’s algorithms, Kaliski and Robshaw used several linear approximations involving
the same key bits [25]. Multiple linear approximations were also used by Biryukov et
al. [4] for extracting several bits of information about the key in an Alg. 1-type attack.
They also extended this basic method to a combination of Alg. 1- and Alg. 2-type
attacks. However, the results in both [4,25] depend on theoretical assumptions about
the statistical properties of the one-dimensional linear approximations. In particular, it
is assumed that they are statistically independent. Murphy noted that this assumption
does not hold in general [29]. Moreover, practical experiments by Hermelin et al. [20]
showed that the assumption does not always hold in the case of the block cipher Serpent.
The statistical linear distinguisher presented by Baignères et al. does not suffer from

this limitation, since it works with distributions of data values instead of biases of single
linear approximations [1]. This approach is applicable in case the linear approximations
form a linear subspace. A linear subspace of linear approximations is called a multidi-
mensional linear approximation. The solution presented in [1] has also another advantage
over the previous approaches in [4,25]: it is based on a well-established statistical theory
of log-likelihood ratio, LLR; see also [24]. Early work to this direction by Vaudenay pro-
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poses to use χ2-cryptanalysis [34]. More recently, Baignères and Vaudenay [2] studied
hypothesis testing related to different distinguishing scenarios.
To realise a multidimensional linear distinguishing attack, it is necessary to calcu-

late the probability distribution for the multidimensional approximation of the cipher.
Englund and Maximov [16] and Maximov and Johansson [28] studied algorithms for
computing large distributions and applied them to compute probability distributions over
output domains of functions and their compositions used in building the cipher. However,
this approach gets soon infeasible when the input and output sizes of the functions and
their compositions exceed 32 bits. Multidimensional linear cryptanalysis allows to focus
on the most essential information and control the sizes of domains over which the prob-
ability distributions are computed. Given a suitable number of strong one-dimensional
linear approximations, the linear space spanned by them forms the multidimensional
linear approximation for the attack. From the estimated values of biases of all the linear
approximations in this linear space, one can estimate the probability distribution of the
multidimensional values. The problem is then reduced to the problem of finding strong
one-dimensional approximations.

1.3. Contributions

In this paper, the statistical theory of multidimensional linear distinguisher will be de-
veloped for extending Matsui’s Alg. 1 and Alg. 2 to multiple dimensions. While in
dimension one there is essentially only one statistic, the bias of a linear approximation,
for realising Alg. 1 and Alg. 2 in multiple dimensions, there are several possible statisti-
cal interpretations for the key recovery problem and different statistical tests for solving
them. The purpose of this work is to compare different key recovery methods for both
Alg. 1 and Alg. 2.
Thedifferentmethodswill be comparedbyusing the concept of advantage proposedby

Selçuk [33]. Originally, the advantage was proposed to be used in measuring the success
of key ranking in the one-dimensional Alg. 2. In this paper, the theory of advantage is
extended to multiple dimensions and applied to study the key ranking in both Alg. 1 and
Alg. 2. The advantage for different methods is determined in theory and evaluated in
experiments for block cipher Serpent with a reduced number of rounds.
Both Alg. 1 and Alg. 2 can be interpreted as goodness-of-fit problems that can be

solved using χ2-test. A method based on LLR will also be studied for both algorithms.
While for Alg. 1 these two methods seem to be equally efficient in practice, for Alg. 2
both theory and practice demonstrate superiority of the LLR-method over the χ2-based
method. The multidimensional methods will also be compared to the classical one-
dimensional method. We also define a combination of the χ2-based Alg. 1 and Alg. 2
and show that it is essentially identical to the combined method proposed by Biryukov
et al. if in the latter, all (nonzero) linear combinations of the base approximations are
included in the attack.

1.4. Outline

The structure of this paper is as follows: in Sect. 2, the basic statistical theory and notation
is given. Results aboutmultidimensional linear distinguishers are presented aswell as the
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construction of the multidimensional probability distribution using the one-dimensional
linear approximations of the cipher. The advantage and the generalisation of Selçuk’s
theory to multiple dimensions are presented in Sect. 4. In Sect. 3, the multidimensional
linear approximation of a block cipher is discussed. Different extensions of Alg. 1
to multiple dimensions are introduced in Sect. 5 with the theoretical and experimental
results. The time, data andmemory complexities of Alg. 1 are also considered. Similarly,
Alg. 2 is studied in Sect. 6.

2. Boolean Functions and Related Statistical Concepts

2.1. Boolean Function and Probability Distribution

The space of n-dimensional binary vectors is denoted by F
n
2. The sum modulo 2 is

denoted by ⊕. The inner product for a = (a1, . . . , an), b = (b1, . . . , bn) ∈ F
n
2 is

defined as a · b = a1b1 ⊕ · · · ⊕ anbn . Then the vector a is called the (linear) mask of b.
A function f : Fn

2 �→ F2 is called a Boolean function. A linear Boolean function is a
mapping x �→ u · x, where u ∈ Fn . A function f : Fn

2 �→ F
m
2 with f = ( f1, . . . , fm),

where fi are Boolean functions, is called a vector Boolean function of dimension m. A
linear Boolean function from F

n
2 to F

m
2 is represented by an m × n binary matrix U . The

m rows of U are denoted by u1, . . . , um , where each ui is a linear mask.
The correlation between a Boolean function f : Fn

2 �→ F2 and zero is

c( f ) = c( f, 0) = 2−n (
#{ξ ∈ F

n
2 | f (ξ) = 0} − #{ξ ∈ F

n
2 | f (ξ) �= 0})

and it is also called the correlation of f.
We say that the vector p = (p0, . . . , pM ) is a probability distribution (p.d.) of a

random variable X taking on values in {0, 1, . . . , M} and denote X ∼ p, if Pr(X =
η) = pη, for all η = 0, . . . , M . We will denote the uniform p.d. by θ . Let f : Fn

2 �→ F
m
2

and X ∼ θ. We call the p.d. p of the random variable f (X) the p.d. of f .
Let us recall some general properties of p.d.’s. Let p = (p0, . . . , pM ) and q =

(q0, . . . , qM ) be p.d.’s of random variables taking on values in a set with M +1 elements.
The Kullback–Leibler distance between p and q is defined as follows:

Definition 2.1. The relative entropy or Kullback–Leibler distance between p and q is

D(p || q) =
M∑

η=0

pη log
pη

qη

,

with the conventions 0 log 0/b = 0, for all b ≥ 0 and b log b/0 = ∞ for b > 0.

The following property usually holds for p.d.’s related to any real ciphers, so it will
be frequently used throughout this work.

Property 1. We say that distribution p is close to q if |pη − qη| � qη, for all η =
0, 1, . . . , M .
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This is a natural property ofmodern cipherswith q = θ as one of their design criteria is
to resist one-dimensional linear cryptanalysis, and therefore, they must have as uniform
p.d.’s as possible.
If p is close to q, we can approximate their Kullback–Leibler distance using the Taylor

series [1] such that

D(p || q) = 1

2
C(p, q) + O(ε3),

where ε = maxη∈{0,1,...,M} |pη − qη| and the capacity C(p, q) of p and q is defined as
follows:

Definition 2.2. The capacity between two p.d.’s p and q is defined by

C(p, q) =
M∑

η=0

(pη − qη)
2

qη

.

If q is the uniform distribution, then C(p, q) will be denoted by C(p) and called the
capacity of p.

The normed normal distribution with mean 0 and variance 1 is denoted by N (0, 1).
Its probability density function (p.d.f.) is

φ(x) = 1√
2π

e−x2/2

and the cumulative distribution function (c.d.f.) is

Φ(x) =
∫ x

−∞
φ(t) dt.

The normal distribution with mean μ and variance σ 2 is denoted by N (μ, σ 2), and its
p.d.f. and c.d.f. are φμ,σ 2 and Φμ,σ 2 , respectively.
The following standard approximation of c.d.f. Φ(x) can be found in common statis-

tical reference books, e.g. [32]. The approximation

Φ(x) ≈ 1 − φ(x)

x
(1)

holds for large values of x and will be used in the derivations of this paper.
Let X1, . . . , X M be independent randomvariables,with Xi ∼ N (μi , 1), i = 1, . . . , M

and let λ = ∑M
i=1 μ2

i . If all μi , i = 1, . . . , M , are equal to zero, then the sum of the
squares

M∑

i=1

X2
i (2)

is χ2
M -distributed with M degrees of freedom and has mean M and variance 2M . Other-

wise the sum (2) follows the non-central χ2
M (λ) distribution which has mean λ+ M and



6 M. Hermelin et al.

variance 2(M +2λ). If M > 30, we may approximate χ2
M (λ) ∼ N (λ+ M, 2(M +2λ))

[13].
Let X1, . . . , X N be a sequence of independent and identically distributed (i.i.d.) ran-

dom variables where either X1, . . . , X N ∼ p (corresponding to null hypothesis H0)
or X1, . . . , X N ∼ q �= p (corresponding to alternate hypothesis H1). The hypothesis
testing problem is then to determine whether to accept or reject H0.

We can make two types of error in the test. In type I error, we reject H0 when it is
true. The level α of the test measures how probably this will happen: α = Pr(H1 | H0).
In type II error, we accept H0, when it is not true. This is measured by the power 1 − β

of the test, defined as β = Pr(H0 | H1).
According to the Neyman–Pearson lemma [11], given empirical data x̂1, . . . , x̂N , the

optimal statistic for solving this problem, that is, distinguishing between p and q, is the
log-likelihood ratio (LLR) defined by

LLR(q̂, p, q) =
M∑

η=0

Nq̂η log
pη

qη

, (3)

where q̂ = (q̂0, . . . , q̂M ) is the empirical p.d. calculated by

q̂η = 1

N
#{t = 1, . . . , N | x̂t = η}.

The distinguisher accepts H0 and outputs p (or rejects H0 and outputs q, ) if
LLR(q̂, p, q) ≥ τ (or LLR(q̂, p, q) < τ , respectively) where τ is the threshold. The
threshold depends on the level and the power of the test. Usually τ = 0.

The proof of the following result can be found in [11], see also [1].

Proposition 2.1. The LLR-statistic calculated from i.i.d. empirical data
x̂t , t = 1, . . . , N using (3) is asymptotically normal with mean and variance Nμ0
and Nσ 2

0 (Nμ1 and Nσ 2
1 , resp.) if the data are drawn from p (q, resp.). The means and

variances are given by

μ0 = D(p || q) μ1 = −D(q || p)

σ 2
0 =

M∑

η=0

pη log
2 pη

qη

− μ2
0 σ 2

1 =
M∑

η=0

qη log
2 pη

qη

− μ2
1.

Moreover, if p is close to q, the following estimates hold

μ0 ≈ −μ1 ≈ 1

2
C(p, q) σ 2

0 ≈ σ 2
1 ≈ C(p, q).

The data complexity of the test is defined as the amount of data N needed for successfully
solving the hypothesis testing problem between p and q with given power and level of
test. Assuming that p is close to q, the following corollary is obtained from Proposition
2.1 [1].
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Corollary 2.1. Assume that p is close to q. Then the data complexity N needed for
distinguishing p from q with level α and power 1 − β can be estimated as follows

N ≈ (zα − zβ)2

C(p, q)
,

where Φ(zα) = α and Φ(zβ) = 1 − β.

2.2. Multidimensional Approximation of Boolean Functions

Let f : Fn
2 → F

n′
2 be a vector Boolean function. Its one-dimensional linear approx-

imation with input mask u ∈ F
n
2 and output mask w ∈ F

n′
2 is the Boolean function

x �→ u · x ⊕ w · f (x), (4)

with some (non-negligible) correlation c. For many ciphers, it is possible to find several
such approximations (4) with non-negligible correlations. The aim of multidimensional
linear cryptanalysis is to efficiently exploit given one-dimensional approximations with
non-negligible correlations to obtain information about the cipher.
Linear approximations

ui · x ⊕ wi · f (x), i = 1, . . . , m, (5)

are said to be linearly independent if the mask pairs (ui , wi ), i = 1, . . . , m, considered
as concatenated vectors of length n + n′ are linearly independent.

Given a set of one-dimensional approximations of f , let m be the dimension of the
linear space spanned by them. We call this set a multidimensional linear approximation
of f of dimension m and it can be given by

U x ⊕ W f (x), (6)

where ⊕ is the component-wise modulo 2 sum and U = (u1, . . . , um) and W =
(w1, . . . , wm) are linear matrices from F

n
2 �→ F

m
2 and F

n′
2 �→ F

m
2 , respectively. The

linear approximations ui · x ⊕ wi · f (x), i = 1, . . . , m, are called base approximations.
Then we need to calculate the multidimensional p.d. p of the m-dimensional approx-

imation. We observe that it defines a vector Boolean function and recall that by the p.d.
of a vector Boolean function g : Fn

2 �→ F
m
2 we mean the p.d. of the random variable

g(X), where X ∼ θ . The following result connects the p.d. of a vector Boolean function
g and its one-dimensional correlations c(a · g); see, for example, [20] or [18].

Proposition 2.2. Let g : F
n
2 �→ F

m
2 be a Boolean function with p.d. p and one-

dimensional correlations c(a · g), a ∈ F
m
2 . Then

pη = 2−m
∑

a∈Fm
2

(−1)a·ηc(a · g), η = 0, 1, . . . , 2m − 1.
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Hence, for determining the p.d. p of approximation (6), we have to determine the cor-
relations c(a · (U x ⊕ W f (x))) of all the one-dimensional approximations of f. That is,
p is determined based on one-dimensional projections of f , which is a known principle
in statistics due to Cramér and Wold [12].
The following corollary is obtained fromProposition 2.2 using Parseval’s theorem.An

equivalent formof it can be found in [1], where the proofwas based on the inverseWalsh–
Hadamard transform of the deviations εη from the uniform distribution, εη = pη −2−m .

Corollary 2.2. Let g : Fn
2 �→ F

m
2 be a Boolean function with p.d. p and one-dimensional

correlations c(a · g). Then

C(p) = 2m
∑

η

ε2η =
∑

a �=0

c(a · g)2.

We will need this equality in the next section where we study how linear distinguishing
is done in multiple dimensions.

2.3. Multidimensional Linear Distinguishers

A linear distinguisher determines whether given data x̂t , t = 1, . . . , N , are drawn from
a cipher with p.d. p �= θ or a random source with p.d. θ . In the one-dimensional case,
the attacker uses one linear approximation such as (4) with correlation c. The data
complexity is inversely proportional to c2 [23,27].
When using multiple linear approximations

ui · x ⊕ wi · f (x), i = 1, . . . , m, (7)

with non-negligible correlations ci = c(ui · x ⊕ wi · f (x)) and drawing data x̂t , t =
1, . . . , N , from the cipher, the empirical correlations ĉi , i = 1, . . . , m, of the approxi-
mations (7) are calculated as

ĉi = 2
#{t = 1, . . . , N | ui · x̂t ⊕ wi · f (x̂t ) = 0}

N
− 1.

The distinguisher based on the method of Biryukov et al. [4] is given as the �2-distance
between the vectors c = (c1, . . . , cm) and ĉ = (ĉ1, . . . , ĉm):

∣
∣
∣
∣ĉ − c

∣
∣
∣
∣2
2 . (8)

Under the assumption that the approximations (7) are statistically independent, it was
proved in [4] that the data complexity of the distinguisher (8) is inversely proportional
to

c̄2 =
m∑

i=1

c2i . (9)
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This notion was defined in [4] and called as capacity of the set of linear approxima-
tions. This result means a significant improvement in data complexity when compared
to one-dimensional method, but relies on the assumption that the approximations are
statistically independent. Later in [29], this assumption was questioned and shown that
it does not hold in general. The experiments in [20] on reduced round Serpent confirmed
this. Moreover, verifying statistical independence of a set of linear approximations is es-
sentially equally hard as computing correlations of all their linear combinations. Indeed,
given independence, all correlations can be computed given the correlations of a set of
base approximations using the piling-up lemma. And given the correlations, statistical
independence can be proved by the inverse of piling-up lemma.
A truly multidimensional approach to the distinguishing problem was given in [1]

based on the LLR-statistic (3). By Corollary 2.1, the data complexity of a multidimen-
sional linear distinguisherwith p.d. p is inversely proportional toC(p). ByCorollary 2.2,
we see that C(p) ≥ c̄2. This indicates that data complexity for the distinguisher (8) with
statistically independent linear approximations is larger than for the multidimensional
LLR distinguisher. Moreover, using LLR and multidimensional p.d., we do not need to
assume that the used approximations are statistically independent.

3. Linear Approximation of a Block Cipher

We will be applying the statistical methods of Sect. 2.1 in the case where M = 2m − 1
from now on. Biryukov et al. proposed in Sect. 3.4. in [4] to extend the set of m linearly
independent approximations to m′, m ≤ m′ ≤ M, approximations by including linear
combinations of the base approximations with non-negligible correlations. It was argued
that the same rule that the data complexity is inversely proportional applies also for
the larger set of m′ linearly and statistically dependent approximations. If this holds,
then by Corollary 2.2 Biryukov’s distinguisher should converge to the multidimensional
distinguisher by adding all linear combinations of the base approximations such that
m′ = M . However, since the statistic (8) is based on the assumption of statistical
independence, its data complexity cannot be determined accurately.
An optimal case would be where all the M linear approximations used for a multidi-

mensional distinguisher have equally large correlations (in absolute value). Then using
all M of them might allow reducing data complexity. On the other hand, if only a single
one-dimensional approximation from a set of M approximations has a large correlation,
then it is not useful to include the others in the distinguisher. In reality, all cases between
these too extremes occur.
In this paper, we will present a number of methods for generalising the key recovery

attacks based on Matsui’s Alg. 1 and Alg. 2 to multiple dimensions using the statisti-
cal framework of multidimensional distinguishers. For each method, we will derive an
explicit estimate of data complexity and show that while the data complexity decreases
as the capacity of the linear approximations increases, the mere number of the linear
approximations can have an opposite effect which varies depending on the method.
We have chosen the block cipher Serpent [3] as the test bed for our methods. Unlike

the block cipher DES, it has been designed to resist linear cryptanalysis and therefore
does not have individual strong linear approximations. Still it has many linear approx-
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imations with correlations significantly stronger than the average that could potentially
be combined and used in a multidimensional linear attack. Such linear approximations
for Serpent have been previously found and used in experiments for Biryukov’s multiple
linear cryptanalysis by Collard et al. [10].
Let us study an iterated block cipher with block size n. Let x be the plaintext and y the

output of the cipher after R rounds. The cipher key is expanded using a key-scheduling
algorithm to a sequence of round keys. We denote by K the expanded key, that is, the
vector consisting of all round key bits used in R rounds, and by h the length of K . Then
a block cipher is a vector Boolean function with input (x, K ) ∈ F

n
2 × F

h
2. By (6), an

m-dimensional linear approximation of the block cipher can be considered as a vector
Boolean function

F
n
2 × F

h
2 → F

m
2 , (x, K ) �→ U x ⊕ W y ⊕ V K , (10)

where U and W are m × n binary matrices. The matrix V has also m rows and it divides
the expanded keys into 2m equivalence classes g = V K , g ∈ F

m
2 .

Let us denote by p(η|K ) the probabilities of the m-bit values η of (10) for a fixed
key K . In the analysis of this paper, it is assumed that for each η ∈ F

m
2 the probabilities

p(η|K ) are (about) equal for all K . We denote by p be the p.d. of (10) for a fixed key K ,
for all K ∈ F

h
2. Then for each g ∈ F

m
2 , the data U x̂t ⊕ W ŷt , t = 1, . . . , N , are drawn

from p.d. pg , a fixed permutation of p determined by g, and all p.d. pg , g ∈ F
m
2 , are

each other’s permutations. In particular, pg
η⊕k = pg⊕k

η , for all g, η, k ∈ F
m
2 .

By symmetry, the following results apply:

D(p || θ) = D(pg || θ) and C(p) = C(pg), for all g ∈ F
m
2 , (11)

and

min
g,g �=g′ D(pg || pg′

) = min
g �=0

D(pg || p) and min
g,g �=g′ C(pg, pg′

) = min
g �=0

C(pg, p), for all g′ ∈ F
m
2 ,

(12)
where theminimumKullback–Leibler distance and capacity will be denoted by Dmin(p)

and Cmin(p), respectively. Moreover, if Dmin(p) = 0, we need to join the corresponding
key classes to one class such that we may assume Dmin(p) �= 0 and Cmin(p) �= 0.

4. Advantage in Key Ranking

In a key recovery attack, a set of candidate keys is given, and the problem is to determine
which candidate is the right one. Let the keys be searched from a setFl

2 of all 2
l strings of

l bits. The algorithm consists of four phases: the counting phase, analysis phase, sorting
phase and searching phase [34]. In the counting phase, data, for example plaintext–
ciphertext pairs, are collected from the cipher. In the analysis phase, a real-valued statistic
T is used in calculating a mark T (κ) for all candidates κ ∈ F

l
2.

In the sorting phase, the candidates κ are sorted, i.e. ranked, according to their marks
T (κ). Optimally, the right key, denoted by κ0, should be at the top of the list. If this is not
the case, then in the search phase the candidates in the list are tested until κ0 is found.
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The goal of this paper is to find a ranking statistic T that is easy to compute and that is
also reliable and efficient in finding the right key.
The time complexity of the search phase, given amount N of data, was measured

using a special purpose quantity “gain” in [4]. A similar but more generally applicable
concept of “advantage” was introduced by Selçuk [33], where it was defined as follows:

Definition 4.1. Given a data sample obtained using an unknown fixed key, a key re-
covery attack for an l-bit key is said to achieve an advantage of a bits over exhaustive key
search, if the correct key is ranked among the top r = 2l−a out of all 2l key candidates.

Statistical tests for key recovery attacks are based on the wrong key hypothesis [17].
We state it as follows:

Assumption 1. (Wrong key hypothesis) There are two p.d.’s q and q ′, q �= q ′, such
that for the right key κ0, the data are drawn from q and for any wrong candidate key
κ �= κ0 the data are drawn from q ′ �= q.

A real-valued statistic T is computed from q and q ′, where one of these p.d.’s may
be unknown, and the purpose of a statistic T is to distinguish between q and q ′. We
use DR to denote the p.d. such that T (κ0) ∼ DR . We assume DR = N (μR, σ 2

R), with
parametersμR and σR, as this is the case with all statistics in this paper. ThenμR and σR

are determined with the help of linear cryptanalysis. We denote by DW the p.d. known
based on the wrong key hypothesis such that T (κ) ∼ DW for all κ �= κ0. The p.d.f. and
c.d.f. of DW are denoted by fW and FW , respectively.
Ranking the candidates κ according to T means rearranging the 2l random variables

T (κ), κ ∈ F
l
2, in decreasing (or sometimes increasing) order of magnitude. Writing the

ordered random variables as T(0) ≥ T(1) ≥ · · · ≥ T(i) ≥, we call T(i) the i th order
statistic. Let us fix the advantage a such that the right key should be among the r = 2l−a

highest ranking key candidates. Hence, the right key should be at least as high as the
r th wrong key with mark T(r). If the random variables T (κ), κ �= κ0, are statistically
independent, then by Theorem 1 in [33] the random variable T(r) is distributed as

T(r) ∼ N (μa, σ 2
a ), where

μa = F−1
W (1 − 2−a) and σa ≈ 2−(l+a)/2

fW (μa)
.

(13)

Let us define the success probability PS of having κ0 among the r highest ranking
candidates. If all the random variables T (κ), κ ∈ F

n
2 are statistically independent, we

have

PS = Pr(T (κ0) − T(r) > 0) = Φ

⎛

⎝ μR − μa√
σ 2

R + σ 2
a

⎞

⎠ (14)

since T (κ0) − T(r) ∼ N (
μR − μa, σ 2

R + σ 2
a

)
.
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As the data complexity N depends on the parameters μR − μa and σ 2
R + σ 2

a , we can
solve N from (14) as a function of a and vice versa. Hence, (14) describes the trade-off
between the data complexity N and the time complexity of the search phase.

5. Algorithm 1

5.1. Finding the Right Key Class

Assume that we have found an m-dimensional approximation (10) with non-uniform
p.d. p. The output y is the ciphertext obtained from the cipher by encrypting plaintext x
over R rounds using the key K . We denote by g0 the right key class to which K belongs.
Our goal is to find g0.
In the counting phase, we draw N plaintext–ciphertext pairs (x̂t , ŷt ), t = 1, . . . , N ,

from the cipher. From the empirical data U x̂t ⊕ W ŷt , t = 1, . . . , N , the empirical p.d. q̂
is computed.
To recall howAlg. 1 works for m = 1, let us denote by c (ĉ) the theoretical (empirical)

correlation of u · x ⊕ w · y. The decision in Alg. 1 in one dimension is based on the
following test: the key class candidate bit g is chosen to be 0 if cĉ > 0. Otherwise,
g = 1. In other words, the statistical decision problem is to determine which of the two
distributions ( 12 (1 ± c), 1

2 (1 ∓ c)) gives the best fit with the data.
In multiple dimensions, the same data will be used for ranking the different candidate

classes g ∈ F
m
2 . Hence, the corresponding marks T (g) will be statistically dependent.

We are not aware of any general method of calculating the c.d.f. of the order statistic
T(r) of statistically dependent random variables. The asymptotic c.d.f. of the maximum
of normal, identically distributed but dependent random variables for large M = 2m −
1, m ≥ 7 is derived in Sect. 9.3. in [14]. However, the problem still remains as the
random variables T (g0) and maxg �=g0 T (g) are statistically dependent.
Denote by N (g) the data complexity of ranking g with advantage a, if g is the

right key. We will assume T (g)’s to be statistically independent to determine N (g).

The assumption of statistical independence of T (g)’s could be avoided by drawing∑
g∈Vm

N (g) ≈ 2m maxg N (g) words of data, as then the right key class g0 would be
ranked with advantage a and each mark T (g), g ∈ F

m
2 could be calculated from dif-

ferent data. However, the resulting complexity estimate would be far too large to be of
practical value.
Wewill study three different ways to generalise the one-dimensional Alg. 1 tomultiple

dimensions. Since the data are drawn i.i.d. from the p.d. pg0 and not from any other
p.d. pg, g �= g0, we can interpret the problem of finding g0 as a generalisation of the
goodness-of-fit test where we determine whether given data are drawn from p.d. pg or
not. The candidate key class g ∈ F

m
2 which is most strongly indicated by this test to fit

the data is chosen to be the right key class. The classical goodness-of-fit tests are the
χ2-test and the G test based on the Kullback–Leibler distance. The first two methods
to be presented in this paper are generalisations of these tests into the case of multiple
distributions, i.e. finding one distribution from a set of distributions. The χ2-method
based on the χ2-test and the log-likelihood method based on the G test are studied in
Sects. 5.2 and 5.3, respectively.
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Our third method is the LLR-method to be studied in Sect. 5.4. In [2], the problem of
distinguishing one known p.d. from a set of other p.d.’s was studied. It was then possible
to use the optimal distinguisher, the LLR-statistic, in solving the problem. However,
since g0 is unknown, we cannot apply the results of [2] in our work directly. Instead,
we will use the following heuristic: since the data corresponding to q̂ are drawn from
the unknown p.d. pg0 �= θ , it should be easiest to distinguish the right p.d. pg0 rather
than any other p.d. pg, g �= g0 from the uniform distribution using the LLR-statistic.
Hence, the candidate key class g ∈ F

m
2 that gives the strongest distinguisher between the

corresponding p.d pg and θ is chosen to be the right key. This can be seen as a variant
of Assumption 1.
In all our analysis, it is assumed that pg and pg′

, g �= g′, are close to each other, and
all these distributions pg are close to θ in the sense of Property 1. The assumption about
closeness must be verified with practical experiments.

5.2. χ2-Method

The mark for each candidate class g ∈ F
m
2 based on χ2-statistic is defined as follows:

s(g) = N
M∑

η=0

(q̂η − pg
η)2

pg
η

, (15)

where N is the amount of data used in the attack, with M = 2m − 1 degrees of freedom.
The empirical distribution q̂ should be near to the correct p.d. pg0 while being further
away from all the other p.d.’s pg, g �= g0. Hence, the candidate class corresponding to
the smallest s(g) is chosen to be the right key class.
By [15], the distribution of s(g) can be approximated by χ2

M (NC(pg, pg0)) which
can further be approximated by s(g) ∼ N (μg, σ

2
g ),withmeanμg = M + NC(pg, pg0)

and variance σ 2
g = 2(M + 2NC(pg, pg0)), provided that μg > 30 [13], i.e. m should

be at least 5.
For simplicity, we have only determined the data complexity of full advantage of

a = m bits and assumed that s(g)’s are statistically independent. That is, we have
determined the data complexity of ranking g0 on the top of the list with s(g). Let PS be
the probability of finding g0 such that

PS = Pr(s(g0) > max
g �=g0

s(g)).

Using Property (11), we can do calculations and approximations similar to those done
in Sect. 4 in [1] or in the proof of Theorem 2 in [20] and get the following estimate of
the data complexity N that would be sufficient for finding g0 with success probability
PS

N ≈ 4m − 4βS + 2
√
2M(m − βS)

Cmin(p)
, (16)

where βS = ln(
√
2π ln P−1

S ). Note the exponential dependence of N on m as M =
2m − 1. Our experiments showed, however, that much less data are needed than what is
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predicted by (16). The reason may be that the statistical dependence of the marks s(g)

strengthens the method. However, as noted previously, we could not find a way to do
the derivations without the assumption of statistical independence. The formula for the
advantage of the χ2-method could also be derived but we have omitted it here, since it
will be given for the LLR-method studied in Sect. 5.4 which performs better in terms of
data complexity.

5.3. The Log-Likelihood Method

Another popular goodness-of-fit test is the log-likelihood test, also known as G test. The
experiments on Alg. 1 done in [20] used this test. The mark based on G test uses the
Kullback–Leibler distance

G(g) = D(q̂ || pg)

between the empirical p.d. q̂ and the theoretical p.d. pg. In [15], it is shown that for each
candidate class g ∈ F

m
2 the random variable G(g) can be approximated to be distributed

as

G(g) ∼ χ2
M (δg) + ξg, where

δg = N
M∑

η=0

pg
η log

2 pg
η

pg0
η

− N D(pg || pg0)2 and

ξg = 2N D(pg || pg0) − δg.

Since pg are near to pg0 , the parameters δg ≈ NC(pg, pg0) and ξg ≈ 0 and the G test
performs similarly as the χ2-test [15].

5.4. Log-Likelihood Ratio Method

The log-likelihood ratio is the optimal statistic for distinguishing two distributions [11].
It is also asymptotically normal as stated in Proposition 2.1. Hence, we would like to use
it for key ranking. The idea is that the empirical distribution can be used for distinguishing
the p.d. pg0 related to the correct key class from the uniform p.d. with large LLR value,
while any wrong p.d. pg, g �= g0 is less distinguishable from θ . For each g ∈ F

m
2 , we

compute the mark
�(g) = LLR(q̂, pg, θ). (17)

We choose the candidate class g with largest �(g) to be the right key class.
We cannot apply [2] here to determine the data complexity of finding g0 as the result

would be too optimistic. The task is to distinguish an unknown pg0 from a set of p.d.’s
{pg | g ∈ F

m
2 }. In [2], one distinguishes only pg0 from pg′

0 , g′
0 �= g0, the p.d. closest to

pg0 in Kullback–Leibler distance. We have to consider all the other candidate classes as
well, which increases the data complexity. Applying the theory of key ranking described
in Sect. 4, we derive the following result.

Theorem 5.1. Assume that the random variables �(g) are statistically independent
and that �(g) ∼ N (μW , σ 2

W ), g �= g0 where μW = 0 and σ 2
W ≈ σ 2

R, where σ 2
R is
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the variance of the random variable �(g0). If the p.d.’s pg, g ∈ F
m
2 and θ are close to

each other in the sense of Property 1, the advantage a of the LLR-method with marks
calculated by (17) can be approximated by

a ≈
(
1

2

√
NC(p) − Φ−1(PS)

)2

,

where PS(≥ 0.5) is the probability of success, N is the amount of data used in the attack
and C(p) and m are the capacity and the dimension of the linear approximation (10),
respectively.

The assumption of statistical independence of �(g)’s was discussed in Sect. 5.1. The
assumption about normal distribution of the wrong keys �(g), g �= g0 is based on the law
of large numbers [11]. The approximation of variance σ 2

W = σ 2
R is commonly used, for

example, in [34], and the approximation of mean is based on the idea that the empirical
data are not closer to any pg, g �= g0 than θ implying that μW ≤ 0. In the worst case,
with largest data complexity, μW = 0.

Proof. Let us proceed first by finding the p.d.’s for the random variables �(g), g ∈ F
m
2 .

By Proposition 2.1 and property (11), random variable �(g0) ∼ N (NμR, Nσ 2
R), where

μR ≈ C(p)/2 and σ 2
R ≈ C(p).

By the assumptions, we may use (13), where fW = φμW ,σ 2
W
and FW = ΦμW ,σ 2

W
to

obtain

μa = σW b, where b = Φ−1(1 − 2−a) and

σ 2
a ≈ 2−(m+a)

f 2W (μa)
.

By approximation (1),
φ(b) ≈ b(1 − Φ(b)) = b2−a . (18)

On the other hand

σ 2
a ≈ 2−(m+a)σ 2

W

φ2(b)

and by (18) we have
σ 2

a

σ 2
W

≈ 2−(m+a)

b22−2a
= 2−m+a

b2
.

Since a ≤ m, and b > 1, we have showed that σ 2
a /σ 2

W � 1 and also σ 2
a � σ 2

R . Then

PS = Pr(�(g0) > l(r))

= Φ

(
μR − μa

σR

)

≈ Φ

(
NC(p)/2 − √

NC(p)b√
NC(p)

)
,
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Fig. 1. Online phase of multidimensional Alg. 1.

from which we can solve an estimate of N as a function of a to be

N = 4(Φ−1(PS) + b)2

C(p)
≈ 4(Φ−1(PS) + √

a)2

C(p)
, (19)

where the last approximation is obtained using approximation (1). It givesφ(b)/b ≈ 2−a

and further

a ≈ log e

2
b2 + log b + log 2π

2
≈ b2. (20)

By inversion, we get an estimate of a as a function of N as desired. �

The experimental advantages for the different methods are studied in the next section.
A commonchoice for PS is 0.5 ≤ PS ≤ 0.99.Hence, the value ofΦ−1(PS) is typically

a small positive number less than 3, and if m ≥ Φ−1(PS)2, the numerator of (19) is
bounded above by 16m. This shows that the dependence of the data complexity on the
dimensionm of themultidimensional linear approximation is linear for the LLR-method,
while it is exponential in (16) for the χ2-method. Since in practice C(p) ≈ Cmin(p),

the comparison of (19) and (16) indicates that the LLR-method is more efficient than
the χ2-method or the log-likelihood method.

5.5. Algorithms and Complexities

For comparing the two methods, LLR and χ2, we are interested in the complexities of
the first two phases of Alg. 1 since the sorting and searching phase with fixed advantage
a do not depend on the chosen method. The counting phase is done online and all the
other phases can be done offline. However, we have not followed this division [34] in our
implementation, as we do part of the analysis phase online. We will divide the algorithm
into two phases as follows: In the online phase, depicted in Fig. 1, we calculate the
empirical p.d. q̂ . The marks s(g) for the χ2-method and �(g) for the LLR-method are
then assigned to the keys in the offline phase. The offline phases for χ2-method and
LLR-method are depicted in Figs. 2 and 3, respectively.
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Fig. 2. OfflinephaseofmultidimensionalAlg. 1 usingχ2.

Fig. 3. OfflinephaseofmultidimensionalAlg. 1 usingLLR.

The data complexities of the online phase for χ2 and LLR are given by (16) and (19),
respectively. The dependence of the data complexity of the χ2-method on the advantage
is similar to the LLR-method. The main difference is in the predicted dependence on m.
The time complexity of the online phase is Nm, where N is the data complexity. The
memory usage is 2m , the size of the empirical distribution.
In the offline phase, the time and memory complexities for both methods are 2m and

22m , respectively.

5.6. Experiments on Four-Round Serpent

Similarly as in previous experiments on multiple linear cryptanalysis, see [10], the Ser-
pent block cipher was used as a test bed. Description of Serpent can be found in [3].
We tested the different methods for multidimensional Alg. 1 described in this paper on
four-round Serpent, 4th–7th rounds, by selecting linearly independent one-dimensional
base approximations ui · x ⊕ w · y, i = 1, . . . , m, to construct a linear approximation
of the form (10) with m = 7 and m = 10. The used masks w and ui , i = 1, . . . , m, can
be found in [20].
We checked the assumption about closeness of the hypothetical distributions pg and

θ and saw that it holds as |pg
η − pg′

η | < 1
150 pg

η , for all g, g′ and η ∈ F
m
2 . We also checked

that Cmin(p) �= 0 and actually, Cmin(p) ≈ C(p).
The experiments showed that the empirical advantage when ranking the key classes

was exactly the same for all multidimensional methods. Hence, we only depict the LLR-
method. In particular, all methods were equally efficient in determining the correct key
class. Equations (19) and (16) predict that the LLR-method should be the most efficient:
when m increases, the data requirement of χ2-based tests increases exponentially with
m, whereas the increase is linear for the LLR-method. It is possible that the variance
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Fig. 4. Alg. 1: Theoretical and empirical advantage as a function of data complexity using LLR-method for
four-round Serpent when m = 7.
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Fig. 5. Alg. 1: Theoretical and empirical advantage as a function of data complexity using LLR-method for
four-round Serpent when m = 10.

of the χ2-method is not as large as the theory predicts, or the statistical dependence of
random variables s(g) strengthens the χ2-method more than expected.

The statistical model of the relationship between the advantage a and data complexity
N derived in this paper was tested in experiments. The results are given in Figs. 4 and
5. The empirical advantage is determined by averaging the advantages obtained for
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16 randomly selected keys using the LLR-method. The theoretical advantage given by
Theorem 5.1 is depicted for three different values of PS . The experiments show that
the data complexity predicted this way is too high, but we believe it gives a good upper
bound.
As discussed after the proof of Theorem 5.1, for full advantage a = m, we can in

usual cases approximate N ≈ 16m/C(p). By increasing m, that is, using more linear
approximations, the data complexity N decreases as long as the ratio C(p)/m increases.
This sets an upper bound for m to be used in practice. In case of four-round Serpent, the
practical upper bound around m = 12 was found in experiments.

In both cases m = 7 and m = 10, we also show how much better the m-dimensional
LLR-method is compared to thebinomialmethodwhere the same set ofm one-dimensional
approximations and Matsui’s Alg. 1 is used to determine each key class candidate bit
separately and independently. The m-bit key classes are then ranked according to the
product of |ĉi |, i = 1, . . . , m. This approach is similar to the method of Biryukov et al.
The enhanced method of Biryukov et al. includes in the analysis also some of the linear
combinations of the base approximations with significant correlations. The experiments
in [10,20] for Serpent already confirmed that this is a favourable thing to do in spite of
the lack of theoretical justification. In [20], also the enhanced method of Biryukov et al.
and the full multidimensional log-likelihood method were compared in experiments on
Serpent and the latter was shown to be more powerful.

6. Algorithm 2

Let us study a cipher with R + 1 rounds. Let x be the plaintext and z be the cipher
text after R + 1 rounds. Let the (R + 1)th round function and round key be f and
k ∈ F

l
2, respectively. Then the output after R rounds is y = f −1(z, k). Algorithm 2 uses

a multidimensional linear approximation over R rounds given by (10) with p.d. p. The
task is to find the right last round key k0 and possibly, in addition, the right key class g0
for the key used in the first R rounds.

6.1. Statistical Setting for Alg. 2

In the counting phase, we draw N data pairs (x̂t , ẑt ), t = 1, . . . , N . In the analysis phase,
for each last round key candidate k, we first calculate ŷk

t = f −1(ẑt , k), t = 1, . . . , N .

Then, for each k, we calculate the empirical p.d. q̂k = (q̂k
0 , . . . , q̂k

M ), where

q̂k
η = 1

N
#{t = 1, . . . , N | U x̂t ⊕ W ŷk

t = η}.

The keys are then given mark T (k) by using some statistic T that is calculated from
different data U x̂t ⊕ W ŷk

t , t = 1, . . . , N , for each key candidate k ∈ F
l
2. Hence, the

random variables T (k) are statistically independent.
If we use the wrong key k �= k0 to decrypt the ciphertext, it means we essentially

encrypt over one more round and the resulting data will be more uniformly distributed.
This heuristics is behind the originalwrong key randomisation hypothesis [22,27],which
in our case means that the data U x̂t ⊕ W ŷk

t , t = 1, . . . , N , k �= k0 are drawn i.i.d. from
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the uniform distribution. On the other hand, when decrypting with the correct key k0 the
data U x̂t ⊕ W ŷk0

t , t = 1, . . . , N are drawn i.i.d. from pg0 , where g0 ∈ F
m
2 is unknown.

6.2. Key Ranking in One-dimensional Alg. 2

Key ranking and advantage in the one-dimensional case, m = 1, of Alg. 2 was studied
in [33]. We will present it here briefly for completeness. Let c > 0 be the correlation
of (10) (the calculations are similar if c < 0) and let ĉk be the empirical correlation
calculated from the data. Themark used in ranking the keys is then given by s′(k) = |ĉk |.

The random variable ĉk0 is binomially distributed with mean μR = c and variance
σ 2

R = (1− c2)/N ≈ N−1. The wrong key random variables ĉk, k �= k0, are binomially
distributed with mean μW = 0 (following Assumption 1) and variance σ 2

W ≈ σ 2
R . Since

N is large, we can approximate s′(k0) ∼ N (μR, σ 2
R) and s′(k) ∼ FN (μW , σ 2

W ), k �=
k0, where FN is the folded normal distribution; see Appendix A in [33]. Then for
finding g0 with given success probability PS and advantage a the data complexity N is
estimated as follows

N ≈ (Φ−1(PS) + Φ−1(1 − 2−a−1))2

c2
.

6.3. Different Scenarios in Multiple Dimensions

When considering generalisation of Alg. 2 to the case, where multidimensional linear
approximation (10) is used, basically two different standard statistical methods can be
used:

• Goodness of fit (usually based on χ2-statistic, see also [29,34]) and
• Distinguishing of an unknown p.d. from a given set of p.d.’s (usually based on
LLR-statistic)

The goodness-of-fit approach is a straightforward generalisation of one-dimensional
Alg. 2. It can be used in searching for the last round key. It measures whether the data
are drawn from the uniform distribution, or not, by measuring the deviation from the
uniform distribution. It ranks highest the key candidate whose empirical distribution is
farthest away from the uniformdistribution. Themethod does not depend on the key class
candidate for the key used before the last round. Information about p.d. p is required
only for measuring the strength of the test. We will study this method in Sect. 6.4. After
the right last round key k0 is found, the data derived by Alg. 2 can then be used in any
form of Alg. 1 for finding the right key class g0 of the key used in the R first rounds. In
this manner, the χ2-approach allows separating between Alg. 1 and Alg. 2.
The idea behind the goodness-of-fit approach is that the “wrong key” distributions

q̂k, k �= k0 are close to the uniform distribution, whereas q̂k0 is further away from it.
Moreover, the expected value of C(q̂k0 , θ) = C(q̂k0) should be approximately C(p).
The LLR-method uses the information about the p.d. related to the key class candidate

g also in Alg. 2. In this sense, it is similar to the method presented in [4], where both
g0 and k0 were searched at the same time. As we noted in Sect. 2.1, the LLR-statistic
is the optimal distinguisher between two known p.d.’s. If we knew the right key class
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g0, we could simply use the empirical p.d.’s q̂k for distinguishing pg0 and the uniform
distribution and then choose the last round candidate k for which this distinguisher is
strongest [1]. In practice, the right key class g0 is unknown when running Alg. 2 for
finding the last round key.
Our approach is the following. In [2], it was described how one can use LLR to distin-

guish one known p.d. from a set of p.d.’s.Wewill use this distinguisher for distinguishing
θ from the given set pg, g ∈ F

m
2 . In the setting of Alg. 2, we can expect that for the right

k0, it should be possible to clearly conclude that the data (x̂t , ẑt ), t = 1, . . . , N , yield
data U x̂t ⊕ W ŷk0

t , t = 1, . . . , N , which follow a p.d. pg, for some g ∈ F
m
2 , rather than

the uniform distribution. On the other hand, for the wrong k �= k0, the data follow the
uniform distribution, rather than any pg, g ∈ F

m
2 .

To distinguish k0 from the wrong key candidates, we determine, for each round key
candidate k, the key class candidate g, for which the LLR-statistic is the largest with the
given data. The right key k0 is expected to have g0 such that the LLR-statistic with this
pair (k0, g0) is larger than for any other pair (k, g) �= (k0, g0). In this manner, we also
recover g0 in addition to k0. The LLR-method is studied in Sect. 6.5.

6.4. The χ2-Method

Thismethod separatesAlg. 1. andAlg. 2 such that the latter does not need any information
of p. Both methods are interpreted as goodness-of-fit problems, for which the natural
choice of ranking statistic is χ2. We will show first how to find the last round key k with
Alg. 2.

6.4.1. Algorithm 2 with χ2

Given empirical p.d. q̂k , the mark based on χ2-statistic is calculated from the data by

S(k) = 2m N
M∑

η=0

(q̂k
η − 2−m)2, (21)

where M = 2m −1 is the number of degrees of freedom. Formula (21) can be interpreted
as the �2-distance between the empirical p.d. and the uniform p.d.. By Assumption 1,
the right round key should produce data that are farthest away from the uniform p.d. and
the last round key candidate k for which the mark S(k) is largest is chosen. Obviously,
(21) simplifies to (ĉk)2, if m = 1.

The following theorem describes the relationship between the data complexity and
the time complexity of the search phase.

Theorem 6.1. Suppose the cipher satisfies Assumption 1 where q ′ = θ and the p.d.’s
pg, g ∈ F

m
2 and θ are close to each other. Then the advantage of the χ2-method using

marks (21) is given by

a ≈
(

NC(p) − 2
√

MΦ−1(PS)
)2

2M
, (22)
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where M = 2m − 1, PS (> 0.5) is the probability of success, N is the amount of data
used in the attack and C(p) and m (≥ 5) are the capacity and the dimension of the
linear approximation (10), respectively.

Proof. According to [15], the random variable S(k0) is distributed approximately as

S(k0) ∼ χ2
M (NC(pg0)) = χ2

M (NC(p)),

because of the symmetry property (11). Since m ≥ 5, we may approximate the distribu-
tion by a normal distribution with μR = M + NC(p) and σ 2

R = 2(M + 2NC(p)). The
parameters do not depend on g0 or k0. For the wrong keys k �= k0, we obtain by [15]
that

S(k) ∼ χ2
M (0) = χ2

M ,

so that μW = M and σ 2
W = 2M . The mean and variance in (13) are

μa = b
√
2M + M

σ 2
a = 2M

2l+aφ(b)2
,

where b = Φ−1(1 − 2−a).

When a < l is large, we use approximation (20) to get a ≈ b2 by which μa =√
2aM + M . Further by approximation (1), we get φ(b) ≈ b2−a . Then

σ 2
a ≈ 2M

2l+a2−2ab2
≈ M

a2l−a
< M.

For smalla, this estimate holds trivially. Then to proceed,we restrict to the case NC(p) <

M/4.This is not essential restriction, sincefinally NC(p)will be close to a small constant
multiple of

√
M . Then we have

√
2M <

√
σ 2

a + σ 2
R < 2

√
M,

and we use the upper bound as an estimate for
√

σ 2
a + σ 2

R . Then we can solve data
complexity from the formula (14) of the success probability to obtain the following
estimate of the data complexity

N ≈
(√

2a + 2Φ−1(PS)
) √

M

C(p)
. (23)

By solving for a, we get the estimated advantage as claimed. �

Note that the normal approximation of the wrong key distribution is valid only when
m > 5, that is, when the approximation of χ2-distribution by a normal distribution is
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valid. It is not possible to perform the theoretical calculations for small m as the χ2-
distribution does not have a simple asymptotic form in that case andwe cannot determine
fW and FW in (13). Since for m = 1 our χ2-method reduces to the square of s(k) that
was used by Selçuk, the theoretical distributions differ from our calculations and we get
a slightly different formula for the advantage. Despite this difference, the methods are
essentially equivalent for m = 1.

Keeping the capacity and advantage constant, we see by (23) that the data complexity
increases exponentially as 2m/2 as the dimensionm of the linear approximation increases
and is sufficiently large. Hence, in order to strengthen the attack by increasing m, the
capacity should increase faster than 2m/2. This is a very strong condition and it suggests
that in applications, only approximations with small m should be used with χ2-attack.
The experimental results for different m presented in Sect. 6.7 as well as the theoretical
curves depicted in Fig. 9 suggest that increasingm in theχ2-method does not necessarily
mean improved performance for Alg. 2.
While (22) and (23) depend on the theoretical distribution p, the actual χ2-mark

(21) is independent of p. Therefore, to realise the attack, we do not need to know p
accurately. It suffices to find an approximation (10) that deviates as much as possible
from the uniform distribution. On the other hand, if we use time and effort for computing
an approximation of the theoretical p.d. p and if we may assume that the approximation
is accurate, we would also like to exploit this knowledge for finding the right class of
the key used in R first rounds using Alg. 1. As noted in Sect. 5, there are several ways to
realising a multidimensional Alg. 1. Considering Alg. 1 as a χ2-based goodness-of-fit
problem, we may combine Alg. 1 and Alg. 2 to be described next.

6.4.2. Combined Method and Discussion

The sums of squares of correlations used in the method of Biryukov et al. [4] are closely
related to the sums of squares (15) and (21). Indeed,we could define a combinedχ2-mark
S′ by considering the sum of (15) and (21) and setting

S′(k, g) =
∑

k′ �=k

S(k′) + s(k, g),

where s(k, g) is calculated from the empirical p.d. q̂k, k ∈ F
l
2 by (15). The right key

(k0, g0) should give the smallest mark. If we approximate the denominators in (15) by
2−m and scale by 2m N , we obtain from S′(k, g) the mark

B(k, g) =
∑

k′ �=k

||q̂k′ − θ ||22 + ||q̂k − pg||22, (24)

which is closely related to the one used in [4]:

∑

k′ �=k

||ĉk′ ||22 + ||ĉk − cg||22, (25)
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where ĉk is the empirical correlation vector corresponding to the last round key candidate
k and cg is the theoretical correlation vector corresponding to the key class candidate g.

Indeed, if in (25) all correlation vectors ĉk and cg contain correlations from all linear
approximations then (25) becomes the same as 2m B(k, g) as can be seen by Propo-
sition 2.2 and Parseval’s theorem. Initially, in the theoretical derivation of (25) only
linearly and statistically independent approximations were included in the correlation
vectors. However, in Sect. 3.4 of [4] it was proposed to take into account all linear
approximations with strong correlations when forming the mark (25) in practice. In
practical experiments by Collard et al. [10], this heuristic enhancement was demon-
strated to improve the results for Serpent. In this paper, we have shown how to remove
the assumption about independence of the linear approximations and offer the option of
including all linear approximations that have sufficient contribution to the capacity.
Other possibilities for combining Alg. 1 and Alg. 2 based on χ2 or its variants are also

possible, with different weights on the terms of the sum in (24), for instance. However,
the mathematically more straightforward way is to use the pure χ2-method defined by
(21) and (15), as its statistical behaviour is well known. An even more efficient method
can be developed based on LLR as will be shown next.

6.5. The LLR-Method

This method is also based on the same heuristic as the wrong key hypothesis: For k �= k0,
the distribution of the data should look uniform and for k0 it should look like pg0 , for
some g0.Hence, for each k, the problem is to distinguish the uniformdistribution from the
discrete and known set pg, g ∈ F

m
2 . Let us use the notation L(k, g) = LLR(q̂k, pg, θ).

We propose to use the following mark

L(k) = max
g∈Fm

2

L(k, g). (26)

Now k0 should be the key for which this maximum over g is the largest, and ideally, then
the maximum is achieved for g = g0. While the symmetry property (11) allows one to
develop statistical theory without knowing g0, in practice one must search through F

l
2

for k0 and F
m
2 for g0 even if we are only interested in determining k0.

Theorem 6.2 gives the trade-off between the time complexity of the search phase and
the data complexity of the algorithm.

Theorem 6.2. Suppose the cipher satisfies Assumption 1 where q ′ = θ and the p.d.’s
pg, g ∈ F

m
2 and θ are close to each other. Suppose further that for all the wrong last

round key candidates k �= k0, the 2m random variables L(k, g), g ∈ F
m
2 are statistically

independent. Then the advantage of the LLR-method for finding the last round key k0,
assuming that it is paired with the right key class g0, is given by

a ≈ (
√

NC(p) − Φ−1(P12))
2 − m ≈ NC(p) − m. (27)
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Here N is the amount of data used in the attack, P12 (> 0.5) is the probability of success
and C(p) and m are the capacity and the dimension of the linear approximation (10),
respectively.

For fixed k �= k0, the random variables L(k, g), g ∈ F
m
2 are calculated using the same

data q̂k . Hence, they are actually statistically dependent. Similarly as in Sect. 5, we will
assume that they are statistically independent to simplify calculations. The practical
experiments concentrated on finding the right last round key k0 such that we did not
actually need the knowledge of g0 or its data complexity. The following calculations
give a theoretical model that can be used in describing how the LLR-method behaves
especially when compared to other methods.

Proof. Using Proposition 2.1 and property (11), we can state Assumption 1 as follows:
For the right key (k0, g0),

L(k0, g0) ∼ N (μR, σ 2
R), where μR = 1

2
NC(p) and σ 2

R = NC(p), (28)

and for k �= k0 and any g ∈ F
m
2 ,

L(k, g) ∼ N (μW , σ 2
W ), where μW = −1

2
NC(p) and σ 2

W = NC(p). (29)

Hence, μR, σ 2
R, μW and σ 2

W do not depend on g ∈ F
m
2 .

For fixed k �= k0, the random variables L(k, g) for k �= k0 are identically normally
distributed with mean μW and variance σ 2

W . Assuming that for each k �= k0, the random
variables L(k, g)’s are independent, we obtain that the c.d.f. of their maximum is given
by [14]

FW (x) = ΦμW ,σ 2
W

(x)M+1

and p.d.f. is
fw(x) = (M + 1)ΦμW ,σ 2

W
(x)MφμW ,σ 2

W
(x).

Let us fix the advantage a such that r = 2l−a . The meanμa of the r th wrong key statistic
L(r) can now be calculated from (13) to be

μa = μW + σW b = −1/2NC(p) + √
NC(p)b,

b = Φ−1(
M+1

√
1 − 2−a),

(30)

and the variance is

σ 2
a = 2−l−aσ 2

W

(M + 1)2(1 − 2−a)2(1−1/(M+1))φ2(b)
� σ 2

R . (31)

Let
P12 = Pr(L(k0) > L(r) | L(k0, g0) > max

g �=g0
L(k0, g))
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be the probability that we rank k0 among the r highest ranking keys provided that we
pair g0 with k0.

We can calculate P12 using (14), (30) and (31) to obtain

P12 = Φ

(
μR − μW − σwb

σR

)
≈ Φ(

√
NC(p) − b).

Hence, the amount of data

N ≈
(
Φ−1(P12) + b

)2
/C(p) (32)

is estimated to be sufficient. We approximateΦ(b) = M+1
√
1 − 2−a ≈ 1−2−m−a . Then

by replacing a by a + m in (20) we have a + m ≈ b2 and can solve an estimate of
advantage a as a function of N from (32) to get the claim. �

Let
P1 = Pr(L(k0, g0) > max

g �=g0
L(k0, g))

be the probability that given k0, we choose g0, i.e. the probability of success of Alg. 1.
with full advantage a = m. Let

P2 = Pr(L(k0) > L(r))

be the probability that we rank k0, paired with any g ∈ F
m
2 , among the r highest ranking

keys. Then

P2 = P12P1 + Pr(L(k0) > L(r) | L(k0) = LLR(k0, pg, θ), g �= g0)(1 − P1)

≥ P12P1.

Denote by N1 and N2 the data complexities needed to achieve success probabilities P1,
and P2, respectively. The data complexity N1 is given in (19). If we pair k0 with g �= g0,
then L(k0) ≥ L(k0, g0) for a fixed empirical p.d. q̂k0 , so that k0 gets ranked higher than
by using the correct g0. Hence, assuming that k0 gets paired with g0 only decreases P2
so the theory predicts N2 to be (slightly) larger than in reality. Then we can approximate
N2 from above by (32) and the corresponding advantage with success probability P2 is
approximately given by (27).
The data complexity N1 is an overestimate for the actual data complexity of Alg. 1

so in practice, N2 > N1. Then if k0 is ranked with advantage a and success probability
P2 > 0.5 among the 2l−a highest ranking keys, it is also paired with the right key class
g0. We have the following corollary:

Corollary 6.1. Under the assumptions of Theorem 6.2, the data complexity of the LLR-
method for ranking the last round key k0 among the r = 2l−a highest ranking keys can
be estimated as

N = max(N1, N2) ≈ a + m

C(p)
, (33)
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Fig. 6. Online phase of multidimensional Alg. 2.

Fig. 7. OfflinephaseofmultidimensionalAlg. 2 usingχ2-method.

and with this data complexity k0 is paired with the right key class g0 with a high success
probability. On the other hand, given an amount N of data, the advantage of the LLR-
method is

a ≈ (
√

NC(p) − Φ−1(P2))
2 − m ≈ NC(p) − m, (34)

where P2 (> 0.5) is the probability of success and C(p) and m are the capacity and the
dimensions of the linear approximation (10), respectively.

With fixed N and capacity C(p), the advantage decreases linearly with m, whereas
in (22), the logarithm of advantage decreases linearly with m. For fixed m and p, the
advantage of the LLR-method seems to be larger than the advantage of the χ2-method.
The experimental comparison of the methods is presented Sect. 6.7.

6.6. Algorithms and Complexities

Similarly as in Sect. 5.5, we divide Alg. 2 into online and offline phases. In the online
phase, depicted in Fig. 6 we calculate the empirical p.d.’s for the round key candidates.
The marks S(k) for the χ2-method and L(k) for the LLR-method are then assigned to
the keys in the offline phase. The offline phases for χ2-method and LLR-method are
depicted in Figs. 7 and 8, respectively. After the keys k are each given the mark, they
can be ranked according to the mark. Given q̂k0 , the multidimensional Alg. 1 can be
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Fig. 8. OfflinephaseofmultidimensionalAlg. 2 usingLLR-method.

used for finding g0 offline. The method used in Alg. 1 does not depend on the one used
in Alg. 2, so, for example, the LLR ranking, see Fig. 3, can be used for finding g0.

For fixed advantage a, the data complexities of the online phase for the χ2 and LLR
are given in (23) and (33), respectively. Theoretical and practical results imply that the
data complexities of different methods in Alg. 2 dominate the data complexity of Alg. 1
given in (19). Hence, the total data complexities are given by (23) and (33), even for
deriving both k0 and g0. The memory and time complexities for online phase are 2l+m

and 2lm N , where N is the data complexity.
For the offline phase of LLR-based Alg. 2, the time and memory complexities are

2l+m and 2m max(2l , 2m), respectively. The method obtained by a combination of χ2-
based Alg. 2 and LLR-based Alg. 1 has the same complexities. Thus, we recommend
using the LLR-method rather than χ2-method unless the accuracy of the p.d. p of the
linear approximation (10) is a concern. If we use χ2 for finding only the last round key
k0, we have the same time complexity as for LLR but a reduced memory complexity
2l , since we do not have to store the theoretical distributions pg . In some situations,
it may even be advantageous to combine different methods. For example, we may first
find, say, r best last round keys by χ2-based Alg. 2, such that the data complexity is
given by (23), with advantage a = l − log r . Then we can proceed by applying Alg. 2
based on LLR-method in a reduced search space of size r < 2l . Other similar variants
are possible. Their usefulness depends on the cipher that is being analysed.

6.7. Experiments on Five-Round Serpent for Alg. 2

The purpose of the experiments was to test the accuracy of the derived statistical models
and to demonstrate the better performance of the LLR-basedmethod in practice.We take
5 rounds of Serpent, from the 4th to 8th round,m-dimensional linear approximation over
four rounds, 4th to 7th, and searched for a 12-bit part of the round key used in the 8th
round.Differentm were used. Each experimentwas performed for 16 different, randomly
selected keys. Given a data sample of size N , we measured the experimental ranking of
k0 among all 212 candidates and computed the corresponding advantage. In the figures,
the average advantage taken over 16 keys is depicted for each sample sizes N that are
integer multiples of 221. Comparing the results to the experiments done with Alg. 1 in
Sect. 5.6, it is noted that for large advantages the data complexities of Alg. 2 dominate
the ones of Alg. 1.
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Fig. 9. Alg. 2: Theoretical advantage for χ2-method for different m and PS = 0.95.

We calculated the capacities for the approximation (10) over four-round Serpent for
different m. The results in Sect. 5.6 showed that pg’s can be considered to be close to
each other and θ.

The theoretical advantage of the χ2-method predicted in (22) has been plotted as a
function of data complexity in Fig. 9. The figure shows that increasing m larger than
4, the attack is weakened. This suggests using m = 4 base approximations in the χ2-
attack. Since we should havem at least 5 for the normal approximation of χ2

M to hold, the
theoretical calculations do not necessarily hold for small m. However, the experiments,
presented in Fig. 10, are in accordance with the theory also for m = 1 and m = 4. The
most efficient attack is obtained by using m = 4 equations. Increasing m (and hence the
time and memory complexities of the attack) actually weakens the attack. The optimal
choice of m depends on the cipher and the size of the correlations of available linear
approximations.
The reason is the χ2-statistic itself: it only measures if the data follow a certain

distribution, the uniform distribution in this case. The more the approximations we
use, the larger the distributions become and the more the uncertainty we have about
the “fitting” of the data. Small errors in experiments generate large errors in χ2 as the
fluctuations from the relative frequency 2−m become more significant.
The theoretical advantage of the LLR-method (34) is plotted against the data com-

plexity in Fig. 11 for different m. The empirical advantages for several different m are
shown in Fig. 12 in the same experimental setting as was used for χ2. Unlike for χ2,
we see that the method can be strengthened by increasing m, until the increase in the
capacity C(p) becomes negligible compared to increase in m. For four-round Serpent,
this happens when m ≈ 12. Experimental results presented in Figs. 10 an 12 confirm
the theoretical prediction that the LLR-method is more powerful than the χ2-method.
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Fig. 10. Alg. 2: Empirical advantage for χ2-method for different m.
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Fig. 11. Alg. 2: Theoretical advantage for LLR-method for different m and P12 = 0.95.

Also the theoretical and empirical curves agree nicely. For example, the full advantage
of 12 bits with m = 7 is achieved at log N = 27.5 for LLR, whereas for χ2-method
log N = 28. Moreover, the LLR can be strengthened by increasing m. For m = 12, the
empirical and theoretical data complexities are close to 226.
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Fig. 12. Alg. 2: Empirical advantage for LLR-method for different m.

7. Conclusions

We studied several ways of extending Matsui’s Algorithms 1 and 2 to multiple dimen-
sions. Using the advantage, we could compare the efficiency of the different methods
in theory and in practice. The theory predicted that for both Alg. 1 and Alg. 2 the key
ranking based on LLR is more efficient than goodness-of-fit tests using χ2 (or G test).
However, in practical experiments for Alg. 1, the methods seemed to perform equally
well. It remains an open question how to avoid the assumption about statistical indepen-
dence of the ranking values andmake the theoretical prediction more accurate for Alg. 1.
For Alg. 2, both theoretical and practical results are in agreement. We showed that

the χ2-based method is weaker than the LLR-based method. Hence, we recommend
to use the LLR-method proposed in this paper rather than the χ2-method as long as
the estimated p.d. of the multidimensional linear approximation can be assumed to be
accurate for all keys. If the theoretical p.d. varies a lot with keys or otherwise cannot be
determined accurately, then the χ2-method is preferred.

8. Later Developments

Let us conclude this revised version of the paper by giving a brief overview of the
most important advances in multidimensional linear cryptanalysis during the decade
that passed since the submission of this paper. At CT-RSA 2010, the authors presented
an improved method for Alg. 1 called as the convolution method [19] and an attack
on block cipher PRESENT [9]. The dependence of p.d. p of the key we observed
in this paper has been considered, and more advanced statistical models have been
developed. The variance due to random key was first integrated in the wrong key model
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of one-dimensional linear cryptanalysis [8], then to the model of the cipher [21] and
finally for both [6] considering also explicitly the case of sampling without replacement.
Since 2012, the hypothesis testing model has been adopted in many works on statistical
cryptanalysis to determine distinguishing complexity [7] and data complexity for key
recovery. Instead of relating the advantage a to ranking of the candidate keys, the quantity
2−a is interpreted as the probability of the error of accepting awrong candidate key.With
the hypothesis testing model, the problem with statistically dependent order marks we
had in this paper disappears, while the data complexity estimates remain essentially the
same. Zero-correlation multidimensional linear cryptanalysis was invented in [7], where
it was also shown to be linked with integral attacks. The corresponding mathematical
link between general multidimensional linear cryptanalysis and truncated differential
cryptanalysis was proved in [5]. It allows to transform differential-type attacks to linear-
type attacks and vice versa. For example, the multidimensional linear attack presented
in [9] gives also the best differential-type attack on this cipher. Finally, let us mention
that the recently presented affinemultidimensional linear cryptanalysis allows to remove
all trivial linear approximations, e.g. where either the input mask or the output mask is
equal to zero without introducing artificial independence assumptions [30]. The 2m − 1
linear approximations over four rounds of SERPENT we used in this paper share the
same output mask. Using the affine method, the trivial linear approximations (linear
combinations of even number of base approximations) can be removed. The set of the
remaining 2m−1 linear approximations has the same capacity as the original set, but the
variance of the related χ2-statistic is significantly reduced, thus potentially improving
the power of the attack.
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